xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 1edccebcccdbe600dc0a3a418fae68336648a87e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_common.h>
17 #include <rte_eth_ctrl.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23 
24 #include "testpmd.h"
25 
26 /** Parser token indices. */
27 enum index {
28 	/* Special tokens. */
29 	ZERO = 0,
30 	END,
31 
32 	/* Common tokens. */
33 	INTEGER,
34 	UNSIGNED,
35 	PREFIX,
36 	BOOLEAN,
37 	STRING,
38 	MAC_ADDR,
39 	IPV4_ADDR,
40 	IPV6_ADDR,
41 	RULE_ID,
42 	PORT_ID,
43 	GROUP_ID,
44 	PRIORITY_LEVEL,
45 
46 	/* Top-level command. */
47 	FLOW,
48 
49 	/* Sub-level commands. */
50 	VALIDATE,
51 	CREATE,
52 	DESTROY,
53 	FLUSH,
54 	QUERY,
55 	LIST,
56 	ISOLATE,
57 
58 	/* Destroy arguments. */
59 	DESTROY_RULE,
60 
61 	/* Query arguments. */
62 	QUERY_ACTION,
63 
64 	/* List arguments. */
65 	LIST_GROUP,
66 
67 	/* Validate/create arguments. */
68 	GROUP,
69 	PRIORITY,
70 	INGRESS,
71 	EGRESS,
72 	TRANSFER,
73 
74 	/* Validate/create pattern. */
75 	PATTERN,
76 	ITEM_PARAM_IS,
77 	ITEM_PARAM_SPEC,
78 	ITEM_PARAM_LAST,
79 	ITEM_PARAM_MASK,
80 	ITEM_PARAM_PREFIX,
81 	ITEM_NEXT,
82 	ITEM_END,
83 	ITEM_VOID,
84 	ITEM_INVERT,
85 	ITEM_ANY,
86 	ITEM_ANY_NUM,
87 	ITEM_PF,
88 	ITEM_VF,
89 	ITEM_VF_ID,
90 	ITEM_PHY_PORT,
91 	ITEM_PHY_PORT_INDEX,
92 	ITEM_PORT_ID,
93 	ITEM_PORT_ID_ID,
94 	ITEM_MARK,
95 	ITEM_MARK_ID,
96 	ITEM_RAW,
97 	ITEM_RAW_RELATIVE,
98 	ITEM_RAW_SEARCH,
99 	ITEM_RAW_OFFSET,
100 	ITEM_RAW_LIMIT,
101 	ITEM_RAW_PATTERN,
102 	ITEM_ETH,
103 	ITEM_ETH_DST,
104 	ITEM_ETH_SRC,
105 	ITEM_ETH_TYPE,
106 	ITEM_VLAN,
107 	ITEM_VLAN_TCI,
108 	ITEM_VLAN_PCP,
109 	ITEM_VLAN_DEI,
110 	ITEM_VLAN_VID,
111 	ITEM_VLAN_INNER_TYPE,
112 	ITEM_IPV4,
113 	ITEM_IPV4_TOS,
114 	ITEM_IPV4_TTL,
115 	ITEM_IPV4_PROTO,
116 	ITEM_IPV4_SRC,
117 	ITEM_IPV4_DST,
118 	ITEM_IPV6,
119 	ITEM_IPV6_TC,
120 	ITEM_IPV6_FLOW,
121 	ITEM_IPV6_PROTO,
122 	ITEM_IPV6_HOP,
123 	ITEM_IPV6_SRC,
124 	ITEM_IPV6_DST,
125 	ITEM_ICMP,
126 	ITEM_ICMP_TYPE,
127 	ITEM_ICMP_CODE,
128 	ITEM_UDP,
129 	ITEM_UDP_SRC,
130 	ITEM_UDP_DST,
131 	ITEM_TCP,
132 	ITEM_TCP_SRC,
133 	ITEM_TCP_DST,
134 	ITEM_TCP_FLAGS,
135 	ITEM_SCTP,
136 	ITEM_SCTP_SRC,
137 	ITEM_SCTP_DST,
138 	ITEM_SCTP_TAG,
139 	ITEM_SCTP_CKSUM,
140 	ITEM_VXLAN,
141 	ITEM_VXLAN_VNI,
142 	ITEM_E_TAG,
143 	ITEM_E_TAG_GRP_ECID_B,
144 	ITEM_NVGRE,
145 	ITEM_NVGRE_TNI,
146 	ITEM_MPLS,
147 	ITEM_MPLS_LABEL,
148 	ITEM_GRE,
149 	ITEM_GRE_PROTO,
150 	ITEM_FUZZY,
151 	ITEM_FUZZY_THRESH,
152 	ITEM_GTP,
153 	ITEM_GTP_TEID,
154 	ITEM_GTPC,
155 	ITEM_GTPU,
156 	ITEM_GENEVE,
157 	ITEM_GENEVE_VNI,
158 	ITEM_GENEVE_PROTO,
159 	ITEM_VXLAN_GPE,
160 	ITEM_VXLAN_GPE_VNI,
161 	ITEM_ARP_ETH_IPV4,
162 	ITEM_ARP_ETH_IPV4_SHA,
163 	ITEM_ARP_ETH_IPV4_SPA,
164 	ITEM_ARP_ETH_IPV4_THA,
165 	ITEM_ARP_ETH_IPV4_TPA,
166 	ITEM_IPV6_EXT,
167 	ITEM_IPV6_EXT_NEXT_HDR,
168 	ITEM_ICMP6,
169 	ITEM_ICMP6_TYPE,
170 	ITEM_ICMP6_CODE,
171 	ITEM_ICMP6_ND_NS,
172 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
173 	ITEM_ICMP6_ND_NA,
174 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
175 	ITEM_ICMP6_ND_OPT,
176 	ITEM_ICMP6_ND_OPT_TYPE,
177 	ITEM_ICMP6_ND_OPT_SLA_ETH,
178 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
179 	ITEM_ICMP6_ND_OPT_TLA_ETH,
180 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
181 
182 	/* Validate/create actions. */
183 	ACTIONS,
184 	ACTION_NEXT,
185 	ACTION_END,
186 	ACTION_VOID,
187 	ACTION_PASSTHRU,
188 	ACTION_JUMP,
189 	ACTION_JUMP_GROUP,
190 	ACTION_MARK,
191 	ACTION_MARK_ID,
192 	ACTION_FLAG,
193 	ACTION_QUEUE,
194 	ACTION_QUEUE_INDEX,
195 	ACTION_DROP,
196 	ACTION_COUNT,
197 	ACTION_COUNT_SHARED,
198 	ACTION_COUNT_ID,
199 	ACTION_RSS,
200 	ACTION_RSS_FUNC,
201 	ACTION_RSS_LEVEL,
202 	ACTION_RSS_FUNC_DEFAULT,
203 	ACTION_RSS_FUNC_TOEPLITZ,
204 	ACTION_RSS_FUNC_SIMPLE_XOR,
205 	ACTION_RSS_TYPES,
206 	ACTION_RSS_TYPE,
207 	ACTION_RSS_KEY,
208 	ACTION_RSS_KEY_LEN,
209 	ACTION_RSS_QUEUES,
210 	ACTION_RSS_QUEUE,
211 	ACTION_PF,
212 	ACTION_VF,
213 	ACTION_VF_ORIGINAL,
214 	ACTION_VF_ID,
215 	ACTION_PHY_PORT,
216 	ACTION_PHY_PORT_ORIGINAL,
217 	ACTION_PHY_PORT_INDEX,
218 	ACTION_PORT_ID,
219 	ACTION_PORT_ID_ORIGINAL,
220 	ACTION_PORT_ID_ID,
221 	ACTION_METER,
222 	ACTION_METER_ID,
223 	ACTION_OF_SET_MPLS_TTL,
224 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
225 	ACTION_OF_DEC_MPLS_TTL,
226 	ACTION_OF_SET_NW_TTL,
227 	ACTION_OF_SET_NW_TTL_NW_TTL,
228 	ACTION_OF_DEC_NW_TTL,
229 	ACTION_OF_COPY_TTL_OUT,
230 	ACTION_OF_COPY_TTL_IN,
231 	ACTION_OF_POP_VLAN,
232 	ACTION_OF_PUSH_VLAN,
233 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
234 	ACTION_OF_SET_VLAN_VID,
235 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
236 	ACTION_OF_SET_VLAN_PCP,
237 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
238 	ACTION_OF_POP_MPLS,
239 	ACTION_OF_POP_MPLS_ETHERTYPE,
240 	ACTION_OF_PUSH_MPLS,
241 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
242 	ACTION_VXLAN_ENCAP,
243 	ACTION_VXLAN_DECAP,
244 	ACTION_NVGRE_ENCAP,
245 	ACTION_NVGRE_DECAP,
246 	ACTION_SET_IPV4_SRC,
247 	ACTION_SET_IPV4_SRC_IPV4_SRC,
248 	ACTION_SET_IPV4_DST,
249 	ACTION_SET_IPV4_DST_IPV4_DST,
250 	ACTION_SET_IPV6_SRC,
251 	ACTION_SET_IPV6_SRC_IPV6_SRC,
252 	ACTION_SET_IPV6_DST,
253 	ACTION_SET_IPV6_DST_IPV6_DST,
254 	ACTION_SET_TP_SRC,
255 	ACTION_SET_TP_SRC_TP_SRC,
256 	ACTION_SET_TP_DST,
257 	ACTION_SET_TP_DST_TP_DST,
258 	ACTION_MAC_SWAP,
259 };
260 
261 /** Maximum size for pattern in struct rte_flow_item_raw. */
262 #define ITEM_RAW_PATTERN_SIZE 40
263 
264 /** Storage size for struct rte_flow_item_raw including pattern. */
265 #define ITEM_RAW_SIZE \
266 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
267 
268 /** Maximum number of queue indices in struct rte_flow_action_rss. */
269 #define ACTION_RSS_QUEUE_NUM 32
270 
271 /** Storage for struct rte_flow_action_rss including external data. */
272 struct action_rss_data {
273 	struct rte_flow_action_rss conf;
274 	uint8_t key[RSS_HASH_KEY_LENGTH];
275 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
276 };
277 
278 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
279 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
280 
281 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
282 struct action_vxlan_encap_data {
283 	struct rte_flow_action_vxlan_encap conf;
284 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
285 	struct rte_flow_item_eth item_eth;
286 	struct rte_flow_item_vlan item_vlan;
287 	union {
288 		struct rte_flow_item_ipv4 item_ipv4;
289 		struct rte_flow_item_ipv6 item_ipv6;
290 	};
291 	struct rte_flow_item_udp item_udp;
292 	struct rte_flow_item_vxlan item_vxlan;
293 };
294 
295 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
296 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
297 
298 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
299 struct action_nvgre_encap_data {
300 	struct rte_flow_action_nvgre_encap conf;
301 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
302 	struct rte_flow_item_eth item_eth;
303 	struct rte_flow_item_vlan item_vlan;
304 	union {
305 		struct rte_flow_item_ipv4 item_ipv4;
306 		struct rte_flow_item_ipv6 item_ipv6;
307 	};
308 	struct rte_flow_item_nvgre item_nvgre;
309 };
310 
311 /** Maximum number of subsequent tokens and arguments on the stack. */
312 #define CTX_STACK_SIZE 16
313 
314 /** Parser context. */
315 struct context {
316 	/** Stack of subsequent token lists to process. */
317 	const enum index *next[CTX_STACK_SIZE];
318 	/** Arguments for stacked tokens. */
319 	const void *args[CTX_STACK_SIZE];
320 	enum index curr; /**< Current token index. */
321 	enum index prev; /**< Index of the last token seen. */
322 	int next_num; /**< Number of entries in next[]. */
323 	int args_num; /**< Number of entries in args[]. */
324 	uint32_t eol:1; /**< EOL has been detected. */
325 	uint32_t last:1; /**< No more arguments. */
326 	portid_t port; /**< Current port ID (for completions). */
327 	uint32_t objdata; /**< Object-specific data. */
328 	void *object; /**< Address of current object for relative offsets. */
329 	void *objmask; /**< Object a full mask must be written to. */
330 };
331 
332 /** Token argument. */
333 struct arg {
334 	uint32_t hton:1; /**< Use network byte ordering. */
335 	uint32_t sign:1; /**< Value is signed. */
336 	uint32_t bounded:1; /**< Value is bounded. */
337 	uintmax_t min; /**< Minimum value if bounded. */
338 	uintmax_t max; /**< Maximum value if bounded. */
339 	uint32_t offset; /**< Relative offset from ctx->object. */
340 	uint32_t size; /**< Field size. */
341 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
342 };
343 
344 /** Parser token definition. */
345 struct token {
346 	/** Type displayed during completion (defaults to "TOKEN"). */
347 	const char *type;
348 	/** Help displayed during completion (defaults to token name). */
349 	const char *help;
350 	/** Private data used by parser functions. */
351 	const void *priv;
352 	/**
353 	 * Lists of subsequent tokens to push on the stack. Each call to the
354 	 * parser consumes the last entry of that stack.
355 	 */
356 	const enum index *const *next;
357 	/** Arguments stack for subsequent tokens that need them. */
358 	const struct arg *const *args;
359 	/**
360 	 * Token-processing callback, returns -1 in case of error, the
361 	 * length of the matched string otherwise. If NULL, attempts to
362 	 * match the token name.
363 	 *
364 	 * If buf is not NULL, the result should be stored in it according
365 	 * to context. An error is returned if not large enough.
366 	 */
367 	int (*call)(struct context *ctx, const struct token *token,
368 		    const char *str, unsigned int len,
369 		    void *buf, unsigned int size);
370 	/**
371 	 * Callback that provides possible values for this token, used for
372 	 * completion. Returns -1 in case of error, the number of possible
373 	 * values otherwise. If NULL, the token name is used.
374 	 *
375 	 * If buf is not NULL, entry index ent is written to buf and the
376 	 * full length of the entry is returned (same behavior as
377 	 * snprintf()).
