xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 1cde1b9a9b4dbf31cb5e5ccdfc5da3cb079f43a2)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23 
24 #include "testpmd.h"
25 
26 /** Parser token indices. */
27 enum index {
28 	/* Special tokens. */
29 	ZERO = 0,
30 	END,
31 	START_SET,
32 	END_SET,
33 
34 	/* Common tokens. */
35 	INTEGER,
36 	UNSIGNED,
37 	PREFIX,
38 	BOOLEAN,
39 	STRING,
40 	HEX,
41 	MAC_ADDR,
42 	IPV4_ADDR,
43 	IPV6_ADDR,
44 	RULE_ID,
45 	PORT_ID,
46 	GROUP_ID,
47 	PRIORITY_LEVEL,
48 
49 	/* Top-level command. */
50 	SET,
51 	/* Sub-leve commands. */
52 	SET_RAW_ENCAP,
53 	SET_RAW_DECAP,
54 
55 	/* Top-level command. */
56 	FLOW,
57 	/* Sub-level commands. */
58 	VALIDATE,
59 	CREATE,
60 	DESTROY,
61 	FLUSH,
62 	QUERY,
63 	LIST,
64 	ISOLATE,
65 
66 	/* Destroy arguments. */
67 	DESTROY_RULE,
68 
69 	/* Query arguments. */
70 	QUERY_ACTION,
71 
72 	/* List arguments. */
73 	LIST_GROUP,
74 
75 	/* Validate/create arguments. */
76 	GROUP,
77 	PRIORITY,
78 	INGRESS,
79 	EGRESS,
80 	TRANSFER,
81 
82 	/* Validate/create pattern. */
83 	PATTERN,
84 	ITEM_PARAM_IS,
85 	ITEM_PARAM_SPEC,
86 	ITEM_PARAM_LAST,
87 	ITEM_PARAM_MASK,
88 	ITEM_PARAM_PREFIX,
89 	ITEM_NEXT,
90 	ITEM_END,
91 	ITEM_VOID,
92 	ITEM_INVERT,
93 	ITEM_ANY,
94 	ITEM_ANY_NUM,
95 	ITEM_PF,
96 	ITEM_VF,
97 	ITEM_VF_ID,
98 	ITEM_PHY_PORT,
99 	ITEM_PHY_PORT_INDEX,
100 	ITEM_PORT_ID,
101 	ITEM_PORT_ID_ID,
102 	ITEM_MARK,
103 	ITEM_MARK_ID,
104 	ITEM_RAW,
105 	ITEM_RAW_RELATIVE,
106 	ITEM_RAW_SEARCH,
107 	ITEM_RAW_OFFSET,
108 	ITEM_RAW_LIMIT,
109 	ITEM_RAW_PATTERN,
110 	ITEM_ETH,
111 	ITEM_ETH_DST,
112 	ITEM_ETH_SRC,
113 	ITEM_ETH_TYPE,
114 	ITEM_VLAN,
115 	ITEM_VLAN_TCI,
116 	ITEM_VLAN_PCP,
117 	ITEM_VLAN_DEI,
118 	ITEM_VLAN_VID,
119 	ITEM_VLAN_INNER_TYPE,
120 	ITEM_IPV4,
121 	ITEM_IPV4_TOS,
122 	ITEM_IPV4_TTL,
123 	ITEM_IPV4_PROTO,
124 	ITEM_IPV4_SRC,
125 	ITEM_IPV4_DST,
126 	ITEM_IPV6,
127 	ITEM_IPV6_TC,
128 	ITEM_IPV6_FLOW,
129 	ITEM_IPV6_PROTO,
130 	ITEM_IPV6_HOP,
131 	ITEM_IPV6_SRC,
132 	ITEM_IPV6_DST,
133 	ITEM_ICMP,
134 	ITEM_ICMP_TYPE,
135 	ITEM_ICMP_CODE,
136 	ITEM_UDP,
137 	ITEM_UDP_SRC,
138 	ITEM_UDP_DST,
139 	ITEM_TCP,
140 	ITEM_TCP_SRC,
141 	ITEM_TCP_DST,
142 	ITEM_TCP_FLAGS,
143 	ITEM_SCTP,
144 	ITEM_SCTP_SRC,
145 	ITEM_SCTP_DST,
146 	ITEM_SCTP_TAG,
147 	ITEM_SCTP_CKSUM,
148 	ITEM_VXLAN,
149 	ITEM_VXLAN_VNI,
150 	ITEM_E_TAG,
151 	ITEM_E_TAG_GRP_ECID_B,
152 	ITEM_NVGRE,
153 	ITEM_NVGRE_TNI,
154 	ITEM_MPLS,
155 	ITEM_MPLS_LABEL,
156 	ITEM_MPLS_TC,
157 	ITEM_MPLS_S,
158 	ITEM_GRE,
159 	ITEM_GRE_PROTO,
160 	ITEM_GRE_C_RSVD0_VER,
161 	ITEM_GRE_C_BIT,
162 	ITEM_GRE_K_BIT,
163 	ITEM_GRE_S_BIT,
164 	ITEM_FUZZY,
165 	ITEM_FUZZY_THRESH,
166 	ITEM_GTP,
167 	ITEM_GTP_TEID,
168 	ITEM_GTPC,
169 	ITEM_GTPU,
170 	ITEM_GENEVE,
171 	ITEM_GENEVE_VNI,
172 	ITEM_GENEVE_PROTO,
173 	ITEM_VXLAN_GPE,
174 	ITEM_VXLAN_GPE_VNI,
175 	ITEM_ARP_ETH_IPV4,
176 	ITEM_ARP_ETH_IPV4_SHA,
177 	ITEM_ARP_ETH_IPV4_SPA,
178 	ITEM_ARP_ETH_IPV4_THA,
179 	ITEM_ARP_ETH_IPV4_TPA,
180 	ITEM_IPV6_EXT,
181 	ITEM_IPV6_EXT_NEXT_HDR,
182 	ITEM_ICMP6,
183 	ITEM_ICMP6_TYPE,
184 	ITEM_ICMP6_CODE,
185 	ITEM_ICMP6_ND_NS,
186 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
187 	ITEM_ICMP6_ND_NA,
188 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
189 	ITEM_ICMP6_ND_OPT,
190 	ITEM_ICMP6_ND_OPT_TYPE,
191 	ITEM_ICMP6_ND_OPT_SLA_ETH,
192 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
193 	ITEM_ICMP6_ND_OPT_TLA_ETH,
194 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
195 	ITEM_META,
196 	ITEM_META_DATA,
197 	ITEM_GRE_KEY,
198 	ITEM_GRE_KEY_VALUE,
199 
200 	/* Validate/create actions. */
201 	ACTIONS,
202 	ACTION_NEXT,
203 	ACTION_END,
204 	ACTION_VOID,
205 	ACTION_PASSTHRU,
206 	ACTION_JUMP,
207 	ACTION_JUMP_GROUP,
208 	ACTION_MARK,
209 	ACTION_MARK_ID,
210 	ACTION_FLAG,
211 	ACTION_QUEUE,
212 	ACTION_QUEUE_INDEX,
213 	ACTION_DROP,
214 	ACTION_COUNT,
215 	ACTION_COUNT_SHARED,
216 	ACTION_COUNT_ID,
217 	ACTION_RSS,
218 	ACTION_RSS_FUNC,
219 	ACTION_RSS_LEVEL,
220 	ACTION_RSS_FUNC_DEFAULT,
221 	ACTION_RSS_FUNC_TOEPLITZ,
222 	ACTION_RSS_FUNC_SIMPLE_XOR,
223 	ACTION_RSS_TYPES,
224 	ACTION_RSS_TYPE,
225 	ACTION_RSS_KEY,
226 	ACTION_RSS_KEY_LEN,
227 	ACTION_RSS_QUEUES,
228 	ACTION_RSS_QUEUE,
229 	ACTION_PF,
230 	ACTION_VF,
231 	ACTION_VF_ORIGINAL,
232 	ACTION_VF_ID,
233 	ACTION_PHY_PORT,
234 	ACTION_PHY_PORT_ORIGINAL,
235 	ACTION_PHY_PORT_INDEX,
236 	ACTION_PORT_ID,
237 	ACTION_PORT_ID_ORIGINAL,
238 	ACTION_PORT_ID_ID,
239 	ACTION_METER,
240 	ACTION_METER_ID,
241 	ACTION_OF_SET_MPLS_TTL,
242 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
243 	ACTION_OF_DEC_MPLS_TTL,
244 	ACTION_OF_SET_NW_TTL,
245 	ACTION_OF_SET_NW_TTL_NW_TTL,
246 	ACTION_OF_DEC_NW_TTL,
247 	ACTION_OF_COPY_TTL_OUT,
248 	ACTION_OF_COPY_TTL_IN,
249 	ACTION_OF_POP_VLAN,
250 	ACTION_OF_PUSH_VLAN,
251 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
252 	ACTION_OF_SET_VLAN_VID,
253 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
254 	ACTION_OF_SET_VLAN_PCP,
255 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
256 	ACTION_OF_POP_MPLS,
257 	ACTION_OF_POP_MPLS_ETHERTYPE,
258 	ACTION_OF_PUSH_MPLS,
259 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
260 	ACTION_VXLAN_ENCAP,
261 	ACTION_VXLAN_DECAP,
262 	ACTION_NVGRE_ENCAP,
263 	ACTION_NVGRE_DECAP,
264 	ACTION_L2_ENCAP,
265 	ACTION_L2_DECAP,
266 	ACTION_MPLSOGRE_ENCAP,
267 	ACTION_MPLSOGRE_DECAP,
268 	ACTION_MPLSOUDP_ENCAP,
269 	ACTION_MPLSOUDP_DECAP,
270 	ACTION_SET_IPV4_SRC,
271 	ACTION_SET_IPV4_SRC_IPV4_SRC,
272 	ACTION_SET_IPV4_DST,
273 	ACTION_SET_IPV4_DST_IPV4_DST,
274 	ACTION_SET_IPV6_SRC,
275 	ACTION_SET_IPV6_SRC_IPV6_SRC,
276 	ACTION_SET_IPV6_DST,
277 	ACTION_SET_IPV6_DST_IPV6_DST,
278 	ACTION_SET_TP_SRC,
279 	ACTION_SET_TP_SRC_TP_SRC,
280 	ACTION_SET_TP_DST,
281 	ACTION_SET_TP_DST_TP_DST,
282 	ACTION_MAC_SWAP,
283 	ACTION_DEC_TTL,
284 	ACTION_SET_TTL,
285 	ACTION_SET_TTL_TTL,
286 	ACTION_SET_MAC_SRC,
287 	ACTION_SET_MAC_SRC_MAC_SRC,
288 	ACTION_SET_MAC_DST,
289 	ACTION_SET_MAC_DST_MAC_DST,
290 	ACTION_INC_TCP_SEQ,
291 	ACTION_INC_TCP_SEQ_VALUE,
292 	ACTION_DEC_TCP_SEQ,
293 	ACTION_DEC_TCP_SEQ_VALUE,
294 	ACTION_INC_TCP_ACK,
295 	ACTION_INC_TCP_ACK_VALUE,
296 	ACTION_DEC_TCP_ACK,
297 	ACTION_DEC_TCP_ACK_VALUE,
298 	ACTION_RAW_ENCAP,
299 	ACTION_RAW_DECAP,
300 };
301 
302 /** Maximum size for pattern in struct rte_flow_item_raw. */
303 #define ITEM_RAW_PATTERN_SIZE 40
304 
305 /** Storage size for struct rte_flow_item_raw including pattern. */
306 #define ITEM_RAW_SIZE \
307 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
308 
309 /** Maximum number of queue indices in struct rte_flow_action_rss. */
310 #define ACTION_RSS_QUEUE_NUM 32
311 
312 /** Storage for struct rte_flow_action_rss including external data. */
313 struct action_rss_data {
314 	struct rte_flow_action_rss conf;
315 	uint8_t key[RSS_HASH_KEY_LENGTH];
316 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
317 };
318 
319 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
320 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
321 
322 #define ACTION_RAW_ENCAP_MAX_DATA 128
323 
324 /** Storage for struct rte_flow_action_raw_encap. */
325 struct raw_encap_conf {
326 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
327 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
328 	size_t size;
329 };
330 
331 struct raw_encap_conf raw_encap_conf = {.size = 0};
332 
333 /** Storage for struct rte_flow_action_raw_decap. */
334 struct raw_decap_conf {
335 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
336 	size_t size;
337 };
338 
339 struct raw_decap_conf raw_decap_conf = {.size = 0};
340 
341 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
342 struct action_vxlan_encap_data {
343 	struct rte_flow_action_vxlan_encap conf;
344 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
345 	struct rte_flow_item_eth item_eth;
346 	struct rte_flow_item_vlan item_vlan;
347 	union {
348 		struct rte_flow_item_ipv4 item_ipv4;
349 		struct rte_flow_item_ipv6 item_ipv6;
350 	};
351 	struct rte_flow_item_udp item_udp;
352 	struct rte_flow_item_vxlan item_vxlan;
353 };
354 
355 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
356 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
357 
358 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
359 struct action_nvgre_encap_data {
360 	struct rte_flow_action_nvgre_encap conf;
361 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
362 	struct rte_flow_item_eth item_eth;
363 	struct rte_flow_item_vlan item_vlan;
364 	union {
365 		struct rte_flow_item_ipv4 item_ipv4;
366 		struct rte_flow_item_ipv6 item_ipv6;
367 	};
368 	struct rte_flow_item_nvgre item_nvgre;
369 };
370 
371 /** Maximum data size in struct rte_flow_action_raw_encap. */
372 #define ACTION_RAW_ENCAP_MAX_DATA 128
373 
374 /** Storage for struct rte_flow_action_raw_encap including external data. */
375 struct action_raw_encap_data {
376 	struct rte_flow_action_raw_encap conf;
377 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
378 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
379 };
380 
381 /** Storage for struct rte_flow_action_raw_decap including external data. */
382 struct action_raw_decap_data {
383 	struct rte_flow_action_raw_decap conf;
384 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
385 };
386 
387 /** Maximum number of subsequent tokens and arguments on the stack. */
388 #define CTX_STACK_SIZE 16
389 
390 /** Parser context. */
391 struct context {
392 	/** Stack of subsequent token lists to process. */
393 	const enum index *next[CTX_STACK_SIZE];
394 	/** Arguments for stacked tokens. */
395 	const void *args[CTX_STACK_SIZE];
396 	enum index curr; /**< Current token index. */
397 	enum index prev; /**< Index of the last token seen. */
398 	int next_num; /**< Number of entries in next[]. */
399 	int args_num; /**< Number of entries in args[]. */
400 	uint32_t eol:1; /**< EOL has been detected. */
401 	uint32_t last:1; /**< No more arguments. */
402 	portid_t port; /**< Current port ID (for completions). */
403 	uint32_t objdata; /**< Object-specific data. */
404 	void *object; /**< Address of current object for relative offsets. */
405 	void *objmask; /**< Object a full mask must be written to. */
406 };
407 
408 /** Token argument. */
409 struct arg {
410 	uint32_t hton:1; /**< Use network byte ordering. */
411 	uint32_t sign:1; /**< Value is signed. */
412 	uint32_t bounded:1; /**< Value is bounded. */
413 	uintmax_t min; /**< Minimum value if bounded. */
414 	uintmax_t max; /**< Maximum value if bounded. */
415 	uint32_t offset; /**< Relative offset from ctx->object. */
416 	uint32_t size; /**< Field size. */
417 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
418 };
419 
420 /** Parser token definition. */
421 struct token {
422 	/** Type displayed during completion (defaults to "TOKEN"). */
423 	const char *type;
424 	/** Help displayed during completion (defaults to token name). */
425 	const char *help;
426 	/** Private data used by parser functions. */
427 	const void *priv;
428 	/**
429 	 * Lists of subsequent tokens to push on the stack. Each call to the
430 	 * parser consumes the last entry of that stack.
431 	 */
432 	const enum index *const *next;
433 	/** Arguments stack for subsequent tokens that need them. */
434 	const struct arg *const *args;
435 	/**
436 	 * Token-processing callback, returns -1 in case of error, the
437 	 * length of the matched string otherwise. If NULL, attempts to
438 	 * match the token name.
439 	 *
440 	 * If buf is not NULL, the result should be stored in it according
441 	 * to context. An error is returned if not large enough.
442 	 */
443 	int (*call)(struct context *ctx, const struct token *token,
444 		    const char *str, unsigned int len,
445 		    void *buf, unsigned int size);
446 	/**
447 	 * Callback that provides possible values for this token, used for
448 	 * completion. Returns -1 in case of error, the number of possible
449 	 * values otherwise. If NULL, the token name is used.
450 	 *
451 	 * If buf is not NULL, entry index ent is written to buf and the
452 	 * full length of the entry is returned (same behavior as
453 	 * snprintf()).
454 	 */
455 	int (*comp)(struct context *ctx, const struct token *token,
456 		    unsigned int ent, char *buf, unsigned int size);
457 	/** Mandatory token name, no default value. */
458 	const char *name;
459 };
460 
461 /** Static initializer for the next field. */
462 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
463 
464 /** Static initializer for a NEXT() entry. */
465 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
466 
467 /** Static initializer for the args field. */
468 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
469 
470 /** Static initializer for ARGS() to target a field. */
471 #define ARGS_ENTRY(s, f) \
472 	(&(const struct arg){ \
473 		.offset = offsetof(s, f), \
474 		.size = sizeof(((s *)0)->f), \
475 	})
476 
477 /** Static initializer for ARGS() to target a bit-field. */
478 #define ARGS_ENTRY_BF(s, f, b) \
479 	(&(const struct arg){ \
480 		.size = sizeof(s), \
481 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
482 	})
483 
484 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
485 #define ARGS_ENTRY_MASK(s, f, m) \
486 	(&(const struct arg){ \
487 		.offset = offsetof(s, f), \
488 		.size = sizeof(((s *)0)->f), \
489 		.mask = (const void *)(m), \
490 	})
491 
492 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
493 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
494 	(&(const struct arg){ \
495 		.hton = 1, \
496 		.offset = offsetof(s, f), \
497 		.size = sizeof(((s *)0)->f), \
498 		.mask = (const void *)(m), \
499 	})
500 
501 /** Static initializer for ARGS() to target a pointer. */
502 #define ARGS_ENTRY_PTR(s, f) \
503 	(&(const struct arg){ \
504 		.size = sizeof(*((s *)0)->f), \
505 	})
506 
507 /** Static initializer for ARGS() with arbitrary offset and size. */
508 #define ARGS_ENTRY_ARB(o, s) \
509 	(&(const struct arg){ \
510 		.offset = (o), \
511 		.size = (s), \
512 	})
513 
514 /** Same as ARGS_ENTRY_ARB() with bounded values. */
515 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
516 	(&(const struct arg){ \
517 		.bounded = 1, \
518 		.min = (i), \
519 		.max = (a), \
520 		.offset = (o), \
521 		.size = (s), \
522 	})
523 
524 /** Same as ARGS_ENTRY() using network byte ordering. */
525 #define ARGS_ENTRY_HTON(s, f) \
526 	(&(const struct arg){ \
527 		.hton = 1, \
528 		.offset = offsetof(s, f), \
529 		.size = sizeof(((s *)0)->f), \
530 	})
531 
532 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
533 #define ARG_ENTRY_HTON(s) \
534 	(&(const struct arg){ \
535 		.hton = 1, \
536 		.offset = 0, \
537 		.size = sizeof(s), \
538 	})
539 
540 /** Parser output buffer layout expected by cmd_flow_parsed(). */
541 struct buffer {
542 	enum index command; /**< Flow command. */
543 	portid_t port; /**< Affected port ID. */
544 	union {
545 		struct {
546 			struct rte_flow_attr attr;
547 			struct rte_flow_item *pattern;
548 			struct rte_flow_action *actions;
549 			uint32_t pattern_n;
550 			uint32_t actions_n;
551 			uint8_t *data;
552 		} vc; /**< Validate/create arguments. */
553 		struct {
554 			uint32_t *rule;
555 			uint32_t rule_n;
556 		} destroy; /**< Destroy arguments. */
557 		struct {
558 			uint32_t rule;
559 			struct rte_flow_action action;
560 		} query; /**< Query arguments. */
561 		struct {
562 			uint32_t *group;
563 			uint32_t group_n;
564 		} list; /**< List arguments. */
565 		struct {
566 			int set;
567 		} isolate; /**< Isolated mode arguments. */
568 	} args; /**< Command arguments. */
569 };
570 
571 /** Private data for pattern items. */
572 struct parse_item_priv {
573 	enum rte_flow_item_type type; /**< Item type. */
574 	uint32_t size; /**< Size of item specification structure. */
575 };
576 
577 #define PRIV_ITEM(t, s) \
578 	(&(const struct parse_item_priv){ \
579 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
580 		.size = s, \
581 	})
582 
583 /** Private data for actions. */
584 struct parse_action_priv {
585 	enum rte_flow_action_type type; /**< Action type. */
586 	uint32_t size; /**< Size of action configuration structure. */
587 };
588 
589 #define PRIV_ACTION(t, s) \
590 	(&(const struct parse_action_priv){ \
591 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
592 		.size = s, \
593 	})
594 
595 static const enum index next_vc_attr[] = {
596 	GROUP,
597 	PRIORITY,
598 	INGRESS,
599 	EGRESS,
600 	TRANSFER,
601 	PATTERN,
602 	ZERO,
603 };
604 
605 static const enum index next_destroy_attr[] = {
606 	DESTROY_RULE,
607 	END,
608 	ZERO,
609 };
610 
611 static const enum index next_list_attr[] = {
612 	LIST_GROUP,
613 	END,
614 	ZERO,
615 };
616 
617 static const enum index item_param[] = {
618 	ITEM_PARAM_IS,
619 	ITEM_PARAM_SPEC,
620 	ITEM_PARAM_LAST,
621 	ITEM_PARAM_MASK,
622 	ITEM_PARAM_PREFIX,
623 	ZERO,
624 };
625 
626 static const enum index next_item[] = {
627 	ITEM_END,
628 	ITEM_VOID,
629 	ITEM_INVERT,
630 	ITEM_ANY,
631 	ITEM_PF,
632 	ITEM_VF,
633 	ITEM_PHY_PORT,
634 	ITEM_PORT_ID,
635 	ITEM_MARK,
636 	ITEM_RAW,
637 	ITEM_ETH,
638 	ITEM_VLAN,
639 	ITEM_IPV4,
640 	ITEM_IPV6,
641 	ITEM_ICMP,
642 	ITEM_UDP,
643 	ITEM_TCP,
644 	ITEM_SCTP,
645 	ITEM_VXLAN,
646 	ITEM_E_TAG,
647 	ITEM_NVGRE,
648 	ITEM_MPLS,
649 	ITEM_GRE,
650 	ITEM_FUZZY,
651 	ITEM_GTP,
652 	ITEM_GTPC,
653 	ITEM_GTPU,
654 	ITEM_GENEVE,
655 	ITEM_VXLAN_GPE,
656 	ITEM_ARP_ETH_IPV4,
657 	ITEM_IPV6_EXT,
658 	ITEM_ICMP6,
659 	ITEM_ICMP6_ND_NS,
660 	ITEM_ICMP6_ND_NA,
661 	ITEM_ICMP6_ND_OPT,
662 	ITEM_ICMP6_ND_OPT_SLA_ETH,
663 	ITEM_ICMP6_ND_OPT_TLA_ETH,
664 	ITEM_META,
665 	ITEM_GRE_KEY,
666 	END_SET,
667 	ZERO,
668 };
669 
670 static const enum index item_fuzzy[] = {
671 	ITEM_FUZZY_THRESH,
672 	ITEM_NEXT,
673 	ZERO,
674 };
675 
676 static const enum index item_any[] = {
677 	ITEM_ANY_NUM,
678 	ITEM_NEXT,
679 	ZERO,
680 };
681 
682 static const enum index item_vf[] = {
683 	ITEM_VF_ID,
684 	ITEM_NEXT,
685 	ZERO,
686 };
687 
688 static const enum index item_phy_port[] = {
689 	ITEM_PHY_PORT_INDEX,
690 	ITEM_NEXT,
691 	ZERO,
692 };
693 
694 static const enum index item_port_id[] = {
695 	ITEM_PORT_ID_ID,
696 	ITEM_NEXT,
697 	ZERO,
698 };
699 
700 static const enum index item_mark[] = {
701 	ITEM_MARK_ID,
702 	ITEM_NEXT,
703 	ZERO,
704 };
705 
706 static const enum index item_raw[] = {
707 	ITEM_RAW_RELATIVE,
708 	ITEM_RAW_SEARCH,
709 	ITEM_RAW_OFFSET,
710 	ITEM_RAW_LIMIT,
711 	ITEM_RAW_PATTERN,
712 	ITEM_NEXT,
713 	ZERO,
714 };
715 
716 static const enum index item_eth[] = {
717 	ITEM_ETH_DST,
718 	ITEM_ETH_SRC,
719 	ITEM_ETH_TYPE,
720 	ITEM_NEXT,
721 	ZERO,
722 };
723 
724 static const enum index item_vlan[] = {
725 	ITEM_VLAN_TCI,
726 	ITEM_VLAN_PCP,
727 	ITEM_VLAN_DEI,
728 	ITEM_VLAN_VID,
729 	ITEM_VLAN_INNER_TYPE,
730 	ITEM_NEXT,
731 	ZERO,
732 };
733 
734 static const enum index item_ipv4[] = {
735 	ITEM_IPV4_TOS,
736 	ITEM_IPV4_TTL,
737 	ITEM_IPV4_PROTO,
738 	ITEM_IPV4_SRC,
739 	ITEM_IPV4_DST,
740 	ITEM_NEXT,
741 	ZERO,
742 };
743 
744 static const enum index item_ipv6[] = {
745 	ITEM_IPV6_TC,
746 	ITEM_IPV6_FLOW,
747 	ITEM_IPV6_PROTO,
748 	ITEM_IPV6_HOP,
749 	ITEM_IPV6_SRC,
750 	ITEM_IPV6_DST,
751 	ITEM_NEXT,
752 	ZERO,
753 };
754 
755 static const enum index item_icmp[] = {
756 	ITEM_ICMP_TYPE,
757 	ITEM_ICMP_CODE,
758 	ITEM_NEXT,
759 	ZERO,
760 };
761 
762 static const enum index item_udp[] = {
763 	ITEM_UDP_SRC,
764 	ITEM_UDP_DST,
765 	ITEM_NEXT,
766 	ZERO,
767 };
768 
769 static const enum index item_tcp[] = {
770 	ITEM_TCP_SRC,
771 	ITEM_TCP_DST,
772 	ITEM_TCP_FLAGS,
773 	ITEM_NEXT,
774 	ZERO,
775 };
776 
777 static const enum index item_sctp[] = {
778 	ITEM_SCTP_SRC,
779 	ITEM_SCTP_DST,
780 	ITEM_SCTP_TAG,
781 	ITEM_SCTP_CKSUM,
782 	ITEM_NEXT,
783 	ZERO,
784 };
785 
786 static const enum index item_vxlan[] = {
787 	ITEM_VXLAN_VNI,
788 	ITEM_NEXT,
789 	ZERO,
790 };
791 
792 static const enum index item_e_tag[] = {
793 	ITEM_E_TAG_GRP_ECID_B,
794 	ITEM_NEXT,
795 	ZERO,
796 };
797 
798 static const enum index item_nvgre[] = {
799 	ITEM_NVGRE_TNI,
800 	ITEM_NEXT,
801 	ZERO,
802 };
803 
804 static const enum index item_mpls[] = {
805 	ITEM_MPLS_LABEL,
806 	ITEM_MPLS_TC,
807 	ITEM_MPLS_S,
808 	ITEM_NEXT,
809 	ZERO,
810 };
811 
812 static const enum index item_gre[] = {
813 	ITEM_GRE_PROTO,
814 	ITEM_GRE_C_RSVD0_VER,
815 	ITEM_GRE_C_BIT,
816 	ITEM_GRE_K_BIT,
817 	ITEM_GRE_S_BIT,
818 	ITEM_NEXT,
819 	ZERO,
820 };
821 
822 static const enum index item_gre_key[] = {
823 	ITEM_GRE_KEY_VALUE,
824 	ITEM_NEXT,
825 	ZERO,
826 };
827 
828 static const enum index item_gtp[] = {
829 	ITEM_GTP_TEID,
830 	ITEM_NEXT,
831 	ZERO,
832 };
833 
834 static const enum index item_geneve[] = {
835 	ITEM_GENEVE_VNI,
836 	ITEM_GENEVE_PROTO,
837 	ITEM_NEXT,
838 	ZERO,
839 };
840 
841 static const enum index item_vxlan_gpe[] = {
842 	ITEM_VXLAN_GPE_VNI,
843 	ITEM_NEXT,
844 	ZERO,
845 };
846 
847 static const enum index item_arp_eth_ipv4[] = {
848 	ITEM_ARP_ETH_IPV4_SHA,
849 	ITEM_ARP_ETH_IPV4_SPA,
850 	ITEM_ARP_ETH_IPV4_THA,
851 	ITEM_ARP_ETH_IPV4_TPA,
852 	ITEM_NEXT,
853 	ZERO,
854 };
855 
856 static const enum index item_ipv6_ext[] = {
857 	ITEM_IPV6_EXT_NEXT_HDR,
858 	ITEM_NEXT,
859 	ZERO,
860 };
861 
862 static const enum index item_icmp6[] = {
863 	ITEM_ICMP6_TYPE,
864 	ITEM_ICMP6_CODE,
865 	ITEM_NEXT,
866 	ZERO,
867 };
868 
869 static const enum index item_icmp6_nd_ns[] = {
870 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
871 	ITEM_NEXT,
872 	ZERO,
873 };
874 
875 static const enum index item_icmp6_nd_na[] = {
876 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
877 	ITEM_NEXT,
878 	ZERO,
879 };
880 
881 static const enum index item_icmp6_nd_opt[] = {
882 	ITEM_ICMP6_ND_OPT_TYPE,
883 	ITEM_NEXT,
884 	ZERO,
885 };
886 
887 static const enum index item_icmp6_nd_opt_sla_eth[] = {
888 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
889 	ITEM_NEXT,
890 	ZERO,
891 };
892 
893 static const enum index item_icmp6_nd_opt_tla_eth[] = {
894 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
895 	ITEM_NEXT,
896 	ZERO,
897 };
898 
899 static const enum index item_meta[] = {
900 	ITEM_META_DATA,
901 	ITEM_NEXT,
902 	ZERO,
903 };
904 
905 static const enum index next_action[] = {
906 	ACTION_END,
907 	ACTION_VOID,
908 	ACTION_PASSTHRU,
909 	ACTION_JUMP,
910 	ACTION_MARK,
911 	ACTION_FLAG,
912 	ACTION_QUEUE,
913 	ACTION_DROP,
914 	ACTION_COUNT,
915 	ACTION_RSS,
916 	ACTION_PF,
917 	ACTION_VF,
918 	ACTION_PHY_PORT,
919 	ACTION_PORT_ID,
920 	ACTION_METER,
921 	ACTION_OF_SET_MPLS_TTL,
922 	ACTION_OF_DEC_MPLS_TTL,
923 	ACTION_OF_SET_NW_TTL,
924 	ACTION_OF_DEC_NW_TTL,
925 	ACTION_OF_COPY_TTL_OUT,
926 	ACTION_OF_COPY_TTL_IN,
927 	ACTION_OF_POP_VLAN,
928 	ACTION_OF_PUSH_VLAN,
929 	ACTION_OF_SET_VLAN_VID,
930 	ACTION_OF_SET_VLAN_PCP,
931 	ACTION_OF_POP_MPLS,
932 	ACTION_OF_PUSH_MPLS,
933 	ACTION_VXLAN_ENCAP,
934 	ACTION_VXLAN_DECAP,
935 	ACTION_NVGRE_ENCAP,
936 	ACTION_NVGRE_DECAP,
937 	ACTION_L2_ENCAP,
938 	ACTION_L2_DECAP,
939 	ACTION_MPLSOGRE_ENCAP,
940 	ACTION_MPLSOGRE_DECAP,
941 	ACTION_MPLSOUDP_ENCAP,
942 	ACTION_MPLSOUDP_DECAP,
943 	ACTION_SET_IPV4_SRC,
944 	ACTION_SET_IPV4_DST,
945 	ACTION_SET_IPV6_SRC,
946 	ACTION_SET_IPV6_DST,
947 	ACTION_SET_TP_SRC,
948 	ACTION_SET_TP_DST,
949 	ACTION_MAC_SWAP,
950 	ACTION_DEC_TTL,
951 	ACTION_SET_TTL,
952 	ACTION_SET_MAC_SRC,
953 	ACTION_SET_MAC_DST,
954 	ACTION_INC_TCP_SEQ,
955 	ACTION_DEC_TCP_SEQ,
956 	ACTION_INC_TCP_ACK,
957 	ACTION_DEC_TCP_ACK,
958 	ACTION_RAW_ENCAP,
959 	ACTION_RAW_DECAP,
960 	ZERO,
961 };
962 
963 static const enum index action_mark[] = {
964 	ACTION_MARK_ID,
965 	ACTION_NEXT,
966 	ZERO,
967 };
968 
969 static const enum index action_queue[] = {
970 	ACTION_QUEUE_INDEX,
971 	ACTION_NEXT,
972 	ZERO,
973 };
974 
975 static const enum index action_count[] = {
976 	ACTION_COUNT_ID,
977 	ACTION_COUNT_SHARED,
978 	ACTION_NEXT,
979 	ZERO,
980 };
981 
982 static const enum index action_rss[] = {
983 	ACTION_RSS_FUNC,
984 	ACTION_RSS_LEVEL,
985 	ACTION_RSS_TYPES,
986 	ACTION_RSS_KEY,
987 	ACTION_RSS_KEY_LEN,
988 	ACTION_RSS_QUEUES,
989 	ACTION_NEXT,
990 	ZERO,
991 };
992 
993 static const enum index action_vf[] = {
994 	ACTION_VF_ORIGINAL,
995 	ACTION_VF_ID,
996 	ACTION_NEXT,
997 	ZERO,
998 };
999 
1000 static const enum index action_phy_port[] = {
1001 	ACTION_PHY_PORT_ORIGINAL,
1002 	ACTION_PHY_PORT_INDEX,
1003 	ACTION_NEXT,
1004 	ZERO,
1005 };
1006 
1007 static const enum index action_port_id[] = {
1008 	ACTION_PORT_ID_ORIGINAL,
1009 	ACTION_PORT_ID_ID,
1010 	ACTION_NEXT,
1011 	ZERO,
1012 };
1013 
1014 static const enum index action_meter[] = {
1015 	ACTION_METER_ID,
1016 	ACTION_NEXT,
1017 	ZERO,
1018 };
1019 
1020 static const enum index action_of_set_mpls_ttl[] = {
1021 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
1022 	ACTION_NEXT,
1023 	ZERO,
1024 };
1025 
1026 static const enum index action_of_set_nw_ttl[] = {
1027 	ACTION_OF_SET_NW_TTL_NW_TTL,
1028 	ACTION_NEXT,
1029 	ZERO,
1030 };
1031 
1032 static const enum index action_of_push_vlan[] = {
1033 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
1034 	ACTION_NEXT,
1035 	ZERO,
1036 };
1037 
1038 static const enum index action_of_set_vlan_vid[] = {
1039 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
1040 	ACTION_NEXT,
1041 	ZERO,
1042 };
1043 
1044 static const enum index action_of_set_vlan_pcp[] = {
1045 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
1046 	ACTION_NEXT,
1047 	ZERO,
1048 };
1049 
1050 static const enum index action_of_pop_mpls[] = {
1051 	ACTION_OF_POP_MPLS_ETHERTYPE,
1052 	ACTION_NEXT,
1053 	ZERO,
1054 };
1055 
1056 static const enum index action_of_push_mpls[] = {
1057 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
1058 	ACTION_NEXT,
1059 	ZERO,
1060 };
1061 
1062 static const enum index action_set_ipv4_src[] = {
1063 	ACTION_SET_IPV4_SRC_IPV4_SRC,
1064 	ACTION_NEXT,
1065 	ZERO,
1066 };
1067 
1068 static const enum index action_set_mac_src[] = {
1069 	ACTION_SET_MAC_SRC_MAC_SRC,
1070 	ACTION_NEXT,
1071 	ZERO,
1072 };
1073 
1074 static const enum index action_set_ipv4_dst[] = {
1075 	ACTION_SET_IPV4_DST_IPV4_DST,
1076 	ACTION_NEXT,
1077 	ZERO,
1078 };
1079 
1080 static const enum index action_set_ipv6_src[] = {
1081 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1082 	ACTION_NEXT,
1083 	ZERO,
1084 };
1085 
1086 static const enum index action_set_ipv6_dst[] = {
1087 	ACTION_SET_IPV6_DST_IPV6_DST,
1088 	ACTION_NEXT,
1089 	ZERO,
1090 };
1091 
1092 static const enum index action_set_tp_src[] = {
1093 	ACTION_SET_TP_SRC_TP_SRC,
1094 	ACTION_NEXT,
1095 	ZERO,
1096 };
1097 
1098 static const enum index action_set_tp_dst[] = {
1099 	ACTION_SET_TP_DST_TP_DST,
1100 	ACTION_NEXT,
1101 	ZERO,
1102 };
1103 
1104 static const enum index action_set_ttl[] = {
1105 	ACTION_SET_TTL_TTL,
1106 	ACTION_NEXT,
1107 	ZERO,
1108 };
1109 
1110 static const enum index action_jump[] = {
1111 	ACTION_JUMP_GROUP,
1112 	ACTION_NEXT,
1113 	ZERO,
1114 };
1115 
1116 static const enum index action_set_mac_dst[] = {
1117 	ACTION_SET_MAC_DST_MAC_DST,
1118 	ACTION_NEXT,
1119 	ZERO,
1120 };
1121 
1122 static const enum index action_inc_tcp_seq[] = {
1123 	ACTION_INC_TCP_SEQ_VALUE,
1124 	ACTION_NEXT,
1125 	ZERO,
1126 };
1127 
1128 static const enum index action_dec_tcp_seq[] = {
1129 	ACTION_DEC_TCP_SEQ_VALUE,
1130 	ACTION_NEXT,
1131 	ZERO,
1132 };
1133 
1134 static const enum index action_inc_tcp_ack[] = {
1135 	ACTION_INC_TCP_ACK_VALUE,
1136 	ACTION_NEXT,
1137 	ZERO,
1138 };
1139 
1140 static const enum index action_dec_tcp_ack[] = {
1141 	ACTION_DEC_TCP_ACK_VALUE,
1142 	ACTION_NEXT,
1143 	ZERO,
1144 };
1145 
1146 static int parse_set_raw_encap_decap(struct context *, const struct token *,
1147 				     const char *, unsigned int,
1148 				     void *, unsigned int);
1149 static int parse_set_init(struct context *, const struct token *,
1150 			  const char *, unsigned int,
1151 			  void *, unsigned int);
1152 static int parse_init(struct context *, const struct token *,
1153 		      const char *, unsigned int,
1154 		      void *, unsigned int);
1155 static int parse_vc(struct context *, const struct token *,
1156 		    const char *, unsigned int,
1157 		    void *, unsigned int);
1158 static int parse_vc_spec(struct context *, const struct token *,
1159 			 const char *, unsigned int, void *, unsigned int);
1160 static int parse_vc_conf(struct context *, const struct token *,
1161 			 const char *, unsigned int, void *, unsigned int);
1162 static int parse_vc_action_rss(struct context *, const struct token *,
1163 			       const char *, unsigned int, void *,
1164 			       unsigned int);
1165 static int parse_vc_action_rss_func(struct context *, const struct token *,
1166 				    const char *, unsigned int, void *,
1167 				    unsigned int);
1168 static int parse_vc_action_rss_type(struct context *, const struct token *,
1169 				    const char *, unsigned int, void *,
1170 				    unsigned int);
1171 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1172 				     const char *, unsigned int, void *,
1173 				     unsigned int);
1174 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1175 				       const char *, unsigned int, void *,
1176 				       unsigned int);
1177 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1178 				       const char *, unsigned int, void *,
1179 				       unsigned int);
1180 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1181 				    const char *, unsigned int, void *,
1182 				    unsigned int);
1183 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1184 				    const char *, unsigned int, void *,
1185 				    unsigned int);
1186 static int parse_vc_action_mplsogre_encap(struct context *,
1187 					  const struct token *, const char *,
1188 					  unsigned int, void *, unsigned int);
1189 static int parse_vc_action_mplsogre_decap(struct context *,
1190 					  const struct token *, const char *,
1191 					  unsigned int, void *, unsigned int);
1192 static int parse_vc_action_mplsoudp_encap(struct context *,
1193 					  const struct token *, const char *,
1194 					  unsigned int, void *, unsigned int);
1195 static int parse_vc_action_mplsoudp_decap(struct context *,
1196 					  const struct token *, const char *,
1197 					  unsigned int, void *, unsigned int);
1198 static int parse_vc_action_raw_encap(struct context *,
1199 				     const struct token *, const char *,
1200 				     unsigned int, void *, unsigned int);
1201 static int parse_vc_action_raw_decap(struct context *,
1202 				     const struct token *, const char *,
1203 				     unsigned int, void *, unsigned int);
1204 static int parse_destroy(struct context *, const struct token *,
1205 			 const char *, unsigned int,
1206 			 void *, unsigned int);
1207 static int parse_flush(struct context *, const struct token *,
1208 		       const char *, unsigned int,
1209 		       void *, unsigned int);
1210 static int parse_query(struct context *, const struct token *,
1211 		       const char *, unsigned int,
1212 		       void *, unsigned int);
1213 static int parse_action(struct context *, const struct token *,
1214 			const char *, unsigned int,
1215 			void *, unsigned int);
1216 static int parse_list(struct context *, const struct token *,
1217 		      const char *, unsigned int,
1218 		      void *, unsigned int);
1219 static int parse_isolate(struct context *, const struct token *,
1220 			 const char *, unsigned int,
1221 			 void *, unsigned int);
1222 static int parse_int(struct context *, const struct token *,
1223 		     const char *, unsigned int,
1224 		     void *, unsigned int);
1225 static int parse_prefix(struct context *, const struct token *,
1226 			const char *, unsigned int,
1227 			void *, unsigned int);
1228 static int parse_boolean(struct context *, const struct token *,
1229 			 const char *, unsigned int,
1230 			 void *, unsigned int);
1231 static int parse_string(struct context *, const struct token *,
1232 			const char *, unsigned int,
1233 			void *, unsigned int);
1234 static int parse_hex(struct context *ctx, const struct token *token,
1235 			const char *str, unsigned int len,
1236 			void *buf, unsigned int size);
1237 static int parse_mac_addr(struct context *, const struct token *,
1238 			  const char *, unsigned int,
1239 			  void *, unsigned int);
1240 static int parse_ipv4_addr(struct context *, const struct token *,
1241 			   const char *, unsigned int,
1242 			   void *, unsigned int);
1243 static int parse_ipv6_addr(struct context *, const struct token *,
1244 			   const char *, unsigned int,
1245 			   void *, unsigned int);
1246 static int parse_port(struct context *, const struct token *,
1247 		      const char *, unsigned int,
1248 		      void *, unsigned int);
1249 static int comp_none(struct context *, const struct token *,
1250 		     unsigned int, char *, unsigned int);
1251 static int comp_boolean(struct context *, const struct token *,
1252 			unsigned int, char *, unsigned int);
1253 static int comp_action(struct context *, const struct token *,
1254 		       unsigned int, char *, unsigned int);
1255 static int comp_port(struct context *, const struct token *,
1256 		     unsigned int, char *, unsigned int);
1257 static int comp_rule_id(struct context *, const struct token *,
1258 			unsigned int, char *, unsigned int);
1259 static int comp_vc_action_rss_type(struct context *, const struct token *,
1260 				   unsigned int, char *, unsigned int);
1261 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1262 				    unsigned int, char *, unsigned int);
1263 
1264 /** Token definitions. */
1265 static const struct token token_list[] = {
1266 	/* Special tokens. */
1267 	[ZERO] = {
1268 		.name = "ZERO",
1269 		.help = "null entry, abused as the entry point",
1270 		.next = NEXT(NEXT_ENTRY(FLOW)),
1271 	},
1272 	[END] = {
1273 		.name = "",
1274 		.type = "RETURN",
1275 		.help = "command may end here",
1276 	},
1277 	[START_SET] = {
1278 		.name = "START_SET",
1279 		.help = "null entry, abused as the entry point for set",
1280 		.next = NEXT(NEXT_ENTRY(SET)),
1281 	},
1282 	[END_SET] = {
1283 		.name = "end_set",
1284 		.type = "RETURN",
1285 		.help = "set command may end here",
1286 	},
1287 	/* Common tokens. */
1288 	[INTEGER] = {
1289 		.name = "{int}",
1290 		.type = "INTEGER",
1291 		.help = "integer value",
1292 		.call = parse_int,
1293 		.comp = comp_none,
1294 	},
1295 	[UNSIGNED] = {
1296 		.name = "{unsigned}",
1297 		.type = "UNSIGNED",
1298 		.help = "unsigned integer value",
1299 		.call = parse_int,
1300 		.comp = comp_none,
1301 	},
1302 	[PREFIX] = {
1303 		.name = "{prefix}",
1304 		.type = "PREFIX",
1305 		.help = "prefix length for bit-mask",
1306 		.call = parse_prefix,
1307 		.comp = comp_none,
1308 	},
1309 	[BOOLEAN] = {
1310 		.name = "{boolean}",
1311 		.type = "BOOLEAN",
1312 		.help = "any boolean value",
1313 		.call = parse_boolean,
1314 		.comp = comp_boolean,
1315 	},
1316 	[STRING] = {
1317 		.name = "{string}",
1318 		.type = "STRING",
1319 		.help = "fixed string",
1320 		.call = parse_string,
1321 		.comp = comp_none,
1322 	},
1323 	[HEX] = {
1324 		.name = "{hex}",
1325 		.type = "HEX",
1326 		.help = "fixed string",
1327 		.call = parse_hex,
1328 		.comp = comp_none,
1329 	},
1330 	[MAC_ADDR] = {
1331 		.name = "{MAC address}",
1332 		.type = "MAC-48",
1333 		.help = "standard MAC address notation",
1334 		.call = parse_mac_addr,
1335 		.comp = comp_none,
1336 	},
1337 	[IPV4_ADDR] = {
1338 		.name = "{IPv4 address}",
1339 		.type = "IPV4 ADDRESS",
1340 		.help = "standard IPv4 address notation",
1341 		.call = parse_ipv4_addr,
1342 		.comp = comp_none,
1343 	},
1344 	[IPV6_ADDR] = {
1345 		.name = "{IPv6 address}",
1346 		.type = "IPV6 ADDRESS",
1347 		.help = "standard IPv6 address notation",
1348 		.call = parse_ipv6_addr,
1349 		.comp = comp_none,
1350 	},
1351 	[RULE_ID] = {
1352 		.name = "{rule id}",
1353 		.type = "RULE ID",
1354 		.help = "rule identifier",
1355 		.call = parse_int,
1356 		.comp = comp_rule_id,
1357 	},
1358 	[PORT_ID] = {
1359 		.name = "{port_id}",
1360 		.type = "PORT ID",
1361 		.help = "port identifier",
1362 		.call = parse_port,
1363 		.comp = comp_port,
1364 	},
1365 	[GROUP_ID] = {
1366 		.name = "{group_id}",
1367 		.type = "GROUP ID",
1368 		.help = "group identifier",
1369 		.call = parse_int,
1370 		.comp = comp_none,
1371 	},
1372 	[PRIORITY_LEVEL] = {
1373 		.name = "{level}",
1374 		.type = "PRIORITY",
1375 		.help = "priority level",
1376 		.call = parse_int,
1377 		.comp = comp_none,
1378 	},
1379 	/* Top-level command. */
1380 	[FLOW] = {
1381 		.name = "flow",
1382 		.type = "{command} {port_id} [{arg} [...]]",
1383 		.help = "manage ingress/egress flow rules",
1384 		.next = NEXT(NEXT_ENTRY
1385 			     (VALIDATE,
1386 			      CREATE,
1387 			      DESTROY,
1388 			      FLUSH,
1389 			      LIST,
1390 			      QUERY,
1391 			      ISOLATE)),
1392 		.call = parse_init,
1393 	},
1394 	/* Sub-level commands. */
1395 	[VALIDATE] = {
1396 		.name = "validate",
1397 		.help = "check whether a flow rule can be created",
1398 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1399 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1400 		.call = parse_vc,
1401 	},
1402 	[CREATE] = {
1403 		.name = "create",
1404 		.help = "create a flow rule",
1405 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1406 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1407 		.call = parse_vc,
1408 	},
1409 	[DESTROY] = {
1410 		.name = "destroy",
1411 		.help = "destroy specific flow rules",
1412 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1413 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1414 		.call = parse_destroy,
1415 	},
1416 	[FLUSH] = {
1417 		.name = "flush",
1418 		.help = "destroy all flow rules",
1419 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1420 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1421 		.call = parse_flush,
1422 	},
1423 	[QUERY] = {
1424 		.name = "query",
1425 		.help = "query an existing flow rule",
1426 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1427 			     NEXT_ENTRY(RULE_ID),
1428 			     NEXT_ENTRY(PORT_ID)),
1429 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1430 			     ARGS_ENTRY(struct buffer, args.query.rule),
1431 			     ARGS_ENTRY(struct buffer, port)),
1432 		.call = parse_query,
1433 	},
1434 	[LIST] = {
1435 		.name = "list",
1436 		.help = "list existing flow rules",
1437 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1438 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1439 		.call = parse_list,
1440 	},
1441 	[ISOLATE] = {
1442 		.name = "isolate",
1443 		.help = "restrict ingress traffic to the defined flow rules",
1444 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1445 			     NEXT_ENTRY(PORT_ID)),
1446 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1447 			     ARGS_ENTRY(struct buffer, port)),
1448 		.call = parse_isolate,
1449 	},
1450 	/* Destroy arguments. */
1451 	[DESTROY_RULE] = {
1452 		.name = "rule",
1453 		.help = "specify a rule identifier",
1454 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1455 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1456 		.call = parse_destroy,
1457 	},
1458 	/* Query arguments. */
1459 	[QUERY_ACTION] = {
1460 		.name = "{action}",
1461 		.type = "ACTION",
1462 		.help = "action to query, must be part of the rule",
1463 		.call = parse_action,
1464 		.comp = comp_action,
1465 	},
1466 	/* List arguments. */
1467 	[LIST_GROUP] = {
1468 		.name = "group",
1469 		.help = "specify a group",
1470 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1471 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1472 		.call = parse_list,
1473 	},
1474 	/* Validate/create attributes. */
1475 	[GROUP] = {
1476 		.name = "group",
1477 		.help = "specify a group",
1478 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1479 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1480 		.call = parse_vc,
1481 	},
1482 	[PRIORITY] = {
1483 		.name = "priority",
1484 		.help = "specify a priority level",
1485 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1486 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1487 		.call = parse_vc,
1488 	},
1489 	[INGRESS] = {
1490 		.name = "ingress",
1491 		.help = "affect rule to ingress",
1492 		.next = NEXT(next_vc_attr),
1493 		.call = parse_vc,
1494 	},
1495 	[EGRESS] = {
1496 		.name = "egress",
1497 		.help = "affect rule to egress",
1498 		.next = NEXT(next_vc_attr),
1499 		.call = parse_vc,
1500 	},
1501 	[TRANSFER] = {
1502 		.name = "transfer",
1503 		.help = "apply rule directly to endpoints found in pattern",
1504 		.next = NEXT(next_vc_attr),
1505 		.call = parse_vc,
1506 	},
1507 	/* Validate/create pattern. */
1508 	[PATTERN] = {
1509 		.name = "pattern",
1510 		.help = "submit a list of pattern items",
1511 		.next = NEXT(next_item),
1512 		.call = parse_vc,
1513 	},
1514 	[ITEM_PARAM_IS] = {
1515 		.name = "is",
1516 		.help = "match value perfectly (with full bit-mask)",
1517 		.call = parse_vc_spec,
1518 	},
1519 	[ITEM_PARAM_SPEC] = {
1520 		.name = "spec",
1521 		.help = "match value according to configured bit-mask",
1522 		.call = parse_vc_spec,
1523 	},
1524 	[ITEM_PARAM_LAST] = {
1525 		.name = "last",
1526 		.help = "specify upper bound to establish a range",
1527 		.call = parse_vc_spec,
1528 	},
1529 	[ITEM_PARAM_MASK] = {
1530 		.name = "mask",
1531 		.help = "specify bit-mask with relevant bits set to one",
1532 		.call = parse_vc_spec,
1533 	},
1534 	[ITEM_PARAM_PREFIX] = {
1535 		.name = "prefix",
1536 		.help = "generate bit-mask from a prefix length",
1537 		.call = parse_vc_spec,
1538 	},
1539 	[ITEM_NEXT] = {
1540 		.name = "/",
1541 		.help = "specify next pattern item",
1542 		.next = NEXT(next_item),
1543 	},
1544 	[ITEM_END] = {
1545 		.name = "end",
1546 		.help = "end list of pattern items",
1547 		.priv = PRIV_ITEM(END, 0),
1548 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1549 		.call = parse_vc,
1550 	},
1551 	[ITEM_VOID] = {
1552 		.name = "void",
1553 		.help = "no-op pattern item",
1554 		.priv = PRIV_ITEM(VOID, 0),
1555 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1556 		.call = parse_vc,
1557 	},
1558 	[ITEM_INVERT] = {
1559 		.name = "invert",
1560 		.help = "perform actions when pattern does not match",
1561 		.priv = PRIV_ITEM(INVERT, 0),
1562 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1563 		.call = parse_vc,
1564 	},
1565 	[ITEM_ANY] = {
1566 		.name = "any",
1567 		.help = "match any protocol for the current layer",
1568 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1569 		.next = NEXT(item_any),
1570 		.call = parse_vc,
1571 	},
1572 	[ITEM_ANY_NUM] = {
1573 		.name = "num",
1574 		.help = "number of layers covered",
1575 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1576 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1577 	},
1578 	[ITEM_PF] = {
1579 		.name = "pf",
1580 		.help = "match traffic from/to the physical function",
1581 		.priv = PRIV_ITEM(PF, 0),
1582 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1583 		.call = parse_vc,
1584 	},
1585 	[ITEM_VF] = {
1586 		.name = "vf",
1587 		.help = "match traffic from/to a virtual function ID",
1588 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1589 		.next = NEXT(item_vf),
1590 		.call = parse_vc,
1591 	},
1592 	[ITEM_VF_ID] = {
1593 		.name = "id",
1594 		.help = "VF ID",
1595 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1596 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1597 	},
1598 	[ITEM_PHY_PORT] = {
1599 		.name = "phy_port",
1600 		.help = "match traffic from/to a specific physical port",
1601 		.priv = PRIV_ITEM(PHY_PORT,
1602 				  sizeof(struct rte_flow_item_phy_port)),
1603 		.next = NEXT(item_phy_port),
1604 		.call = parse_vc,
1605 	},
1606 	[ITEM_PHY_PORT_INDEX] = {
1607 		.name = "index",
1608 		.help = "physical port index",
1609 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1610 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1611 	},
1612 	[ITEM_PORT_ID] = {
1613 		.name = "port_id",
1614 		.help = "match traffic from/to a given DPDK port ID",
1615 		.priv = PRIV_ITEM(PORT_ID,
1616 				  sizeof(struct rte_flow_item_port_id)),
1617 		.next = NEXT(item_port_id),
1618 		.call = parse_vc,
1619 	},
1620 	[ITEM_PORT_ID_ID] = {
1621 		.name = "id",
1622 		.help = "DPDK port ID",
1623 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1624 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1625 	},
1626 	[ITEM_MARK] = {
1627 		.name = "mark",
1628 		.help = "match traffic against value set in previously matched rule",
1629 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1630 		.next = NEXT(item_mark),
1631 		.call = parse_vc,
1632 	},
1633 	[ITEM_MARK_ID] = {
1634 		.name = "id",
1635 		.help = "Integer value to match against",
1636 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1637 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1638 	},
1639 	[ITEM_RAW] = {
1640 		.name = "raw",