378 	 */
379 	int (*comp)(struct context *ctx, const struct token *token,
380 		    unsigned int ent, char *buf, unsigned int size);
381 	/** Mandatory token name, no default value. */
382 	const char *name;
383 };
384 
385 /** Static initializer for the next field. */
386 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
387 
388 /** Static initializer for a NEXT() entry. */
389 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
390 
391 /** Static initializer for the args field. */
392 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
393 
394 /** Static initializer for ARGS() to target a field. */
395 #define ARGS_ENTRY(s, f) \
396 	(&(const struct arg){ \
397 		.offset = offsetof(s, f), \
398 		.size = sizeof(((s *)0)->f), \
399 	})
400 
401 /** Static initializer for ARGS() to target a bit-field. */
402 #define ARGS_ENTRY_BF(s, f, b) \
403 	(&(const struct arg){ \
404 		.size = sizeof(s), \
405 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
406 	})
407 
408 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
409 #define ARGS_ENTRY_MASK(s, f, m) \
410 	(&(const struct arg){ \
411 		.offset = offsetof(s, f), \
412 		.size = sizeof(((s *)0)->f), \
413 		.mask = (const void *)(m), \
414 	})
415 
416 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
417 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
418 	(&(const struct arg){ \
419 		.hton = 1, \
420 		.offset = offsetof(s, f), \
421 		.size = sizeof(((s *)0)->f), \
422 		.mask = (const void *)(m), \
423 	})
424 
425 /** Static initializer for ARGS() to target a pointer. */
426 #define ARGS_ENTRY_PTR(s, f) \
427 	(&(const struct arg){ \
428 		.size = sizeof(*((s *)0)->f), \
429 	})
430 
431 /** Static initializer for ARGS() with arbitrary offset and size. */
432 #define ARGS_ENTRY_ARB(o, s) \
433 	(&(const struct arg){ \
434 		.offset = (o), \
435 		.size = (s), \
436 	})
437 
438 /** Same as ARGS_ENTRY_ARB() with bounded values. */
439 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
440 	(&(const struct arg){ \
441 		.bounded = 1, \
442 		.min = (i), \
443 		.max = (a), \
444 		.offset = (o), \
445 		.size = (s), \
446 	})
447 
448 /** Same as ARGS_ENTRY() using network byte ordering. */
449 #define ARGS_ENTRY_HTON(s, f) \
450 	(&(const struct arg){ \
451 		.hton = 1, \
452 		.offset = offsetof(s, f), \
453 		.size = sizeof(((s *)0)->f), \
454 	})
455 
456 /** Parser output buffer layout expected by cmd_flow_parsed(). */
457 struct buffer {
458 	enum index command; /**< Flow command. */
459 	portid_t port; /**< Affected port ID. */
460 	union {
461 		struct {
462 			struct rte_flow_attr attr;
463 			struct rte_flow_item *pattern;
464 			struct rte_flow_action *actions;
465 			uint32_t pattern_n;
466 			uint32_t actions_n;
467 			uint8_t *data;
468 		} vc; /**< Validate/create arguments. */
469 		struct {
470 			uint32_t *rule;
471 			uint32_t rule_n;
472 		} destroy; /**< Destroy arguments. */
473 		struct {
474 			uint32_t rule;
475 			struct rte_flow_action action;
476 		} query; /**< Query arguments. */
477 		struct {
478 			uint32_t *group;
479 			uint32_t group_n;
480 		} list; /**< List arguments. */
481 		struct {
482 			int set;
483 		} isolate; /**< Isolated mode arguments. */
484 	} args; /**< Command arguments. */
485 };
486 
487 /** Private data for pattern items. */
488 struct parse_item_priv {
489 	enum rte_flow_item_type type; /**< Item type. */
490 	uint32_t size; /**< Size of item specification structure. */
491 };
492 
493 #define PRIV_ITEM(t, s) \
494 	(&(const struct parse_item_priv){ \
495 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
496 		.size = s, \
497 	})
498 
499 /** Private data for actions. */
500 struct parse_action_priv {
501 	enum rte_flow_action_type type; /**< Action type. */
502 	uint32_t size; /**< Size of action configuration structure. */
503 };
504 
505 #define PRIV_ACTION(t, s) \
506 	(&(const struct parse_action_priv){ \
507 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
508 		.size = s, \
509 	})
510 
511 static const enum index next_vc_attr[] = {
512 	GROUP,
513 	PRIORITY,
514 	INGRESS,
515 	EGRESS,
516 	TRANSFER,
517 	PATTERN,
518 	ZERO,
519 };
520 
521 static const enum index next_destroy_attr[] = {
522 	DESTROY_RULE,
523 	END,
524 	ZERO,
525 };
526 
527 static const enum index next_list_attr[] = {
528 	LIST_GROUP,
529 	END,
530 	ZERO,
531 };
532 
533 static const enum index item_param[] = {
534 	ITEM_PARAM_IS,
535 	ITEM_PARAM_SPEC,
536 	ITEM_PARAM_LAST,
537 	ITEM_PARAM_MASK,
538 	ITEM_PARAM_PREFIX,
539 	ZERO,
540 };
541 
542 static const enum index next_item[] = {
543 	ITEM_END,
544 	ITEM_VOID,
545 	ITEM_INVERT,
546 	ITEM_ANY,
547 	ITEM_PF,
548 	ITEM_VF,
549 	ITEM_PHY_PORT,
550 	ITEM_PORT_ID,
551 	ITEM_MARK,
552 	ITEM_RAW,
553 	ITEM_ETH,
554 	ITEM_VLAN,
555 	ITEM_IPV4,
556 	ITEM_IPV6,
557 	ITEM_ICMP,
558 	ITEM_UDP,
559 	ITEM_TCP,
560 	ITEM_SCTP,
561 	ITEM_VXLAN,
562 	ITEM_E_TAG,
563 	ITEM_NVGRE,
564 	ITEM_MPLS,
565 	ITEM_GRE,
566 	ITEM_FUZZY,
567 	ITEM_GTP,
568 	ITEM_GTPC,
569 	ITEM_GTPU,
570 	ITEM_GENEVE,
571 	ITEM_VXLAN_GPE,
572 	ITEM_ARP_ETH_IPV4,
573 	ITEM_IPV6_EXT,
574 	ITEM_ICMP6,
575 	ITEM_ICMP6_ND_NS,
576 	ITEM_ICMP6_ND_NA,
577 	ITEM_ICMP6_ND_OPT,
578 	ITEM_ICMP6_ND_OPT_SLA_ETH,
579 	ITEM_ICMP6_ND_OPT_TLA_ETH,
580 	ZERO,
581 };
582 
583 static const enum index item_fuzzy[] = {
584 	ITEM_FUZZY_THRESH,
585 	ITEM_NEXT,
586 	ZERO,
587 };
588 
589 static const enum index item_any[] = {
590 	ITEM_ANY_NUM,
591 	ITEM_NEXT,
592 	ZERO,
593 };
594 
595 static const enum index item_vf[] = {
596 	ITEM_VF_ID,
597 	ITEM_NEXT,
598 	ZERO,
599 };
600 
601 static const enum index item_phy_port[] = {
602 	ITEM_PHY_PORT_INDEX,
603 	ITEM_NEXT,
604 	ZERO,
605 };
606 
607 static const enum index item_port_id[] = {
608 	ITEM_PORT_ID_ID,
609 	ITEM_NEXT,
610 	ZERO,
611 };
612 
613 static const enum index item_mark[] = {
614 	ITEM_MARK_ID,
615 	ITEM_NEXT,
616 	ZERO,
617 };
618 
619 static const enum index item_raw[] = {
620 	ITEM_RAW_RELATIVE,
621 	ITEM_RAW_SEARCH,
622 	ITEM_RAW_OFFSET,
623 	ITEM_RAW_LIMIT,
624 	ITEM_RAW_PATTERN,
625 	ITEM_NEXT,
626 	ZERO,
627 };
628 
629 static const enum index item_eth[] = {
630 	ITEM_ETH_DST,
631 	ITEM_ETH_SRC,
632 	ITEM_ETH_TYPE,
633 	ITEM_NEXT,
634 	ZERO,
635 };
636 
637 static const enum index item_vlan[] = {
638 	ITEM_VLAN_TCI,
639 	ITEM_VLAN_PCP,
640 	ITEM_VLAN_DEI,
641 	ITEM_VLAN_VID,
642 	ITEM_VLAN_INNER_TYPE,
643 	ITEM_NEXT,
644 	ZERO,
645 };
646 
647 static const enum index item_ipv4[] = {
648 	ITEM_IPV4_TOS,
649 	ITEM_IPV4_TTL,
650 	ITEM_IPV4_PROTO,
651 	ITEM_IPV4_SRC,
652 	ITEM_IPV4_DST,
653 	ITEM_NEXT,
654 	ZERO,
655 };
656 
657 static const enum index item_ipv6[] = {
658 	ITEM_IPV6_TC,
659 	ITEM_IPV6_FLOW,
660 	ITEM_IPV6_PROTO,
661 	ITEM_IPV6_HOP,
662 	ITEM_IPV6_SRC,
663 	ITEM_IPV6_DST,
664 	ITEM_NEXT,
665 	ZERO,
666 };
667 
668 static const enum index item_icmp[] = {
669 	ITEM_ICMP_TYPE,
670 	ITEM_ICMP_CODE,
671 	ITEM_NEXT,
672 	ZERO,
673 };
674 
675 static const enum index item_udp[] = {
676 	ITEM_UDP_SRC,
677 	ITEM_UDP_DST,
678 	ITEM_NEXT,
679 	ZERO,
680 };
681 
682 static const enum index item_tcp[] = {
683 	ITEM_TCP_SRC,
684 	ITEM_TCP_DST,
685 	ITEM_TCP_FLAGS,
686 	ITEM_NEXT,
687 	ZERO,
688 };
689 
690 static const enum index item_sctp[] = {
691 	ITEM_SCTP_SRC,
692 	ITEM_SCTP_DST,
693 	ITEM_SCTP_TAG,
694 	ITEM_SCTP_CKSUM,
695 	ITEM_NEXT,
696 	ZERO,
697 };
698 
699 static const enum index item_vxlan[] = {
700 	ITEM_VXLAN_VNI,
701 	ITEM_NEXT,
702 	ZERO,
703 };
704 
705 static const enum index item_e_tag[] = {
706 	ITEM_E_TAG_GRP_ECID_B,
707 	ITEM_NEXT,
708 	ZERO,
709 };
710 
711 static const enum index item_nvgre[] = {
712 	ITEM_NVGRE_TNI,
713 	ITEM_NEXT,
714 	ZERO,
715 };
716 
717 static const enum index item_mpls[] = {
718 	ITEM_MPLS_LABEL,
719 	ITEM_NEXT,
720 	ZERO,
721 };
722 
723 static const enum index item_gre[] = {
724 	ITEM_GRE_PROTO,
725 	ITEM_NEXT,
726 	ZERO,
727 };
728 
729 static const enum index item_gtp[] = {
730 	ITEM_GTP_TEID,
731 	ITEM_NEXT,
732 	ZERO,
733 };
734 
735 static const enum index item_geneve[] = {
736 	ITEM_GENEVE_VNI,
737 	ITEM_GENEVE_PROTO,
738 	ITEM_NEXT,
739 	ZERO,
740 };
741 
742 static const enum index item_vxlan_gpe[] = {
743 	ITEM_VXLAN_GPE_VNI,
744 	ITEM_NEXT,
745 	ZERO,
746 };
747 
748 static const enum index item_arp_eth_ipv4[] = {
749 	ITEM_ARP_ETH_IPV4_SHA,
750 	ITEM_ARP_ETH_IPV4_SPA,
751 	ITEM_ARP_ETH_IPV4_THA,
752 	ITEM_ARP_ETH_IPV4_TPA,
753 	ITEM_NEXT,
754 	ZERO,
755 };
756 
757 static const enum index item_ipv6_ext[] = {
758 	ITEM_IPV6_EXT_NEXT_HDR,
759 	ITEM_NEXT,
760 	ZERO,
761 };
762 
763 static const enum index item_icmp6[] = {
764 	ITEM_ICMP6_TYPE,
765 	ITEM_ICMP6_CODE,
766 	ITEM_NEXT,
767 	ZERO,
768 };
769 
770 static const enum index item_icmp6_nd_ns[] = {
771 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
772 	ITEM_NEXT,
773 	ZERO,
774 };
775 
776 static const enum index item_icmp6_nd_na[] = {
777 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
778 	ITEM_NEXT,
779 	ZERO,
780 };
781 
782 static const enum index item_icmp6_nd_opt[] = {
783 	ITEM_ICMP6_ND_OPT_TYPE,
784 	ITEM_NEXT,
785 	ZERO,
786 };
787 
788 static const enum index item_icmp6_nd_opt_sla_eth[] = {
789 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
790 	ITEM_NEXT,
791 	ZERO,
792 };
793 
794 static const enum index item_icmp6_nd_opt_tla_eth[] = {
795 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
796 	ITEM_NEXT,
797 	ZERO,
798 };
799 
800 static const enum index next_action[] = {
801 	ACTION_END,
802 	ACTION_VOID,
803 	ACTION_PASSTHRU,
804 	ACTION_JUMP,
805 	ACTION_MARK,
806 	ACTION_FLAG,
807 	ACTION_QUEUE,
808 	ACTION_DROP,
809 	ACTION_COUNT,
810 	ACTION_RSS,
811 	ACTION_PF,
812 	ACTION_VF,
813 	ACTION_PHY_PORT,
814 	ACTION_PORT_ID,
815 	ACTION_METER,
816 	ACTION_OF_SET_MPLS_TTL,
817 	ACTION_OF_DEC_MPLS_TTL,
818 	ACTION_OF_SET_NW_TTL,
819 	ACTION_OF_DEC_NW_TTL,
820 	ACTION_OF_COPY_TTL_OUT,
821 	ACTION_OF_COPY_TTL_IN,
822 	ACTION_OF_POP_VLAN,
823 	ACTION_OF_PUSH_VLAN,
824 	ACTION_OF_SET_VLAN_VID,
825 	ACTION_OF_SET_VLAN_PCP,
826 	ACTION_OF_POP_MPLS,
827 	ACTION_OF_PUSH_MPLS,
828 	ACTION_VXLAN_ENCAP,
829 	ACTION_VXLAN_DECAP,
830 	ACTION_NVGRE_ENCAP,
831 	ACTION_NVGRE_DECAP,
832 	ACTION_SET_IPV4_SRC,
833 	ACTION_SET_IPV4_DST,
834 	ACTION_SET_IPV6_SRC,
835 	ACTION_SET_IPV6_DST,
836 	ACTION_SET_TP_SRC,
837 	ACTION_SET_TP_DST,
838 	ACTION_MAC_SWAP,
839 	ZERO,
840 };
841 
842 static const enum index action_mark[] = {
843 	ACTION_MARK_ID,
844 	ACTION_NEXT,
845 	ZERO,
846 };
847 
848 static const enum index action_queue[] = {
849 	ACTION_QUEUE_INDEX,
850 	ACTION_NEXT,
851 	ZERO,
852 };
853 
854 static const enum index action_count[] = {
855 	ACTION_COUNT_ID,
856 	ACTION_COUNT_SHARED,
857 	ACTION_NEXT,
858 	ZERO,
859 };
860 
861 static const enum index action_rss[] = {
862 	ACTION_RSS_FUNC,
863 	ACTION_RSS_LEVEL,
864 	ACTION_RSS_TYPES,
865 	ACTION_RSS_KEY,
866 	ACTION_RSS_KEY_LEN,
867 	ACTION_RSS_QUEUES,
868 	ACTION_NEXT,
869 	ZERO,
870 };
871 
872 static const enum index action_vf[] = {
873 	ACTION_VF_ORIGINAL,
874 	ACTION_VF_ID,
875 	ACTION_NEXT,
876 	ZERO,
877 };
878 
879 static const enum index action_phy_port[] = {
880 	ACTION_PHY_PORT_ORIGINAL,
881 	ACTION_PHY_PORT_INDEX,
882 	ACTION_NEXT,
883 	ZERO,
884 };
885 
886 static const enum index action_port_id[] = {
887 	ACTION_PORT_ID_ORIGINAL,
888 	ACTION_PORT_ID_ID,
889 	ACTION_NEXT,
890 	ZERO,
891 };
892 
893 static const enum index action_meter[] = {
894 	ACTION_METER_ID,
895 	ACTION_NEXT,
896 	ZERO,
897 };
898 
899 static const enum index action_of_set_mpls_ttl[] = {
900 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
901 	ACTION_NEXT,
902 	ZERO,
903 };
904 
905 static const enum index action_of_set_nw_ttl[] = {
906 	ACTION_OF_SET_NW_TTL_NW_TTL,
907 	ACTION_NEXT,
908 	ZERO,
909 };
910 
911 static const enum index action_of_push_vlan[] = {
912 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
913 	ACTION_NEXT,
914 	ZERO,
915 };
916 
917 static const enum index action_of_set_vlan_vid[] = {
918 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
919 	ACTION_NEXT,
920 	ZERO,
921 };
922 
923 static const enum index action_of_set_vlan_pcp[] = {
924 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
925 	ACTION_NEXT,
926 	ZERO,
927 };
928 
929 static const enum index action_of_pop_mpls[] = {
930 	ACTION_OF_POP_MPLS_ETHERTYPE,
931 	ACTION_NEXT,
932 	ZERO,
933 };
934 
935 static const enum index action_of_push_mpls[] = {
936 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
937 	ACTION_NEXT,
938 	ZERO,
939 };
940 
941 static const enum index action_set_ipv4_src[] = {
942 	ACTION_SET_IPV4_SRC_IPV4_SRC,
943 	ACTION_NEXT,
944 	ZERO,
945 };
946 
947 static const enum index action_set_ipv4_dst[] = {
948 	ACTION_SET_IPV4_DST_IPV4_DST,
949 	ACTION_NEXT,
950 	ZERO,
951 };
952 
953 static const enum index action_set_ipv6_src[] = {
954 	ACTION_SET_IPV6_SRC_IPV6_SRC,
955 	ACTION_NEXT,
956 	ZERO,
957 };
958 
959 static const enum index action_set_ipv6_dst[] = {
960 	ACTION_SET_IPV6_DST_IPV6_DST,
961 	ACTION_NEXT,
962 	ZERO,
963 };
964 
965 static const enum index action_set_tp_src[] = {
966 	ACTION_SET_TP_SRC_TP_SRC,
967 	ACTION_NEXT,
968 	ZERO,
969 };
970 
971 static const enum index action_set_tp_dst[] = {
972 	ACTION_SET_TP_DST_TP_DST,
973 	ACTION_NEXT,
974 	ZERO,
975 };
976 
977 static const enum index action_jump[] = {
978 	ACTION_JUMP_GROUP,
979 	ACTION_NEXT,
980 	ZERO,
981 };
982 
983 static int parse_init(struct context *, const struct token *,
984 		      const char *, unsigned int,
985 		      void *, unsigned int);
986 static int parse_vc(struct context *, const struct token *,
987 		    const char *, unsigned int,
988 		    void *, unsigned int);
989 static int parse_vc_spec(struct context *, const struct token *,
990 			 const char *, unsigned int, void *, unsigned int);
991 static int parse_vc_conf(struct context *, const struct token *,
992 			 const char *, unsigned int, void *, unsigned int);
993 static int parse_vc_action_rss(struct context *, const struct token *,
994 			       const char *, unsigned int, void *,
995 			       unsigned int);
996 static int parse_vc_action_rss_func(struct context *, const struct token *,
997 				    const char *, unsigned int, void *,
998 				    unsigned int);
999 static int parse_vc_action_rss_type(struct context *, const struct token *,
1000 				    const char *, unsigned int, void *,
1001 				    unsigned int);
1002 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1003 				     const char *, unsigned int, void *,
1004 				     unsigned int);
1005 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1006 				       const char *, unsigned int, void *,
1007 				       unsigned int);
1008 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1009 				       const char *, unsigned int, void *,
1010 				       unsigned int);
1011 static int parse_destroy(struct context *, const struct token *,
1012 			 const char *, unsigned int,
1013 			 void *, unsigned int);
1014 static int parse_flush(struct context *, const struct token *,
1015 		       const char *, unsigned int,
1016 		       void *, unsigned int);
1017 static int parse_query(struct context *, const struct token *,
1018 		       const char *, unsigned int,
1019 		       void *, unsigned int);
1020 static int parse_action(struct context *, const struct token *,
1021 			const char *, unsigned int,
1022 			void *, unsigned int);
1023 static int parse_list(struct context *, const struct token *,
1024 		      const char *, unsigned int,
1025 		      void *, unsigned int);
1026 static int parse_isolate(struct context *, const struct token *,
1027 			 const char *, unsigned int,
1028 			 void *, unsigned int);
1029 static int parse_int(struct context *, const struct token *,
1030 		     const char *, unsigned int,
1031 		     void *, unsigned int);
1032 static int parse_prefix(struct context *, const struct token *,
1033 			const char *, unsigned int,
1034 			void *, unsigned int);
1035 static int parse_boolean(struct context *, const struct token *,
1036 			 const char *, unsigned int,
1037 			 void *, unsigned int);
1038 static int parse_string(struct context *, const struct token *,
1039 			const char *, unsigned int,
1040 			void *, unsigned int);
1041 static int parse_mac_addr(struct context *, const struct token *,
1042 			  const char *, unsigned int,
1043 			  void *, unsigned int);
1044 static int parse_ipv4_addr(struct context *, const struct token *,
1045 			   const char *, unsigned int,
1046 			   void *, unsigned int);
1047 static int parse_ipv6_addr(struct context *, const struct token *,
1048 			   const char *, unsigned int,
1049 			   void *, unsigned int);
1050 static int parse_port(struct context *, const struct token *,
1051 		      const char *, unsigned int,
1052 		      void *, unsigned int);
1053 static int comp_none(struct context *, const struct token *,
1054 		     unsigned int, char *, unsigned int);
1055 static int comp_boolean(struct context *, const struct token *,
1056 			unsigned int, char *, unsigned int);
1057 static int comp_action(struct context *, const struct token *,
1058 		       unsigned int, char *, unsigned int);
1059 static int comp_port(struct context *, const struct token *,
1060 		     unsigned int, char *, unsigned int);
1061 static int comp_rule_id(struct context *, const struct token *,
1062 			unsigned int, char *, unsigned int);
1063 static int comp_vc_action_rss_type(struct context *, const struct token *,
1064 				   unsigned int, char *, unsigned int);
1065 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1066 				    unsigned int, char *, unsigned int);
1067 
1068 /** Token definitions. */
1069 static const struct token token_list[] = {
1070 	/* Special tokens. */
1071 	[ZERO] = {
1072 		.name = "ZERO",
1073 		.help = "null entry, abused as the entry point",
1074 		.next = NEXT(NEXT_ENTRY(FLOW)),
1075 	},
1076 	[END] = {
1077 		.name = "",
1078 		.type = "RETURN",
1079 		.help = "command may end here",
1080 	},
1081 	/* Common tokens. */
1082 	[INTEGER] = {
1083 		.name = "{int}",
1084 		.type = "INTEGER",
1085 		.help = "integer value",
1086 		.call = parse_int,
1087 		.comp = comp_none,
1088 	},
1089 	[UNSIGNED] = {
1090 		.name = "{unsigned}",
1091 		.type = "UNSIGNED",
1092 		.help = "unsigned integer value",
1093 		.call = parse_int,
1094 		.comp = comp_none,
1095 	},
1096 	[PREFIX] = {
1097 		.name = "{prefix}",
1098 		.type = "PREFIX",
1099 		.help = "prefix length for bit-mask",
1100 		.call = parse_prefix,
1101 		.comp = comp_none,
1102 	},
1103 	[BOOLEAN] = {
1104 		.name = "{boolean}",
1105 		.type = "BOOLEAN",
1106 		.help = "any boolean value",
1107 		.call = parse_boolean,
1108 		.comp = comp_boolean,
1109 	},
1110 	[STRING] = {
1111 		.name = "{string}",
1112 		.type = "STRING",
1113 		.help = "fixed string",
1114 		.call = parse_string,
1115 		.comp = comp_none,
1116 	},
1117 	[MAC_ADDR] = {
1118 		.name = "{MAC address}",
1119 		.type = "MAC-48",
1120 		.help = "standard MAC address notation",
1121 		.call = parse_mac_addr,
1122 		.comp = comp_none,
1123 	},
1124 	[IPV4_ADDR] = {
1125 		.name = "{IPv4 address}",
1126 		.type = "IPV4 ADDRESS",
1127 		.help = "standard IPv4 address notation",
1128 		.call = parse_ipv4_addr,
1129 		.comp = comp_none,
1130 	},
1131 	[IPV6_ADDR] = {
1132 		.name = "{IPv6 address}",
1133 		.type = "IPV6 ADDRESS",
1134 		.help = "standard IPv6 address notation",
1135 		.call = parse_ipv6_addr,
1136 		.comp = comp_none,
1137 	},
1138 	[RULE_ID] = {
1139 		.name = "{rule id}",
1140 		.type = "RULE ID",
1141 		.help = "rule identifier",
1142 		.call = parse_int,
1143 		.comp = comp_rule_id,
1144 	},
1145 	[PORT_ID] = {
1146 		.name = "{port_id}",
1147 		.type = "PORT ID",
1148 		.help = "port identifier",
1149 		.call = parse_port,
1150 		.comp = comp_port,
1151 	},
1152 	[GROUP_ID] = {
1153 		.name = "{group_id}",
1154 		.type = "GROUP ID",
1155 		.help = "group identifier",
1156 		.call = parse_int,
1157 		.comp = comp_none,
1158 	},
1159 	[PRIORITY_LEVEL] = {
1160 		.name = "{level}",
1161 		.type = "PRIORITY",
1162 		.help = "priority level",
1163 		.call = parse_int,
1164 		.comp = comp_none,
1165 	},
1166 	/* Top-level command. */
1167 	[FLOW] = {
1168 		.name = "flow",
1169 		.type = "{command} {port_id} [{arg} [...]]",
1170 		.help = "manage ingress/egress flow rules",
1171 		.next = NEXT(NEXT_ENTRY
1172 			     (VALIDATE,
1173 			      CREATE,
1174 			      DESTROY,
1175 			      FLUSH,
1176 			      LIST,
1177 			      QUERY,
1178 			      ISOLATE)),
1179 		.call = parse_init,
1180 	},
1181 	/* Sub-level commands. */
1182 	[VALIDATE] = {
1183 		.name = "validate",
1184 		.help = "check whether a flow rule can be created",
1185 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1186 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1187 		.call = parse_vc,
1188 	},
1189 	[CREATE] = {
1190 		.name = "create",
1191 		.help = "create a flow rule",
1192 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1193 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1194 		.call = parse_vc,
1195 	},
1196 	[DESTROY] = {
1197 		.name = "destroy",
1198 		.help = "destroy specific flow rules",
1199 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1200 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1201 		.call = parse_destroy,
1202 	},
1203 	[FLUSH] = {
1204 		.name = "flush",
1205 		.help = "destroy all flow rules",
1206 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1207 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1208 		.call = parse_flush,
1209 	},
1210 	[QUERY] = {
1211 		.name = "query",
1212 		.help = "query an existing flow rule",
1213 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1214 			     NEXT_ENTRY(RULE_ID),
1215 			     NEXT_ENTRY(PORT_ID)),
1216 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1217 			     ARGS_ENTRY(struct buffer, args.query.rule),
1218 			     ARGS_ENTRY(struct buffer, port)),
1219 		.call = parse_query,
1220 	},
1221 	[LIST] = {
1222 		.name = "list",
1223 		.help = "list existing flow rules",
1224 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1225 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1226 		.call = parse_list,
1227 	},
1228 	[ISOLATE] = {
1229 		.name = "isolate",
1230 		.help = "restrict ingress traffic to the defined flow rules",
1231 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1232 			     NEXT_ENTRY(PORT_ID)),
1233 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1234 			     ARGS_ENTRY(struct buffer, port)),
1235 		.call = parse_isolate,
1236 	},
1237 	/* Destroy arguments. */
1238 	[DESTROY_RULE] = {
1239 		.name = "rule",
1240 		.help = "specify a rule identifier",
1241 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1242 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1243 		.call = parse_destroy,
1244 	},
1245 	/* Query arguments. */
1246 	[QUERY_ACTION] = {
1247 		.name = "{action}",
1248 		.type = "ACTION",
1249 		.help = "action to query, must be part of the rule",
1250 		.call = parse_action,
1251 		.comp = comp_action,
1252 	},
1253 	/* List arguments. */
1254 	[LIST_GROUP] = {
1255 		.name = "group",
1256 		.help = "specify a group",
1257 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1258 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1259 		.call = parse_list,
1260 	},
1261 	/* Validate/create attributes. */
1262 	[GROUP] = {
1263 		.name = "group",
1264 		.help = "specify a group",
1265 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1266 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1267 		.call = parse_vc,
1268 	},
1269 	[PRIORITY] = {
1270 		.name = "priority",
1271 		.help = "specify a priority level",
1272 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1273 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1274 		.call = parse_vc,
1275 	},
1276 	[INGRESS] = {
1277 		.name = "ingress",
1278 		.help = "affect rule to ingress",
1279 		.next = NEXT(next_vc_attr),
1280 		.call = parse_vc,
1281 	},
1282 	[EGRESS] = {
1283 		.name = "egress",
1284 		.help = "affect rule to egress",
1285 		.next = NEXT(next_vc_attr),
1286 		.call = parse_vc,
1287 	},
1288 	[TRANSFER] = {
1289 		.name = "transfer",
1290 		.help = "apply rule directly to endpoints found in pattern",
1291 		.next = NEXT(next_vc_attr),
1292 		.call = parse_vc,
1293 	},
1294 	/* Validate/create pattern. */
1295 	[PATTERN] = {
1296 		.name = "pattern",
1297 		.help = "submit a list of pattern items",
1298 		.next = NEXT(next_item),
1299 		.call = parse_vc,
1300 	},
1301 	[ITEM_PARAM_IS] = {
1302 		.name = "is",
1303 		.help = "match value perfectly (with full bit-mask)",
1304 		.call = parse_vc_spec,
1305 	},
1306 	[ITEM_PARAM_SPEC] = {
1307 		.name = "spec",
1308 		.help = "match value according to configured bit-mask",
1309 		.call = parse_vc_spec,
1310 	},
1311 	[ITEM_PARAM_LAST] = {
1312 		.name = "last",
1313 		.help = "specify upper bound to establish a range",
1314 		.call = parse_vc_spec,
1315 	},
1316 	[ITEM_PARAM_MASK] = {
1317 		.name = "mask",
1318 		.help = "specify bit-mask with relevant bits set to one",
1319 		.call = parse_vc_spec,
1320 	},
1321 	[ITEM_PARAM_PREFIX] = {
1322 		.name = "prefix",
1323 		.help = "generate bit-mask from a prefix length",
1324 		.call = parse_vc_spec,
1325 	},
1326 	[ITEM_NEXT] = {
1327 		.name = "/",
1328 		.help = "specify next pattern item",
1329 		.next = NEXT(next_item),
1330 	},
1331 	[ITEM_END] = {
1332 		.name = "end",
1333 		.help = "end list of pattern items",
1334 		.priv = PRIV_ITEM(END, 0),
1335 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1336 		.call = parse_vc,
1337 	},
1338 	[ITEM_VOID] = {
1339 		.name = "void",
1340 		.help = "no-op pattern item",
1341 		.priv = PRIV_ITEM(VOID, 0),
1342 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1343 		.call = parse_vc,
1344 	},
1345 	[ITEM_INVERT] = {
1346 		.name = "invert",
1347 		.help = "perform actions when pattern does not match",
1348 		.priv = PRIV_ITEM(INVERT, 0),
1349 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1350 		.call = parse_vc,
1351 	},
1352 	[ITEM_ANY] = {
1353 		.name = "any",
1354 		.help = "match any protocol for the current layer",
1355 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1356 		.next = NEXT(item_any),
1357 		.call = parse_vc,
1358 	},
1359 	[ITEM_ANY_NUM] = {
1360 		.name = "num",
1361 		.help = "number of layers covered",
1362 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1363 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1364 	},
1365 	[ITEM_PF] = {
1366 		.name = "pf",
1367 		.help = "match traffic from/to the physical function",
1368 		.priv = PRIV_ITEM(PF, 0),
1369 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1370 		.call = parse_vc,
1371 	},
1372 	[ITEM_VF] = {
1373 		.name = "vf",
1374 		.help = "match traffic from/to a virtual function ID",
1375 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1376 		.next = NEXT(item_vf),
1377 		.call = parse_vc,
1378 	},
1379 	[ITEM_VF_ID] = {
1380 		.name = "id",
1381 		.help = "VF ID",
1382 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1383 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1384 	},
1385 	[ITEM_PHY_PORT] = {
1386 		.name = "phy_port",
1387 		.help = "match traffic from/to a specific physical port",
1388 		.priv = PRIV_ITEM(PHY_PORT,
1389 				  sizeof(struct rte_flow_item_phy_port)),
1390 		.next = NEXT(item_phy_port),
1391 		.call = parse_vc,
1392 	},
1393 	[ITEM_PHY_PORT_INDEX] = {
1394 		.name = "index",
1395 		.help = "physical port index",
1396 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1397 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1398 	},
1399 	[ITEM_PORT_ID] = {
1400 		.name = "port_id",
1401 		.help = "match traffic from/to a given DPDK port ID",
1402 		.priv = PRIV_ITEM(PORT_ID,
1403 				  sizeof(struct rte_flow_item_port_id)),
1404 		.next = NEXT(item_port_id),
1405 		.call = parse_vc,
1406 	},
1407 	[ITEM_PORT_ID_ID] = {
1408 		.name = "id",
1409 		.help = "DPDK port ID",
1410 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1411 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1412 	},
1413 	[ITEM_MARK] = {
1414 		.name = "mark",
1415 		.help = "match traffic against value set in previously matched rule",
1416 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1417 		.next = NEXT(item_mark),
1418 		.call = parse_vc,
1419 	},
1420 	[ITEM_MARK_ID] = {
1421 		.name = "id",
1422 		.help = "Integer value to match against",
1423 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1424 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1425 	},
1426 	[ITEM_RAW] = {
1427 		.name = "raw",
1428 		.help = "match an arbitrary byte string",
1429 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1430 		.next = NEXT(item_raw),
1431 		.call = parse_vc,
1432 	},
1433 	[ITEM_RAW_RELATIVE] = {
1434 		.name = "relative",
1435 		.help = "look for pattern after the previous item",
1436 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1437 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1438 					   relative, 1)),
1439 	},
1440 	[ITEM_RAW_SEARCH] = {
1441 		.name = "search",
1442 		.help = "search pattern from offset (see also limit)",
1443 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1444 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1445 					   search, 1)),
1446 	},
1447 	[ITEM_RAW_OFFSET] = {
1448 		.name = "offset",
1449 		.help = "absolute or relative offset for pattern",
1450 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1451 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1452 	},
1453 	[ITEM_RAW_LIMIT] = {
1454 		.name = "limit",
1455 		.help = "search area limit for start of pattern",
1456 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1457 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1458 	},
1459 	[ITEM_RAW_PATTERN] = {
1460 		.name = "pattern",
1461 		.help = "byte string to look for",
1462 		.next = NEXT(item_raw,
1463 			     NEXT_ENTRY(STRING),
1464 			     NEXT_ENTRY(ITEM_PARAM_IS,
1465 					ITEM_PARAM_SPEC,
1466 					ITEM_PARAM_MASK)),
1467 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1468 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1469 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1470 					    ITEM_RAW_PATTERN_SIZE)),
1471 	},
1472 	[ITEM_ETH] = {
1473 		.name = "eth",
1474 		.help = "match Ethernet header",
1475 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1476 		.next = NEXT(item_eth),
1477 		.call = parse_vc,
1478 	},
1479 	[ITEM_ETH_DST] = {
1480 		.name = "dst",
1481 		.help = "destination MAC",
1482 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1483 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1484 	},
1485 	[ITEM_ETH_SRC] = {
1486 		.name = "src",
1487 		.help = "source MAC",
1488 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1489 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1490 	},
1491 	[ITEM_ETH_TYPE] = {
1492 		.name = "type",
1493 		.help = "EtherType",
1494 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1495 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1496 	},
1497 	[ITEM_VLAN] = {
1498 		.name = "vlan",
1499 		.help = "match 802.1Q/ad VLAN tag",
1500 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1501 		.next = NEXT(item_vlan),
1502 		.call = parse_vc,
1503 	},
1504 	[ITEM_VLAN_TCI] = {
1505 		.name = "tci",
1506 		.help = "tag control information",
1507 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1508 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1509 	},
1510 	[ITEM_VLAN_PCP] = {
1511 		.name = "pcp",
1512 		.help = "priority code point",
1513 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1514 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1515 						  tci, "\xe0\x00")),
1516 	},
1517 	[ITEM_VLAN_DEI] = {
1518 		.name = "dei",
1519 		.help = "drop eligible indicator",
1520 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1521 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1522 						  tci, "\x10\x00")),
1523 	},
1524 	[ITEM_VLAN_VID] = {
1525 		.name = "vid",
1526 		.help = "VLAN identifier",
1527 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1528 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1529 						  tci, "\x0f\xff")),
1530 	},
1531 	[ITEM_VLAN_INNER_TYPE] = {
1532 		.name = "inner_type",
1533 		.help = "inner EtherType",
1534 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1535 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1536 					     inner_type)),
1537 	},
1538 	[ITEM_IPV4] = {
1539 		.name = "ipv4",
1540 		.help = "match IPv4 header",
1541 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1542 		.next = NEXT(item_ipv4),
1543 		.call = parse_vc,
1544 	},
1545 	[ITEM_IPV4_TOS] = {
1546 		.name = "tos",
1547 		.help = "type of service",
1548 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1549 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1550 					     hdr.type_of_service)),
1551 	},
1552 	[ITEM_IPV4_TTL] = {
1553 		.name = "ttl",
1554 		.help = "time to live",
1555 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1556 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1557 					     hdr.time_to_live)),
1558 	},
1559 	[ITEM_IPV4_PROTO] = {
1560 		.name = "proto",
1561 		.help = "next protocol ID",
1562 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1563 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1564 					     hdr.next_proto_id)),
1565 	},
1566 	[ITEM_IPV4_SRC] = {
1567 		.name = "src",
1568 		.help = "source address",
1569 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1570 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1571 					     hdr.src_addr)),
1572 	},
1573 	[ITEM_IPV4_DST] = {
1574 		.name = "dst",
1575 		.help = "destination address",
1576 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1577 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1578 					     hdr.dst_addr)),
1579 	},
1580 	[ITEM_IPV6] = {
1581 		.name = "ipv6",
1582 		.help = "match IPv6 header",
1583 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1584 		.next = NEXT(item_ipv6),
1585 		.call = parse_vc,
1586 	},
1587 	[ITEM_IPV6_TC] = {
1588 		.name = "tc",
1589 		.help = "traffic class",
1590 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1591 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1592 						  hdr.vtc_flow,
1593 						  "\x0f\xf0\x00\x00")),
1594 	},
1595 	[ITEM_IPV6_FLOW] = {
1596 		.name = "flow",
1597 		.help = "flow label",
1598 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1599 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1600 						  hdr.vtc_flow,
1601 						  "\x00\x0f\xff\xff")),
1602 	},
1603 	[ITEM_IPV6_PROTO] = {
1604 		.name = "proto",
1605 		.help = "protocol (next header)",
1606 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1607 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1608 					     hdr.proto)),
1609 	},
1610 	[ITEM_IPV6_HOP] = {
1611 		.name = "hop",
1612 		.help = "hop limit",
1613 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1614 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1615 					     hdr.hop_limits)),
1616 	},
1617 	[ITEM_IPV6_SRC] = {
1618 		.name = "src",
1619 		.help = "source address",
1620 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1621 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1622 					     hdr.src_addr)),
1623 	},
1624 	[ITEM_IPV6_DST] = {
1625 		.name = "dst",
1626 		.help = "destination address",
1627 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1628 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1629 					     hdr.dst_addr)),
1630 	},
1631 	[ITEM_ICMP] = {
1632 		.name = "icmp",
1633 		.help = "match ICMP header",
1634 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1635 		.next = NEXT(item_icmp),
1636 		.call = parse_vc,
1637 	},
1638 	[ITEM_ICMP_TYPE] = {
1639 		.name = "type",
1640 		.help = "ICMP packet type",
1641 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1642 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1643 					     hdr.icmp_type)),
1644 	},
1645 	[ITEM_ICMP_CODE] = {
1646 		.name = "code",
1647 		.help = "ICMP packet code",
1648 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1649 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1650 					     hdr.icmp_code)),