1641 		.help = "match an arbitrary byte string",
1642 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1643 		.next = NEXT(item_raw),
1644 		.call = parse_vc,
1645 	},
1646 	[ITEM_RAW_RELATIVE] = {
1647 		.name = "relative",
1648 		.help = "look for pattern after the previous item",
1649 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1650 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1651 					   relative, 1)),
1652 	},
1653 	[ITEM_RAW_SEARCH] = {
1654 		.name = "search",
1655 		.help = "search pattern from offset (see also limit)",
1656 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1657 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1658 					   search, 1)),
1659 	},
1660 	[ITEM_RAW_OFFSET] = {
1661 		.name = "offset",
1662 		.help = "absolute or relative offset for pattern",
1663 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1664 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1665 	},
1666 	[ITEM_RAW_LIMIT] = {
1667 		.name = "limit",
1668 		.help = "search area limit for start of pattern",
1669 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1670 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1671 	},
1672 	[ITEM_RAW_PATTERN] = {
1673 		.name = "pattern",
1674 		.help = "byte string to look for",
1675 		.next = NEXT(item_raw,
1676 			     NEXT_ENTRY(STRING),
1677 			     NEXT_ENTRY(ITEM_PARAM_IS,
1678 					ITEM_PARAM_SPEC,
1679 					ITEM_PARAM_MASK)),
1680 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1681 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1682 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1683 					    ITEM_RAW_PATTERN_SIZE)),
1684 	},
1685 	[ITEM_ETH] = {
1686 		.name = "eth",
1687 		.help = "match Ethernet header",
1688 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1689 		.next = NEXT(item_eth),
1690 		.call = parse_vc,
1691 	},
1692 	[ITEM_ETH_DST] = {
1693 		.name = "dst",
1694 		.help = "destination MAC",
1695 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1696 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1697 	},
1698 	[ITEM_ETH_SRC] = {
1699 		.name = "src",
1700 		.help = "source MAC",
1701 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1702 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1703 	},
1704 	[ITEM_ETH_TYPE] = {
1705 		.name = "type",
1706 		.help = "EtherType",
1707 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1708 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1709 	},
1710 	[ITEM_VLAN] = {
1711 		.name = "vlan",
1712 		.help = "match 802.1Q/ad VLAN tag",
1713 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1714 		.next = NEXT(item_vlan),
1715 		.call = parse_vc,
1716 	},
1717 	[ITEM_VLAN_TCI] = {
1718 		.name = "tci",
1719 		.help = "tag control information",
1720 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1721 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1722 	},
1723 	[ITEM_VLAN_PCP] = {
1724 		.name = "pcp",
1725 		.help = "priority code point",
1726 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1727 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1728 						  tci, "\xe0\x00")),
1729 	},
1730 	[ITEM_VLAN_DEI] = {
1731 		.name = "dei",
1732 		.help = "drop eligible indicator",
1733 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1734 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1735 						  tci, "\x10\x00")),
1736 	},
1737 	[ITEM_VLAN_VID] = {
1738 		.name = "vid",
1739 		.help = "VLAN identifier",
1740 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1741 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1742 						  tci, "\x0f\xff")),
1743 	},
1744 	[ITEM_VLAN_INNER_TYPE] = {
1745 		.name = "inner_type",
1746 		.help = "inner EtherType",
1747 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1748 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1749 					     inner_type)),
1750 	},
1751 	[ITEM_IPV4] = {
1752 		.name = "ipv4",
1753 		.help = "match IPv4 header",
1754 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1755 		.next = NEXT(item_ipv4),
1756 		.call = parse_vc,
1757 	},
1758 	[ITEM_IPV4_TOS] = {
1759 		.name = "tos",
1760 		.help = "type of service",
1761 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1762 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1763 					     hdr.type_of_service)),
1764 	},
1765 	[ITEM_IPV4_TTL] = {
1766 		.name = "ttl",
1767 		.help = "time to live",
1768 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1769 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1770 					     hdr.time_to_live)),
1771 	},
1772 	[ITEM_IPV4_PROTO] = {
1773 		.name = "proto",
1774 		.help = "next protocol ID",
1775 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1776 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1777 					     hdr.next_proto_id)),
1778 	},
1779 	[ITEM_IPV4_SRC] = {
1780 		.name = "src",
1781 		.help = "source address",
1782 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1783 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1784 					     hdr.src_addr)),
1785 	},
1786 	[ITEM_IPV4_DST] = {
1787 		.name = "dst",
1788 		.help = "destination address",
1789 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1790 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1791 					     hdr.dst_addr)),
1792 	},
1793 	[ITEM_IPV6] = {
1794 		.name = "ipv6",
1795 		.help = "match IPv6 header",
1796 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1797 		.next = NEXT(item_ipv6),
1798 		.call = parse_vc,
1799 	},
1800 	[ITEM_IPV6_TC] = {
1801 		.name = "tc",
1802 		.help = "traffic class",
1803 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1804 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1805 						  hdr.vtc_flow,
1806 						  "\x0f\xf0\x00\x00")),
1807 	},
1808 	[ITEM_IPV6_FLOW] = {
1809 		.name = "flow",
1810 		.help = "flow label",
1811 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1812 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1813 						  hdr.vtc_flow,
1814 						  "\x00\x0f\xff\xff")),
1815 	},
1816 	[ITEM_IPV6_PROTO] = {
1817 		.name = "proto",
1818 		.help = "protocol (next header)",
1819 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1820 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1821 					     hdr.proto)),
1822 	},
1823 	[ITEM_IPV6_HOP] = {
1824 		.name = "hop",
1825 		.help = "hop limit",
1826 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1827 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1828 					     hdr.hop_limits)),
1829 	},
1830 	[ITEM_IPV6_SRC] = {
1831 		.name = "src",
1832 		.help = "source address",
1833 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1834 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1835 					     hdr.src_addr)),
1836 	},
1837 	[ITEM_IPV6_DST] = {
1838 		.name = "dst",
1839 		.help = "destination address",
1840 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1841 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1842 					     hdr.dst_addr)),
1843 	},
1844 	[ITEM_ICMP] = {
1845 		.name = "icmp",
1846 		.help = "match ICMP header",
1847 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1848 		.next = NEXT(item_icmp),
1849 		.call = parse_vc,
1850 	},
1851 	[ITEM_ICMP_TYPE] = {
1852 		.name = "type",
1853 		.help = "ICMP packet type",
1854 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1855 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1856 					     hdr.icmp_type)),
1857 	},
1858 	[ITEM_ICMP_CODE] = {
1859 		.name = "code",
1860 		.help = "ICMP packet code",
1861 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1862 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1863 					     hdr.icmp_code)),
1864 	},
1865 	[ITEM_UDP] = {
1866 		.name = "udp",
1867 		.help = "match UDP header",
1868 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1869 		.next = NEXT(item_udp),
1870 		.call = parse_vc,
1871 	},
1872 	[ITEM_UDP_SRC] = {
1873 		.name = "src",
1874 		.help = "UDP source port",
1875 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1876 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1877 					     hdr.src_port)),
1878 	},
1879 	[ITEM_UDP_DST] = {
1880 		.name = "dst",
1881 		.help = "UDP destination port",
1882 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1883 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1884 					     hdr.dst_port)),
1885 	},
1886 	[ITEM_TCP] = {
1887 		.name = "tcp",
1888 		.help = "match TCP header",
1889 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1890 		.next = NEXT(item_tcp),
1891 		.call = parse_vc,
1892 	},
1893 	[ITEM_TCP_SRC] = {
1894 		.name = "src",
1895 		.help = "TCP source port",
1896 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1897 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1898 					     hdr.src_port)),
1899 	},
1900 	[ITEM_TCP_DST] = {
1901 		.name = "dst",
1902 		.help = "TCP destination port",
1903 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1904 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1905 					     hdr.dst_port)),
1906 	},
1907 	[ITEM_TCP_FLAGS] = {
1908 		.name = "flags",
1909 		.help = "TCP flags",
1910 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1911 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1912 					     hdr.tcp_flags)),
1913 	},
1914 	[ITEM_SCTP] = {
1915 		.name = "sctp",
1916 		.help = "match SCTP header",
1917 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1918 		.next = NEXT(item_sctp),
1919 		.call = parse_vc,
1920 	},
1921 	[ITEM_SCTP_SRC] = {
1922 		.name = "src",
1923 		.help = "SCTP source port",
1924 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1925 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1926 					     hdr.src_port)),
1927 	},
1928 	[ITEM_SCTP_DST] = {
1929 		.name = "dst",
1930 		.help = "SCTP destination port",
1931 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1932 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1933 					     hdr.dst_port)),
1934 	},
1935 	[ITEM_SCTP_TAG] = {
1936 		.name = "tag",
1937 		.help = "validation tag",
1938 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1939 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1940 					     hdr.tag)),
1941 	},
1942 	[ITEM_SCTP_CKSUM] = {
1943 		.name = "cksum",
1944 		.help = "checksum",
1945 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1946 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1947 					     hdr.cksum)),
1948 	},
1949 	[ITEM_VXLAN] = {
1950 		.name = "vxlan",
1951 		.help = "match VXLAN header",
1952 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1953 		.next = NEXT(item_vxlan),
1954 		.call = parse_vc,
1955 	},
1956 	[ITEM_VXLAN_VNI] = {
1957 		.name = "vni",
1958 		.help = "VXLAN identifier",
1959 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1960 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1961 	},
1962 	[ITEM_E_TAG] = {
1963 		.name = "e_tag",
1964 		.help = "match E-Tag header",
1965 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1966 		.next = NEXT(item_e_tag),
1967 		.call = parse_vc,
1968 	},
1969 	[ITEM_E_TAG_GRP_ECID_B] = {
1970 		.name = "grp_ecid_b",
1971 		.help = "GRP and E-CID base",
1972 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1973 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1974 						  rsvd_grp_ecid_b,
1975 						  "\x3f\xff")),
1976 	},
1977 	[ITEM_NVGRE] = {
1978 		.name = "nvgre",
1979 		.help = "match NVGRE header",
1980 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1981 		.next = NEXT(item_nvgre),
1982 		.call = parse_vc,
1983 	},
1984 	[ITEM_NVGRE_TNI] = {
1985 		.name = "tni",
1986 		.help = "virtual subnet ID",
1987 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1988 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1989 	},
1990 	[ITEM_MPLS] = {
1991 		.name = "mpls",
1992 		.help = "match MPLS header",
1993 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1994 		.next = NEXT(item_mpls),
1995 		.call = parse_vc,
1996 	},
1997 	[ITEM_MPLS_LABEL] = {
1998 		.name = "label",
1999 		.help = "MPLS label",
2000 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2001 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2002 						  label_tc_s,
2003 						  "\xff\xff\xf0")),
2004 	},
2005 	[ITEM_MPLS_TC] = {
2006 		.name = "tc",
2007 		.help = "MPLS Traffic Class",
2008 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2009 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2010 						  label_tc_s,
2011 						  "\x00\x00\x0e")),
2012 	},
2013 	[ITEM_MPLS_S] = {
2014 		.name = "s",
2015 		.help = "MPLS Bottom-of-Stack",
2016 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2017 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2018 						  label_tc_s,
2019 						  "\x00\x00\x01")),
2020 	},
2021 	[ITEM_GRE] = {
2022 		.name = "gre",
2023 		.help = "match GRE header",
2024 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
2025 		.next = NEXT(item_gre),
2026 		.call = parse_vc,
2027 	},
2028 	[ITEM_GRE_PROTO] = {
2029 		.name = "protocol",
2030 		.help = "GRE protocol type",
2031 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2032 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2033 					     protocol)),
2034 	},
2035 	[ITEM_GRE_C_RSVD0_VER] = {
2036 		.name = "c_rsvd0_ver",
2037 		.help =
2038 			"checksum (1b), undefined (1b), key bit (1b),"
2039 			" sequence number (1b), reserved 0 (9b),"
2040 			" version (3b)",
2041 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2042 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2043 					     c_rsvd0_ver)),
2044 	},
2045 	[ITEM_GRE_C_BIT] = {
2046 		.name = "c_bit",
2047 		.help = "checksum bit (C)",
2048 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2049 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2050 						  c_rsvd0_ver,
2051 						  "\x80\x00\x00\x00")),
2052 	},
2053 	[ITEM_GRE_S_BIT] = {
2054 		.name = "s_bit",
2055 		.help = "sequence number bit (S)",
2056 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2057 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2058 						  c_rsvd0_ver,
2059 						  "\x10\x00\x00\x00")),
2060 	},
2061 	[ITEM_GRE_K_BIT] = {
2062 		.name = "k_bit",
2063 		.help = "key bit (K)",
2064 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2065 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2066 						  c_rsvd0_ver,
2067 						  "\x20\x00\x00\x00")),
2068 	},
2069 	[ITEM_FUZZY] = {
2070 		.name = "fuzzy",
2071 		.help = "fuzzy pattern match, expect faster than default",
2072 		.priv = PRIV_ITEM(FUZZY,
2073 				sizeof(struct rte_flow_item_fuzzy)),
2074 		.next = NEXT(item_fuzzy),
2075 		.call = parse_vc,
2076 	},
2077 	[ITEM_FUZZY_THRESH] = {
2078 		.name = "thresh",
2079 		.help = "match accuracy threshold",
2080 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
2081 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
2082 					thresh)),
2083 	},
2084 	[ITEM_GTP] = {
2085 		.name = "gtp",
2086 		.help = "match GTP header",
2087 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
2088 		.next = NEXT(item_gtp),
2089 		.call = parse_vc,
2090 	},
2091 	[ITEM_GTP_TEID] = {
2092 		.name = "teid",
2093 		.help = "tunnel endpoint identifier",
2094 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2095 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
2096 	},
2097 	[ITEM_GTPC] = {
2098 		.name = "gtpc",
2099 		.help = "match GTP header",
2100 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
2101 		.next = NEXT(item_gtp),
2102 		.call = parse_vc,
2103 	},
2104 	[ITEM_GTPU] = {
2105 		.name = "gtpu",
2106 		.help = "match GTP header",
2107 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
2108 		.next = NEXT(item_gtp),
2109 		.call = parse_vc,
2110 	},
2111 	[ITEM_GENEVE] = {
2112 		.name = "geneve",
2113 		.help = "match GENEVE header",
2114 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
2115 		.next = NEXT(item_geneve),
2116 		.call = parse_vc,
2117 	},
2118 	[ITEM_GENEVE_VNI] = {
2119 		.name = "vni",
2120 		.help = "virtual network identifier",
2121 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2122 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
2123 	},
2124 	[ITEM_GENEVE_PROTO] = {
2125 		.name = "protocol",
2126 		.help = "GENEVE protocol type",
2127 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2128 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2129 					     protocol)),
2130 	},
2131 	[ITEM_VXLAN_GPE] = {
2132 		.name = "vxlan-gpe",
2133 		.help = "match VXLAN-GPE header",
2134 		.priv = PRIV_ITEM(VXLAN_GPE,
2135 				  sizeof(struct rte_flow_item_vxlan_gpe)),
2136 		.next = NEXT(item_vxlan_gpe),
2137 		.call = parse_vc,
2138 	},
2139 	[ITEM_VXLAN_GPE_VNI] = {
2140 		.name = "vni",
2141 		.help = "VXLAN-GPE identifier",
2142 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
2143 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
2144 					     vni)),
2145 	},
2146 	[ITEM_ARP_ETH_IPV4] = {
2147 		.name = "arp_eth_ipv4",
2148 		.help = "match ARP header for Ethernet/IPv4",
2149 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
2150 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
2151 		.next = NEXT(item_arp_eth_ipv4),
2152 		.call = parse_vc,
2153 	},
2154 	[ITEM_ARP_ETH_IPV4_SHA] = {
2155 		.name = "sha",
2156 		.help = "sender hardware address",
2157 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2158 			     item_param),
2159 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2160 					     sha)),
2161 	},
2162 	[ITEM_ARP_ETH_IPV4_SPA] = {
2163 		.name = "spa",
2164 		.help = "sender IPv4 address",
2165 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2166 			     item_param),
2167 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2168 					     spa)),
2169 	},
2170 	[ITEM_ARP_ETH_IPV4_THA] = {
2171 		.name = "tha",
2172 		.help = "target hardware address",
2173 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2174 			     item_param),
2175 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2176 					     tha)),
2177 	},
2178 	[ITEM_ARP_ETH_IPV4_TPA] = {
2179 		.name = "tpa",
2180 		.help = "target IPv4 address",
2181 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2182 			     item_param),
2183 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2184 					     tpa)),
2185 	},
2186 	[ITEM_IPV6_EXT] = {
2187 		.name = "ipv6_ext",
2188 		.help = "match presence of any IPv6 extension header",
2189 		.priv = PRIV_ITEM(IPV6_EXT,
2190 				  sizeof(struct rte_flow_item_ipv6_ext)),
2191 		.next = NEXT(item_ipv6_ext),
2192 		.call = parse_vc,
2193 	},
2194 	[ITEM_IPV6_EXT_NEXT_HDR] = {
2195 		.name = "next_hdr",
2196 		.help = "next header",
2197 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2198 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2199 					     next_hdr)),
2200 	},
2201 	[ITEM_ICMP6] = {
2202 		.name = "icmp6",
2203 		.help = "match any ICMPv6 header",
2204 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2205 		.next = NEXT(item_icmp6),
2206 		.call = parse_vc,
2207 	},
2208 	[ITEM_ICMP6_TYPE] = {
2209 		.name = "type",
2210 		.help = "ICMPv6 type",
2211 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2212 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2213 					     type)),
2214 	},
2215 	[ITEM_ICMP6_CODE] = {
2216 		.name = "code",
2217 		.help = "ICMPv6 code",
2218 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2219 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2220 					     code)),
2221 	},
2222 	[ITEM_ICMP6_ND_NS] = {
2223 		.name = "icmp6_nd_ns",
2224 		.help = "match ICMPv6 neighbor discovery solicitation",
2225 		.priv = PRIV_ITEM(ICMP6_ND_NS,
2226 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
2227 		.next = NEXT(item_icmp6_nd_ns),
2228 		.call = parse_vc,
2229 	},
2230 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2231 		.name = "target_addr",
2232 		.help = "target address",
2233 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2234 			     item_param),
2235 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2236 					     target_addr)),
2237 	},
2238 	[ITEM_ICMP6_ND_NA] = {
2239 		.name = "icmp6_nd_na",
2240 		.help = "match ICMPv6 neighbor discovery advertisement",
2241 		.priv = PRIV_ITEM(ICMP6_ND_NA,
2242 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
2243 		.next = NEXT(item_icmp6_nd_na),
2244 		.call = parse_vc,
2245 	},
2246 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2247 		.name = "target_addr",
2248 		.help = "target address",
2249 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2250 			     item_param),
2251 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2252 					     target_addr)),
2253 	},
2254 	[ITEM_ICMP6_ND_OPT] = {
2255 		.name = "icmp6_nd_opt",
2256 		.help = "match presence of any ICMPv6 neighbor discovery"
2257 			" option",
2258 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
2259 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
2260 		.next = NEXT(item_icmp6_nd_opt),
2261 		.call = parse_vc,
2262 	},
2263 	[ITEM_ICMP6_ND_OPT_TYPE] = {
2264 		.name = "type",
2265 		.help = "ND option type",
2266 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2267 			     item_param),
2268 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2269 					     type)),
2270 	},
2271 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2272 		.name = "icmp6_nd_opt_sla_eth",
2273 		.help = "match ICMPv6 neighbor discovery source Ethernet"
2274 			" link-layer address option",
2275 		.priv = PRIV_ITEM
2276 			(ICMP6_ND_OPT_SLA_ETH,
2277 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2278 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
2279 		.call = parse_vc,
2280 	},
2281 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2282 		.name = "sla",
2283 		.help = "source Ethernet LLA",
2284 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2285 			     item_param),
2286 		.args = ARGS(ARGS_ENTRY_HTON
2287 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2288 	},
2289 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2290 		.name = "icmp6_nd_opt_tla_eth",
2291 		.help = "match ICMPv6 neighbor discovery target Ethernet"
2292 			" link-layer address option",
2293 		.priv = PRIV_ITEM
2294 			(ICMP6_ND_OPT_TLA_ETH,
2295 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2296 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
2297 		.call = parse_vc,
2298 	},
2299 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2300 		.name = "tla",
2301 		.help = "target Ethernet LLA",
2302 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2303 			     item_param),
2304 		.args = ARGS(ARGS_ENTRY_HTON
2305 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2306 	},
2307 	[ITEM_META] = {
2308 		.name = "meta",
2309 		.help = "match metadata header",
2310 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2311 		.next = NEXT(item_meta),
2312 		.call = parse_vc,
2313 	},
2314 	[ITEM_META_DATA] = {
2315 		.name = "data",
2316 		.help = "metadata value",
2317 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2318 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_meta,
2319 						  data, "\xff\xff\xff\xff")),
2320 	},
2321 	[ITEM_GRE_KEY] = {
2322 		.name = "gre_key",
2323 		.help = "match GRE key",
2324 		.priv = PRIV_ITEM(GRE_KEY, sizeof(rte_be32_t)),
2325 		.next = NEXT(item_gre_key),
2326 		.call = parse_vc,
2327 	},
2328 	[ITEM_GRE_KEY_VALUE] = {
2329 		.name = "value",
2330 		.help = "key value",
2331 		.next = NEXT(item_gre_key, NEXT_ENTRY(UNSIGNED), item_param),
2332 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2333 	},
2334 
2335 	/* Validate/create actions. */
2336 	[ACTIONS] = {
2337 		.name = "actions",
2338 		.help = "submit a list of associated actions",
2339 		.next = NEXT(next_action),
2340 		.call = parse_vc,
2341 	},
2342 	[ACTION_NEXT] = {
2343 		.name = "/",
2344 		.help = "specify next action",
2345 		.next = NEXT(next_action),
2346 	},
2347 	[ACTION_END] = {
2348 		.name = "end",
2349 		.help = "end list of actions",
2350 		.priv = PRIV_ACTION(END, 0),
2351 		.call = parse_vc,
2352 	},
2353 	[ACTION_VOID] = {
2354 		.name = "void",
2355 		.help = "no-op action",
2356 		.priv = PRIV_ACTION(VOID, 0),
2357 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2358 		.call = parse_vc,
2359 	},
2360 	[ACTION_PASSTHRU] = {
2361 		.name = "passthru",
2362 		.help = "let subsequent rule process matched packets",
2363 		.priv = PRIV_ACTION(PASSTHRU, 0),
2364 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2365 		.call = parse_vc,
2366 	},
2367 	[ACTION_JUMP] = {
2368 		.name = "jump",
2369 		.help = "redirect traffic to a given group",
2370 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2371 		.next = NEXT(action_jump),
2372 		.call = parse_vc,
2373 	},
2374 	[ACTION_JUMP_GROUP] = {
2375 		.name = "group",
2376 		.help = "group to redirect traffic to",
2377 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2378 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2379 		.call = parse_vc_conf,
2380 	},
2381 	[ACTION_MARK] = {
2382 		.name = "mark",
2383 		.help = "attach 32 bit value to packets",
2384 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2385 		.next = NEXT(action_mark),
2386 		.call = parse_vc,
2387 	},
2388 	[ACTION_MARK_ID] = {
2389 		.name = "id",
2390 		.help = "32 bit value to return with packets",
2391 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2392 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2393 		.call = parse_vc_conf,
2394 	},
2395 	[ACTION_FLAG] = {
2396 		.name = "flag",
2397 		.help = "flag packets",
2398 		.priv = PRIV_ACTION(FLAG, 0),
2399 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2400 		.call = parse_vc,
2401 	},
2402 	[ACTION_QUEUE] = {
2403 		.name = "queue",
2404 		.help = "assign packets to a given queue index",
2405 		.priv = PRIV_ACTION(QUEUE,
2406 				    sizeof(struct rte_flow_action_queue)),
2407 		.next = NEXT(action_queue),
2408 		.call = parse_vc,
2409 	},
2410 	[ACTION_QUEUE_INDEX] = {
2411 		.name = "index",
2412 		.help = "queue index to use",
2413 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2414 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2415 		.call = parse_vc_conf,
2416 	},
2417 	[ACTION_DROP] = {
2418 		.name = "drop",
2419 		.help = "drop packets (note: passthru has priority)",
2420 		.priv = PRIV_ACTION(DROP, 0),
2421 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2422 		.call = parse_vc,
2423 	},
2424 	[ACTION_COUNT] = {
2425 		.name = "count",
2426 		.help = "enable counters for this rule",
2427 		.priv = PRIV_ACTION(COUNT,
2428 				    sizeof(struct rte_flow_action_count)),
2429 		.next = NEXT(action_count),
2430 		.call = parse_vc,
2431 	},
2432 	[ACTION_COUNT_ID] = {
2433 		.name = "identifier",
2434 		.help = "counter identifier to use",
2435 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2436 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2437 		.call = parse_vc_conf,
2438 	},
2439 	[ACTION_COUNT_SHARED] = {
2440 		.name = "shared",
2441 		.help = "shared counter",
2442 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2443 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2444 					   shared, 1)),
2445 		.call = parse_vc_conf,
2446 	},
2447 	[ACTION_RSS] = {
2448 		.name = "rss",
2449 		.help = "spread packets among several queues",
2450 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2451 		.next = NEXT(action_rss),
2452 		.call = parse_vc_action_rss,
2453 	},
2454 	[ACTION_RSS_FUNC] = {
2455 		.name = "func",
2456 		.help = "RSS hash function to apply",
2457 		.next = NEXT(action_rss,
2458 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2459 					ACTION_RSS_FUNC_TOEPLITZ,
2460 					ACTION_RSS_FUNC_SIMPLE_XOR)),
2461 	},
2462 	[ACTION_RSS_FUNC_DEFAULT] = {
2463 		.name = "default",
2464 		.help = "default hash function",
2465 		.call = parse_vc_action_rss_func,
2466 	},
2467 	[ACTION_RSS_FUNC_TOEPLITZ] = {
2468 		.name = "toeplitz",
2469 		.help = "Toeplitz hash function",
2470 		.call = parse_vc_action_rss_func,
2471 	},
2472 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
2473 		.name = "simple_xor",
2474 		.help = "simple XOR hash function",
2475 		.call = parse_vc_action_rss_func,
2476 	},
2477 	[ACTION_RSS_LEVEL] = {
2478 		.name = "level",
2479 		.help = "encapsulation level for \"types\"",
2480 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2481 		.args = ARGS(ARGS_ENTRY_ARB
2482 			     (offsetof(struct action_rss_data, conf) +
2483 			      offsetof(struct rte_flow_action_rss, level),
2484 			      sizeof(((struct rte_flow_action_rss *)0)->
2485 				     level))),
2486 	},
2487 	[ACTION_RSS_TYPES] = {
2488 		.name = "types",
2489 		.help = "specific RSS hash types",
2490 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2491 	},
2492 	[ACTION_RSS_TYPE] = {
2493 		.name = "{type}",
2494 		.help = "RSS hash type",
2495 		.call = parse_vc_action_rss_type,
2496 		.comp = comp_vc_action_rss_type,
2497 	},
2498 	[ACTION_RSS_KEY] = {
2499 		.name = "key",
2500 		.help = "RSS hash key",
2501 		.next = NEXT(action_rss, NEXT_ENTRY(HEX)),
2502 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
2503 			     ARGS_ENTRY_ARB
2504 			     (offsetof(struct action_rss_data, conf) +
2505 			      offsetof(struct rte_flow_action_rss, key_len),
2506 			      sizeof(((struct rte_flow_action_rss *)0)->
2507 				     key_len)),
2508 			     ARGS_ENTRY(struct action_rss_data, key)),
2509 	},
2510 	[ACTION_RSS_KEY_LEN] = {
2511 		.name = "key_len",
2512 		.help = "RSS hash key length in bytes",
2513 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2514 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2515 			     (offsetof(struct action_rss_data, conf) +
2516 			      offsetof(struct rte_flow_action_rss, key_len),
2517 			      sizeof(((struct rte_flow_action_rss *)0)->
2518 				     key_len),
2519 			      0,
2520 			      RSS_HASH_KEY_LENGTH)),
2521 	},
2522 	[ACTION_RSS_QUEUES] = {
2523 		.name = "queues",
2524 		.help = "queue indices to use",
2525 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2526 		.call = parse_vc_conf,
2527 	},
2528 	[ACTION_RSS_QUEUE] = {
2529 		.name = "{queue}",
2530 		.help = "queue index",
2531 		.call = parse_vc_action_rss_queue,
2532 		.comp = comp_vc_action_rss_queue,
2533 	},
2534 	[ACTION_PF] = {
2535 		.name = "pf",
2536 		.help = "direct traffic to physical function",
2537 		.priv = PRIV_ACTION(PF, 0),
2538 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2539 		.call = parse_vc,
2540 	},
2541 	[ACTION_VF] = {
2542 		.name = "vf",
2543 		.help = "direct traffic to a virtual function ID",
2544 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2545 		.next = NEXT(action_vf),
2546 		.call = parse_vc,
2547 	},
2548 	[ACTION_VF_ORIGINAL] = {
2549 		.name = "original",
2550 		.help = "use original VF ID if possible",
2551 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2552 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2553 					   original, 1)),
2554 		.call = parse_vc_conf,
2555 	},
2556 	[ACTION_VF_ID] = {
2557 		.name = "id",
2558 		.help = "VF ID",
2559 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2560 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2561 		.call = parse_vc_conf,
2562 	},
2563 	[ACTION_PHY_PORT] = {
2564 		.name = "phy_port",
2565 		.help = "direct packets to physical port index",
2566 		.priv = PRIV_ACTION(PHY_PORT,
2567 				    sizeof(struct rte_flow_action_phy_port)),
2568 		.next = NEXT(action_phy_port),
2569 		.call = parse_vc,
2570 	},
2571 	[ACTION_PHY_PORT_ORIGINAL] = {
2572 		.name = "original",
2573 		.help = "use original port index if possible",
2574 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2575 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2576 					   original, 1)),
2577 		.call = parse_vc_conf,
2578 	},
2579 	[ACTION_PHY_PORT_INDEX] = {
2580 		.name = "index",
2581 		.help = "physical port index",
2582 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2583 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2584 					index)),
2585 		.call = parse_vc_conf,
2586 	},
2587 	[ACTION_PORT_ID] = {
2588 		.name = "port_id",
2589 		.help = "direct matching traffic to a given DPDK port ID",
2590 		.priv = PRIV_ACTION(PORT_ID,
2591 				    sizeof(struct rte_flow_action_port_id)),
2592 		.next = NEXT(action_port_id),
2593 		.call = parse_vc,
2594 	},
2595 	[ACTION_PORT_ID_ORIGINAL] = {
2596 		.name = "original",
2597 		.help = "use original DPDK port ID if possible",
2598 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2599 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2600 					   original, 1)),
2601 		.call = parse_vc_conf,
2602 	},
2603 	[ACTION_PORT_ID_ID] = {
2604 		.name = "id",
2605 		.help = "DPDK port ID",
2606 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2607 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2608 		.call = parse_vc_conf,
2609 	},
2610 	[ACTION_METER] = {
2611 		.name = "meter",
2612 		.help = "meter the directed packets at given id",
2613 		.priv = PRIV_ACTION(METER,
2614 				    sizeof(struct rte_flow_action_meter)),
2615 		.next = NEXT(action_meter),
2616 		.call = parse_vc,
2617 	},
2618 	[ACTION_METER_ID] = {
2619 		.name = "mtr_id",
2620 		.help = "meter id to use",
2621 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2622 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2623 		.call = parse_vc_conf,
2624 	},
2625 	[ACTION_OF_SET_MPLS_TTL] = {
2626 		.name = "of_set_mpls_ttl",
2627 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2628 		.priv = PRIV_ACTION
2629 			(OF_SET_MPLS_TTL,
2630 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2631 		.next = NEXT(action_of_set_mpls_ttl),
2632 		.call = parse_vc,
2633 	},
2634 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2635 		.name = "mpls_ttl",
2636 		.help = "MPLS TTL",
2637 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2638 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2639 					mpls_ttl)),
2640 		.call = parse_vc_conf,
2641 	},
2642 	[ACTION_OF_DEC_MPLS_TTL] = {
2643 		.name = "of_dec_mpls_ttl",
2644 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2645 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2646 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2647 		.call = parse_vc,
2648 	},
2649 	[ACTION_OF_SET_NW_TTL] = {
2650 		.name = "of_set_nw_ttl",
2651 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
2652 		.priv = PRIV_ACTION
2653 			(OF_SET_NW_TTL,
2654 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
2655 		.next = NEXT(action_of_set_nw_ttl),
2656 		.call = parse_vc,
2657 	},
2658 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
2659 		.name = "nw_ttl",
2660 		.help = "IP TTL",
2661 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2662 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2663 					nw_ttl)),
2664 		.call = parse_vc_conf,
2665 	},
2666 	[ACTION_OF_DEC_NW_TTL] = {
2667 		.name = "of_dec_nw_ttl",
2668 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
2669 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2670 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2671 		.call = parse_vc,
2672 	},
2673 	[ACTION_OF_COPY_TTL_OUT] = {
2674 		.name = "of_copy_ttl_out",
2675 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2676 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2677 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2678 		.call = parse_vc,
2679 	},
2680 	[ACTION_OF_COPY_TTL_IN] = {
2681 		.name = "of_copy_ttl_in",
2682 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
2683 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2684 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2685 		.call = parse_vc,
2686 	},
2687 	[ACTION_OF_POP_VLAN] = {
2688 		.name = "of_pop_vlan",
2689 		.help = "OpenFlow's OFPAT_POP_VLAN",
2690 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
2691 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2692 		.call = parse_vc,
2693 	},
2694 	[ACTION_OF_PUSH_VLAN] = {
2695 		.name = "of_push_vlan",
2696 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
2697 		.priv = PRIV_ACTION
2698 			(OF_PUSH_VLAN,
2699 			 sizeof(struct rte_flow_action_of_push_vlan)),
2700 		.next = NEXT(action_of_push_vlan),
2701 		.call = parse_vc,
2702 	},
2703 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2704 		.name = "ethertype",
2705 		.help = "EtherType",
2706 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2707 		.args = ARGS(ARGS_ENTRY_HTON
2708 			     (struct rte_flow_action_of_push_vlan,
2709 			      ethertype)),
2710 		.call = parse_vc_conf,
2711 	},
2712 	[ACTION_OF_SET_VLAN_VID] = {
2713 		.name = "of_set_vlan_vid",
2714 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
2715 		.priv = PRIV_ACTION
2716 			(OF_SET_VLAN_VID,
2717 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
2718 		.next = NEXT(action_of_set_vlan_vid),
2719 		.call = parse_vc,
2720 	},
2721 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2722 		.name = "vlan_vid",
2723 		.help = "VLAN id",
2724 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2725 		.args = ARGS(ARGS_ENTRY_HTON
2726 			     (struct rte_flow_action_of_set_vlan_vid,
2727 			      vlan_vid)),
2728 		.call = parse_vc_conf,
2729 	},
2730 	[ACTION_OF_SET_VLAN_PCP] = {
2731 		.name = "of_set_vlan_pcp",
2732 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2733 		.priv = PRIV_ACTION
2734 			(OF_SET_VLAN_PCP,
2735 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2736 		.next = NEXT(action_of_set_vlan_pcp),
2737 		.call = parse_vc,
2738 	},
2739 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2740 		.name = "vlan_pcp",
2741 		.help = "VLAN priority",
2742 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2743 		.args = ARGS(ARGS_ENTRY_HTON
2744 			     (struct rte_flow_action_of_set_vlan_pcp,
2745 			      vlan_pcp)),
2746 		.call = parse_vc_conf,
2747 	},
2748 	[ACTION_OF_POP_MPLS] = {
2749 		.name = "of_pop_mpls",
2750 		.help = "OpenFlow's OFPAT_POP_MPLS",
2751 		.priv = PRIV_ACTION(OF_POP_MPLS,
2752 				    sizeof(struct rte_flow_action_of_pop_mpls)),
2753 		.next = NEXT(action_of_pop_mpls),
2754 		.call = parse_vc,
2755 	},
2756 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
2757 		.name = "ethertype",
2758 		.help = "EtherType",
2759 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2760 		.args = ARGS(ARGS_ENTRY_HTON
2761 			     (struct rte_flow_action_of_pop_mpls,
2762 			      ethertype)),
2763 		.call = parse_vc_conf,
2764 	},
2765 	[ACTION_OF_PUSH_MPLS] = {
2766 		.name = "of_push_mpls",
2767 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
2768 		.priv = PRIV_ACTION
2769 			(OF_PUSH_MPLS,
2770 			 sizeof(struct rte_flow_action_of_push_mpls)),
2771 		.next = NEXT(action_of_push_mpls),
2772 		.call = parse_vc,
2773 	},
2774 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2775 		.name = "ethertype",
2776 		.help = "EtherType",
2777 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2778 		.args = ARGS(ARGS_ENTRY_HTON
2779 			     (struct rte_flow_action_of_push_mpls,
2780 			      ethertype)),
2781 		.call = parse_vc_conf,
2782 	},
2783 	[ACTION_VXLAN_ENCAP] = {
2784 		.name = "vxlan_encap",
2785 		.help = "VXLAN encapsulation, uses configuration set by \"set"
2786 			" vxlan\"",
2787 		.priv = PRIV_ACTION(VXLAN_ENCAP,
2788 				    sizeof(struct action_vxlan_encap_data)),
2789 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2790 		.call = parse_vc_action_vxlan_encap,
2791 	},
2792 	[ACTION_VXLAN_DECAP] = {
2793 		.name = "vxlan_decap",
2794 		.help = "Performs a decapsulation action by stripping all"
2795 			" headers of the VXLAN tunnel network overlay from the"
2796 			" matched flow.",
2797 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
2798 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2799 		.call = parse_vc,
2800 	},
2801 	[ACTION_NVGRE_ENCAP] = {
2802 		.name = "nvgre_encap",
2803 		.help = "NVGRE encapsulation, uses configuration set by \"set"
2804 			" nvgre\"",
2805 		.priv = PRIV_ACTION(NVGRE_ENCAP,
2806 				    sizeof(struct action_nvgre_encap_data)),
2807 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2808 		.call = parse_vc_action_nvgre_encap,
2809 	},
2810 	[ACTION_NVGRE_DECAP] = {
2811 		.name = "nvgre_decap",
2812 		.help = "Performs a decapsulation action by stripping all"
2813 			" headers of the NVGRE tunnel network overlay from the"
2814 			" matched flow.",
2815 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
2816 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2817 		.call = parse_vc,
2818 	},
2819 	[ACTION_L2_ENCAP] = {
2820 		.name = "l2_encap",
2821 		.help = "l2 encap, uses configuration set by"
2822 			" \"set l2_encap\"",
2823 		.priv = PRIV_ACTION(RAW_ENCAP,
2824 				    sizeof(struct action_raw_encap_data)),
2825 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2826 		.call = parse_vc_action_l2_encap,
2827 	},
2828 	[ACTION_L2_DECAP] = {
2829 		.name = "l2_decap",
2830 		.help = "l2 decap, uses configuration set by"
2831 			" \"set l2_decap\"",
2832 		.priv = PRIV_ACTION(RAW_DECAP,
2833 				    sizeof(struct action_raw_decap_data)),
2834 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2835 		.call = parse_vc_action_l2_decap,
2836 	},
2837 	[ACTION_MPLSOGRE_ENCAP] = {
2838 		.name = "mplsogre_encap",
2839 		.help = "mplsogre encapsulation, uses configuration set by"
2840 			" \"set mplsogre_encap\"",
2841 		.priv = PRIV_ACTION(RAW_ENCAP,
2842 				    sizeof(struct action_raw_encap_data)),
2843 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2844 		.call = parse_vc_action_mplsogre_encap,
2845 	},
2846 	[ACTION_MPLSOGRE_DECAP] = {
2847 		.name = "mplsogre_decap",
2848 		.help = "mplsogre decapsulation, uses configuration set by"
2849 			" \"set mplsogre_decap\"",
2850 		.priv = PRIV_ACTION(RAW_DECAP,
2851 				    sizeof(struct action_raw_decap_data)),
2852 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2853 		.call = parse_vc_action_mplsogre_decap,
2854 	},
2855 	[ACTION_MPLSOUDP_ENCAP] = {
2856 		.name = "mplsoudp_encap",
2857 		.help = "mplsoudp encapsulation, uses configuration set by"
2858 			" \"set mplsoudp_encap\"",
2859 		.priv = PRIV_ACTION(RAW_ENCAP,
2860 				    sizeof(struct action_raw_encap_data)),
2861 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2862 		.call = parse_vc_action_mplsoudp_encap,
2863 	},
2864 	[ACTION_MPLSOUDP_DECAP] = {
2865 		.name = "mplsoudp_decap",
2866 		.help = "mplsoudp decapsulation, uses configuration set by"
2867 			" \"set mplsoudp_decap\"",
2868 		.priv = PRIV_ACTION(RAW_DECAP,
2869 				    sizeof(struct action_raw_decap_data)),
2870 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2871 		.call = parse_vc_action_mplsoudp_decap,
2872 	},
2873 	[ACTION_SET_IPV4_SRC] = {
2874 		.name = "set_ipv4_src",
2875 		.help = "Set a new IPv4 source address in the outermost"
2876 			" IPv4 header",
2877 		.priv = PRIV_ACTION(SET_IPV4_SRC,
2878 			sizeof(struct rte_flow_action_set_ipv4)),
2879 		.next = NEXT(action_set_ipv4_src),
2880 		.call = parse_vc,
2881 	},
2882 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
2883 		.name = "ipv4_addr",
2884 		.help = "new IPv4 source address to set",
2885 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
2886 		.args = ARGS(ARGS_ENTRY_HTON
2887 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2888 		.call = parse_vc_conf,
2889 	},
2890 	[ACTION_SET_IPV4_DST] = {
2891 		.name = "set_ipv4_dst",
2892 		.help = "Set a new IPv4 destination address in the outermost"
2893 			" IPv4 header",
2894 		.priv = PRIV_ACTION(SET_IPV4_DST,
2895 			sizeof(struct rte_flow_action_set_ipv4)),
2896 		.next = NEXT(action_set_ipv4_dst),
2897 		.call = parse_vc,
2898 	},
2899 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
2900 		.name = "ipv4_addr",
2901 		.help = "new IPv4 destination address to set",
2902 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
2903 		.args = ARGS(ARGS_ENTRY_HTON
2904 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
2905 		.call = parse_vc_conf,
2906 	},
2907 	[ACTION_SET_IPV6_SRC] = {
2908 		.name = "set_ipv6_src",
2909 		.help = "Set a new IPv6 source address in the outermost"
2910 			" IPv6 header",
2911 		.priv = PRIV_ACTION(SET_IPV6_SRC,
2912 			sizeof(struct rte_flow_action_set_ipv6)),
2913 		.next = NEXT(action_set_ipv6_src),
2914 		.call = parse_vc,
2915 	},
2916 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
2917 		.name = "ipv6_addr",
2918 		.help = "new IPv6 source address to set",
2919 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
2920 		.args = ARGS(ARGS_ENTRY_HTON
2921 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2922 		.call = parse_vc_conf,
2923 	},
2924 	[ACTION_SET_IPV6_DST] = {
2925 		.name = "set_ipv6_dst",
2926 		.help = "Set a new IPv6 destination address in the outermost"
2927 			" IPv6 header",
2928 		.priv = PRIV_ACTION(SET_IPV6_DST,
2929 			sizeof(struct rte_flow_action_set_ipv6)),
2930 		.next = NEXT(action_set_ipv6_dst),
2931 		.call = parse_vc,