1651 	},
1652 	[ITEM_UDP] = {
1653 		.name = "udp",
1654 		.help = "match UDP header",
1655 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1656 		.next = NEXT(item_udp),
1657 		.call = parse_vc,
1658 	},
1659 	[ITEM_UDP_SRC] = {
1660 		.name = "src",
1661 		.help = "UDP source port",
1662 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1663 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1664 					     hdr.src_port)),
1665 	},
1666 	[ITEM_UDP_DST] = {
1667 		.name = "dst",
1668 		.help = "UDP destination port",
1669 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1670 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1671 					     hdr.dst_port)),
1672 	},
1673 	[ITEM_TCP] = {
1674 		.name = "tcp",
1675 		.help = "match TCP header",
1676 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1677 		.next = NEXT(item_tcp),
1678 		.call = parse_vc,
1679 	},
1680 	[ITEM_TCP_SRC] = {
1681 		.name = "src",
1682 		.help = "TCP source port",
1683 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1684 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1685 					     hdr.src_port)),
1686 	},
1687 	[ITEM_TCP_DST] = {
1688 		.name = "dst",
1689 		.help = "TCP destination port",
1690 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1691 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1692 					     hdr.dst_port)),
1693 	},
1694 	[ITEM_TCP_FLAGS] = {
1695 		.name = "flags",
1696 		.help = "TCP flags",
1697 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1698 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1699 					     hdr.tcp_flags)),
1700 	},
1701 	[ITEM_SCTP] = {
1702 		.name = "sctp",
1703 		.help = "match SCTP header",
1704 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1705 		.next = NEXT(item_sctp),
1706 		.call = parse_vc,
1707 	},
1708 	[ITEM_SCTP_SRC] = {
1709 		.name = "src",
1710 		.help = "SCTP source port",
1711 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1712 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1713 					     hdr.src_port)),
1714 	},
1715 	[ITEM_SCTP_DST] = {
1716 		.name = "dst",
1717 		.help = "SCTP destination port",
1718 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1719 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1720 					     hdr.dst_port)),
1721 	},
1722 	[ITEM_SCTP_TAG] = {
1723 		.name = "tag",
1724 		.help = "validation tag",
1725 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1726 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1727 					     hdr.tag)),
1728 	},
1729 	[ITEM_SCTP_CKSUM] = {
1730 		.name = "cksum",
1731 		.help = "checksum",
1732 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1733 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1734 					     hdr.cksum)),
1735 	},
1736 	[ITEM_VXLAN] = {
1737 		.name = "vxlan",
1738 		.help = "match VXLAN header",
1739 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1740 		.next = NEXT(item_vxlan),
1741 		.call = parse_vc,
1742 	},
1743 	[ITEM_VXLAN_VNI] = {
1744 		.name = "vni",
1745 		.help = "VXLAN identifier",
1746 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1747 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1748 	},
1749 	[ITEM_E_TAG] = {
1750 		.name = "e_tag",
1751 		.help = "match E-Tag header",
1752 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1753 		.next = NEXT(item_e_tag),
1754 		.call = parse_vc,
1755 	},
1756 	[ITEM_E_TAG_GRP_ECID_B] = {
1757 		.name = "grp_ecid_b",
1758 		.help = "GRP and E-CID base",
1759 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1760 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1761 						  rsvd_grp_ecid_b,
1762 						  "\x3f\xff")),
1763 	},
1764 	[ITEM_NVGRE] = {
1765 		.name = "nvgre",
1766 		.help = "match NVGRE header",
1767 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1768 		.next = NEXT(item_nvgre),
1769 		.call = parse_vc,
1770 	},
1771 	[ITEM_NVGRE_TNI] = {
1772 		.name = "tni",
1773 		.help = "virtual subnet ID",
1774 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1775 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1776 	},
1777 	[ITEM_MPLS] = {
1778 		.name = "mpls",
1779 		.help = "match MPLS header",
1780 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1781 		.next = NEXT(item_mpls),
1782 		.call = parse_vc,
1783 	},
1784 	[ITEM_MPLS_LABEL] = {
1785 		.name = "label",
1786 		.help = "MPLS label",
1787 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1788 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1789 						  label_tc_s,
1790 						  "\xff\xff\xf0")),
1791 	},
1792 	[ITEM_GRE] = {
1793 		.name = "gre",
1794 		.help = "match GRE header",
1795 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1796 		.next = NEXT(item_gre),
1797 		.call = parse_vc,
1798 	},
1799 	[ITEM_GRE_PROTO] = {
1800 		.name = "protocol",
1801 		.help = "GRE protocol type",
1802 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1803 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1804 					     protocol)),
1805 	},
1806 	[ITEM_FUZZY] = {
1807 		.name = "fuzzy",
1808 		.help = "fuzzy pattern match, expect faster than default",
1809 		.priv = PRIV_ITEM(FUZZY,
1810 				sizeof(struct rte_flow_item_fuzzy)),
1811 		.next = NEXT(item_fuzzy),
1812 		.call = parse_vc,
1813 	},
1814 	[ITEM_FUZZY_THRESH] = {
1815 		.name = "thresh",
1816 		.help = "match accuracy threshold",
1817 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1818 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1819 					thresh)),
1820 	},
1821 	[ITEM_GTP] = {
1822 		.name = "gtp",
1823 		.help = "match GTP header",
1824 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1825 		.next = NEXT(item_gtp),
1826 		.call = parse_vc,
1827 	},
1828 	[ITEM_GTP_TEID] = {
1829 		.name = "teid",
1830 		.help = "tunnel endpoint identifier",
1831 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1832 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1833 	},
1834 	[ITEM_GTPC] = {
1835 		.name = "gtpc",
1836 		.help = "match GTP header",
1837 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1838 		.next = NEXT(item_gtp),
1839 		.call = parse_vc,
1840 	},
1841 	[ITEM_GTPU] = {
1842 		.name = "gtpu",
1843 		.help = "match GTP header",
1844 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1845 		.next = NEXT(item_gtp),
1846 		.call = parse_vc,
1847 	},
1848 	[ITEM_GENEVE] = {
1849 		.name = "geneve",
1850 		.help = "match GENEVE header",
1851 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1852 		.next = NEXT(item_geneve),
1853 		.call = parse_vc,
1854 	},
1855 	[ITEM_GENEVE_VNI] = {
1856 		.name = "vni",
1857 		.help = "virtual network identifier",
1858 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1859 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
1860 	},
1861 	[ITEM_GENEVE_PROTO] = {
1862 		.name = "protocol",
1863 		.help = "GENEVE protocol type",
1864 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1865 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
1866 					     protocol)),
1867 	},
1868 	[ITEM_VXLAN_GPE] = {
1869 		.name = "vxlan-gpe",
1870 		.help = "match VXLAN-GPE header",
1871 		.priv = PRIV_ITEM(VXLAN_GPE,
1872 				  sizeof(struct rte_flow_item_vxlan_gpe)),
1873 		.next = NEXT(item_vxlan_gpe),
1874 		.call = parse_vc,
1875 	},
1876 	[ITEM_VXLAN_GPE_VNI] = {
1877 		.name = "vni",
1878 		.help = "VXLAN-GPE identifier",
1879 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
1880 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
1881 					     vni)),
1882 	},
1883 	[ITEM_ARP_ETH_IPV4] = {
1884 		.name = "arp_eth_ipv4",
1885 		.help = "match ARP header for Ethernet/IPv4",
1886 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
1887 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
1888 		.next = NEXT(item_arp_eth_ipv4),
1889 		.call = parse_vc,
1890 	},
1891 	[ITEM_ARP_ETH_IPV4_SHA] = {
1892 		.name = "sha",
1893 		.help = "sender hardware address",
1894 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1895 			     item_param),
1896 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1897 					     sha)),
1898 	},
1899 	[ITEM_ARP_ETH_IPV4_SPA] = {
1900 		.name = "spa",
1901 		.help = "sender IPv4 address",
1902 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1903 			     item_param),
1904 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1905 					     spa)),
1906 	},
1907 	[ITEM_ARP_ETH_IPV4_THA] = {
1908 		.name = "tha",
1909 		.help = "target hardware address",
1910 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1911 			     item_param),
1912 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1913 					     tha)),
1914 	},
1915 	[ITEM_ARP_ETH_IPV4_TPA] = {
1916 		.name = "tpa",
1917 		.help = "target IPv4 address",
1918 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1919 			     item_param),
1920 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1921 					     tpa)),
1922 	},
1923 	[ITEM_IPV6_EXT] = {
1924 		.name = "ipv6_ext",
1925 		.help = "match presence of any IPv6 extension header",
1926 		.priv = PRIV_ITEM(IPV6_EXT,
1927 				  sizeof(struct rte_flow_item_ipv6_ext)),
1928 		.next = NEXT(item_ipv6_ext),
1929 		.call = parse_vc,
1930 	},
1931 	[ITEM_IPV6_EXT_NEXT_HDR] = {
1932 		.name = "next_hdr",
1933 		.help = "next header",
1934 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
1935 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
1936 					     next_hdr)),
1937 	},
1938 	[ITEM_ICMP6] = {
1939 		.name = "icmp6",
1940 		.help = "match any ICMPv6 header",
1941 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
1942 		.next = NEXT(item_icmp6),
1943 		.call = parse_vc,
1944 	},
1945 	[ITEM_ICMP6_TYPE] = {
1946 		.name = "type",
1947 		.help = "ICMPv6 type",
1948 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
1949 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
1950 					     type)),
1951 	},
1952 	[ITEM_ICMP6_CODE] = {
1953 		.name = "code",
1954 		.help = "ICMPv6 code",
1955 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
1956 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
1957 					     code)),
1958 	},
1959 	[ITEM_ICMP6_ND_NS] = {
1960 		.name = "icmp6_nd_ns",
1961 		.help = "match ICMPv6 neighbor discovery solicitation",
1962 		.priv = PRIV_ITEM(ICMP6_ND_NS,
1963 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
1964 		.next = NEXT(item_icmp6_nd_ns),
1965 		.call = parse_vc,
1966 	},
1967 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
1968 		.name = "target_addr",
1969 		.help = "target address",
1970 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
1971 			     item_param),
1972 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
1973 					     target_addr)),
1974 	},
1975 	[ITEM_ICMP6_ND_NA] = {
1976 		.name = "icmp6_nd_na",
1977 		.help = "match ICMPv6 neighbor discovery advertisement",
1978 		.priv = PRIV_ITEM(ICMP6_ND_NA,
1979 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
1980 		.next = NEXT(item_icmp6_nd_na),
1981 		.call = parse_vc,
1982 	},
1983 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
1984 		.name = "target_addr",
1985 		.help = "target address",
1986 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
1987 			     item_param),
1988 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
1989 					     target_addr)),
1990 	},
1991 	[ITEM_ICMP6_ND_OPT] = {
1992 		.name = "icmp6_nd_opt",
1993 		.help = "match presence of any ICMPv6 neighbor discovery"
1994 			" option",
1995 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
1996 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
1997 		.next = NEXT(item_icmp6_nd_opt),
1998 		.call = parse_vc,
1999 	},
2000 	[ITEM_ICMP6_ND_OPT_TYPE] = {
2001 		.name = "type",
2002 		.help = "ND option type",
2003 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2004 			     item_param),
2005 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2006 					     type)),
2007 	},
2008 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2009 		.name = "icmp6_nd_opt_sla_eth",
2010 		.help = "match ICMPv6 neighbor discovery source Ethernet"
2011 			" link-layer address option",
2012 		.priv = PRIV_ITEM
2013 			(ICMP6_ND_OPT_SLA_ETH,
2014 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2015 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
2016 		.call = parse_vc,
2017 	},
2018 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2019 		.name = "sla",
2020 		.help = "source Ethernet LLA",
2021 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2022 			     item_param),
2023 		.args = ARGS(ARGS_ENTRY_HTON
2024 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2025 	},
2026 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2027 		.name = "icmp6_nd_opt_tla_eth",
2028 		.help = "match ICMPv6 neighbor discovery target Ethernet"
2029 			" link-layer address option",
2030 		.priv = PRIV_ITEM
2031 			(ICMP6_ND_OPT_TLA_ETH,
2032 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2033 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
2034 		.call = parse_vc,
2035 	},
2036 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2037 		.name = "tla",
2038 		.help = "target Ethernet LLA",
2039 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2040 			     item_param),
2041 		.args = ARGS(ARGS_ENTRY_HTON
2042 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2043 	},
2044 
2045 	/* Validate/create actions. */
2046 	[ACTIONS] = {
2047 		.name = "actions",
2048 		.help = "submit a list of associated actions",
2049 		.next = NEXT(next_action),
2050 		.call = parse_vc,
2051 	},
2052 	[ACTION_NEXT] = {
2053 		.name = "/",
2054 		.help = "specify next action",
2055 		.next = NEXT(next_action),
2056 	},
2057 	[ACTION_END] = {
2058 		.name = "end",
2059 		.help = "end list of actions",
2060 		.priv = PRIV_ACTION(END, 0),
2061 		.call = parse_vc,
2062 	},
2063 	[ACTION_VOID] = {
2064 		.name = "void",
2065 		.help = "no-op action",
2066 		.priv = PRIV_ACTION(VOID, 0),
2067 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2068 		.call = parse_vc,
2069 	},
2070 	[ACTION_PASSTHRU] = {
2071 		.name = "passthru",
2072 		.help = "let subsequent rule process matched packets",
2073 		.priv = PRIV_ACTION(PASSTHRU, 0),
2074 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2075 		.call = parse_vc,
2076 	},
2077 	[ACTION_JUMP] = {
2078 		.name = "jump",
2079 		.help = "redirect traffic to a given group",
2080 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2081 		.next = NEXT(action_jump),
2082 		.call = parse_vc,
2083 	},
2084 	[ACTION_JUMP_GROUP] = {
2085 		.name = "group",
2086 		.help = "group to redirect traffic to",
2087 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2088 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2089 		.call = parse_vc_conf,
2090 	},
2091 	[ACTION_MARK] = {
2092 		.name = "mark",
2093 		.help = "attach 32 bit value to packets",
2094 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2095 		.next = NEXT(action_mark),
2096 		.call = parse_vc,
2097 	},
2098 	[ACTION_MARK_ID] = {
2099 		.name = "id",
2100 		.help = "32 bit value to return with packets",
2101 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2102 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2103 		.call = parse_vc_conf,
2104 	},
2105 	[ACTION_FLAG] = {
2106 		.name = "flag",
2107 		.help = "flag packets",
2108 		.priv = PRIV_ACTION(FLAG, 0),
2109 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2110 		.call = parse_vc,
2111 	},
2112 	[ACTION_QUEUE] = {
2113 		.name = "queue",
2114 		.help = "assign packets to a given queue index",
2115 		.priv = PRIV_ACTION(QUEUE,
2116 				    sizeof(struct rte_flow_action_queue)),
2117 		.next = NEXT(action_queue),
2118 		.call = parse_vc,
2119 	},
2120 	[ACTION_QUEUE_INDEX] = {
2121 		.name = "index",
2122 		.help = "queue index to use",
2123 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2124 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2125 		.call = parse_vc_conf,
2126 	},
2127 	[ACTION_DROP] = {
2128 		.name = "drop",
2129 		.help = "drop packets (note: passthru has priority)",
2130 		.priv = PRIV_ACTION(DROP, 0),
2131 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2132 		.call = parse_vc,
2133 	},
2134 	[ACTION_COUNT] = {
2135 		.name = "count",
2136 		.help = "enable counters for this rule",
2137 		.priv = PRIV_ACTION(COUNT,
2138 				    sizeof(struct rte_flow_action_count)),
2139 		.next = NEXT(action_count),
2140 		.call = parse_vc,
2141 	},
2142 	[ACTION_COUNT_ID] = {
2143 		.name = "identifier",
2144 		.help = "counter identifier to use",
2145 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2146 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2147 		.call = parse_vc_conf,
2148 	},
2149 	[ACTION_COUNT_SHARED] = {
2150 		.name = "shared",
2151 		.help = "shared counter",
2152 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2153 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2154 					   shared, 1)),
2155 		.call = parse_vc_conf,
2156 	},
2157 	[ACTION_RSS] = {
2158 		.name = "rss",
2159 		.help = "spread packets among several queues",
2160 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2161 		.next = NEXT(action_rss),
2162 		.call = parse_vc_action_rss,
2163 	},
2164 	[ACTION_RSS_FUNC] = {
2165 		.name = "func",
2166 		.help = "RSS hash function to apply",
2167 		.next = NEXT(action_rss,
2168 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2169 					ACTION_RSS_FUNC_TOEPLITZ,
2170 					ACTION_RSS_FUNC_SIMPLE_XOR)),
2171 	},
2172 	[ACTION_RSS_FUNC_DEFAULT] = {
2173 		.name = "default",
2174 		.help = "default hash function",
2175 		.call = parse_vc_action_rss_func,
2176 	},
2177 	[ACTION_RSS_FUNC_TOEPLITZ] = {
2178 		.name = "toeplitz",
2179 		.help = "Toeplitz hash function",
2180 		.call = parse_vc_action_rss_func,
2181 	},
2182 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
2183 		.name = "simple_xor",
2184 		.help = "simple XOR hash function",
2185 		.call = parse_vc_action_rss_func,
2186 	},
2187 	[ACTION_RSS_LEVEL] = {
2188 		.name = "level",
2189 		.help = "encapsulation level for \"types\"",
2190 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2191 		.args = ARGS(ARGS_ENTRY_ARB