2932 	},
2933 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
2934 		.name = "ipv6_addr",
2935 		.help = "new IPv6 destination address to set",
2936 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
2937 		.args = ARGS(ARGS_ENTRY_HTON
2938 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
2939 		.call = parse_vc_conf,
2940 	},
2941 	[ACTION_SET_TP_SRC] = {
2942 		.name = "set_tp_src",
2943 		.help = "set a new source port number in the outermost"
2944 			" TCP/UDP header",
2945 		.priv = PRIV_ACTION(SET_TP_SRC,
2946 			sizeof(struct rte_flow_action_set_tp)),
2947 		.next = NEXT(action_set_tp_src),
2948 		.call = parse_vc,
2949 	},
2950 	[ACTION_SET_TP_SRC_TP_SRC] = {
2951 		.name = "port",
2952 		.help = "new source port number to set",
2953 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
2954 		.args = ARGS(ARGS_ENTRY_HTON
2955 			     (struct rte_flow_action_set_tp, port)),
2956 		.call = parse_vc_conf,
2957 	},
2958 	[ACTION_SET_TP_DST] = {
2959 		.name = "set_tp_dst",
2960 		.help = "set a new destination port number in the outermost"
2961 			" TCP/UDP header",
2962 		.priv = PRIV_ACTION(SET_TP_DST,
2963 			sizeof(struct rte_flow_action_set_tp)),
2964 		.next = NEXT(action_set_tp_dst),
2965 		.call = parse_vc,
2966 	},
2967 	[ACTION_SET_TP_DST_TP_DST] = {
2968 		.name = "port",
2969 		.help = "new destination port number to set",
2970 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
2971 		.args = ARGS(ARGS_ENTRY_HTON
2972 			     (struct rte_flow_action_set_tp, port)),
2973 		.call = parse_vc_conf,
2974 	},
2975 	[ACTION_MAC_SWAP] = {
2976 		.name = "mac_swap",
2977 		.help = "Swap the source and destination MAC addresses"
2978 			" in the outermost Ethernet header",
2979 		.priv = PRIV_ACTION(MAC_SWAP, 0),
2980 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2981 		.call = parse_vc,
2982 	},
2983 	[ACTION_DEC_TTL] = {
2984 		.name = "dec_ttl",
2985 		.help = "decrease network TTL if available",
2986 		.priv = PRIV_ACTION(DEC_TTL, 0),
2987 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2988 		.call = parse_vc,
2989 	},
2990 	[ACTION_SET_TTL] = {
2991 		.name = "set_ttl",
2992 		.help = "set ttl value",
2993 		.priv = PRIV_ACTION(SET_TTL,
2994 			sizeof(struct rte_flow_action_set_ttl)),
2995 		.next = NEXT(action_set_ttl),
2996 		.call = parse_vc,
2997 	},
2998 	[ACTION_SET_TTL_TTL] = {
2999 		.name = "ttl_value",
3000 		.help = "new ttl value to set",
3001 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
3002 		.args = ARGS(ARGS_ENTRY_HTON
3003 			     (struct rte_flow_action_set_ttl, ttl_value)),
3004 		.call = parse_vc_conf,
3005 	},
3006 	[ACTION_SET_MAC_SRC] = {
3007 		.name = "set_mac_src",
3008 		.help = "set source mac address",
3009 		.priv = PRIV_ACTION(SET_MAC_SRC,
3010 			sizeof(struct rte_flow_action_set_mac)),
3011 		.next = NEXT(action_set_mac_src),
3012 		.call = parse_vc,
3013 	},
3014 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
3015 		.name = "mac_addr",
3016 		.help = "new source mac address",
3017 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
3018 		.args = ARGS(ARGS_ENTRY_HTON
3019 			     (struct rte_flow_action_set_mac, mac_addr)),
3020 		.call = parse_vc_conf,
3021 	},
3022 	[ACTION_SET_MAC_DST] = {
3023 		.name = "set_mac_dst",
3024 		.help = "set destination mac address",
3025 		.priv = PRIV_ACTION(SET_MAC_DST,
3026 			sizeof(struct rte_flow_action_set_mac)),
3027 		.next = NEXT(action_set_mac_dst),
3028 		.call = parse_vc,
3029 	},
3030 	[ACTION_SET_MAC_DST_MAC_DST] = {
3031 		.name = "mac_addr",
3032 		.help = "new destination mac address to set",
3033 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
3034 		.args = ARGS(ARGS_ENTRY_HTON
3035 			     (struct rte_flow_action_set_mac, mac_addr)),
3036 		.call = parse_vc_conf,
3037 	},
3038 	[ACTION_INC_TCP_SEQ] = {
3039 		.name = "inc_tcp_seq",
3040 		.help = "increase TCP sequence number",
3041 		.priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
3042 		.next = NEXT(action_inc_tcp_seq),
3043 		.call = parse_vc,
3044 	},
3045 	[ACTION_INC_TCP_SEQ_VALUE] = {
3046 		.name = "value",
3047 		.help = "the value to increase TCP sequence number by",
3048 		.next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3049 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3050 		.call = parse_vc_conf,
3051 	},
3052 	[ACTION_DEC_TCP_SEQ] = {
3053 		.name = "dec_tcp_seq",
3054 		.help = "decrease TCP sequence number",
3055 		.priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
3056 		.next = NEXT(action_dec_tcp_seq),
3057 		.call = parse_vc,
3058 	},
3059 	[ACTION_DEC_TCP_SEQ_VALUE] = {
3060 		.name = "value",
3061 		.help = "the value to decrease TCP sequence number by",
3062 		.next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3063 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3064 		.call = parse_vc_conf,
3065 	},
3066 	[ACTION_INC_TCP_ACK] = {
3067 		.name = "inc_tcp_ack",
3068 		.help = "increase TCP acknowledgment number",
3069 		.priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
3070 		.next = NEXT(action_inc_tcp_ack),
3071 		.call = parse_vc,
3072 	},
3073 	[ACTION_INC_TCP_ACK_VALUE] = {
3074 		.name = "value",
3075 		.help = "the value to increase TCP acknowledgment number by",
3076 		.next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3077 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3078 		.call = parse_vc_conf,
3079 	},
3080 	[ACTION_DEC_TCP_ACK] = {
3081 		.name = "dec_tcp_ack",
3082 		.help = "decrease TCP acknowledgment number",
3083 		.priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
3084 		.next = NEXT(action_dec_tcp_ack),
3085 		.call = parse_vc,
3086 	},
3087 	[ACTION_DEC_TCP_ACK_VALUE] = {
3088 		.name = "value",
3089 		.help = "the value to decrease TCP acknowledgment number by",
3090 		.next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3091 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3092 		.call = parse_vc_conf,
3093 	},
3094 	[ACTION_RAW_ENCAP] = {
3095 		.name = "raw_encap",
3096 		.help = "encapsulation data, defined by set raw_encap",
3097 		.priv = PRIV_ACTION(RAW_ENCAP,
3098 			sizeof(struct rte_flow_action_raw_encap)),
3099 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3100 		.call = parse_vc_action_raw_encap,
3101 	},
3102 	[ACTION_RAW_DECAP] = {
3103 		.name = "raw_decap",
3104 		.help = "decapsulation data, defined by set raw_encap",
3105 		.priv = PRIV_ACTION(RAW_DECAP,
3106 			sizeof(struct rte_flow_action_raw_decap)),
3107 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3108 		.call = parse_vc_action_raw_decap,
3109 	},
3110 	/* Top level command. */
3111 	[SET] = {
3112 		.name = "set",
3113 		.help = "set raw encap/decap data",
3114 		.type = "set raw_encap|raw_decap <pattern>",
3115 		.next = NEXT(NEXT_ENTRY
3116 			     (SET_RAW_ENCAP,
3117 			      SET_RAW_DECAP)),
3118 		.call = parse_set_init,
3119 	},
3120 	/* Sub-level commands. */
3121 	[SET_RAW_ENCAP] = {
3122 		.name = "raw_encap",
3123 		.help = "set raw encap data",
3124 		.next = NEXT(next_item),
3125 		.call = parse_set_raw_encap_decap,
3126 	},
3127 	[SET_RAW_DECAP] = {
3128 		.name = "raw_decap",
3129 		.help = "set raw decap data",
3130 		.next = NEXT(next_item),
3131 		.call = parse_set_raw_encap_decap,
3132 	}
3133 };
3134 
3135 /** Remove and return last entry from argument stack. */
3136 static const struct arg *
3137 pop_args(struct context *ctx)
3138 {
3139 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
3140 }
3141 
3142 /** Add entry on top of the argument stack. */
3143 static int
3144 push_args(struct context *ctx, const struct arg *arg)
3145 {
3146 	if (ctx->args_num == CTX_STACK_SIZE)
3147 		return -1;
3148 	ctx->args[ctx->args_num++] = arg;
3149 	return 0;
3150 }
3151 
3152 /** Spread value into buffer according to bit-mask. */
3153 static size_t
3154 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
3155 {
3156 	uint32_t i = arg->size;
3157 	uint32_t end = 0;
3158 	int sub = 1;
3159 	int add = 0;
3160 	size_t len = 0;
3161 
3162 	if (!arg->mask)
3163 		return 0;
3164 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3165 	if (!arg->hton) {
3166 		i = 0;
3167 		end = arg->size;
3168 		sub = 0;
3169 		add = 1;
3170 	}
3171 #endif
3172 	while (i != end) {
3173 		unsigned int shift = 0;
3174 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
3175 
3176 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
3177 			if (!(arg->mask[i] & (1 << shift)))
3178 				continue;
3179 			++len;
3180 			if (!dst)
3181 				continue;
3182 			*buf &= ~(1 << shift);
3183 			*buf |= (val & 1) << shift;
3184 			val >>= 1;
3185 		}
3186 		i += add;
3187 	}
3188 	return len;
3189 }
3190 
3191 /** Compare a string with a partial one of a given length. */
3192 static int
3193 strcmp_partial(const char *full, const char *partial, size_t partial_len)
3194 {
3195 	int r = strncmp(full, partial, partial_len);
3196 
3197 	if (r)
3198 		return r;
3199 	if (strlen(full) <= partial_len)
3200 		return 0;
3201 	return full[partial_len];
3202 }
3203 
3204 /**
3205  * Parse a prefix length and generate a bit-mask.
3206  *
3207  * Last argument (ctx->args) is retrieved to determine mask size, storage
3208  * location and whether the result must use network byte ordering.
3209  */
3210 static int
3211 parse_prefix(struct context *ctx, const struct token *token,
3212 	     const char *str, unsigned int len,
3213 	     void *buf, unsigned int size)
3214 {
3215 	const struct arg *arg = pop_args(ctx);
3216 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
3217 	char *end;
3218 	uintmax_t u;
3219 	unsigned int bytes;
3220 	unsigned int extra;
3221 
3222 	(void)token;
3223 	/* Argument is expected. */
3224 	if (!arg)
3225 		return -1;
3226 	errno = 0;
3227 	u = strtoumax(str, &end, 0);
3228 	if (errno || (size_t)(end - str) != len)
3229 		goto error;
3230 	if (arg->mask) {
3231 		uintmax_t v = 0;
3232 
3233 		extra = arg_entry_bf_fill(NULL, 0, arg);
3234 		if (u > extra)
3235 			goto error;
3236 		if (!ctx->object)
3237 			return len;
3238 		extra -= u;
3239 		while (u--)
3240 			(v <<= 1, v |= 1);
3241 		v <<= extra;
3242 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
3243 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
3244 			goto error;
3245 		return len;
3246 	}
3247 	bytes = u / 8;
3248 	extra = u % 8;
3249 	size = arg->size;
3250 	if (bytes > size || bytes + !!extra > size)
3251 		goto error;
3252 	if (!ctx->object)
3253 		return len;
3254 	buf = (uint8_t *)ctx->object + arg->offset;
3255 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3256 	if (!arg->hton) {
3257 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
3258 		memset(buf, 0x00, size - bytes);
3259 		if (extra)
3260 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
3261 	} else
3262 #endif
3263 	{
3264 		memset(buf, 0xff, bytes);
3265 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
3266 		if (extra)
3267 			((uint8_t *)buf)[bytes] = conv[extra];
3268 	}
3269 	if (ctx->objmask)
3270 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3271 	return len;
3272 error:
3273 	push_args(ctx, arg);
3274 	return -1;
3275 }
3276 
3277 /** Default parsing function for token name matching. */
3278 static int
3279 parse_default(struct context *ctx, const struct token *token,
3280 	      const char *str, unsigned int len,
3281 	      void *buf, unsigned int size)
3282 {
3283 	(void)ctx;
3284 	(void)buf;
3285 	(void)size;
3286 	if (strcmp_partial(token->name, str, len))
3287 		return -1;
3288 	return len;
3289 }
3290 
3291 /** Parse flow command, initialize output buffer for subsequent tokens. */
3292 static int
3293 parse_init(struct context *ctx, const struct token *token,
3294 	   const char *str, unsigned int len,
3295 	   void *buf, unsigned int size)
3296 {
3297 	struct buffer *out = buf;
3298 
3299 	/* Token name must match. */
3300 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3301 		return -1;
3302 	/* Nothing else to do if there is no buffer. */
3303 	if (!out)
3304 		return len;
3305 	/* Make sure buffer is large enough. */
3306 	if (size < sizeof(*out))
3307 		return -1;
3308 	/* Initialize buffer. */
3309 	memset(out, 0x00, sizeof(*out));
3310 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
3311 	ctx->objdata = 0;
3312 	ctx->object = out;
3313 	ctx->objmask = NULL;
3314 	return len;
3315 }
3316 
3317 /** Parse tokens for validate/create commands. */
3318 static int
3319 parse_vc(struct context *ctx, const struct token *token,
3320 	 const char *str, unsigned int len,
3321 	 void *buf, unsigned int size)
3322 {
3323 	struct buffer *out = buf;
3324 	uint8_t *data;
3325 	uint32_t data_size;
3326 
3327 	/* Token name must match. */
3328 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3329 		return -1;
3330 	/* Nothing else to do if there is no buffer. */
3331 	if (!out)
3332 		return len;
3333 	if (!out->command) {
3334 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
3335 			return -1;
3336 		if (sizeof(*out) > size)
3337 			return -1;
3338 		out->command = ctx->curr;
3339 		ctx->objdata = 0;
3340 		ctx->object = out;
3341 		ctx->objmask = NULL;
3342 		out->args.vc.data = (uint8_t *)out + size;
3343 		return len;
3344 	}
3345 	ctx->objdata = 0;
3346 	ctx->object = &out->args.vc.attr;
3347 	ctx->objmask = NULL;
3348 	switch (ctx->curr) {
3349 	case GROUP:
3350 	case PRIORITY:
3351 		return len;
3352 	case INGRESS:
3353 		out->args.vc.attr.ingress = 1;
3354 		return len;
3355 	case EGRESS:
3356 		out->args.vc.attr.egress = 1;
3357 		return len;
3358 	case TRANSFER:
3359 		out->args.vc.attr.transfer = 1;
3360 		return len;
3361 	case PATTERN:
3362 		out->args.vc.pattern =
3363 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3364 					       sizeof(double));
3365 		ctx->object = out->args.vc.pattern;
3366 		ctx->objmask = NULL;
3367 		return len;
3368 	case ACTIONS:
3369 		out->args.vc.actions =
3370 			(void *)RTE_ALIGN_CEIL((uintptr_t)
3371 					       (out->args.vc.pattern +
3372 						out->args.vc.pattern_n),
3373 					       sizeof(double));
3374 		ctx->object = out->args.vc.actions;
3375 		ctx->objmask = NULL;
3376 		return len;
3377 	default:
3378 		if (!token->priv)
3379 			return -1;
3380 		break;
3381 	}
3382 	if (!out->args.vc.actions) {
3383 		const struct parse_item_priv *priv = token->priv;
3384 		struct rte_flow_item *item =
3385 			out->args.vc.pattern + out->args.vc.pattern_n;
3386 
3387 		data_size = priv->size * 3; /* spec, last, mask */
3388 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3389 					       (out->args.vc.data - data_size),
3390 					       sizeof(double));
3391 		if ((uint8_t *)item + sizeof(*item) > data)
3392 			return -1;
3393 		*item = (struct rte_flow_item){
3394 			.type = priv->type,
3395 		};
3396 		++out->args.vc.pattern_n;
3397 		ctx->object = item;
3398 		ctx->objmask = NULL;
3399 	} else {
3400 		const struct parse_action_priv *priv = token->priv;
3401 		struct rte_flow_action *action =
3402 			out->args.vc.actions + out->args.vc.actions_n;
3403 
3404 		data_size = priv->size; /* configuration */
3405 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
3406 					       (out->args.vc.data - data_size),
3407 					       sizeof(double));
3408 		if ((uint8_t *)action + sizeof(*action) > data)
3409 			return -1;
3410 		*action = (struct rte_flow_action){
3411 			.type = priv->type,
3412 			.conf = data_size ? data : NULL,
3413 		};
3414 		++out->args.vc.actions_n;
3415 		ctx->object = action;
3416 		ctx->objmask = NULL;
3417 	}
3418 	memset(data, 0, data_size);
3419 	out->args.vc.data = data;
3420 	ctx->objdata = data_size;
3421 	return len;
3422 }
3423 
3424 /** Parse pattern item parameter type. */
3425 static int
3426 parse_vc_spec(struct context *ctx, const struct token *token,
3427 	      const char *str, unsigned int len,
3428 	      void *buf, unsigned int size)
3429 {
3430 	struct buffer *out = buf;
3431 	struct rte_flow_item *item;
3432 	uint32_t data_size;
3433 	int index;
3434 	int objmask = 0;
3435 
3436 	(void)size;
3437 	/* Token name must match. */
3438 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3439 		return -1;
3440 	/* Parse parameter types. */
3441 	switch (ctx->curr) {
3442 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
3443 
3444 	case ITEM_PARAM_IS:
3445 		index = 0;
3446 		objmask = 1;
3447 		break;
3448 	case ITEM_PARAM_SPEC:
3449 		index = 0;
3450 		break;
3451 	case ITEM_PARAM_LAST:
3452 		index = 1;
3453 		break;
3454 	case ITEM_PARAM_PREFIX:
3455 		/* Modify next token to expect a prefix. */
3456 		if (ctx->next_num < 2)
3457 			return -1;
3458 		ctx->next[ctx->next_num - 2] = prefix;
3459 		/* Fall through. */
3460 	case ITEM_PARAM_MASK:
3461 		index = 2;
3462 		break;
3463 	default:
3464 		return -1;
3465 	}
3466 	/* Nothing else to do if there is no buffer. */
3467 	if (!out)
3468 		return len;
3469 	if (!out->args.vc.pattern_n)
3470 		return -1;
3471 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
3472 	data_size = ctx->objdata / 3; /* spec, last, mask */
3473 	/* Point to selected object. */
3474 	ctx->object = out->args.vc.data + (data_size * index);
3475 	if (objmask) {
3476 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
3477 		item->mask = ctx->objmask;
3478 	} else
3479 		ctx->objmask = NULL;
3480 	/* Update relevant item pointer. */
3481 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
3482 		ctx->object;
3483 	return len;
3484 }
3485 
3486 /** Parse action configuration field. */
3487 static int
3488 parse_vc_conf(struct context *ctx, const struct token *token,
3489 	      const char *str, unsigned int len,
3490 	      void *buf, unsigned int size)
3491 {
3492 	struct buffer *out = buf;
3493 
3494 	(void)size;
3495 	/* Token name must match. */
3496 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3497 		return -1;
3498 	/* Nothing else to do if there is no buffer. */
3499 	if (!out)
3500 		return len;
3501 	/* Point to selected object. */
3502 	ctx->object = out->args.vc.data;
3503 	ctx->objmask = NULL;
3504 	return len;
3505 }
3506 
3507 /** Parse RSS action. */
3508 static int
3509 parse_vc_action_rss(struct context *ctx, const struct token *token,
3510 		    const char *str, unsigned int len,
3511 		    void *buf, unsigned int size)
3512 {
3513 	struct buffer *out = buf;
3514 	struct rte_flow_action *action;
3515 	struct action_rss_data *action_rss_data;
3516 	unsigned int i;
3517 	int ret;
3518 
3519 	ret = parse_vc(ctx, token, str, len, buf, size);
3520 	if (ret < 0)
3521 		return ret;
3522 	/* Nothing else to do if there is no buffer. */
3523 	if (!out)
3524 		return ret;
3525 	if (!out->args.vc.actions_n)
3526 		return -1;
3527 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3528 	/* Point to selected object. */
3529 	ctx->object = out->args.vc.data;
3530 	ctx->objmask = NULL;
3531 	/* Set up default configuration. */
3532 	action_rss_data = ctx->object;
3533 	*action_rss_data = (struct action_rss_data){
3534 		.conf = (struct rte_flow_action_rss){
3535 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
3536 			.level = 0,
3537 			.types = rss_hf,
3538 			.key_len = sizeof(action_rss_data->key),
3539 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
3540 			.key = action_rss_data->key,
3541 			.queue = action_rss_data->queue,
3542 		},
3543 		.key = "testpmd's default RSS hash key, "
3544 			"override it for better balancing",
3545 		.queue = { 0 },
3546 	};
3547 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
3548 		action_rss_data->queue[i] = i;
3549 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
3550 	    ctx->port != (portid_t)RTE_PORT_ALL) {
3551 		struct rte_eth_dev_info info;
3552 		int ret2;
3553 
3554 		ret2 = rte_eth_dev_info_get(ctx->port, &info);
3555 		if (ret2 != 0)
3556 			return ret2;
3557 
3558 		action_rss_data->conf.key_len =
3559 			RTE_MIN(sizeof(action_rss_data->key),
3560 				info.hash_key_size);
3561 	}
3562 	action->conf = &action_rss_data->conf;
3563 	return ret;
3564 }
3565 
3566 /**
3567  * Parse func field for RSS action.
3568  *
3569  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
3570  * ACTION_RSS_FUNC_* index that called this function.
3571  */
3572 static int
3573 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
3574 			 const char *str, unsigned int len,
3575 			 void *buf, unsigned int size)
3576 {
3577 	struct action_rss_data *action_rss_data;
3578 	enum rte_eth_hash_function func;
3579 
3580 	(void)buf;
3581 	(void)size;
3582 	/* Token name must match. */
3583 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3584 		return -1;
3585 	switch (ctx->curr) {
3586 	case ACTION_RSS_FUNC_DEFAULT:
3587 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
3588 		break;
3589 	case ACTION_RSS_FUNC_TOEPLITZ:
3590 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
3591 		break;
3592 	case ACTION_RSS_FUNC_SIMPLE_XOR:
3593 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
3594 		break;
3595 	default:
3596 		return -1;
3597 	}
3598 	if (!ctx->object)
3599 		return len;
3600 	action_rss_data = ctx->object;
3601 	action_rss_data->conf.func = func;
3602 	return len;
3603 }
3604 
3605 /**
3606  * Parse type field for RSS action.
3607  *
3608  * Valid tokens are type field names and the "end" token.
3609  */
3610 static int
3611 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
3612 			  const char *str, unsigned int len,
3613 			  void *buf, unsigned int size)
3614 {
3615 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
3616 	struct action_rss_data *action_rss_data;
3617 	unsigned int i;
3618 
3619 	(void)token;
3620 	(void)buf;
3621 	(void)size;
3622 	if (ctx->curr != ACTION_RSS_TYPE)
3623 		return -1;
3624 	if (!(ctx->objdata >> 16) && ctx->object) {
3625 		action_rss_data = ctx->object;
3626 		action_rss_data->conf.types = 0;
3627 	}
3628 	if (!strcmp_partial("end", str, len)) {
3629 		ctx->objdata &= 0xffff;
3630 		return len;
3631 	}
3632 	for (i = 0; rss_type_table[i].str; ++i)
3633 		if (!strcmp_partial(rss_type_table[i].str, str, len))
3634 			break;
3635 	if (!rss_type_table[i].str)
3636 		return -1;
3637 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
3638 	/* Repeat token. */
3639 	if (ctx->next_num == RTE_DIM(ctx->next))
3640 		return -1;
3641 	ctx->next[ctx->next_num++] = next;
3642 	if (!ctx->object)
3643 		return len;
3644 	action_rss_data = ctx->object;
3645 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
3646 	return len;
3647 }
3648 
3649 /**
3650  * Parse queue field for RSS action.
3651  *
3652  * Valid tokens are queue indices and the "end" token.
3653  */
3654 static int
3655 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
3656 			  const char *str, unsigned int len,
3657 			  void *buf, unsigned int size)
3658 {
3659 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
3660 	struct action_rss_data *action_rss_data;
3661 	const struct arg *arg;
3662 	int ret;
3663 	int i;
3664 
3665 	(void)token;
3666 	(void)buf;
3667 	(void)size;
3668 	if (ctx->curr != ACTION_RSS_QUEUE)
3669 		return -1;
3670 	i = ctx->objdata >> 16;
3671 	if (!strcmp_partial("end", str, len)) {
3672 		ctx->objdata &= 0xffff;
3673 		goto end;
3674 	}
3675 	if (i >= ACTION_RSS_QUEUE_NUM)
3676 		return -1;
3677 	arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3678 			     i * sizeof(action_rss_data->queue[i]),
3679 			     sizeof(action_rss_data->queue[i]));
3680 	if (push_args(ctx, arg))
3681 		return -1;
3682 	ret = parse_int(ctx, token, str, len, NULL, 0);
3683 	if (ret < 0) {
3684 		pop_args(ctx);
3685 		return -1;
3686 	}
3687 	++i;
3688 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3689 	/* Repeat token. */
3690 	if (ctx->next_num == RTE_DIM(ctx->next))
3691 		return -1;
3692 	ctx->next[ctx->next_num++] = next;
3693 end:
3694 	if (!ctx->object)
3695 		return len;
3696 	action_rss_data = ctx->object;
3697 	action_rss_data->conf.queue_num = i;
3698 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3699 	return len;
3700 }
3701 
3702 /** Parse VXLAN encap action. */
3703 static int
3704 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3705 			    const char *str, unsigned int len,
3706 			    void *buf, unsigned int size)
3707 {
3708 	struct buffer *out = buf;
3709 	struct rte_flow_action *action;
3710 	struct action_vxlan_encap_data *action_vxlan_encap_data;
3711 	int ret;
3712 
3713 	ret = parse_vc(ctx, token, str, len, buf, size);
3714 	if (ret < 0)
3715 		return ret;
3716 	/* Nothing else to do if there is no buffer. */
3717 	if (!out)
3718 		return ret;
3719 	if (!out->args.vc.actions_n)
3720 		return -1;
3721 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3722 	/* Point to selected object. */
3723 	ctx->object = out->args.vc.data;
3724 	ctx->objmask = NULL;
3725 	/* Set up default configuration. */
3726 	action_vxlan_encap_data = ctx->object;
3727 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
3728 		.conf = (struct rte_flow_action_vxlan_encap){
3729 			.definition = action_vxlan_encap_data->items,
3730 		},
3731 		.items = {
3732 			{
3733 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3734 				.spec = &action_vxlan_encap_data->item_eth,
3735 				.mask = &rte_flow_item_eth_mask,
3736 			},
3737 			{
3738 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3739 				.spec = &action_vxlan_encap_data->item_vlan,
3740 				.mask = &rte_flow_item_vlan_mask,
3741 			},
3742 			{
3743 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3744 				.spec = &action_vxlan_encap_data->item_ipv4,
3745 				.mask = &rte_flow_item_ipv4_mask,
3746 			},
3747 			{
3748 				.type = RTE_FLOW_ITEM_TYPE_UDP,
3749 				.spec = &action_vxlan_encap_data->item_udp,
3750 				.mask = &rte_flow_item_udp_mask,
3751 			},
3752 			{
3753 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
3754 				.spec = &action_vxlan_encap_data->item_vxlan,
3755 				.mask = &rte_flow_item_vxlan_mask,
3756 			},
3757 			{
3758 				.type = RTE_FLOW_ITEM_TYPE_END,
3759 			},
3760 		},
3761 		.item_eth.type = 0,
3762 		.item_vlan = {
3763 			.tci = vxlan_encap_conf.vlan_tci,
3764 			.inner_type = 0,
3765 		},
3766 		.item_ipv4.hdr = {
3767 			.src_addr = vxlan_encap_conf.ipv4_src,
3768 			.dst_addr = vxlan_encap_conf.ipv4_dst,
3769 		},
3770 		.item_udp.hdr = {
3771 			.src_port = vxlan_encap_conf.udp_src,
3772 			.dst_port = vxlan_encap_conf.udp_dst,
3773 		},
3774 		.item_vxlan.flags = 0,
3775 	};
3776 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3777 	       vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3778 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3779 	       vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3780 	if (!vxlan_encap_conf.select_ipv4) {
3781 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3782 		       &vxlan_encap_conf.ipv6_src,
3783 		       sizeof(vxlan_encap_conf.ipv6_src));
3784 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3785 		       &vxlan_encap_conf.ipv6_dst,
3786 		       sizeof(vxlan_encap_conf.ipv6_dst));
3787 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3788 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3789 			.spec = &action_vxlan_encap_data->item_ipv6,
3790 			.mask = &rte_flow_item_ipv6_mask,
3791 		};
3792 	}
3793 	if (!vxlan_encap_conf.select_vlan)
3794 		action_vxlan_encap_data->items[1].type =
3795 			RTE_FLOW_ITEM_TYPE_VOID;
3796 	if (vxlan_encap_conf.select_tos_ttl) {
3797 		if (vxlan_encap_conf.select_ipv4) {
3798 			static struct rte_flow_item_ipv4 ipv4_mask_tos;
3799 
3800 			memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
3801 			       sizeof(ipv4_mask_tos));
3802 			ipv4_mask_tos.hdr.type_of_service = 0xff;
3803 			ipv4_mask_tos.hdr.time_to_live = 0xff;
3804 			action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
3805 					vxlan_encap_conf.ip_tos;
3806 			action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
3807 					vxlan_encap_conf.ip_ttl;
3808 			action_vxlan_encap_data->items[2].mask =
3809 							&ipv4_mask_tos;
3810 		} else {
3811 			static struct rte_flow_item_ipv6 ipv6_mask_tos;
3812 
3813 			memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
3814 			       sizeof(ipv6_mask_tos));
3815 			ipv6_mask_tos.hdr.vtc_flow |=
3816 				RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
3817 			ipv6_mask_tos.hdr.hop_limits = 0xff;
3818 			action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
3819 				rte_cpu_to_be_32
3820 					((uint32_t)vxlan_encap_conf.ip_tos <<
3821 					 RTE_IPV6_HDR_TC_SHIFT);
3822 			action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
3823 					vxlan_encap_conf.ip_ttl;
3824 			action_vxlan_encap_data->items[2].mask =
3825 							&ipv6_mask_tos;
3826 		}
3827 	}
3828 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3829 	       RTE_DIM(vxlan_encap_conf.vni));
3830 	action->conf = &action_vxlan_encap_data->conf;
3831 	return ret;
3832 }
3833 
3834 /** Parse NVGRE encap action. */
3835 static int
3836 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3837 			    const char *str, unsigned int len,
3838 			    void *buf, unsigned int size)
3839 {
3840 	struct buffer *out = buf;
3841 	struct rte_flow_action *action;
3842 	struct action_nvgre_encap_data *action_nvgre_encap_data;
3843 	int ret;
3844 
3845 	ret = parse_vc(ctx, token, str, len, buf, size);
3846 	if (ret < 0)
3847 		return ret;
3848 	/* Nothing else to do if there is no buffer. */
3849 	if (!out)
3850 		return ret;
3851 	if (!out->args.vc.actions_n)
3852 		return -1;
3853 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3854 	/* Point to selected object. */
3855 	ctx->object = out->args.vc.data;
3856 	ctx->objmask = NULL;
3857 	/* Set up default configuration. */
3858 	action_nvgre_encap_data = ctx->object;
3859 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
3860 		.conf = (struct rte_flow_action_nvgre_encap){
3861 			.definition = action_nvgre_encap_data->items,
3862 		},
3863 		.items = {
3864 			{
3865 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3866 				.spec = &action_nvgre_encap_data->item_eth,
3867 				.mask = &rte_flow_item_eth_mask,
3868 			},
3869 			{
3870 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3871 				.spec = &action_nvgre_encap_data->item_vlan,
3872 				.mask = &rte_flow_item_vlan_mask,
3873 			},
3874 			{
3875 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3876 				.spec = &action_nvgre_encap_data->item_ipv4,
3877 				.mask = &rte_flow_item_ipv4_mask,
3878 			},
3879 			{
3880 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
3881 				.spec = &action_nvgre_encap_data->item_nvgre,
3882 				.mask = &rte_flow_item_nvgre_mask,
3883 			},
3884 			{
3885 				.type = RTE_FLOW_ITEM_TYPE_END,
3886 			},
3887 		},
3888 		.item_eth.type = 0,
3889 		.item_vlan = {
3890 			.tci = nvgre_encap_conf.vlan_tci,
3891 			.inner_type = 0,
3892 		},
3893 		.item_ipv4.hdr = {
3894 		       .src_addr = nvgre_encap_conf.ipv4_src,
3895 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
3896 		},
3897 		.item_nvgre.flow_id = 0,
3898 	};
3899 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3900 	       nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3901 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3902 	       nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3903 	if (!nvgre_encap_conf.select_ipv4) {
3904 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3905 		       &nvgre_encap_conf.ipv6_src,
3906 		       sizeof(nvgre_encap_conf.ipv6_src));
3907 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3908 		       &nvgre_encap_conf.ipv6_dst,
3909 		       sizeof(nvgre_encap_conf.ipv6_dst));
3910 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3911 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3912 			.spec = &action_nvgre_encap_data->item_ipv6,
3913 			.mask = &rte_flow_item_ipv6_mask,
3914 		};
3915 	}
3916 	if (!nvgre_encap_conf.select_vlan)
3917 		action_nvgre_encap_data->items[1].type =
3918 			RTE_FLOW_ITEM_TYPE_VOID;
3919 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3920 	       RTE_DIM(nvgre_encap_conf.tni));
3921 	action->conf = &action_nvgre_encap_data->conf;
3922 	return ret;
3923 }
3924 
3925 /** Parse l2 encap action. */
3926 static int
3927 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
3928 			 const char *str, unsigned int len,
3929 			 void *buf, unsigned int size)
3930 {
3931 	struct buffer *out = buf;
3932 	struct rte_flow_action *action;
3933 	struct action_raw_encap_data *action_encap_data;
3934 	struct rte_flow_item_eth eth = { .type = 0, };
3935 	struct rte_flow_item_vlan vlan = {
3936 		.tci = mplsoudp_encap_conf.vlan_tci,
3937 		.inner_type = 0,
3938 	};
3939 	uint8_t *header;
3940 	int ret;
3941 
3942 	ret = parse_vc(ctx, token, str, len, buf, size);
3943 	if (ret < 0)
3944 		return ret;
3945 	/* Nothing else to do if there is no buffer. */
3946 	if (!out)
3947 		return ret;
3948 	if (!out->args.vc.actions_n)
3949 		return -1;
3950 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3951 	/* Point to selected object. */
3952 	ctx->object = out->args.vc.data;
3953 	ctx->objmask = NULL;
3954 	/* Copy the headers to the buffer. */
3955 	action_encap_data = ctx->object;
3956 	*action_encap_data = (struct action_raw_encap_data) {
3957 		.conf = (struct rte_flow_action_raw_encap){
3958 			.data = action_encap_data->data,
3959 		},
3960 		.data = {},
3961 	};
3962 	header = action_encap_data->data;
3963 	if (l2_encap_conf.select_vlan)
3964 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
3965 	else if (l2_encap_conf.select_ipv4)
3966 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3967 	else
3968 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3969 	memcpy(eth.dst.addr_bytes,
3970 	       l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
3971 	memcpy(eth.src.addr_bytes,
3972 	       l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
3973 	memcpy(header, &eth, sizeof(eth));
3974 	header += sizeof(eth);
3975 	if (l2_encap_conf.select_vlan) {
3976 		if (l2_encap_conf.select_ipv4)
3977 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
3978 		else
3979 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
3980 		memcpy(header, &vlan, sizeof(vlan));
3981 		header += sizeof(vlan);
3982 	}
3983 	action_encap_data->conf.size = header -
3984 		action_encap_data->data;
3985 	action->conf = &action_encap_data->conf;
3986 	return ret;
3987 }
3988 
3989 /** Parse l2 decap action. */
3990 static int
3991 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
3992 			 const char *str, unsigned int len,
3993 			 void *buf, unsigned int size)
3994 {
3995 	struct buffer *out = buf;
3996 	struct rte_flow_action *action;
3997 	struct action_raw_decap_data *action_decap_data;
3998 	struct rte_flow_item_eth eth = { .type = 0, };
3999 	struct rte_flow_item_vlan vlan = {
4000 		.tci = mplsoudp_encap_conf.vlan_tci,
4001 		.inner_type = 0,
4002 	};
4003 	uint8_t *header;
4004 	int ret;
4005 
4006 	ret = parse_vc(ctx, token, str, len, buf, size);
4007 	if (ret < 0)
4008 		return ret;
4009 	/* Nothing else to do if there is no buffer. */
4010 	if (!out)
4011 		return ret;
4012 	if (!out->args.vc.actions_n)
4013 		return -1;
4014 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4015 	/* Point to selected object. */
4016 	ctx->object = out->args.vc.data;
4017 	ctx->objmask = NULL;
4018 	/* Copy the headers to the buffer. */
4019 	action_decap_data = ctx->object;
4020 	*action_decap_data = (struct action_raw_decap_data) {
4021 		.conf = (struct rte_flow_action_raw_decap){
4022 			.data = action_decap_data->data,
4023 		},
4024 		.data = {},
4025 	};
4026 	header = action_decap_data->data;
4027 	if (l2_decap_conf.select_vlan)
4028 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4029 	memcpy(header, &eth, sizeof(eth));
4030 	header += sizeof(eth);
4031 	if (l2_decap_conf.select_vlan) {
4032 		memcpy(header, &vlan, sizeof(vlan));
4033 		header += sizeof(vlan);
4034 	}
4035 	action_decap_data->conf.size = header -
4036 		action_decap_data->data;
4037 	action->conf = &action_decap_data->conf;
4038 	return ret;
4039 }
4040 
4041 #define ETHER_TYPE_MPLS_UNICAST 0x8847
4042 
4043 /** Parse MPLSOGRE encap action. */
4044 static int
4045 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
4046 			       const char *str, unsigned int len,
4047 			       void *buf, unsigned int size)
4048 {
4049 	struct buffer *out = buf;
4050 	struct rte_flow_action *action;
4051 	struct action_raw_encap_data *action_encap_data;
4052 	struct rte_flow_item_eth eth = { .type = 0, };
4053 	struct rte_flow_item_vlan vlan = {
4054 		.tci = mplsogre_encap_conf.vlan_tci,
4055 		.inner_type = 0,
4056 	};
4057 	struct rte_flow_item_ipv4 ipv4 = {
4058 		.hdr =  {
4059 			.src_addr = mplsogre_encap_conf.ipv4_src,
4060 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
4061 			.next_proto_id = IPPROTO_GRE,
4062 			.version_ihl = RTE_IPV4_VHL_DEF,
4063 			.time_to_live = IPDEFTTL,
4064 		},
4065 	};
4066 	struct rte_flow_item_ipv6 ipv6 = {
4067 		.hdr =  {
4068 			.proto = IPPROTO_GRE,
4069 			.hop_limits = IPDEFTTL,
4070 		},
4071 	};
4072 	struct rte_flow_item_gre gre = {
4073 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4074 	};
4075 	struct rte_flow_item_mpls mpls;
4076 	uint8_t *header;
4077 	int ret;
4078 
4079 	ret = parse_vc(ctx, token, str, len, buf, size);
4080 	if (ret < 0)
4081 		return ret;
4082 	/* Nothing else to do if there is no buffer. */
4083 	if (!out)
4084 		return ret;
4085 	if (!out->args.vc.actions_n)
4086 		return -1;
4087 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4088 	/* Point to selected object. */
4089 	ctx->object = out->args.vc.data;
4090 	ctx->objmask = NULL;
4091 	/* Copy the headers to the buffer. */
4092 	action_encap_data = ctx->object;
4093 	*action_encap_data = (struct action_raw_encap_data) {
4094 		.conf = (struct rte_flow_action_raw_encap){
4095 			.data = action_encap_data->data,
4096 		},
4097 		.data = {},
4098 		.preserve = {},
4099 	};
4100 	header = action_encap_data->data;
4101 	if (mplsogre_encap_conf.select_vlan)
4102 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4103 	else if (mplsogre_encap_conf.select_ipv4)
4104 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4105 	else
4106 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4107 	memcpy(eth.dst.addr_bytes,
4108 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4109 	memcpy(eth.src.addr_bytes,
4110 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4111 	memcpy(header, &eth, sizeof(eth));
4112 	header += sizeof(eth);
4113 	if (mplsogre_encap_conf.select_vlan) {
4114 		if (mplsogre_encap_conf.select_ipv4)
4115 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4116 		else
4117 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4118 		memcpy(header, &vlan, sizeof(vlan));
4119 		header += sizeof(vlan);
4120 	}
4121 	if (mplsogre_encap_conf.select_ipv4) {
4122 		memcpy(header, &ipv4, sizeof(ipv4));
4123 		header += sizeof(ipv4);
4124 	} else {
4125 		memcpy(&ipv6.hdr.src_addr,
4126 		       &mplsogre_encap_conf.ipv6_src,
4127 		       sizeof(mplsogre_encap_conf.ipv6_src));
4128 		memcpy(&ipv6.hdr.dst_addr,
4129 		       &mplsogre_encap_conf.ipv6_dst,
4130 		       sizeof(mplsogre_encap_conf.ipv6_dst));
4131 		memcpy(header, &ipv6, sizeof(ipv6));
4132 		header += sizeof(ipv6);
4133 	}
4134 	memcpy(header, &gre, sizeof(gre));
4135 	header += sizeof(gre);
4136 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
4137 	       RTE_DIM(mplsogre_encap_conf.label));
4138 	mpls.label_tc_s[2] |= 0x1;
4139 	memcpy(header, &mpls, sizeof(mpls));
4140 	header += sizeof(mpls);
4141 	action_encap_data->conf.size = header -
4142 		action_encap_data->data;
4143 	action->conf = &action_encap_data->conf;
4144 	return ret;
4145 }
4146 
4147 /** Parse MPLSOGRE decap action. */
4148 static int
4149 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
4150 			       const char *str, unsigned int len,
4151 			       void *buf, unsigned int size)
4152 {
4153 	struct buffer *out = buf;
4154 	struct rte_flow_action *action;
4155 	struct action_raw_decap_data *action_decap_data;
4156 	struct rte_flow_item_eth eth = { .type = 0, };
4157 	struct rte_flow_item_vlan vlan = {.tci = 0};
4158 	struct rte_flow_item_ipv4 ipv4 = {
4159 		.hdr =  {
4160 			.next_proto_id = IPPROTO_GRE,
4161 		},
4162 	};
4163 	struct rte_flow_item_ipv6 ipv6 = {
4164 		.hdr =  {
4165 			.proto = IPPROTO_GRE,
4166 		},
4167 	};
4168 	struct rte_flow_item_gre gre = {
4169 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4170 	};
4171 	struct rte_flow_item_mpls mpls;
4172 	uint8_t *header;
4173 	int ret;
4174 
4175 	ret = parse_vc(ctx, token, str, len, buf, size);
4176 	if (ret < 0)
4177 		return ret;
4178 	/* Nothing else to do if there is no buffer. */
4179 	if (!out)
4180 		return ret;
4181 	if (!out->args.vc.actions_n)
4182 		return -1;
4183 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4184 	/* Point to selected object. */
4185 	ctx->object = out->args.vc.data;
4186 	ctx->objmask = NULL;
4187 	/* Copy the headers to the buffer. */
4188 	action_decap_data = ctx->object;
4189 	*action_decap_data = (struct action_raw_decap_data) {
4190 		.conf = (struct rte_flow_action_raw_decap){
4191 			.data = action_decap_data->data,
4192 		},
4193 		.data = {},
4194 	};
4195 	header = action_decap_data->data;
4196 	if (mplsogre_decap_conf.select_vlan)
4197 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4198 	else if (mplsogre_encap_conf.select_ipv4)
4199 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4200 	else
4201 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4202 	memcpy(eth.dst.addr_bytes,
4203 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4204 	memcpy(eth.src.addr_bytes,
4205 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4206 	memcpy(header, &eth, sizeof(eth));
4207 	header += sizeof(eth);
4208 	if (mplsogre_encap_conf.select_vlan) {
4209 		if (mplsogre_encap_conf.select_ipv4)
4210 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4211 		else
4212 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4213 		memcpy(header, &vlan, sizeof(vlan));
4214 		header += sizeof(vlan);
4215 	}
4216 	if (mplsogre_encap_conf.select_ipv4) {
4217 		memcpy(header, &ipv4, sizeof(ipv4));
4218 		header += sizeof(ipv4);
4219 	} else {
4220 		memcpy(header, &ipv6, sizeof(ipv6));
4221 		header += sizeof(ipv6);
4222 	}
4223 	memcpy(header, &gre, sizeof(gre));
4224 	header += sizeof(gre);
4225 	memset(&mpls, 0, sizeof(mpls));
4226 	memcpy(header, &mpls, sizeof(mpls));
4227 	header += sizeof(mpls);
4228 	action_decap_data->conf.size = header -
4229 		action_decap_data->data;
4230 	action->conf = &action_decap_data->conf;
4231 	return ret;
4232 }
4233 
4234 /** Parse MPLSOUDP encap action. */
4235 static int
4236 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
4237 			       const char *str, unsigned int len,
4238 			       void *buf, unsigned int size)
4239 {
4240 	struct buffer *out = buf;
4241 	struct rte_flow_action *action;
4242 	struct action_raw_encap_data *action_encap_data;
4243 	struct rte_flow_item_eth eth = { .type = 0, };
4244 	struct rte_flow_item_vlan vlan = {
4245 		.tci = mplsoudp_encap_conf.vlan_tci,
4246 		.inner_type = 0,
4247 	};
4248 	struct rte_flow_item_ipv4 ipv4 = {
4249 		.hdr =  {
4250 			.src_addr = mplsoudp_encap_conf.ipv4_src,
4251 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
4252 			.next_proto_id = IPPROTO_UDP,
4253 			.version_ihl = RTE_IPV4_VHL_DEF,
4254 			.time_to_live = IPDEFTTL,
4255 		},
4256 	};
4257 	struct rte_flow_item_ipv6 ipv6 = {
4258 		.hdr =  {
4259 			.proto = IPPROTO_UDP,
4260 			.hop_limits = IPDEFTTL,
4261 		},
4262 	};
4263 	struct rte_flow_item_udp udp = {
4264 		.hdr = {
4265 			.src_port = mplsoudp_encap_conf.udp_src,
4266 			.dst_port = mplsoudp_encap_conf.udp_dst,
4267 		},
4268 	};
4269 	struct rte_flow_item_mpls mpls;
4270 	uint8_t *header;
4271 	int ret;
4272 
4273 	ret = parse_vc(ctx, token, str, len, buf, size);
4274 	if (ret < 0)
4275 		return ret;
4276 	/* Nothing else to do if there is no buffer. */
4277 	if (!out)
4278 		return ret;
4279 	if (!out->args.vc.actions_n)
4280 		return -1;
4281 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4282 	/* Point to selected object. */
4283 	ctx->object = out->args.vc.data;
4284 	ctx->objmask = NULL;
4285 	/* Copy the headers to the buffer. */
4286 	action_encap_data = ctx->object;
4287 	*action_encap_data = (struct action_raw_encap_data) {
4288 		.conf = (struct rte_flow_action_raw_encap){
4289 			.data = action_encap_data->data,
4290 		},
4291 		.data = {},
4292 		.preserve = {},
4293 	};
4294 	header = action_encap_data->data;
4295 	if (mplsoudp_encap_conf.select_vlan)
4296 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4297 	else if (mplsoudp_encap_conf.select_ipv4)
4298 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4299 	else
4300 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4301 	memcpy(eth.dst.addr_bytes,
4302 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4303 	memcpy(eth.src.addr_bytes,