2192 			     (offsetof(struct action_rss_data, conf) +
2193 			      offsetof(struct rte_flow_action_rss, level),
2194 			      sizeof(((struct rte_flow_action_rss *)0)->
2195 				     level))),
2196 	},
2197 	[ACTION_RSS_TYPES] = {
2198 		.name = "types",
2199 		.help = "specific RSS hash types",
2200 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2201 	},
2202 	[ACTION_RSS_TYPE] = {
2203 		.name = "{type}",
2204 		.help = "RSS hash type",
2205 		.call = parse_vc_action_rss_type,
2206 		.comp = comp_vc_action_rss_type,
2207 	},
2208 	[ACTION_RSS_KEY] = {
2209 		.name = "key",
2210 		.help = "RSS hash key",
2211 		.next = NEXT(action_rss, NEXT_ENTRY(STRING)),
2212 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
2213 			     ARGS_ENTRY_ARB
2214 			     (offsetof(struct action_rss_data, conf) +
2215 			      offsetof(struct rte_flow_action_rss, key_len),
2216 			      sizeof(((struct rte_flow_action_rss *)0)->
2217 				     key_len)),
2218 			     ARGS_ENTRY(struct action_rss_data, key)),
2219 	},
2220 	[ACTION_RSS_KEY_LEN] = {
2221 		.name = "key_len",
2222 		.help = "RSS hash key length in bytes",
2223 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2224 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2225 			     (offsetof(struct action_rss_data, conf) +
2226 			      offsetof(struct rte_flow_action_rss, key_len),
2227 			      sizeof(((struct rte_flow_action_rss *)0)->
2228 				     key_len),
2229 			      0,
2230 			      RSS_HASH_KEY_LENGTH)),
2231 	},
2232 	[ACTION_RSS_QUEUES] = {
2233 		.name = "queues",
2234 		.help = "queue indices to use",
2235 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2236 		.call = parse_vc_conf,
2237 	},
2238 	[ACTION_RSS_QUEUE] = {
2239 		.name = "{queue}",
2240 		.help = "queue index",
2241 		.call = parse_vc_action_rss_queue,
2242 		.comp = comp_vc_action_rss_queue,
2243 	},
2244 	[ACTION_PF] = {
2245 		.name = "pf",
2246 		.help = "direct traffic to physical function",
2247 		.priv = PRIV_ACTION(PF, 0),
2248 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2249 		.call = parse_vc,
2250 	},
2251 	[ACTION_VF] = {
2252 		.name = "vf",
2253 		.help = "direct traffic to a virtual function ID",
2254 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2255 		.next = NEXT(action_vf),
2256 		.call = parse_vc,
2257 	},
2258 	[ACTION_VF_ORIGINAL] = {
2259 		.name = "original",
2260 		.help = "use original VF ID if possible",
2261 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2262 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2263 					   original, 1)),
2264 		.call = parse_vc_conf,
2265 	},
2266 	[ACTION_VF_ID] = {
2267 		.name = "id",
2268 		.help = "VF ID",
2269 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2270 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2271 		.call = parse_vc_conf,
2272 	},
2273 	[ACTION_PHY_PORT] = {
2274 		.name = "phy_port",
2275 		.help = "direct packets to physical port index",
2276 		.priv = PRIV_ACTION(PHY_PORT,
2277 				    sizeof(struct rte_flow_action_phy_port)),
2278 		.next = NEXT(action_phy_port),
2279 		.call = parse_vc,
2280 	},
2281 	[ACTION_PHY_PORT_ORIGINAL] = {
2282 		.name = "original",
2283 		.help = "use original port index if possible",
2284 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2285 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2286 					   original, 1)),
2287 		.call = parse_vc_conf,
2288 	},
2289 	[ACTION_PHY_PORT_INDEX] = {
2290 		.name = "index",
2291 		.help = "physical port index",
2292 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2293 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2294 					index)),
2295 		.call = parse_vc_conf,
2296 	},
2297 	[ACTION_PORT_ID] = {
2298 		.name = "port_id",
2299 		.help = "direct matching traffic to a given DPDK port ID",
2300 		.priv = PRIV_ACTION(PORT_ID,
2301 				    sizeof(struct rte_flow_action_port_id)),
2302 		.next = NEXT(action_port_id),
2303 		.call = parse_vc,
2304 	},
2305 	[ACTION_PORT_ID_ORIGINAL] = {
2306 		.name = "original",
2307 		.help = "use original DPDK port ID if possible",
2308 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2309 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2310 					   original, 1)),
2311 		.call = parse_vc_conf,
2312 	},
2313 	[ACTION_PORT_ID_ID] = {
2314 		.name = "id",
2315 		.help = "DPDK port ID",
2316 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2317 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2318 		.call = parse_vc_conf,
2319 	},
2320 	[ACTION_METER] = {
2321 		.name = "meter",
2322 		.help = "meter the directed packets at given id",
2323 		.priv = PRIV_ACTION(METER,
2324 				    sizeof(struct rte_flow_action_meter)),
2325 		.next = NEXT(action_meter),
2326 		.call = parse_vc,
2327 	},
2328 	[ACTION_METER_ID] = {
2329 		.name = "mtr_id",
2330 		.help = "meter id to use",
2331 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2332 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2333 		.call = parse_vc_conf,
2334 	},
2335 	[ACTION_OF_SET_MPLS_TTL] = {
2336 		.name = "of_set_mpls_ttl",
2337 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2338 		.priv = PRIV_ACTION
2339 			(OF_SET_MPLS_TTL,
2340 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2341 		.next = NEXT(action_of_set_mpls_ttl),
2342 		.call = parse_vc,
2343 	},
2344 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2345 		.name = "mpls_ttl",
2346 		.help = "MPLS TTL",
2347 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2348 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2349 					mpls_ttl)),
2350 		.call = parse_vc_conf,
2351 	},
2352 	[ACTION_OF_DEC_MPLS_TTL] = {
2353 		.name = "of_dec_mpls_ttl",
2354 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2355 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2356 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2357 		.call = parse_vc,
2358 	},
2359 	[ACTION_OF_SET_NW_TTL] = {
2360 		.name = "of_set_nw_ttl",
2361 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
2362 		.priv = PRIV_ACTION
2363 			(OF_SET_NW_TTL,
2364 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
2365 		.next = NEXT(action_of_set_nw_ttl),
2366 		.call = parse_vc,
2367 	},
2368 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
2369 		.name = "nw_ttl",
2370 		.help = "IP TTL",
2371 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2372 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2373 					nw_ttl)),
2374 		.call = parse_vc_conf,
2375 	},
2376 	[ACTION_OF_DEC_NW_TTL] = {
2377 		.name = "of_dec_nw_ttl",
2378 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
2379 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2380 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2381 		.call = parse_vc,
2382 	},
2383 	[ACTION_OF_COPY_TTL_OUT] = {
2384 		.name = "of_copy_ttl_out",
2385 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2386 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2387 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2388 		.call = parse_vc,
2389 	},
2390 	[ACTION_OF_COPY_TTL_IN] = {
2391 		.name = "of_copy_ttl_in",
2392 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
2393 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2394 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2395 		.call = parse_vc,
2396 	},
2397 	[ACTION_OF_POP_VLAN] = {
2398 		.name = "of_pop_vlan",
2399 		.help = "OpenFlow's OFPAT_POP_VLAN",
2400 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
2401 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2402 		.call = parse_vc,
2403 	},
2404 	[ACTION_OF_PUSH_VLAN] = {
2405 		.name = "of_push_vlan",
2406 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
2407 		.priv = PRIV_ACTION
2408 			(OF_PUSH_VLAN,
2409 			 sizeof(struct rte_flow_action_of_push_vlan)),
2410 		.next = NEXT(action_of_push_vlan),
2411 		.call = parse_vc,
2412 	},
2413 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2414 		.name = "ethertype",
2415 		.help = "EtherType",
2416 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2417 		.args = ARGS(ARGS_ENTRY_HTON
2418 			     (struct rte_flow_action_of_push_vlan,
2419 			      ethertype)),
2420 		.call = parse_vc_conf,
2421 	},
2422 	[ACTION_OF_SET_VLAN_VID] = {
2423 		.name = "of_set_vlan_vid",
2424 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
2425 		.priv = PRIV_ACTION
2426 			(OF_SET_VLAN_VID,
2427 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
2428 		.next = NEXT(action_of_set_vlan_vid),
2429 		.call = parse_vc,
2430 	},
2431 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2432 		.name = "vlan_vid",
2433 		.help = "VLAN id",
2434 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2435 		.args = ARGS(ARGS_ENTRY_HTON
2436 			     (struct rte_flow_action_of_set_vlan_vid,
2437 			      vlan_vid)),
2438 		.call = parse_vc_conf,
2439 	},
2440 	[ACTION_OF_SET_VLAN_PCP] = {
2441 		.name = "of_set_vlan_pcp",
2442 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2443 		.priv = PRIV_ACTION
2444 			(OF_SET_VLAN_PCP,
2445 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2446 		.next = NEXT(action_of_set_vlan_pcp),
2447 		.call = parse_vc,
2448 	},
2449 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2450 		.name = "vlan_pcp",
2451 		.help = "VLAN priority",
2452 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2453 		.args = ARGS(ARGS_ENTRY_HTON
2454 			     (struct rte_flow_action_of_set_vlan_pcp,
2455 			      vlan_pcp)),
2456 		.call = parse_vc_conf,
2457 	},
2458 	[ACTION_OF_POP_MPLS] = {
2459 		.name = "of_pop_mpls",
2460 		.help = "OpenFlow's OFPAT_POP_MPLS",
2461 		.priv = PRIV_ACTION(OF_POP_MPLS,
2462 				    sizeof(struct rte_flow_action_of_pop_mpls)),
2463 		.next = NEXT(action_of_pop_mpls),
2464 		.call = parse_vc,
2465 	},
2466 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
2467 		.name = "ethertype",
2468 		.help = "EtherType",
2469 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2470 		.args = ARGS(ARGS_ENTRY_HTON
2471 			     (struct rte_flow_action_of_pop_mpls,
2472 			      ethertype)),
2473 		.call = parse_vc_conf,
2474 	},
2475 	[ACTION_OF_PUSH_MPLS] = {
2476 		.name = "of_push_mpls",
2477 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
2478 		.priv = PRIV_ACTION
2479 			(OF_PUSH_MPLS,
2480 			 sizeof(struct rte_flow_action_of_push_mpls)),
2481 		.next = NEXT(action_of_push_mpls),
2482 		.call = parse_vc,
2483 	},
2484 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2485 		.name = "ethertype",
2486 		.help = "EtherType",
2487 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2488 		.args = ARGS(ARGS_ENTRY_HTON
2489 			     (struct rte_flow_action_of_push_mpls,
2490 			      ethertype)),
2491 		.call = parse_vc_conf,
2492 	},
2493 	[ACTION_VXLAN_ENCAP] = {
2494 		.name = "vxlan_encap",
2495 		.help = "VXLAN encapsulation, uses configuration set by \"set"
2496 			" vxlan\"",
2497 		.priv = PRIV_ACTION(VXLAN_ENCAP,
2498 				    sizeof(struct action_vxlan_encap_data)),
2499 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2500 		.call = parse_vc_action_vxlan_encap,
2501 	},
2502 	[ACTION_VXLAN_DECAP] = {
2503 		.name = "vxlan_decap",
2504 		.help = "Performs a decapsulation action by stripping all"
2505 			" headers of the VXLAN tunnel network overlay from the"
2506 			" matched flow.",
2507 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
2508 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2509 		.call = parse_vc,
2510 	},
2511 	[ACTION_NVGRE_ENCAP] = {
2512 		.name = "nvgre_encap",
2513 		.help = "NVGRE encapsulation, uses configuration set by \"set"
2514 			" nvgre\"",
2515 		.priv = PRIV_ACTION(NVGRE_ENCAP,
2516 				    sizeof(struct action_nvgre_encap_data)),
2517 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2518 		.call = parse_vc_action_nvgre_encap,
2519 	},
2520 	[ACTION_NVGRE_DECAP] = {
2521 		.name = "nvgre_decap",
2522 		.help = "Performs a decapsulation action by stripping all"
2523 			" headers of the NVGRE tunnel network overlay from the"
2524 			" matched flow.",
2525 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
2526 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2527 		.call = parse_vc,
2528 	},
2529 	[ACTION_SET_IPV4_SRC] = {
2530 		.name = "set_ipv4_src",
2531 		.help = "Set a new IPv4 source address in the outermost"
2532 			" IPv4 header",
2533 		.priv = PRIV_ACTION(SET_IPV4_SRC,
2534 			sizeof(struct rte_flow_action_set_ipv4)),
2535 		.next = NEXT(action_set_ipv4_src),
2536 		.call = parse_vc,
2537 	},
2538 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2539 		.name = "ipv4_addr",
2540 		.help = "new IPv4 source address to set",
2541 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2542 		.args = ARGS(ARGS_ENTRY_HTON
2543 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2544 		.call = parse_vc_conf,
2545 	},
2546 	[ACTION_SET_IPV4_DST] = {
2547 		.name = "set_ipv4_dst",
2548 		.help = "Set a new IPv4 destination address in the outermost"
2549 			" IPv4 header",
2550 		.priv = PRIV_ACTION(SET_IPV4_DST,
2551 			sizeof(struct rte_flow_action_set_ipv4)),
2552 		.next = NEXT(action_set_ipv4_dst),
2553 		.call = parse_vc,
2554 	},
2555 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
2556 		.name = "ipv4_addr",
2557 		.help = "new IPv4 destination address to set",
2558 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2559 		.args = ARGS(ARGS_ENTRY_HTON
2560 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2561 		.call = parse_vc_conf,
2562 	},
2563 	[ACTION_SET_IPV6_SRC] = {
2564 		.name = "set_ipv6_src",
2565 		.help = "Set a new IPv6 source address in the outermost"
2566 			" IPv6 header",
2567 		.priv = PRIV_ACTION(SET_IPV6_SRC,
2568 			sizeof(struct rte_flow_action_set_ipv6)),
2569 		.next = NEXT(action_set_ipv6_src),
2570 		.call = parse_vc,
2571 	},
2572 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
2573 		.name = "ipv6_addr",
2574 		.help = "new IPv6 source address to set",
2575 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
2576 		.args = ARGS(ARGS_ENTRY_HTON
2577 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2578 		.call = parse_vc_conf,
2579 	},
2580 	[ACTION_SET_IPV6_DST] = {
2581 		.name = "set_ipv6_dst",
2582 		.help = "Set a new IPv6 destination address in the outermost"
2583 			" IPv6 header",
2584 		.priv = PRIV_ACTION(SET_IPV6_DST,
2585 			sizeof(struct rte_flow_action_set_ipv6)),
2586 		.next = NEXT(action_set_ipv6_dst),
2587 		.call = parse_vc,
2588 	},
2589 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
2590 		.name = "ipv6_addr",
2591 		.help = "new IPv6 destination address to set",
2592 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
2593 		.args = ARGS(ARGS_ENTRY_HTON
2594 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2595 		.call = parse_vc_conf,
2596 	},
2597 	[ACTION_SET_TP_SRC] = {
2598 		.name = "set_tp_src",
2599 		.help = "set a new source port number in the outermost"
2600 			" TCP/UDP header",
2601 		.priv = PRIV_ACTION(SET_TP_SRC,
2602 			sizeof(struct rte_flow_action_set_tp)),
2603 		.next = NEXT(action_set_tp_src),
2604 		.call = parse_vc,
2605 	},
2606 	[ACTION_SET_TP_SRC_TP_SRC] = {
2607 		.name = "port",
2608 		.help = "new source port number to set",
2609 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
2610 		.args = ARGS(ARGS_ENTRY_HTON
2611 			     (struct rte_flow_action_set_tp, port)),
2612 		.call = parse_vc_conf,
2613 	},
2614 	[ACTION_SET_TP_DST] = {
2615 		.name = "set_tp_dst",
2616 		.help = "set a new destination port number in the outermost"
2617 			" TCP/UDP header",
2618 		.priv = PRIV_ACTION(SET_TP_DST,
2619 			sizeof(struct rte_flow_action_set_tp)),
2620 		.next = NEXT(action_set_tp_dst),
2621 		.call = parse_vc,
2622 	},
2623 	[ACTION_SET_TP_DST_TP_DST] = {
2624 		.name = "port",
2625 		.help = "new destination port number to set",
2626 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
2627 		.args = ARGS(ARGS_ENTRY_HTON
2628 			     (struct rte_flow_action_set_tp, port)),
2629 		.call = parse_vc_conf,
2630 	},
2631 	[ACTION_MAC_SWAP] = {
2632 		.name = "mac_swap",
2633 		.help = "Swap the source and destination MAC addresses"
2634 			" in the outermost Ethernet header",
2635 		.priv = PRIV_ACTION(MAC_SWAP, 0),
2636 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2637 		.call = parse_vc,
2638 	},
2639 };
2640 
2641 /** Remove and return last entry from argument stack. */
2642 static const struct arg *
2643 pop_args(struct context *ctx)
2644 {
2645 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
2646 }
2647 
2648 /** Add entry on top of the argument stack. */
2649 static int
2650 push_args(struct context *ctx, const struct arg *arg)
2651 {
2652 	if (ctx->args_num == CTX_STACK_SIZE)
2653 		return -1;
2654 	ctx->args[ctx->args_num++] = arg;
2655 	return 0;
2656 }
2657 
2658 /** Spread value into buffer according to bit-mask. */
2659 static size_t
2660 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
2661 {
2662 	uint32_t i = arg->size;
2663 	uint32_t end = 0;
2664 	int sub = 1;
2665 	int add = 0;
2666 	size_t len = 0;
2667 
2668 	if (!arg->mask)
2669 		return 0;
2670 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2671 	if (!arg->hton) {
2672 		i = 0;
2673 		end = arg->size;
2674 		sub = 0;
2675 		add = 1;
2676 	}
2677 #endif
2678 	while (i != end) {
2679 		unsigned int shift = 0;
2680 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
2681 
2682 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
2683 			if (!(arg->mask[i] & (1 << shift)))
2684 				continue;
2685 			++len;
2686 			if (!dst)
2687 				continue;
2688 			*buf &= ~(1 << shift);
2689 			*buf |= (val & 1) << shift;
2690 			val >>= 1;
2691 		}
2692 		i += add;
2693 	}
2694 	return len;
2695 }
2696 
2697 /** Compare a string with a partial one of a given length. */
2698 static int
2699 strcmp_partial(const char *full, const char *partial, size_t partial_len)
2700 {
2701 	int r = strncmp(full, partial, partial_len);
2702 
2703 	if (r)
2704 		return r;
2705 	if (strlen(full) <= partial_len)
2706 		return 0;
2707 	return full[partial_len];
2708 }
2709 
2710 /**
2711  * Parse a prefix length and generate a bit-mask.