4304 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4305 	memcpy(header, &eth, sizeof(eth));
4306 	header += sizeof(eth);
4307 	if (mplsoudp_encap_conf.select_vlan) {
4308 		if (mplsoudp_encap_conf.select_ipv4)
4309 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4310 		else
4311 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4312 		memcpy(header, &vlan, sizeof(vlan));
4313 		header += sizeof(vlan);
4314 	}
4315 	if (mplsoudp_encap_conf.select_ipv4) {
4316 		memcpy(header, &ipv4, sizeof(ipv4));
4317 		header += sizeof(ipv4);
4318 	} else {
4319 		memcpy(&ipv6.hdr.src_addr,
4320 		       &mplsoudp_encap_conf.ipv6_src,
4321 		       sizeof(mplsoudp_encap_conf.ipv6_src));
4322 		memcpy(&ipv6.hdr.dst_addr,
4323 		       &mplsoudp_encap_conf.ipv6_dst,
4324 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
4325 		memcpy(header, &ipv6, sizeof(ipv6));
4326 		header += sizeof(ipv6);
4327 	}
4328 	memcpy(header, &udp, sizeof(udp));
4329 	header += sizeof(udp);
4330 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
4331 	       RTE_DIM(mplsoudp_encap_conf.label));
4332 	mpls.label_tc_s[2] |= 0x1;
4333 	memcpy(header, &mpls, sizeof(mpls));
4334 	header += sizeof(mpls);
4335 	action_encap_data->conf.size = header -
4336 		action_encap_data->data;
4337 	action->conf = &action_encap_data->conf;
4338 	return ret;
4339 }
4340 
4341 /** Parse MPLSOUDP decap action. */
4342 static int
4343 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
4344 			       const char *str, unsigned int len,
4345 			       void *buf, unsigned int size)
4346 {
4347 	struct buffer *out = buf;
4348 	struct rte_flow_action *action;
4349 	struct action_raw_decap_data *action_decap_data;
4350 	struct rte_flow_item_eth eth = { .type = 0, };
4351 	struct rte_flow_item_vlan vlan = {.tci = 0};
4352 	struct rte_flow_item_ipv4 ipv4 = {
4353 		.hdr =  {
4354 			.next_proto_id = IPPROTO_UDP,
4355 		},
4356 	};
4357 	struct rte_flow_item_ipv6 ipv6 = {
4358 		.hdr =  {
4359 			.proto = IPPROTO_UDP,
4360 		},
4361 	};
4362 	struct rte_flow_item_udp udp = {
4363 		.hdr = {
4364 			.dst_port = rte_cpu_to_be_16(6635),
4365 		},
4366 	};
4367 	struct rte_flow_item_mpls mpls;
4368 	uint8_t *header;
4369 	int ret;
4370 
4371 	ret = parse_vc(ctx, token, str, len, buf, size);
4372 	if (ret < 0)
4373 		return ret;
4374 	/* Nothing else to do if there is no buffer. */
4375 	if (!out)
4376 		return ret;
4377 	if (!out->args.vc.actions_n)
4378 		return -1;
4379 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4380 	/* Point to selected object. */
4381 	ctx->object = out->args.vc.data;
4382 	ctx->objmask = NULL;
4383 	/* Copy the headers to the buffer. */
4384 	action_decap_data = ctx->object;
4385 	*action_decap_data = (struct action_raw_decap_data) {
4386 		.conf = (struct rte_flow_action_raw_decap){
4387 			.data = action_decap_data->data,
4388 		},
4389 		.data = {},
4390 	};
4391 	header = action_decap_data->data;
4392 	if (mplsoudp_decap_conf.select_vlan)
4393 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4394 	else if (mplsoudp_encap_conf.select_ipv4)
4395 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4396 	else
4397 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4398 	memcpy(eth.dst.addr_bytes,
4399 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4400 	memcpy(eth.src.addr_bytes,
4401 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4402 	memcpy(header, &eth, sizeof(eth));
4403 	header += sizeof(eth);
4404 	if (mplsoudp_encap_conf.select_vlan) {
4405 		if (mplsoudp_encap_conf.select_ipv4)
4406 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4407 		else
4408 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4409 		memcpy(header, &vlan, sizeof(vlan));
4410 		header += sizeof(vlan);
4411 	}
4412 	if (mplsoudp_encap_conf.select_ipv4) {
4413 		memcpy(header, &ipv4, sizeof(ipv4));
4414 		header += sizeof(ipv4);
4415 	} else {
4416 		memcpy(header, &ipv6, sizeof(ipv6));
4417 		header += sizeof(ipv6);
4418 	}
4419 	memcpy(header, &udp, sizeof(udp));
4420 	header += sizeof(udp);
4421 	memset(&mpls, 0, sizeof(mpls));
4422 	memcpy(header, &mpls, sizeof(mpls));
4423 	header += sizeof(mpls);
4424 	action_decap_data->conf.size = header -
4425 		action_decap_data->data;
4426 	action->conf = &action_decap_data->conf;
4427 	return ret;
4428 }
4429 
4430 static int
4431 parse_vc_action_raw_encap(struct context *ctx, const struct token *token,
4432 			  const char *str, unsigned int len, void *buf,
4433 			  unsigned int size)
4434 {
4435 	struct buffer *out = buf;
4436 	struct rte_flow_action *action;
4437 	struct rte_flow_action_raw_encap *action_raw_encap_conf = NULL;
4438 	uint8_t *data = NULL;
4439 	int ret;
4440 
4441 	ret = parse_vc(ctx, token, str, len, buf, size);
4442 	if (ret < 0)
4443 		return ret;
4444 	/* Nothing else to do if there is no buffer. */
4445 	if (!out)
4446 		return ret;
4447 	if (!out->args.vc.actions_n)
4448 		return -1;
4449 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4450 	/* Point to selected object. */
4451 	ctx->object = out->args.vc.data;
4452 	ctx->objmask = NULL;
4453 	/* Copy the headers to the buffer. */
4454 	action_raw_encap_conf = ctx->object;
4455 	/* data stored from tail of data buffer */
4456 	data = (uint8_t *)&(raw_encap_conf.data) +
4457 		ACTION_RAW_ENCAP_MAX_DATA - raw_encap_conf.size;
4458 	action_raw_encap_conf->data = data;
4459 	action_raw_encap_conf->preserve = NULL;
4460 	action_raw_encap_conf->size = raw_encap_conf.size;
4461 	action->conf = action_raw_encap_conf;
4462 	return ret;
4463 }
4464 
4465 static int
4466 parse_vc_action_raw_decap(struct context *ctx, const struct token *token,
4467 			  const char *str, unsigned int len, void *buf,
4468 			  unsigned int size)
4469 {
4470 	struct buffer *out = buf;
4471 	struct rte_flow_action *action;
4472 	struct rte_flow_action_raw_decap *action_raw_decap_conf = NULL;
4473 	uint8_t *data = NULL;
4474 	int ret;
4475 
4476 	ret = parse_vc(ctx, token, str, len, buf, size);
4477 	if (ret < 0)
4478 		return ret;
4479 	/* Nothing else to do if there is no buffer. */
4480 	if (!out)
4481 		return ret;
4482 	if (!out->args.vc.actions_n)
4483 		return -1;
4484 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4485 	/* Point to selected object. */
4486 	ctx->object = out->args.vc.data;
4487 	ctx->objmask = NULL;
4488 	/* Copy the headers to the buffer. */
4489 	action_raw_decap_conf = ctx->object;
4490 	/* data stored from tail of data buffer */
4491 	data = (uint8_t *)&(raw_decap_conf.data) +
4492 		ACTION_RAW_ENCAP_MAX_DATA - raw_decap_conf.size;
4493 	action_raw_decap_conf->data = data;
4494 	action_raw_decap_conf->size = raw_decap_conf.size;
4495 	action->conf = action_raw_decap_conf;
4496 	return ret;
4497 }
4498 
4499 /** Parse tokens for destroy command. */
4500 static int
4501 parse_destroy(struct context *ctx, const struct token *token,
4502 	      const char *str, unsigned int len,
4503 	      void *buf, unsigned int size)
4504 {
4505 	struct buffer *out = buf;
4506 
4507 	/* Token name must match. */
4508 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4509 		return -1;
4510 	/* Nothing else to do if there is no buffer. */
4511 	if (!out)
4512 		return len;
4513 	if (!out->command) {
4514 		if (ctx->curr != DESTROY)
4515 			return -1;
4516 		if (sizeof(*out) > size)
4517 			return -1;
4518 		out->command = ctx->curr;
4519 		ctx->objdata = 0;
4520 		ctx->object = out;
4521 		ctx->objmask = NULL;
4522 		out->args.destroy.rule =
4523 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4524 					       sizeof(double));
4525 		return len;
4526 	}
4527 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
4528 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
4529 		return -1;
4530 	ctx->objdata = 0;
4531 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
4532 	ctx->objmask = NULL;
4533 	return len;
4534 }
4535 
4536 /** Parse tokens for flush command. */
4537 static int
4538 parse_flush(struct context *ctx, const struct token *token,
4539 	    const char *str, unsigned int len,
4540 	    void *buf, unsigned int size)
4541 {
4542 	struct buffer *out = buf;
4543 
4544 	/* Token name must match. */
4545 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4546 		return -1;
4547 	/* Nothing else to do if there is no buffer. */
4548 	if (!out)
4549 		return len;
4550 	if (!out->command) {
4551 		if (ctx->curr != FLUSH)
4552 			return -1;
4553 		if (sizeof(*out) > size)
4554 			return -1;
4555 		out->command = ctx->curr;
4556 		ctx->objdata = 0;
4557 		ctx->object = out;
4558 		ctx->objmask = NULL;
4559 	}
4560 	return len;
4561 }
4562 
4563 /** Parse tokens for query command. */
4564 static int
4565 parse_query(struct context *ctx, const struct token *token,
4566 	    const char *str, unsigned int len,
4567 	    void *buf, unsigned int size)
4568 {
4569 	struct buffer *out = buf;
4570 
4571 	/* Token name must match. */
4572 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4573 		return -1;
4574 	/* Nothing else to do if there is no buffer. */
4575 	if (!out)
4576 		return len;
4577 	if (!out->command) {
4578 		if (ctx->curr != QUERY)
4579 			return -1;
4580 		if (sizeof(*out) > size)
4581 			return -1;
4582 		out->command = ctx->curr;
4583 		ctx->objdata = 0;
4584 		ctx->object = out;
4585 		ctx->objmask = NULL;
4586 	}
4587 	return len;
4588 }
4589 
4590 /** Parse action names. */
4591 static int
4592 parse_action(struct context *ctx, const struct token *token,
4593 	     const char *str, unsigned int len,
4594 	     void *buf, unsigned int size)
4595 {
4596 	struct buffer *out = buf;
4597 	const struct arg *arg = pop_args(ctx);
4598 	unsigned int i;
4599 
4600 	(void)size;
4601 	/* Argument is expected. */
4602 	if (!arg)
4603 		return -1;
4604 	/* Parse action name. */
4605 	for (i = 0; next_action[i]; ++i) {
4606 		const struct parse_action_priv *priv;
4607 
4608 		token = &token_list[next_action[i]];
4609 		if (strcmp_partial(token->name, str, len))
4610 			continue;
4611 		priv = token->priv;
4612 		if (!priv)
4613 			goto error;
4614 		if (out)
4615 			memcpy((uint8_t *)ctx->object + arg->offset,
4616 			       &priv->type,
4617 			       arg->size);
4618 		return len;
4619 	}
4620 error:
4621 	push_args(ctx, arg);
4622 	return -1;
4623 }
4624 
4625 /** Parse tokens for list command. */
4626 static int
4627 parse_list(struct context *ctx, const struct token *token,
4628 	   const char *str, unsigned int len,
4629 	   void *buf, unsigned int size)
4630 {
4631 	struct buffer *out = buf;
4632 
4633 	/* Token name must match. */
4634 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4635 		return -1;
4636 	/* Nothing else to do if there is no buffer. */
4637 	if (!out)
4638 		return len;
4639 	if (!out->command) {
4640 		if (ctx->curr != LIST)
4641 			return -1;
4642 		if (sizeof(*out) > size)
4643 			return -1;
4644 		out->command = ctx->curr;
4645 		ctx->objdata = 0;
4646 		ctx->object = out;
4647 		ctx->objmask = NULL;
4648 		out->args.list.group =
4649 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4650 					       sizeof(double));
4651 		return len;
4652 	}
4653 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
4654 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
4655 		return -1;
4656 	ctx->objdata = 0;
4657 	ctx->object = out->args.list.group + out->args.list.group_n++;
4658 	ctx->objmask = NULL;
4659 	return len;
4660 }
4661 
4662 /** Parse tokens for isolate command. */
4663 static int
4664 parse_isolate(struct context *ctx, const struct token *token,
4665 	      const char *str, unsigned int len,
4666 	      void *buf, unsigned int size)
4667 {
4668 	struct buffer *out = buf;
4669 
4670 	/* Token name must match. */
4671 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4672 		return -1;
4673 	/* Nothing else to do if there is no buffer. */
4674 	if (!out)
4675 		return len;
4676 	if (!out->command) {
4677 		if (ctx->curr != ISOLATE)
4678 			return -1;
4679 		if (sizeof(*out) > size)
4680 			return -1;
4681 		out->command = ctx->curr;
4682 		ctx->objdata = 0;
4683 		ctx->object = out;
4684 		ctx->objmask = NULL;
4685 	}
4686 	return len;
4687 }
4688 
4689 /**
4690  * Parse signed/unsigned integers 8 to 64-bit long.
4691  *
4692  * Last argument (ctx->args) is retrieved to determine integer type and
4693  * storage location.
4694  */
4695 static int
4696 parse_int(struct context *ctx, const struct token *token,
4697 	  const char *str, unsigned int len,
4698 	  void *buf, unsigned int size)
4699 {
4700 	const struct arg *arg = pop_args(ctx);
4701 	uintmax_t u;
4702 	char *end;
4703 
4704 	(void)token;
4705 	/* Argument is expected. */
4706 	if (!arg)
4707 		return -1;
4708 	errno = 0;
4709 	u = arg->sign ?
4710 		(uintmax_t)strtoimax(str, &end, 0) :
4711 		strtoumax(str, &end, 0);
4712 	if (errno || (size_t)(end - str) != len)
4713 		goto error;
4714 	if (arg->bounded &&
4715 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
4716 			    (intmax_t)u > (intmax_t)arg->max)) ||
4717 	     (!arg->sign && (u < arg->min || u > arg->max))))
4718 		goto error;
4719 	if (!ctx->object)
4720 		return len;
4721 	if (arg->mask) {
4722 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
4723 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
4724 			goto error;
4725 		return len;
4726 	}
4727 	buf = (uint8_t *)ctx->object + arg->offset;
4728 	size = arg->size;
4729 	if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
4730 		return -1;
4731 objmask:
4732 	switch (size) {
4733 	case sizeof(uint8_t):
4734 		*(uint8_t *)buf = u;
4735 		break;
4736 	case sizeof(uint16_t):
4737 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
4738 		break;
4739 	case sizeof(uint8_t [3]):
4740 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4741 		if (!arg->hton) {
4742 			((uint8_t *)buf)[0] = u;
4743 			((uint8_t *)buf)[1] = u >> 8;
4744 			((uint8_t *)buf)[2] = u >> 16;
4745 			break;
4746 		}
4747 #endif
4748 		((uint8_t *)buf)[0] = u >> 16;
4749 		((uint8_t *)buf)[1] = u >> 8;
4750 		((uint8_t *)buf)[2] = u;
4751 		break;
4752 	case sizeof(uint32_t):
4753 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
4754 		break;
4755 	case sizeof(uint64_t):
4756 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
4757 		break;
4758 	default:
4759 		goto error;
4760 	}
4761 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
4762 		u = -1;
4763 		buf = (uint8_t *)ctx->objmask + arg->offset;
4764 		goto objmask;
4765 	}
4766 	return len;
4767 error:
4768 	push_args(ctx, arg);
4769 	return -1;
4770 }
4771 
4772 /**
4773  * Parse a string.
4774  *
4775  * Three arguments (ctx->args) are retrieved from the stack to store data,
4776  * its actual length and address (in that order).
4777  */
4778 static int
4779 parse_string(struct context *ctx, const struct token *token,
4780 	     const char *str, unsigned int len,
4781 	     void *buf, unsigned int size)
4782 {
4783 	const struct arg *arg_data = pop_args(ctx);
4784 	const struct arg *arg_len = pop_args(ctx);
4785 	const struct arg *arg_addr = pop_args(ctx);
4786 	char tmp[16]; /* Ought to be enough. */
4787 	int ret;
4788 
4789 	/* Arguments are expected. */
4790 	if (!arg_data)
4791 		return -1;
4792 	if (!arg_len) {
4793 		push_args(ctx, arg_data);
4794 		return -1;
4795 	}
4796 	if (!arg_addr) {
4797 		push_args(ctx, arg_len);
4798 		push_args(ctx, arg_data);
4799 		return -1;
4800 	}
4801 	size = arg_data->size;
4802 	/* Bit-mask fill is not supported. */
4803 	if (arg_data->mask || size < len)
4804 		goto error;
4805 	if (!ctx->object)
4806 		return len;
4807 	/* Let parse_int() fill length information first. */
4808 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
4809 	if (ret < 0)
4810 		goto error;
4811 	push_args(ctx, arg_len);
4812 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4813 	if (ret < 0) {
4814 		pop_args(ctx);
4815 		goto error;
4816 	}
4817 	buf = (uint8_t *)ctx->object + arg_data->offset;
4818 	/* Output buffer is not necessarily NUL-terminated. */
4819 	memcpy(buf, str, len);
4820 	memset((uint8_t *)buf + len, 0x00, size - len);
4821 	if (ctx->objmask)
4822 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
4823 	/* Save address if requested. */
4824 	if (arg_addr->size) {
4825 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4826 		       (void *[]){
4827 			(uint8_t *)ctx->object + arg_data->offset
4828 		       },
4829 		       arg_addr->size);
4830 		if (ctx->objmask)
4831 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4832 			       (void *[]){
4833 				(uint8_t *)ctx->objmask + arg_data->offset
4834 			       },
4835 			       arg_addr->size);
4836 	}
4837 	return len;
4838 error:
4839 	push_args(ctx, arg_addr);
4840 	push_args(ctx, arg_len);
4841 	push_args(ctx, arg_data);
4842 	return -1;
4843 }
4844 
4845 static int
4846 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
4847 {
4848 	char *c = NULL;
4849 	uint32_t i, len;
4850 	char tmp[3];
4851 
4852 	/* Check input parameters */
4853 	if ((src == NULL) ||
4854 		(dst == NULL) ||
4855 		(size == NULL) ||
4856 		(*size == 0))
4857 		return -1;
4858 
4859 	/* Convert chars to bytes */
4860 	for (i = 0, len = 0; i < *size; i += 2) {
4861 		snprintf(tmp, 3, "%s", src + i);
4862 		dst[len++] = strtoul(tmp, &c, 16);
4863 		if (*c != 0) {
4864 			len--;
4865 			dst[len] = 0;
4866 			*size = len;
4867 			return -1;
4868 		}
4869 	}
4870 	dst[len] = 0;
4871 	*size = len;
4872 
4873 	return 0;
4874 }
4875 
4876 static int
4877 parse_hex(struct context *ctx, const struct token *token,
4878 		const char *str, unsigned int len,
4879 		void *buf, unsigned int size)
4880 {
4881 	const struct arg *arg_data = pop_args(ctx);
4882 	const struct arg *arg_len = pop_args(ctx);
4883 	const struct arg *arg_addr = pop_args(ctx);
4884 	char tmp[16]; /* Ought to be enough. */
4885 	int ret;
4886 	unsigned int hexlen = len;
4887 	unsigned int length = 256;
4888 	uint8_t hex_tmp[length];
4889 
4890 	/* Arguments are expected. */
4891 	if (!arg_data)
4892 		return -1;
4893 	if (!arg_len) {
4894 		push_args(ctx, arg_data);
4895 		return -1;
4896 	}
4897 	if (!arg_addr) {
4898 		push_args(ctx, arg_len);
4899 		push_args(ctx, arg_data);
4900 		return -1;
4901 	}
4902 	size = arg_data->size;
4903 	/* Bit-mask fill is not supported. */
4904 	if (arg_data->mask)
4905 		goto error;
4906 	if (!ctx->object)
4907 		return len;
4908 
4909 	/* translate bytes string to array. */
4910 	if (str[0] == '0' && ((str[1] == 'x') ||
4911 			(str[1] == 'X'))) {
4912 		str += 2;
4913 		hexlen -= 2;
4914 	}
4915 	if (hexlen > length)
4916 		return -1;
4917 	ret = parse_hex_string(str, hex_tmp, &hexlen);
4918 	if (ret < 0)
4919 		goto error;
4920 	/* Let parse_int() fill length information first. */
4921 	ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
4922 	if (ret < 0)
4923 		goto error;
4924 	push_args(ctx, arg_len);
4925 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
4926 	if (ret < 0) {
4927 		pop_args(ctx);
4928 		goto error;
4929 	}
4930 	buf = (uint8_t *)ctx->object + arg_data->offset;
4931 	/* Output buffer is not necessarily NUL-terminated. */
4932 	memcpy(buf, hex_tmp, hexlen);
4933 	memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
4934 	if (ctx->objmask)
4935 		memset((uint8_t *)ctx->objmask + arg_data->offset,
4936 					0xff, hexlen);
4937 	/* Save address if requested. */
4938 	if (arg_addr->size) {
4939 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
4940 		       (void *[]){
4941 			(uint8_t *)ctx->object + arg_data->offset
4942 		       },
4943 		       arg_addr->size);
4944 		if (ctx->objmask)
4945 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
4946 			       (void *[]){
4947 				(uint8_t *)ctx->objmask + arg_data->offset
4948 			       },
4949 			       arg_addr->size);
4950 	}
4951 	return len;
4952 error:
4953 	push_args(ctx, arg_addr);
4954 	push_args(ctx, arg_len);
4955 	push_args(ctx, arg_data);
4956 	return -1;
4957 
4958 }
4959 
4960 /**
4961  * Parse a MAC address.
4962  *
4963  * Last argument (ctx->args) is retrieved to determine storage size and
4964  * location.
4965  */
4966 static int
4967 parse_mac_addr(struct context *ctx, const struct token *token,
4968 	       const char *str, unsigned int len,
4969 	       void *buf, unsigned int size)
4970 {
4971 	const struct arg *arg = pop_args(ctx);
4972 	struct rte_ether_addr tmp;
4973 	int ret;
4974 
4975 	(void)token;
4976 	/* Argument is expected. */
4977 	if (!arg)
4978 		return -1;
4979 	size = arg->size;
4980 	/* Bit-mask fill is not supported. */
4981 	if (arg->mask || size != sizeof(tmp))
4982 		goto error;
4983 	/* Only network endian is supported. */
4984 	if (!arg->hton)
4985 		goto error;
4986 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
4987 	if (ret < 0 || (unsigned int)ret != len)
4988 		goto error;
4989 	if (!ctx->object)
4990 		return len;
4991 	buf = (uint8_t *)ctx->object + arg->offset;
4992 	memcpy(buf, &tmp, size);
4993 	if (ctx->objmask)
4994 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4995 	return len;
4996 error:
4997 	push_args(ctx, arg);
4998 	return -1;
4999 }
5000 
5001 /**
5002  * Parse an IPv4 address.
5003  *
5004  * Last argument (ctx->args) is retrieved to determine storage size and
5005  * location.
5006  */
5007 static int
5008 parse_ipv4_addr(struct context *ctx, const struct token *token,
5009 		const char *str, unsigned int len,
5010 		void *buf, unsigned int size)
5011 {
5012 	const struct arg *arg = pop_args(ctx);
5013 	char str2[len + 1];
5014 	struct in_addr tmp;
5015 	int ret;
5016 
5017 	/* Argument is expected. */
5018 	if (!arg)
5019 		return -1;
5020 	size = arg->size;
5021 	/* Bit-mask fill is not supported. */
5022 	if (arg->mask || size != sizeof(tmp))
5023 		goto error;
5024 	/* Only network endian is supported. */
5025 	if (!arg->hton)
5026 		goto error;
5027 	memcpy(str2, str, len);
5028 	str2[len] = '\0';
5029 	ret = inet_pton(AF_INET, str2, &tmp);
5030 	if (ret != 1) {
5031 		/* Attempt integer parsing. */
5032 		push_args(ctx, arg);
5033 		return parse_int(ctx, token, str, len, buf, size);
5034 	}
5035 	if (!ctx->object)
5036 		return len;
5037 	buf = (uint8_t *)ctx->object + arg->offset;
5038 	memcpy(buf, &tmp, size);
5039 	if (ctx->objmask)
5040 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5041 	return len;
5042 error:
5043 	push_args(ctx, arg);
5044 	return -1;
5045 }
5046 
5047 /**
5048  * Parse an IPv6 address.
5049  *
5050  * Last argument (ctx->args) is retrieved to determine storage size and
5051  * location.