2712  *
2713  * Last argument (ctx->args) is retrieved to determine mask size, storage
2714  * location and whether the result must use network byte ordering.
2715  */
2716 static int
2717 parse_prefix(struct context *ctx, const struct token *token,
2718 	     const char *str, unsigned int len,
2719 	     void *buf, unsigned int size)
2720 {
2721 	const struct arg *arg = pop_args(ctx);
2722 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
2723 	char *end;
2724 	uintmax_t u;
2725 	unsigned int bytes;
2726 	unsigned int extra;
2727 
2728 	(void)token;
2729 	/* Argument is expected. */
2730 	if (!arg)
2731 		return -1;
2732 	errno = 0;
2733 	u = strtoumax(str, &end, 0);
2734 	if (errno || (size_t)(end - str) != len)
2735 		goto error;
2736 	if (arg->mask) {
2737 		uintmax_t v = 0;
2738 
2739 		extra = arg_entry_bf_fill(NULL, 0, arg);
2740 		if (u > extra)
2741 			goto error;
2742 		if (!ctx->object)
2743 			return len;
2744 		extra -= u;
2745 		while (u--)
2746 			(v <<= 1, v |= 1);
2747 		v <<= extra;
2748 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
2749 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2750 			goto error;
2751 		return len;
2752 	}
2753 	bytes = u / 8;
2754 	extra = u % 8;
2755 	size = arg->size;
2756 	if (bytes > size || bytes + !!extra > size)
2757 		goto error;
2758 	if (!ctx->object)
2759 		return len;
2760 	buf = (uint8_t *)ctx->object + arg->offset;
2761 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2762 	if (!arg->hton) {
2763 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
2764 		memset(buf, 0x00, size - bytes);
2765 		if (extra)
2766 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
2767 	} else
2768 #endif
2769 	{
2770 		memset(buf, 0xff, bytes);
2771 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
2772 		if (extra)
2773 			((uint8_t *)buf)[bytes] = conv[extra];
2774 	}
2775 	if (ctx->objmask)
2776 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2777 	return len;
2778 error:
2779 	push_args(ctx, arg);
2780 	return -1;
2781 }
2782 
2783 /** Default parsing function for token name matching. */
2784 static int
2785 parse_default(struct context *ctx, const struct token *token,
2786 	      const char *str, unsigned int len,
2787 	      void *buf, unsigned int size)
2788 {
2789 	(void)ctx;
2790 	(void)buf;
2791 	(void)size;
2792 	if (strcmp_partial(token->name, str, len))
2793 		return -1;
2794 	return len;
2795 }
2796 
2797 /** Parse flow command, initialize output buffer for subsequent tokens. */
2798 static int
2799 parse_init(struct context *ctx, const struct token *token,
2800 	   const char *str, unsigned int len,
2801 	   void *buf, unsigned int size)
2802 {
2803 	struct buffer *out = buf;
2804 
2805 	/* Token name must match. */
2806 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2807 		return -1;
2808 	/* Nothing else to do if there is no buffer. */
2809 	if (!out)
2810 		return len;
2811 	/* Make sure buffer is large enough. */
2812 	if (size < sizeof(*out))
2813 		return -1;
2814 	/* Initialize buffer. */
2815 	memset(out, 0x00, sizeof(*out));
2816 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
2817 	ctx->objdata = 0;
2818 	ctx->object = out;
2819 	ctx->objmask = NULL;
2820 	return len;
2821 }
2822 
2823 /** Parse tokens for validate/create commands. */
2824 static int
2825 parse_vc(struct context *ctx, const struct token *token,
2826 	 const char *str, unsigned int len,
2827 	 void *buf, unsigned int size)
2828 {
2829 	struct buffer *out = buf;
2830 	uint8_t *data;
2831 	uint32_t data_size;
2832 
2833 	/* Token name must match. */
2834 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2835 		return -1;
2836 	/* Nothing else to do if there is no buffer. */
2837 	if (!out)
2838 		return len;
2839 	if (!out->command) {
2840 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
2841 			return -1;
2842 		if (sizeof(*out) > size)
2843 			return -1;
2844 		out->command = ctx->curr;
2845 		ctx->objdata = 0;
2846 		ctx->object = out;
2847 		ctx->objmask = NULL;
2848 		out->args.vc.data = (uint8_t *)out + size;
2849 		return len;
2850 	}
2851 	ctx->objdata = 0;
2852 	ctx->object = &out->args.vc.attr;
2853 	ctx->objmask = NULL;
2854 	switch (ctx->curr) {
2855 	case GROUP:
2856 	case PRIORITY:
2857 		return len;
2858 	case INGRESS:
2859 		out->args.vc.attr.ingress = 1;
2860 		return len;
2861 	case EGRESS:
2862 		out->args.vc.attr.egress = 1;
2863 		return len;
2864 	case TRANSFER:
2865 		out->args.vc.attr.transfer = 1;
2866 		return len;
2867 	case PATTERN:
2868 		out->args.vc.pattern =
2869 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2870 					       sizeof(double));
2871 		ctx->object = out->args.vc.pattern;
2872 		ctx->objmask = NULL;
2873 		return len;
2874 	case ACTIONS:
2875 		out->args.vc.actions =
2876 			(void *)RTE_ALIGN_CEIL((uintptr_t)
2877 					       (out->args.vc.pattern +
2878 						out->args.vc.pattern_n),
2879 					       sizeof(double));
2880 		ctx->object = out->args.vc.actions;
2881 		ctx->objmask = NULL;
2882 		return len;
2883 	default:
2884 		if (!token->priv)
2885 			return -1;
2886 		break;
2887 	}
2888 	if (!out->args.vc.actions) {
2889 		const struct parse_item_priv *priv = token->priv;
2890 		struct rte_flow_item *item =
2891 			out->args.vc.pattern + out->args.vc.pattern_n;
2892 
2893 		data_size = priv->size * 3; /* spec, last, mask */
2894 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
2895 					       (out->args.vc.data - data_size),
2896 					       sizeof(double));
2897 		if ((uint8_t *)item + sizeof(*item) > data)
2898 			return -1;
2899 		*item = (struct rte_flow_item){
2900 			.type = priv->type,
2901 		};
2902 		++out->args.vc.pattern_n;
2903 		ctx->object = item;
2904 		ctx->objmask = NULL;
2905 	} else {
2906 		const struct parse_action_priv *priv = token->priv;
2907 		struct rte_flow_action *action =
2908 			out->args.vc.actions + out->args.vc.actions_n;
2909 
2910 		data_size = priv->size; /* configuration */
2911 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
2912 					       (out->args.vc.data - data_size),
2913 					       sizeof(double));
2914 		if ((uint8_t *)action + sizeof(*action) > data)
2915 			return -1;
2916 		*action = (struct rte_flow_action){
2917 			.type = priv->type,
2918 			.conf = data_size ? data : NULL,
2919 		};
2920 		++out->args.vc.actions_n;
2921 		ctx->object = action;
2922 		ctx->objmask = NULL;
2923 	}
2924 	memset(data, 0, data_size);
2925 	out->args.vc.data = data;
2926 	ctx->objdata = data_size;
2927 	return len;
2928 }
2929 
2930 /** Parse pattern item parameter type. */
2931 static int
2932 parse_vc_spec(struct context *ctx, const struct token *token,
2933 	      const char *str, unsigned int len,
2934 	      void *buf, unsigned int size)
2935 {
2936 	struct buffer *out = buf;
2937 	struct rte_flow_item *item;
2938 	uint32_t data_size;
2939 	int index;
2940 	int objmask = 0;
2941 
2942 	(void)size;
2943 	/* Token name must match. */
2944 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2945 		return -1;
2946 	/* Parse parameter types. */
2947 	switch (ctx->curr) {
2948 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
2949 
2950 	case ITEM_PARAM_IS:
2951 		index = 0;
2952 		objmask = 1;
2953 		break;
2954 	case ITEM_PARAM_SPEC:
2955 		index = 0;
2956 		break;
2957 	case ITEM_PARAM_LAST:
2958 		index = 1;
2959 		break;
2960 	case ITEM_PARAM_PREFIX:
2961 		/* Modify next token to expect a prefix. */
2962 		if (ctx->next_num < 2)
2963 			return -1;
2964 		ctx->next[ctx->next_num - 2] = prefix;
2965 		/* Fall through. */
2966 	case ITEM_PARAM_MASK:
2967 		index = 2;
2968 		break;
2969 	default:
2970 		return -1;
2971 	}
2972 	/* Nothing else to do if there is no buffer. */
2973 	if (!out)
2974 		return len;
2975 	if (!out->args.vc.pattern_n)
2976 		return -1;
2977 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
2978 	data_size = ctx->objdata / 3; /* spec, last, mask */
2979 	/* Point to selected object. */
2980 	ctx->object = out->args.vc.data + (data_size * index);
2981 	if (objmask) {
2982 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
2983 		item->mask = ctx->objmask;
2984 	} else
2985 		ctx->objmask = NULL;
2986 	/* Update relevant item pointer. */
2987 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
2988 		ctx->object;
2989 	return len;
2990 }
2991 
2992 /** Parse action configuration field. */
2993 static int
2994 parse_vc_conf(struct context *ctx, const struct token *token,
2995 	      const char *str, unsigned int len,
2996 	      void *buf, unsigned int size)
2997 {
2998 	struct buffer *out = buf;
2999 
3000 	(void)size;
3001 	/* Token name must match. */
3002 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3003 		return -1;
3004 	/* Nothing else to do if there is no buffer. */
3005 	if (!out)
3006 		return len;
3007 	/* Point to selected object. */
3008 	ctx->object = out->args.vc.data;
3009 	ctx->objmask = NULL;
3010 	return len;
3011 }
3012 
3013 /** Parse RSS action. */
3014 static int
3015 parse_vc_action_rss(struct context *ctx, const struct token *token,
3016 		    const char *str, unsigned int len,
3017 		    void *buf, unsigned int size)
3018 {
3019 	struct buffer *out = buf;
3020 	struct rte_flow_action *action;
3021 	struct action_rss_data *action_rss_data;
3022 	unsigned int i;
3023 	int ret;
3024 
3025 	ret = parse_vc(ctx, token, str, len, buf, size);
3026 	if (ret < 0)
3027 		return ret;
3028 	/* Nothing else to do if there is no buffer. */
3029 	if (!out)
3030 		return ret;
3031 	if (!out->args.vc.actions_n)
3032 		return -1;
3033 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3034 	/* Point to selected object. */
3035 	ctx->object = out->args.vc.data;
3036 	ctx->objmask = NULL;
3037 	/* Set up default configuration. */
3038 	action_rss_data = ctx->object;
3039 	*action_rss_data = (struct action_rss_data){
3040 		.conf = (struct rte_flow_action_rss){
3041 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3042 			.level = 0,
3043 			.types = rss_hf,
3044 			.key_len = sizeof(action_rss_data->key),
3045 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3046 			.key = action_rss_data->key,
3047 			.queue = action_rss_data->queue,
3048 		},
3049 		.key = "testpmd's default RSS hash key, "
3050 			"override it for better balancing",
3051 		.queue = { 0 },
3052 	};
3053 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3054 		action_rss_data->queue[i] = i;
3055 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3056 	    ctx->port != (portid_t)RTE_PORT_ALL) {
3057 		struct rte_eth_dev_info info;
3058 
3059 		rte_eth_dev_info_get(ctx->port, &info);
3060 		action_rss_data->conf.key_len =
3061 			RTE_MIN(sizeof(action_rss_data->key),
3062 				info.hash_key_size);
3063 	}
3064 	action->conf = &action_rss_data->conf;
3065 	return ret;
3066 }
3067 
3068 /**
3069  * Parse func field for RSS action.
3070  *
3071  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3072  * ACTION_RSS_FUNC_* index that called this function.
3073  */
3074 static int
3075 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3076 			 const char *str, unsigned int len,
3077 			 void *buf, unsigned int size)
3078 {
3079 	struct action_rss_data *action_rss_data;
3080 	enum rte_eth_hash_function func;
3081 
3082 	(void)buf;
3083 	(void)size;
3084 	/* Token name must match. */
3085 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3086 		return -1;
3087 	switch (ctx->curr) {
3088 	case ACTION_RSS_FUNC_DEFAULT:
3089 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3090 		break;
3091 	case ACTION_RSS_FUNC_TOEPLITZ:
3092 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3093 		break;
3094 	case ACTION_RSS_FUNC_SIMPLE_XOR:
3095 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3096 		break;
3097 	default:
3098 		return -1;
3099 	}
3100 	if (!ctx->object)
3101 		return len;
3102 	action_rss_data = ctx->object;
3103 	action_rss_data->conf.func = func;
3104 	return len;
3105 }
3106 
3107 /**
3108  * Parse type field for RSS action.
3109  *
3110  * Valid tokens are type field names and the "end" token.
3111  */
3112 static int
3113 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3114 			  const char *str, unsigned int len,
3115 			  void *buf, unsigned int size)
3116 {
3117 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3118 	struct action_rss_data *action_rss_data;
3119 	unsigned int i;
3120 
3121 	(void)token;
3122 	(void)buf;
3123 	(void)size;
3124 	if (ctx->curr != ACTION_RSS_TYPE)
3125 		return -1;
3126 	if (!(ctx->objdata >> 16) && ctx->object) {
3127 		action_rss_data = ctx->object;
3128 		action_rss_data->conf.types = 0;
3129 	}
3130 	if (!strcmp_partial("end", str, len)) {
3131 		ctx->objdata &= 0xffff;
3132 		return len;
3133 	}
3134 	for (i = 0; rss_type_table[i].str; ++i)
3135 		if (!strcmp_partial(rss_type_table[i].str, str, len))
3136 			break;
3137 	if (!rss_type_table[i].str)
3138 		return -1;
3139 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3140 	/* Repeat token. */
3141 	if (ctx->next_num == RTE_DIM(ctx->next))
3142 		return -1;
3143 	ctx->next[ctx->next_num++] = next;
3144 	if (!ctx->object)
3145 		return len;
3146 	action_rss_data = ctx->object;
3147 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
3148 	return len;
3149 }
3150 
3151 /**
3152  * Parse queue field for RSS action.
3153  *
3154  * Valid tokens are queue indices and the "end" token.
3155  */
3156 static int
3157 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3158 			  const char *str, unsigned int len,
3159 			  void *buf, unsigned int size)
3160 {
3161 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3162 	struct action_rss_data *action_rss_data;
3163 	int ret;
3164 	int i;
3165 
3166 	(void)token;
3167 	(void)buf;
3168 	(void)size;
3169 	if (ctx->curr != ACTION_RSS_QUEUE)
3170 		return -1;
3171 	i = ctx->objdata >> 16;
3172 	if (!strcmp_partial("end", str, len)) {
3173 		ctx->objdata &= 0xffff;
3174 		goto end;
3175 	}
3176 	if (i >= ACTION_RSS_QUEUE_NUM)
3177 		return -1;
3178 	if (push_args(ctx,
3179 		      ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3180 				     i * sizeof(action_rss_data->queue[i]),
3181 				     sizeof(action_rss_data->queue[i]))))
3182 		return -1;
3183 	ret = parse_int(ctx, token, str, len, NULL, 0);
3184 	if (ret < 0) {
3185 		pop_args(ctx);
3186 		return -1;
3187 	}
3188 	++i;
3189 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3190 	/* Repeat token. */
3191 	if (ctx->next_num == RTE_DIM(ctx->next))
3192 		return -1;
3193 	ctx->next[ctx->next_num++] = next;
3194 end:
3195 	if (!ctx->object)
3196 		return len;
3197 	action_rss_data = ctx->object;
3198 	action_rss_data->conf.queue_num = i;
3199 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3200 	return len;
3201 }
3202 
3203 /** Parse VXLAN encap action. */
3204 static int
3205 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3206 			    const char *str, unsigned int len,
3207 			    void *buf, unsigned int size)
3208 {
3209 	struct buffer *out = buf;
3210 	struct rte_flow_action *action;
3211 	struct action_vxlan_encap_data *action_vxlan_encap_data;
3212 	int ret;
3213 
3214 	ret = parse_vc(ctx, token, str, len, buf, size);
3215 	if (ret < 0)
3216 		return ret;
3217 	/* Nothing else to do if there is no buffer. */
3218 	if (!out)
3219 		return ret;
3220 	if (!out->args.vc.actions_n)
3221 		return -1;
3222 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3223 	/* Point to selected object. */
3224 	ctx->object = out->args.vc.data;
3225 	ctx->objmask = NULL;
3226 	/* Set up default configuration. */
3227 	action_vxlan_encap_data = ctx->object;
3228 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
3229 		.conf = (struct rte_flow_action_vxlan_encap){
3230 			.definition = action_vxlan_encap_data->items,
3231 		},
3232 		.items = {
3233 			{
3234 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3235 				.spec = &action_vxlan_encap_data->item_eth,
3236 				.mask = &rte_flow_item_eth_mask,
3237 			},
3238 			{
3239 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3240 				.spec = &action_vxlan_encap_data->item_vlan,
3241 				.mask = &rte_flow_item_vlan_mask,
3242 			},
3243 			{
3244 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3245 				.spec = &action_vxlan_encap_data->item_ipv4,
3246 				.mask = &rte_flow_item_ipv4_mask,
3247 			},
3248 			{
3249 				.type = RTE_FLOW_ITEM_TYPE_UDP,
3250 				.spec = &action_vxlan_encap_data->item_udp,
3251 				.mask = &rte_flow_item_udp_mask,
3252 			},
3253 			{
3254 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
3255 				.spec = &action_vxlan_encap_data->item_vxlan,
3256 				.mask = &rte_flow_item_vxlan_mask,
3257 			},
3258 			{
3259 				.type = RTE_FLOW_ITEM_TYPE_END,
3260 			},
3261 		},
3262 		.item_eth.type = 0,
3263 		.item_vlan = {
3264 			.tci = vxlan_encap_conf.vlan_tci,
3265 			.inner_type = 0,
3266 		},
3267 		.item_ipv4.hdr = {
3268 			.src_addr = vxlan_encap_conf.ipv4_src,
3269 			.dst_addr = vxlan_encap_conf.ipv4_dst,
3270 		},
3271 		.item_udp.hdr = {
3272 			.src_port = vxlan_encap_conf.udp_src,
3273 			.dst_port = vxlan_encap_conf.udp_dst,
3274 		},
3275 		.item_vxlan.flags = 0,
3276 	};
3277 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3278 	       vxlan_encap_conf.eth_dst, ETHER_ADDR_LEN);
3279 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3280 	       vxlan_encap_conf.eth_src, ETHER_ADDR_LEN);
3281 	if (!vxlan_encap_conf.select_ipv4) {
3282 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3283 		       &vxlan_encap_conf.ipv6_src,
3284 		       sizeof(vxlan_encap_conf.ipv6_src));
3285 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3286 		       &vxlan_encap_conf.ipv6_dst,
3287 		       sizeof(vxlan_encap_conf.ipv6_dst));
3288 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3289 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3290 			.spec = &action_vxlan_encap_data->item_ipv6,
3291 			.mask = &rte_flow_item_ipv6_mask,
3292 		};
3293 	}
3294 	if (!vxlan_encap_conf.select_vlan)
3295 		action_vxlan_encap_data->items[1].type =
3296 			RTE_FLOW_ITEM_TYPE_VOID;
3297 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3298 	       RTE_DIM(vxlan_encap_conf.vni));
3299 	action->conf = &action_vxlan_encap_data->conf;
3300 	return ret;
3301 }
3302 
3303 /** Parse NVGRE encap action. */
3304 static int
3305 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3306 			    const char *str, unsigned int len,
3307 			    void *buf, unsigned int size)
3308 {
3309 	struct buffer *out = buf;
3310 	struct rte_flow_action *action;
3311 	struct action_nvgre_encap_data *action_nvgre_encap_data;
3312 	int ret;
3313 
3314 	ret = parse_vc(ctx, token, str, len, buf, size);
3315 	if (ret < 0)
3316 		return ret;
3317 	/* Nothing else to do if there is no buffer. */
3318 	if (!out)
3319 		return ret;
3320 	if (!out->args.vc.actions_n)
3321 		return -1;
3322 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3323 	/* Point to selected object. */
3324 	ctx->object = out->args.vc.data;
3325 	ctx->objmask = NULL;
3326 	/* Set up default configuration. */
3327 	action_nvgre_encap_data = ctx->object;
3328 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
3329 		.conf = (struct rte_flow_action_nvgre_encap){
3330 			.definition = action_nvgre_encap_data->items,
3331 		},
3332 		.items = {
3333 			{
3334 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3335 				.spec = &action_nvgre_encap_data->item_eth,
3336 				.mask = &rte_flow_item_eth_mask,
3337 			},
3338 			{
3339 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3340 				.spec = &action_nvgre_encap_data->item_vlan,
3341 				.mask = &rte_flow_item_vlan_mask,
3342 			},
3343 			{
3344 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3345 				.spec = &action_nvgre_encap_data->item_ipv4,
3346 				.mask = &rte_flow_item_ipv4_mask,
3347 			},
3348 			{
3349 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
3350 				.spec = &action_nvgre_encap_data->item_nvgre,
3351 				.mask = &rte_flow_item_nvgre_mask,
3352 			},
3353 			{
3354 				.type = RTE_FLOW_ITEM_TYPE_END,
3355 			},
3356 		},
3357 		.item_eth.type = 0,
3358 		.item_vlan = {
3359 			.tci = nvgre_encap_conf.vlan_tci,
3360 			.inner_type = 0,
3361 		},
3362 		.item_ipv4.hdr = {
3363 		       .src_addr = nvgre_encap_conf.ipv4_src,
3364 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
3365 		},
3366 		.item_nvgre.flow_id = 0,
3367 	};
3368 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3369 	       nvgre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3370 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3371 	       nvgre_encap_conf.eth_src, ETHER_ADDR_LEN);
3372 	if (!nvgre_encap_conf.select_ipv4) {
3373 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3374 		       &nvgre_encap_conf.ipv6_src,
3375 		       sizeof(nvgre_encap_conf.ipv6_src));
3376 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3377 		       &nvgre_encap_conf.ipv6_dst,
3378 		       sizeof(nvgre_encap_conf.ipv6_dst));
3379 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3380 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3381 			.spec = &action_nvgre_encap_data->item_ipv6,
3382 			.mask = &rte_flow_item_ipv6_mask,
3383 		};
3384 	}
3385 	if (!nvgre_encap_conf.select_vlan)
3386 		action_nvgre_encap_data->items[1].type =
3387 			RTE_FLOW_ITEM_TYPE_VOID;
3388 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3389 	       RTE_DIM(nvgre_encap_conf.tni));
3390 	action->conf = &action_nvgre_encap_data->conf;
3391 	return ret;
3392 }
3393 
3394 /** Parse tokens for destroy command. */
3395 static int
3396 parse_destroy(struct context *ctx, const struct token *token,
3397 	      const char *str, unsigned int len,
3398 	      void *buf, unsigned int size)
3399 {
3400 	struct buffer *out = buf;
3401 
3402 	/* Token name must match. */
3403 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3404 		return -1;
3405 	/* Nothing else to do if there is no buffer. */
3406 	if (!out)
3407 		return len;
3408 	if (!out->command) {
3409 		if (ctx->curr != DESTROY)
3410 			return -1;
3411 		if (sizeof(*out) > size)
3412 			return -1;
3413 		out->command = ctx->curr;
3414 		ctx->objdata = 0;
3415 		ctx->object = out;
3416 		ctx->objmask = NULL;
3417 		out->args.destroy.rule =
3418 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3419 					       sizeof(double));
3420 		return len;
3421 	}
3422 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
3423 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
3424 		return -1;
3425 	ctx->objdata = 0;
3426 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
3427 	ctx->objmask = NULL;
3428 	return len;
3429 }
3430 
3431 /** Parse tokens for flush command. */
3432 static int
3433 parse_flush(struct context *ctx, const struct token *token,
3434 	    const char *str, unsigned int len,
3435 	    void *buf, unsigned int size)
3436 {
3437 	struct buffer *out = buf;
3438 
3439 	/* Token name must match. */
3440 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3441 		return -1;
3442 	/* Nothing else to do if there is no buffer. */
3443 	if (!out)
3444 		return len;
3445 	if (!out->command) {
3446 		if (ctx->curr != FLUSH)
3447 			return -1;
3448 		if (sizeof(*out) > size)
3449 			return -1;
3450 		out->command = ctx->curr;
3451 		ctx->objdata = 0;
3452 		ctx->object = out;
3453 		ctx->objmask = NULL;
3454 	}
3455 	return len;
3456 }
3457 
3458 /** Parse tokens for query command. */
3459 static int
3460 parse_query(struct context *ctx, const struct token *token,
3461 	    const char *str, unsigned int len,
3462 	    void *buf, unsigned int size)
3463 {
3464 	struct buffer *out = buf;
3465 
3466 	/* Token name must match. */
3467 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3468 		return -1;
3469 	/* Nothing else to do if there is no buffer. */
3470 	if (!out)
3471 		return len;
3472 	if (!out->command) {
3473 		if (ctx->curr != QUERY)
3474 			return -1;
3475 		if (sizeof(*out) > size)
3476 			return -1;
3477 		out->command = ctx->curr;
3478 		ctx->objdata = 0;
3479 		ctx->object = out;
3480 		ctx->objmask = NULL;
3481 	}
3482 	return len;
3483 }
3484 
3485 /** Parse action names. */
3486 static int
3487 parse_action(struct context *ctx, const struct token *token,
3488 	     const char *str, unsigned int len,
3489 	     void *buf, unsigned int size)
3490 {
3491 	struct buffer *out = buf;
3492 	const struct arg *arg = pop_args(ctx);
3493 	unsigned int i;
3494 
3495 	(void)size;
3496 	/* Argument is expected. */
3497 	if (!arg)
3498 		return -1;
3499 	/* Parse action name. */
3500 	for (i = 0; next_action[i]; ++i) {
3501 		const struct parse_action_priv *priv;
3502 
3503 		token = &token_list[next_action[i]];
3504 		if (strcmp_partial(token->name, str, len))
3505 			continue;
3506 		priv = token->priv;
3507 		if (!priv)
3508 			goto error;
3509 		if (out)
3510 			memcpy((uint8_t *)ctx->object + arg->offset,
3511 			       &priv->type,
3512 			       arg->size);
3513 		return len;
3514 	}
3515 error:
3516 	push_args(ctx, arg);
3517 	return -1;
3518 }
3519 
3520 /** Parse tokens for list command. */
3521 static int
3522 parse_list(struct context *ctx, const struct token *token,
3523 	   const char *str, unsigned int len,
3524 	   void *buf, unsigned int size)
3525 {
3526 	struct buffer *out = buf;
3527 
3528 	/* Token name must match. */
3529 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3530 		return -1;
3531 	/* Nothing else to do if there is no buffer. */
3532 	if (!out)
3533 		return len;
3534 	if (!out->command) {
3535 		if (ctx->curr != LIST)
3536 			return -1;
3537 		if (sizeof(*out) > size)
3538 			return -1;
3539 		out->command = ctx->curr;
3540 		ctx->objdata = 0;
3541 		ctx->object = out;
3542 		ctx->objmask = NULL;
3543 		out->args.list.group =
3544 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3545 					       sizeof(double));
3546 		return len;
3547 	}
3548 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
3549 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
3550 		return -1;
3551 	ctx->objdata = 0;
3552 	ctx->object = out->args.list.group + out->args.list.group_n++;
3553 	ctx->objmask = NULL;
3554 	return len;
3555 }
3556 
3557 /** Parse tokens for isolate command. */
3558 static int
3559 parse_isolate(struct context *ctx, const struct token *token,
3560 	      const char *str, unsigned int len,
3561 	      void *buf, unsigned int size)
3562 {
3563 	struct buffer *out = buf;
3564 
3565 	/* Token name must match. */
3566 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3567 		return -1;
3568 	/* Nothing else to do if there is no buffer. */
3569 	if (!out)
3570 		return len;
3571 	if (!out->command) {
3572 		if (ctx->curr != ISOLATE)
3573 			return -1;
3574 		if (sizeof(*out) > size)
3575 			return -1;
3576 		out->command = ctx->curr;
3577 		ctx->objdata = 0;
3578 		ctx->object = out;
3579 		ctx->objmask = NULL;
3580 	}
3581 	return len;
3582 }
3583 
3584 /**
3585  * Parse signed/unsigned integers 8 to 64-bit long.
3586  *
3587  * Last argument (ctx->args) is retrieved to determine integer type and
3588  * storage location.
3589  */
3590 static int
3591 parse_int(struct context *ctx, const struct token *token,
3592 	  const char *str, unsigned int len,
3593 	  void *buf, unsigned int size)
3594 {
3595 	const struct arg *arg = pop_args(ctx);
3596 	uintmax_t u;
3597 	char *end;
3598 
3599 	(void)token;
3600 	/* Argument is expected. */
3601 	if (!arg)
3602 		return -1;
3603 	errno = 0;
3604 	u = arg->sign ?
3605 		(uintmax_t)strtoimax(str, &end, 0) :
3606 		strtoumax(str, &end, 0);
3607 	if (errno || (size_t)(end - str) != len)
3608 		goto error;
3609 	if (arg->bounded &&
3610 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
3611 			    (intmax_t)u > (intmax_t)arg->max)) ||
3612 	     (!arg->sign && (u < arg->min || u > arg->max))))
3613 		goto error;
3614 	if (!ctx->object)
3615 		return len;
3616 	if (arg->mask) {
3617 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
3618 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
3619 			goto error;
3620 		return len;
3621 	}
3622 	buf = (uint8_t *)ctx->object + arg->offset;
3623 	size = arg->size;
3624 objmask:
3625 	switch (size) {
3626 	case sizeof(uint8_t):
3627 		*(uint8_t *)buf = u;
3628 		break;
3629 	case sizeof(uint16_t):
3630 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
3631 		break;
3632 	case sizeof(uint8_t [3]):
3633 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3634 		if (!arg->hton) {
3635 			((uint8_t *)buf)[0] = u;
3636 			((uint8_t *)buf)[1] = u >> 8;
3637 			((uint8_t *)buf)[2] = u >> 16;
3638 			break;
3639 		}
3640 #endif
3641 		((uint8_t *)buf)[0] = u >> 16;
3642 		((uint8_t *)buf)[1] = u >> 8;
3643 		((uint8_t *)buf)[2] = u;
3644 		break;
3645 	case sizeof(uint32_t):
3646 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
3647 		break;
3648 	case sizeof(uint64_t):
3649 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
3650 		break;
3651 	default:
3652 		goto error;
3653 	}
3654 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
3655 		u = -1;
3656 		buf = (uint8_t *)ctx->objmask + arg->offset;
3657 		goto objmask;
3658 	}
3659 	return len;
3660 error:
3661 	push_args(ctx, arg);
3662 	return -1;
3663 }
3664 
3665 /**
3666  * Parse a string.
3667  *
3668  * Three arguments (ctx->args) are retrieved from the stack to store data,
3669  * its actual length and address (in that order).
3670  */
3671 static int
3672 parse_string(struct context *ctx, const struct token *token,
3673 	     const char *str, unsigned int len,
3674 	     void *buf, unsigned int size)
3675 {
3676 	const struct arg *arg_data = pop_args(ctx);
3677 	const struct arg *arg_len = pop_args(ctx);
3678 	const struct arg *arg_addr = pop_args(ctx);
3679 	char tmp[16]; /* Ought to be enough. */
3680 	int ret;
3681 
3682 	/* Arguments are expected. */
3683 	if (!arg_data)
3684 		return -1;
3685 	if (!arg_len) {
3686 		push_args(ctx, arg_data);
3687 		return -1;
3688 	}
3689 	if (!arg_addr) {
3690 		push_args(ctx, arg_len);
3691 		push_args(ctx, arg_data);
3692 		return -1;
3693 	}
3694 	size = arg_data->size;
3695 	/* Bit-mask fill is not supported. */
3696 	if (arg_data->mask || size < len)
3697 		goto error;
3698 	if (!ctx->object)
3699 		return len;
3700 	/* Let parse_int() fill length information first. */
3701 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
3702 	if (ret < 0)
3703 		goto error;
3704 	push_args(ctx, arg_len);
3705 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
3706 	if (ret < 0) {
3707 		pop_args(ctx);
3708 		goto error;
3709 	}
3710 	buf = (uint8_t *)ctx->object + arg_data->offset;
3711 	/* Output buffer is not necessarily NUL-terminated. */
3712 	memcpy(buf, str, len);
3713 	memset((uint8_t *)buf + len, 0x00, size - len);
3714 	if (ctx->objmask)
3715 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
3716 	/* Save address if requested. */
3717 	if (arg_addr->size) {
3718 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
3719 		       (void *[]){
3720 			(uint8_t *)ctx->object + arg_data->offset
3721 		       },
3722 		       arg_addr->size);
3723 		if (ctx->objmask)
3724 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
3725 			       (void *[]){
3726 				(uint8_t *)ctx->objmask + arg_data->offset
3727 			       },
3728 			       arg_addr->size);
3729 	}
3730 	return len;
3731 error:
3732 	push_args(ctx, arg_addr);
3733 	push_args(ctx, arg_len);
3734 	push_args(ctx, arg_data);
3735 	return -1;
3736 }
3737 
3738 /**
3739  * Parse a MAC address.
3740  *
3741  * Last argument (ctx->args) is retrieved to determine storage size and
3742  * location.
3743  */
3744 static int
3745 parse_mac_addr(struct context *ctx, const struct token *token,
3746 	       const char *str, unsigned int len,
3747 	       void *buf, unsigned int size)
3748 {
3749 	const struct arg *arg = pop_args(ctx);
3750 	struct ether_addr tmp;
3751 	int ret;
3752 
3753 	(void)token;
3754 	/* Argument is expected. */
3755 	if (!arg)
3756 		return -1;
3757 	size = arg->size;
3758 	/* Bit-mask fill is not supported. */
3759 	if (arg->mask || size != sizeof(tmp))
3760 		goto error;
3761 	/* Only network endian is supported. */
3762 	if (!arg->hton)
3763 		goto error;
3764 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
3765 	if (ret < 0 || (unsigned int)ret != len)
3766 		goto error;
3767 	if (!ctx->object)
3768 		return len;
3769 	buf = (uint8_t *)ctx->object + arg->offset;
3770 	memcpy(buf, &tmp, size);
3771 	if (ctx->objmask)
3772 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3773 	return len;
3774 error:
3775 	push_args(ctx, arg);
3776 	return -1;
3777 }
3778 
3779 /**
3780  * Parse an IPv4 address.
3781  *
3782  * Last argument (ctx->args) is retrieved to determine storage size and
3783  * location.
3784  */
3785 static int
3786 parse_ipv4_addr(struct context *ctx, const struct token *token,
3787 		const char *str, unsigned int len,
3788 		void *buf, unsigned int size)
3789 {
3790 	const struct arg *arg = pop_args(ctx);
3791 	char str2[len + 1];
3792 	struct in_addr tmp;
3793 	int ret;
3794 
3795 	/* Argument is expected. */
3796 	if (!arg)
3797 		return -1;
3798 	size = arg->size;
3799 	/* Bit-mask fill is not supported. */
3800 	if (arg->mask || size != sizeof(tmp))
3801 		goto error;
3802 	/* Only network endian is supported. */
3803 	if (!arg->hton)
3804 		goto error;
3805 	memcpy(str2, str, len);
3806 	str2[len] = '\0';
3807 	ret = inet_pton(AF_INET, str2, &tmp);
3808 	if (ret != 1) {
3809 		/* Attempt integer parsing. */
3810 		push_args(ctx, arg);
3811 		return parse_int(ctx, token, str, len, buf, size);
3812 	}
3813 	if (!ctx->object)
3814 		return len;
3815 	buf = (uint8_t *)ctx->object + arg->offset;
3816 	memcpy(buf, &tmp, size);
3817 	if (ctx->objmask)
3818 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3819 	return len;
3820 error:
3821 	push_args(ctx, arg);
3822 	return -1;
3823 }
3824 
3825 /**
3826  * Parse an IPv6 address.
3827  *
3828  * Last argument (ctx->args) is retrieved to determine storage size and
3829  * location.
3830  */
3831 static int
3832 parse_ipv6_addr(struct context *ctx, const struct token *token,
3833 		const char *str, unsigned int len,
3834 		void *buf, unsigned int size)
3835 {
3836 	const struct arg *arg = pop_args(ctx);
3837 	char str2[len + 1];
3838 	struct in6_addr tmp;
3839 	int ret;
3840 
3841 	(void)token;
3842 	/* Argument is expected. */
3843 	if (!arg)
3844 		return -1;
3845 	size = arg->size;
3846 	/* Bit-mask fill is not supported. */
3847 	if (arg->mask || size != sizeof(tmp))
3848 		goto error;
3849 	/* Only network endian is supported. */
3850 	if (!arg->hton)
3851 		goto error;
3852 	memcpy(str2, str, len);
3853 	str2[len] = '\0';
3854 	ret = inet_pton(AF_INET6, str2, &tmp);
3855 	if (ret != 1)
3856 		goto error;
3857 	if (!ctx->object)
3858 		return len;
3859 	buf = (uint8_t *)ctx->object + arg->offset;
3860 	memcpy(buf, &tmp, size);
3861 	if (ctx->objmask)
3862 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3863 	return len;
3864 error:
3865 	push_args(ctx, arg);
3866 	return -1;
3867 }
3868 
3869 /** Boolean values (even indices stand for false). */
3870 static const char *const boolean_name[] = {
3871 	"0", "1",
3872 	"false", "true",
3873 	"no", "yes",
3874 	"N", "Y",
3875 	"off", "on",
3876 	NULL,
3877 };
3878 
3879 /**
3880  * Parse a boolean value.
3881  *
3882  * Last argument (ctx->args) is retrieved to determine storage size and
3883  * location.
3884  */
3885 static int
3886 parse_boolean(struct context *ctx, const struct token *token,
3887 	      const char *str, unsigned int len,
3888 	      void *buf, unsigned int size)
3889 {
3890 	const struct arg *arg = pop_args(ctx);
3891 	unsigned int i;
3892 	int ret;
3893 
3894 	/* Argument is expected. */
3895 	if (!arg)
3896 		return -1;
3897 	for (i = 0; boolean_name[i]; ++i)
3898 		if (!strcmp_partial(boolean_name[i], str, len))
3899 			break;
3900 	/* Process token as integer. */
3901 	if (boolean_name[i])
3902 		str = i & 1 ? "1" : "0";
3903 	push_args(ctx, arg);
3904 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
3905 	return ret > 0 ? (int)len : ret;
3906 }
3907 
3908 /** Parse port and update context. */
3909 static int
3910 parse_port(struct context *ctx, const struct token *token,
3911 	   const char *str, unsigned int len,
3912 	   void *buf, unsigned int size)
3913 {
3914 	struct buffer *out = &(struct buffer){ .port = 0 };
3915 	int ret;
3916 
3917 	if (buf)
3918 		out = buf;
3919 	else {
3920 		ctx->objdata = 0;
3921 		ctx->object = out;
3922 		ctx->objmask = NULL;
3923 		size = sizeof(*out);
3924 	}
3925 	ret = parse_int(ctx, token, str, len, out, size);
3926 	if (ret >= 0)
3927 		ctx->port = out->port;
3928 	if (!buf)
3929 		ctx->object = NULL;
3930 	return ret;
3931 }
3932 
3933 /** No completion. */
3934 static int
3935 comp_none(struct context *ctx, const struct token *token,
3936 	  unsigned int ent, char *buf, unsigned int size)
3937 {
3938 	(void)ctx;
3939 	(void)token;
3940 	(void)ent;
3941 	(void)buf;
3942 	(void)size;
3943 	return 0;
3944 }
3945 
3946 /** Complete boolean values. */
3947 static int
3948 comp_boolean(struct context *ctx, const struct token *token,
3949 	     unsigned int ent, char *buf, unsigned int size)
3950 {
3951 	unsigned int i;
3952 
3953 	(void)ctx;
3954 	(void)token;
3955 	for (i = 0; boolean_name[i]; ++i)
3956 		if (buf && i == ent)
3957 			return snprintf(buf, size, "%s", boolean_name[i]);
3958 	if (buf)
3959 		return -1;
3960 	return i;
3961 }
3962 
3963 /** Complete action names. */
3964 static int
3965 comp_action(struct context *ctx, const struct token *token,
3966 	    unsigned int ent, char *buf, unsigned int size)
3967 {
3968 	unsigned int i;
3969 
3970 	(void)ctx;
3971 	(void)token;
3972 	for (i = 0; next_action[i]; ++i)
3973 		if (buf && i == ent)
3974 			return snprintf(buf, size, "%s",
3975 					token_list[next_action[i]].name);
3976 	if (buf)
3977 		return -1;
3978 	return i;
3979 }
3980 
3981 /** Complete available ports. */
3982 static int
3983 comp_port(struct context *ctx, const struct token *token,
3984 	  unsigned int ent, char *buf, unsigned int size)
3985 {
3986 	unsigned int i = 0;
3987 	portid_t p;
3988 
3989 	(void)ctx;
3990 	(void)token;
3991 	RTE_ETH_FOREACH_DEV(p) {
3992 		if (buf && i == ent)
3993 			return snprintf(buf, size, "%u", p);
3994 		++i;
3995 	}
3996 	if (buf)
3997 		return -1;
3998 	return i;
3999 }
4000 
4001 /** Complete available rule IDs. */
4002 static int
4003 comp_rule_id(struct context *ctx, const struct token *token,
4004 	     unsigned int ent, char *buf, unsigned int size)
4005 {
4006 	unsigned int i = 0;
4007 	struct rte_port *port;
4008 	struct port_flow *pf;
4009 
4010 	(void)token;
4011 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
4012 	    ctx->port == (portid_t)RTE_PORT_ALL)
4013 		return -1;
4014 	port = &ports[ctx->port];
4015 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
4016 		if (buf && i == ent)
4017 			return snprintf(buf, size, "%u", pf->id);
4018 		++i;
4019 	}
4020 	if (buf)
4021 		return -1;
4022 	return i;
4023 }
4024 
4025 /** Complete type field for RSS action. */
4026 static int
4027 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
4028 			unsigned int ent, char *buf, unsigned int size)
4029 {
4030 	unsigned int i;
4031 
4032 	(void)ctx;
4033 	(void)token;
4034 	for (i = 0; rss_type_table[i].str; ++i)
4035 		;
4036 	if (!buf)
4037 		return i + 1;
4038 	if (ent < i)
4039 		return snprintf(buf, size, "%s", rss_type_table[ent].str);
4040 	if (ent == i)
4041 		return snprintf(buf, size, "end");
4042 	return -1;
4043 }
4044 
4045 /** Complete queue field for RSS action. */
4046 static int
4047 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
4048 			 unsigned int ent, char *buf, unsigned int size)
4049 {
4050 	(void)ctx;
4051 	(void)token;
4052 	if (!buf)
4053 		return nb_rxq + 1;
4054 	if (ent < nb_rxq)
4055 		return snprintf(buf, size, "%u", ent);
4056 	if (ent == nb_rxq)
4057 		return snprintf(buf, size, "end");
4058 	return -1;
4059 }
4060 
4061 /** Internal context. */
4062 static struct context cmd_flow_context;
4063 
4064 /** Global parser instance (cmdline API). */
4065 cmdline_parse_inst_t cmd_flow;
4066 
4067 /** Initialize context. */
4068 static void
4069 cmd_flow_context_init(struct context *ctx)
4070 {
4071 	/* A full memset() is not necessary. */
4072 	ctx->curr = ZERO;
4073 	ctx->prev = ZERO;
4074 	ctx->next_num = 0;
4075 	ctx->args_num = 0;
4076 	ctx->eol = 0;
4077 	ctx->last = 0;
4078 	ctx->port = 0;
4079 	ctx->objdata = 0;
4080 	ctx->object = NULL;
4081 	ctx->objmask = NULL;
4082 }
4083 
4084 /** Parse a token (cmdline API). */
4085 static int
4086 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
4087 	       unsigned int size)
4088 {
4089 	struct context *ctx = &cmd_flow_context;
4090 	const struct token *token;
4091 	const enum index *list;
4092 	int len;
4093 	int i;
4094 
4095 	(void)hdr;
4096 	token = &token_list[ctx->curr];
4097 	/* Check argument length. */
4098 	ctx->eol = 0;
4099 	ctx->last = 1;
4100 	for (len = 0; src[len]; ++len)
4101 		if (src[len] == '#' || isspace(src[len]))
4102 			break;
4103 	if (!len)
4104 		return -1;
4105 	/* Last argument and EOL detection. */
4106 	for (i = len; src[i]; ++i)
4107 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
4108 			break;
4109 		else if (!isspace(src[i])) {
4110 			ctx->last = 0;
4111 			break;
4112 		}
4113 	for (; src[i]; ++i)
4114 		if (src[i] == '\r' || src[i] == '\n') {
4115 			ctx->eol = 1;
4116 			break;
4117 		}
4118 	/* Initialize context if necessary. */
4119 	if (!ctx->next_num) {
4120 		if (!token->next)
4121 			return 0;
4122 		ctx->next[ctx->next_num++] = token->next[0];
4123 	}
4124 	/* Process argument through candidates. */
4125 	ctx->prev = ctx->curr;
4126 	list = ctx->next[ctx->next_num - 1];
4127 	for (i = 0; list[i]; ++i) {
4128 		const struct token *next = &token_list[list[i]];
4129 		int tmp;
4130 
4131 		ctx->curr = list[i];
4132 		if (next->call)
4133 			tmp = next->call(ctx, next, src, len, result, size);
4134 		else
4135 			tmp = parse_default(ctx, next, src, len, result, size);
4136 		if (tmp == -1 || tmp != len)
4137 			continue;
4138 		token = next;
4139 		break;
4140 	}
4141 	if (!list[i])
4142 		return -1;
4143 	--ctx->next_num;
4144 	/* Push subsequent tokens if any. */
4145 	if (token->next)
4146 		for (i = 0; token->next[i]; ++i) {
4147 			if (ctx->next_num == RTE_DIM(ctx->next))
4148 				return -1;
4149 			ctx->next[ctx->next_num++] = token->next[i];
4150 		}
4151 	/* Push arguments if any. */
4152 	if (token->args)
4153 		for (i = 0; token->args[i]; ++i) {
4154 			if (ctx->args_num == RTE_DIM(ctx->args))
4155 				return -1;
4156 			ctx->args[ctx->args_num++] = token->args[i];
4157 		}
4158 	return len;
4159 }
4160 
4161 /** Return number of completion entries (cmdline API). */
4162 static int
4163 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
4164 {
4165 	struct context *ctx = &cmd_flow_context;
4166 	const struct token *token = &token_list[ctx->curr];
4167 	const enum index *list;
4168 	int i;
4169 
4170 	(void)hdr;
4171 	/* Count number of tokens in current list. */
4172 	if (ctx->next_num)
4173 		list = ctx->next[ctx->next_num - 1];
4174 	else
4175 		list = token->next[0];
4176 	for (i = 0; list[i]; ++i)
4177 		;
4178 	if (!i)
4179 		return 0;
4180 	/*
4181 	 * If there is a single token, use its completion callback, otherwise
4182 	 * return the number of entries.
4183 	 */
4184 	token = &token_list[list[0]];
4185 	if (i == 1 && token->comp) {
4186 		/* Save index for cmd_flow_get_help(). */
4187 		ctx->prev = list[0];
4188 		return token->comp(ctx, token, 0, NULL, 0);
4189 	}
4190 	return i;
4191 }
4192 
4193 /** Return a completion entry (cmdline API). */
4194 static int
4195 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
4196 			  char *dst, unsigned int size)
4197 {
4198 	struct context *ctx = &cmd_flow_context;
4199 	const struct token *token = &token_list[ctx->curr];
4200 	const enum index *list;
4201 	int i;
4202 
4203 	(void)hdr;
4204 	/* Count number of tokens in current list. */
4205 	if (ctx->next_num)
4206 		list = ctx->next[ctx->next_num - 1];
4207 	else
4208 		list = token->next[0];
4209 	for (i = 0; list[i]; ++i)
4210 		;
4211 	if (!i)
4212 		return -1;
4213 	/* If there is a single token, use its completion callback. */
4214 	token = &token_list[list[0]];
4215 	if (i == 1 && token->comp) {
4216 		/* Save index for cmd_flow_get_help(). */
4217 		ctx->prev = list[0];
4218 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
4219 	}
4220 	/* Otherwise make sure the index is valid and use defaults. */
4221 	if (index >= i)
4222 		return -1;
4223 	token = &token_list[list[index]];
4224 	snprintf(dst, size, "%s", token->name);
4225 	/* Save index for cmd_flow_get_help(). */
4226 	ctx->prev = list[index];
4227 	return 0;
4228 }
4229 
4230 /** Populate help strings for current token (cmdline API). */
4231 static int
4232 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
4233 {
4234 	struct context *ctx = &cmd_flow_context;
4235 	const struct token *token = &token_list[ctx->prev];
4236 
4237 	(void)hdr;
4238 	if (!size)
4239 		return -1;
4240 	/* Set token type and update global help with details. */
4241 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
4242 	if (token->help)
4243 		cmd_flow.help_str = token->help;
4244 	else
4245 		cmd_flow.help_str = token->name;
4246 	return 0;
4247 }
4248 
4249 /** Token definition template (cmdline API). */
4250 static struct cmdline_token_hdr cmd_flow_token_hdr = {
4251 	.ops = &(struct cmdline_token_ops){
4252 		.parse = cmd_flow_parse,
4253 		.complete_get_nb = cmd_flow_complete_get_nb,
4254 		.complete_get_elt = cmd_flow_complete_get_elt,
4255 		.get_help = cmd_flow_get_help,
4256 	},
4257 	.offset = 0,
4258 };
4259 
4260 /** Populate the next dynamic token. */
4261 static void
4262 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
4263 	     cmdline_parse_token_hdr_t **hdr_inst)
4264 {
4265 	struct context *ctx = &cmd_flow_context;
4266 
4267 	/* Always reinitialize context before requesting the first token. */
4268 	if (!(hdr_inst - cmd_flow.tokens))
4269 		cmd_flow_context_init(ctx);
4270 	/* Return NULL when no more tokens are expected. */
4271 	if (!ctx->next_num && ctx->curr) {
4272 		*hdr = NULL;
4273 		return;
4274 	}
4275 	/* Determine if command should end here. */
4276 	if (ctx->eol && ctx->last && ctx->next_num) {
4277 		const enum index *list = ctx->next[ctx->next_num - 1];
4278 		int i;
4279 
4280 		for (i = 0; list[i]; ++i) {
4281 			if (list[i] != END)
4282 				continue;
4283 			*hdr = NULL;
4284 			return;
4285 		}
4286 	}
4287 	*hdr = &cmd_flow_token_hdr;
4288 }
4289 
4290 /** Dispatch parsed buffer to function calls. */
4291 static void
4292 cmd_flow_parsed(const struct buffer *in)
4293 {
4294 	switch (in->command) {
4295 	case VALIDATE:
4296 		port_flow_validate(in->port, &in->args.vc.attr,
4297 				   in->args.vc.pattern, in->args.vc.actions);
4298 		break;
4299 	case CREATE:
4300 		port_flow_create(in->port, &in->args.vc.attr,
4301 				 in->args.vc.pattern, in->args.vc.actions);
4302 		break;
4303 	case DESTROY:
4304 		port_flow_destroy(in->port, in->args.destroy.rule_n,
4305 				  in->args.destroy.rule);
4306 		break;
4307 	case FLUSH:
4308 		port_flow_flush(in->port);
4309 		break;
4310 	case QUERY:
4311 		port_flow_query(in->port, in->args.query.rule,
4312 				&in->args.query.action);
4313 		break;
4314 	case LIST:
4315 		port_flow_list(in->port, in->args.list.group_n,
4316 			       in->args.list.group);
4317 		break;
4318 	case ISOLATE:
4319 		port_flow_isolate(in->port, in->args.isolate.set);
4320 		break;
4321 	default:
4322 		break;
4323 	}
4324 }
4325 
4326 /** Token generator and output processing callback (cmdline API). */
4327 static void
4328 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
4329 {
4330 	if (cl == NULL)
4331 		cmd_flow_tok(arg0, arg2);
4332 	else
4333 		cmd_flow_parsed(arg0);
4334 }
4335 
4336 /** Global parser instance (cmdline API). */
4337 cmdline_parse_inst_t cmd_flow = {
4338 	.f = cmd_flow_cb,
4339 	.data = NULL, /**< Unused. */
4340 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
4341 	.tokens = {
4342 		NULL,
4343 	}, /**< Tokens are returned by cmd_flow_tok(). */
4344 };
4345