5052  */
5053 static int
5054 parse_ipv6_addr(struct context *ctx, const struct token *token,
5055 		const char *str, unsigned int len,
5056 		void *buf, unsigned int size)
5057 {
5058 	const struct arg *arg = pop_args(ctx);
5059 	char str2[len + 1];
5060 	struct in6_addr tmp;
5061 	int ret;
5062 
5063 	(void)token;
5064 	/* Argument is expected. */
5065 	if (!arg)
5066 		return -1;
5067 	size = arg->size;
5068 	/* Bit-mask fill is not supported. */
5069 	if (arg->mask || size != sizeof(tmp))
5070 		goto error;
5071 	/* Only network endian is supported. */
5072 	if (!arg->hton)
5073 		goto error;
5074 	memcpy(str2, str, len);
5075 	str2[len] = '\0';
5076 	ret = inet_pton(AF_INET6, str2, &tmp);
5077 	if (ret != 1)
5078 		goto error;
5079 	if (!ctx->object)
5080 		return len;
5081 	buf = (uint8_t *)ctx->object + arg->offset;
5082 	memcpy(buf, &tmp, size);
5083 	if (ctx->objmask)
5084 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5085 	return len;
5086 error:
5087 	push_args(ctx, arg);
5088 	return -1;
5089 }
5090 
5091 /** Boolean values (even indices stand for false). */
5092 static const char *const boolean_name[] = {
5093 	"0", "1",
5094 	"false", "true",
5095 	"no", "yes",
5096 	"N", "Y",
5097 	"off", "on",
5098 	NULL,
5099 };
5100 
5101 /**
5102  * Parse a boolean value.
5103  *
5104  * Last argument (ctx->args) is retrieved to determine storage size and
5105  * location.
5106  */
5107 static int
5108 parse_boolean(struct context *ctx, const struct token *token,
5109 	      const char *str, unsigned int len,
5110 	      void *buf, unsigned int size)
5111 {
5112 	const struct arg *arg = pop_args(ctx);
5113 	unsigned int i;
5114 	int ret;
5115 
5116 	/* Argument is expected. */
5117 	if (!arg)
5118 		return -1;
5119 	for (i = 0; boolean_name[i]; ++i)
5120 		if (!strcmp_partial(boolean_name[i], str, len))
5121 			break;
5122 	/* Process token as integer. */
5123 	if (boolean_name[i])
5124 		str = i & 1 ? "1" : "0";
5125 	push_args(ctx, arg);
5126 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
5127 	return ret > 0 ? (int)len : ret;
5128 }
5129 
5130 /** Parse port and update context. */
5131 static int
5132 parse_port(struct context *ctx, const struct token *token,
5133 	   const char *str, unsigned int len,
5134 	   void *buf, unsigned int size)
5135 {
5136 	struct buffer *out = &(struct buffer){ .port = 0 };
5137 	int ret;
5138 
5139 	if (buf)
5140 		out = buf;
5141 	else {
5142 		ctx->objdata = 0;
5143 		ctx->object = out;
5144 		ctx->objmask = NULL;
5145 		size = sizeof(*out);
5146 	}
5147 	ret = parse_int(ctx, token, str, len, out, size);
5148 	if (ret >= 0)
5149 		ctx->port = out->port;
5150 	if (!buf)
5151 		ctx->object = NULL;
5152 	return ret;
5153 }
5154 
5155 /** Parse set command, initialize output buffer for subsequent tokens. */
5156 static int
5157 parse_set_raw_encap_decap(struct context *ctx, const struct token *token,
5158 			  const char *str, unsigned int len,
5159 			  void *buf, unsigned int size)
5160 {
5161 	struct buffer *out = buf;
5162 
5163 	/* Token name must match. */
5164 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5165 		return -1;
5166 	/* Nothing else to do if there is no buffer. */
5167 	if (!out)
5168 		return len;
5169 	/* Make sure buffer is large enough. */
5170 	if (size < sizeof(*out))
5171 		return -1;
5172 	ctx->objdata = 0;
5173 	ctx->objmask = NULL;
5174 	if (!out->command)
5175 		return -1;
5176 	out->command = ctx->curr;
5177 	return len;
5178 }
5179 
5180 /**
5181  * Parse set raw_encap/raw_decap command,
5182  * initialize output buffer for subsequent tokens.
5183  */
5184 static int
5185 parse_set_init(struct context *ctx, const struct token *token,
5186 	       const char *str, unsigned int len,
5187 	       void *buf, unsigned int size)
5188 {
5189 	struct buffer *out = buf;
5190 
5191 	/* Token name must match. */
5192 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5193 		return -1;
5194 	/* Nothing else to do if there is no buffer. */
5195 	if (!out)
5196 		return len;
5197 	/* Make sure buffer is large enough. */
5198 	if (size < sizeof(*out))
5199 		return -1;
5200 	/* Initialize buffer. */
5201 	memset(out, 0x00, sizeof(*out));
5202 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
5203 	ctx->objdata = 0;
5204 	ctx->object = out;
5205 	ctx->objmask = NULL;
5206 	if (!out->command) {
5207 		if (ctx->curr != SET)
5208 			return -1;
5209 		if (sizeof(*out) > size)
5210 			return -1;
5211 		out->command = ctx->curr;
5212 		out->args.vc.data = (uint8_t *)out + size;
5213 		/* All we need is pattern */
5214 		out->args.vc.pattern =
5215 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5216 					       sizeof(double));
5217 		ctx->object = out->args.vc.pattern;
5218 	}
5219 	return len;
5220 }
5221 
5222 /** No completion. */
5223 static int
5224 comp_none(struct context *ctx, const struct token *token,
5225 	  unsigned int ent, char *buf, unsigned int size)
5226 {
5227 	(void)ctx;
5228 	(void)token;
5229 	(void)ent;
5230 	(void)buf;
5231 	(void)size;
5232 	return 0;
5233 }
5234 
5235 /** Complete boolean values. */
5236 static int
5237 comp_boolean(struct context *ctx, const struct token *token,
5238 	     unsigned int ent, char *buf, unsigned int size)
5239 {
5240 	unsigned int i;
5241 
5242 	(void)ctx;
5243 	(void)token;
5244 	for (i = 0; boolean_name[i]; ++i)
5245 		if (buf && i == ent)
5246 			return strlcpy(buf, boolean_name[i], size);
5247 	if (buf)
5248 		return -1;
5249 	return i;
5250 }
5251 
5252 /** Complete action names. */
5253 static int
5254 comp_action(struct context *ctx, const struct token *token,
5255 	    unsigned int ent, char *buf, unsigned int size)
5256 {
5257 	unsigned int i;
5258 
5259 	(void)ctx;
5260 	(void)token;
5261 	for (i = 0; next_action[i]; ++i)
5262 		if (buf && i == ent)
5263 			return strlcpy(buf, token_list[next_action[i]].name,
5264 				       size);
5265 	if (buf)
5266 		return -1;
5267 	return i;
5268 }
5269 
5270 /** Complete available ports. */
5271 static int
5272 comp_port(struct context *ctx, const struct token *token,
5273 	  unsigned int ent, char *buf, unsigned int size)
5274 {
5275 	unsigned int i = 0;
5276 	portid_t p;
5277 
5278 	(void)ctx;
5279 	(void)token;
5280 	RTE_ETH_FOREACH_DEV(p) {
5281 		if (buf && i == ent)
5282 			return snprintf(buf, size, "%u", p);
5283 		++i;
5284 	}
5285 	if (buf)
5286 		return -1;
5287 	return i;
5288 }
5289 
5290 /** Complete available rule IDs. */
5291 static int
5292 comp_rule_id(struct context *ctx, const struct token *token,
5293 	     unsigned int ent, char *buf, unsigned int size)
5294 {
5295 	unsigned int i = 0;
5296 	struct rte_port *port;
5297 	struct port_flow *pf;
5298 
5299 	(void)token;
5300 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
5301 	    ctx->port == (portid_t)RTE_PORT_ALL)
5302 		return -1;
5303 	port = &ports[ctx->port];
5304 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
5305 		if (buf && i == ent)
5306 			return snprintf(buf, size, "%u", pf->id);
5307 		++i;
5308 	}
5309 	if (buf)
5310 		return -1;
5311 	return i;
5312 }
5313 
5314 /** Complete type field for RSS action. */
5315 static int
5316 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
5317 			unsigned int ent, char *buf, unsigned int size)
5318 {
5319 	unsigned int i;
5320 
5321 	(void)ctx;
5322 	(void)token;
5323 	for (i = 0; rss_type_table[i].str; ++i)
5324 		;
5325 	if (!buf)
5326 		return i + 1;
5327 	if (ent < i)
5328 		return strlcpy(buf, rss_type_table[ent].str, size);
5329 	if (ent == i)
5330 		return snprintf(buf, size, "end");
5331 	return -1;
5332 }
5333 
5334 /** Complete queue field for RSS action. */
5335 static int
5336 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
5337 			 unsigned int ent, char *buf, unsigned int size)
5338 {
5339 	(void)ctx;
5340 	(void)token;
5341 	if (!buf)
5342 		return nb_rxq + 1;
5343 	if (ent < nb_rxq)
5344 		return snprintf(buf, size, "%u", ent);
5345 	if (ent == nb_rxq)
5346 		return snprintf(buf, size, "end");
5347 	return -1;
5348 }
5349 
5350 /** Internal context. */
5351 static struct context cmd_flow_context;
5352 
5353 /** Global parser instance (cmdline API). */
5354 cmdline_parse_inst_t cmd_flow;
5355 cmdline_parse_inst_t cmd_set_raw;
5356 
5357 /** Initialize context. */
5358 static void
5359 cmd_flow_context_init(struct context *ctx)
5360 {
5361 	/* A full memset() is not necessary. */
5362 	ctx->curr = ZERO;
5363 	ctx->prev = ZERO;
5364 	ctx->next_num = 0;
5365 	ctx->args_num = 0;
5366 	ctx->eol = 0;
5367 	ctx->last = 0;
5368 	ctx->port = 0;
5369 	ctx->objdata = 0;
5370 	ctx->object = NULL;
5371 	ctx->objmask = NULL;
5372 }
5373 
5374 /** Parse a token (cmdline API). */
5375 static int
5376 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
5377 	       unsigned int size)
5378 {
5379 	struct context *ctx = &cmd_flow_context;
5380 	const struct token *token;
5381 	const enum index *list;
5382 	int len;
5383 	int i;
5384 
5385 	(void)hdr;
5386 	token = &token_list[ctx->curr];
5387 	/* Check argument length. */
5388 	ctx->eol = 0;
5389 	ctx->last = 1;
5390 	for (len = 0; src[len]; ++len)
5391 		if (src[len] == '#' || isspace(src[len]))
5392 			break;
5393 	if (!len)
5394 		return -1;
5395 	/* Last argument and EOL detection. */
5396 	for (i = len; src[i]; ++i)
5397 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
5398 			break;
5399 		else if (!isspace(src[i])) {
5400 			ctx->last = 0;
5401 			break;
5402 		}
5403 	for (; src[i]; ++i)
5404 		if (src[i] == '\r' || src[i] == '\n') {
5405 			ctx->eol = 1;
5406 			break;
5407 		}
5408 	/* Initialize context if necessary. */
5409 	if (!ctx->next_num) {
5410 		if (!token->next)
5411 			return 0;
5412 		ctx->next[ctx->next_num++] = token->next[0];
5413 	}
5414 	/* Process argument through candidates. */
5415 	ctx->prev = ctx->curr;
5416 	list = ctx->next[ctx->next_num - 1];
5417 	for (i = 0; list[i]; ++i) {
5418 		const struct token *next = &token_list[list[i]];
5419 		int tmp;
5420 
5421 		ctx->curr = list[i];
5422 		if (next->call)
5423 			tmp = next->call(ctx, next, src, len, result, size);
5424 		else
5425 			tmp = parse_default(ctx, next, src, len, result, size);
5426 		if (tmp == -1 || tmp != len)
5427 			continue;
5428 		token = next;
5429 		break;
5430 	}
5431 	if (!list[i])
5432 		return -1;
5433 	--ctx->next_num;
5434 	/* Push subsequent tokens if any. */
5435 	if (token->next)
5436 		for (i = 0; token->next[i]; ++i) {
5437 			if (ctx->next_num == RTE_DIM(ctx->next))
5438 				return -1;
5439 			ctx->next[ctx->next_num++] = token->next[i];
5440 		}
5441 	/* Push arguments if any. */
5442 	if (token->args)
5443 		for (i = 0; token->args[i]; ++i) {
5444 			if (ctx->args_num == RTE_DIM(ctx->args))
5445 				return -1;
5446 			ctx->args[ctx->args_num++] = token->args[i];
5447 		}
5448 	return len;
5449 }
5450 
5451 /** Return number of completion entries (cmdline API). */
5452 static int
5453 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
5454 {
5455 	struct context *ctx = &cmd_flow_context;
5456 	const struct token *token = &token_list[ctx->curr];
5457 	const enum index *list;
5458 	int i;
5459 
5460 	(void)hdr;
5461 	/* Count number of tokens in current list. */
5462 	if (ctx->next_num)
5463 		list = ctx->next[ctx->next_num - 1];
5464 	else
5465 		list = token->next[0];
5466 	for (i = 0; list[i]; ++i)
5467 		;
5468 	if (!i)
5469 		return 0;
5470 	/*
5471 	 * If there is a single token, use its completion callback, otherwise
5472 	 * return the number of entries.
5473 	 */
5474 	token = &token_list[list[0]];
5475 	if (i == 1 && token->comp) {
5476 		/* Save index for cmd_flow_get_help(). */
5477 		ctx->prev = list[0];
5478 		return token->comp(ctx, token, 0, NULL, 0);
5479 	}
5480 	return i;
5481 }
5482 
5483 /** Return a completion entry (cmdline API). */
5484 static int
5485 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
5486 			  char *dst, unsigned int size)
5487 {
5488 	struct context *ctx = &cmd_flow_context;
5489 	const struct token *token = &token_list[ctx->curr];
5490 	const enum index *list;
5491 	int i;
5492 
5493 	(void)hdr;
5494 	/* Count number of tokens in current list. */
5495 	if (ctx->next_num)
5496 		list = ctx->next[ctx->next_num - 1];
5497 	else
5498 		list = token->next[0];
5499 	for (i = 0; list[i]; ++i)
5500 		;
5501 	if (!i)
5502 		return -1;
5503 	/* If there is a single token, use its completion callback. */
5504 	token = &token_list[list[0]];
5505 	if (i == 1 && token->comp) {
5506 		/* Save index for cmd_flow_get_help(). */
5507 		ctx->prev = list[0];
5508 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
5509 	}
5510 	/* Otherwise make sure the index is valid and use defaults. */
5511 	if (index >= i)
5512 		return -1;
5513 	token = &token_list[list[index]];
5514 	strlcpy(dst, token->name, size);
5515 	/* Save index for cmd_flow_get_help(). */
5516 	ctx->prev = list[index];
5517 	return 0;
5518 }
5519 
5520 /** Populate help strings for current token (cmdline API). */
5521 static int
5522 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
5523 {
5524 	struct context *ctx = &cmd_flow_context;
5525 	const struct token *token = &token_list[ctx->prev];
5526 
5527 	(void)hdr;
5528 	if (!size)
5529 		return -1;
5530 	/* Set token type and update global help with details. */
5531 	strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
5532 	if (token->help)
5533 		cmd_flow.help_str = token->help;
5534 	else
5535 		cmd_flow.help_str = token->name;
5536 	return 0;
5537 }
5538 
5539 /** Token definition template (cmdline API). */
5540 static struct cmdline_token_hdr cmd_flow_token_hdr = {
5541 	.ops = &(struct cmdline_token_ops){
5542 		.parse = cmd_flow_parse,
5543 		.complete_get_nb = cmd_flow_complete_get_nb,
5544 		.complete_get_elt = cmd_flow_complete_get_elt,
5545 		.get_help = cmd_flow_get_help,
5546 	},
5547 	.offset = 0,
5548 };
5549 
5550 /** Populate the next dynamic token. */
5551 static void
5552 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
5553 	     cmdline_parse_token_hdr_t **hdr_inst)
5554 {
5555 	struct context *ctx = &cmd_flow_context;
5556 
5557 	/* Always reinitialize context before requesting the first token. */
5558 	if (!(hdr_inst - cmd_flow.tokens))
5559 		cmd_flow_context_init(ctx);
5560 	/* Return NULL when no more tokens are expected. */
5561 	if (!ctx->next_num && ctx->curr) {
5562 		*hdr = NULL;
5563 		return;
5564 	}
5565 	/* Determine if command should end here. */
5566 	if (ctx->eol && ctx->last && ctx->next_num) {
5567 		const enum index *list = ctx->next[ctx->next_num - 1];
5568 		int i;
5569 
5570 		for (i = 0; list[i]; ++i) {
5571 			if (list[i] != END)
5572 				continue;
5573 			*hdr = NULL;
5574 			return;
5575 		}
5576 	}
5577 	*hdr = &cmd_flow_token_hdr;
5578 }
5579 
5580 /** Dispatch parsed buffer to function calls. */
5581 static void
5582 cmd_flow_parsed(const struct buffer *in)
5583 {
5584 	switch (in->command) {
5585 	case VALIDATE:
5586 		port_flow_validate(in->port, &in->args.vc.attr,
5587 				   in->args.vc.pattern, in->args.vc.actions);
5588 		break;
5589 	case CREATE:
5590 		port_flow_create(in->port, &in->args.vc.attr,
5591 				 in->args.vc.pattern, in->args.vc.actions);
5592 		break;
5593 	case DESTROY:
5594 		port_flow_destroy(in->port, in->args.destroy.rule_n,
5595 				  in->args.destroy.rule);
5596 		break;
5597 	case FLUSH:
5598 		port_flow_flush(in->port);
5599 		break;
5600 	case QUERY:
5601 		port_flow_query(in->port, in->args.query.rule,
5602 				&in->args.query.action);
5603 		break;
5604 	case LIST:
5605 		port_flow_list(in->port, in->args.list.group_n,
5606 			       in->args.list.group);
5607 		break;
5608 	case ISOLATE:
5609 		port_flow_isolate(in->port, in->args.isolate.set);
5610 		break;
5611 	default:
5612 		break;
5613 	}
5614 }
5615 
5616 /** Token generator and output processing callback (cmdline API). */
5617 static void
5618 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
5619 {
5620 	if (cl == NULL)
5621 		cmd_flow_tok(arg0, arg2);
5622 	else
5623 		cmd_flow_parsed(arg0);
5624 }
5625 
5626 /** Global parser instance (cmdline API). */
5627 cmdline_parse_inst_t cmd_flow = {
5628 	.f = cmd_flow_cb,
5629 	.data = NULL, /**< Unused. */
5630 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5631 	.tokens = {
5632 		NULL,
5633 	}, /**< Tokens are returned by cmd_flow_tok(). */
5634 };
5635 
5636 /** set cmd facility. Reuse cmd flow's infrastructure as much as possible. */
5637 
5638 static void
5639 update_fields(uint8_t *buf, struct rte_flow_item *item, uint16_t next_proto)
5640 {
5641 	struct rte_flow_item_ipv4 *ipv4;
5642 	struct rte_flow_item_eth *eth;
5643 	struct rte_flow_item_ipv6 *ipv6;
5644 	struct rte_flow_item_vxlan *vxlan;
5645 	struct rte_flow_item_vxlan_gpe *gpe;
5646 	struct rte_flow_item_nvgre *nvgre;
5647 	uint32_t ipv6_vtc_flow;
5648 
5649 	switch (item->type) {
5650 	case RTE_FLOW_ITEM_TYPE_ETH:
5651 		eth = (struct rte_flow_item_eth *)buf;
5652 		if (next_proto)
5653 			eth->type = rte_cpu_to_be_16(next_proto);
5654 		break;
5655 	case RTE_FLOW_ITEM_TYPE_IPV4:
5656 		ipv4 = (struct rte_flow_item_ipv4 *)buf;
5657 		ipv4->hdr.version_ihl = 0x45;
5658 		ipv4->hdr.next_proto_id = (uint8_t)next_proto;
5659 		break;
5660 	case RTE_FLOW_ITEM_TYPE_IPV6:
5661 		ipv6 = (struct rte_flow_item_ipv6 *)buf;
5662 		ipv6->hdr.proto = (uint8_t)next_proto;
5663 		ipv6_vtc_flow = rte_be_to_cpu_32(ipv6->hdr.vtc_flow);
5664 		ipv6_vtc_flow &= 0x0FFFFFFF; /*< reset version bits. */
5665 		ipv6_vtc_flow |= 0x60000000; /*< set ipv6 version. */
5666 		ipv6->hdr.vtc_flow = rte_cpu_to_be_32(ipv6_vtc_flow);
5667 		break;
5668 	case RTE_FLOW_ITEM_TYPE_VXLAN:
5669 		vxlan = (struct rte_flow_item_vxlan *)buf;
5670 		vxlan->flags = 0x08;
5671 		break;
5672 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5673 		gpe = (struct rte_flow_item_vxlan_gpe *)buf;
5674 		gpe->flags = 0x0C;
5675 		break;
5676 	case RTE_FLOW_ITEM_TYPE_NVGRE:
5677 		nvgre = (struct rte_flow_item_nvgre *)buf;
5678 		nvgre->protocol = rte_cpu_to_be_16(0x6558);
5679 		nvgre->c_k_s_rsvd0_ver = rte_cpu_to_be_16(0x2000);
5680 		break;
5681 	default:
5682 		break;
5683 	}
5684 }
5685 
5686 /** Helper of get item's default mask. */
5687 static const void *
5688 flow_item_default_mask(const struct rte_flow_item *item)
5689 {
5690 	const void *mask = NULL;
5691 	static rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
5692 
5693 	switch (item->type) {
5694 	case RTE_FLOW_ITEM_TYPE_ANY:
5695 		mask = &rte_flow_item_any_mask;
5696 		break;
5697 	case RTE_FLOW_ITEM_TYPE_VF:
5698 		mask = &rte_flow_item_vf_mask;
5699 		break;
5700 	case RTE_FLOW_ITEM_TYPE_PORT_ID:
5701 		mask = &rte_flow_item_port_id_mask;
5702 		break;
5703 	case RTE_FLOW_ITEM_TYPE_RAW:
5704 		mask = &rte_flow_item_raw_mask;
5705 		break;
5706 	case RTE_FLOW_ITEM_TYPE_ETH:
5707 		mask = &rte_flow_item_eth_mask;
5708 		break;
5709 	case RTE_FLOW_ITEM_TYPE_VLAN:
5710 		mask = &rte_flow_item_vlan_mask;
5711 		break;
5712 	case RTE_FLOW_ITEM_TYPE_IPV4:
5713 		mask = &rte_flow_item_ipv4_mask;
5714 		break;
5715 	case RTE_FLOW_ITEM_TYPE_IPV6:
5716 		mask = &rte_flow_item_ipv6_mask;
5717 		break;
5718 	case RTE_FLOW_ITEM_TYPE_ICMP:
5719 		mask = &rte_flow_item_icmp_mask;
5720 		break;
5721 	case RTE_FLOW_ITEM_TYPE_UDP:
5722 		mask = &rte_flow_item_udp_mask;
5723 		break;
5724 	case RTE_FLOW_ITEM_TYPE_TCP:
5725 		mask = &rte_flow_item_tcp_mask;
5726 		break;
5727 	case RTE_FLOW_ITEM_TYPE_SCTP:
5728 		mask = &rte_flow_item_sctp_mask;
5729 		break;
5730 	case RTE_FLOW_ITEM_TYPE_VXLAN:
5731 		mask = &rte_flow_item_vxlan_mask;
5732 		break;
5733 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5734 		mask = &rte_flow_item_vxlan_gpe_mask;
5735 		break;
5736 	case RTE_FLOW_ITEM_TYPE_E_TAG:
5737 		mask = &rte_flow_item_e_tag_mask;
5738 		break;
5739 	case RTE_FLOW_ITEM_TYPE_NVGRE:
5740 		mask = &rte_flow_item_nvgre_mask;
5741 		break;
5742 	case RTE_FLOW_ITEM_TYPE_MPLS:
5743 		mask = &rte_flow_item_mpls_mask;
5744 		break;
5745 	case RTE_FLOW_ITEM_TYPE_GRE:
5746 		mask = &rte_flow_item_gre_mask;
5747 		break;
5748 	case RTE_FLOW_ITEM_TYPE_GRE_KEY:
5749 		mask = &gre_key_default_mask;
5750 		break;
5751 	case RTE_FLOW_ITEM_TYPE_META:
5752 		mask = &rte_flow_item_meta_mask;
5753 		break;
5754 	case RTE_FLOW_ITEM_TYPE_FUZZY:
5755 		mask = &rte_flow_item_fuzzy_mask;
5756 		break;
5757 	case RTE_FLOW_ITEM_TYPE_GTP:
5758 		mask = &rte_flow_item_gtp_mask;
5759 		break;
5760 	case RTE_FLOW_ITEM_TYPE_ESP:
5761 		mask = &rte_flow_item_esp_mask;
5762 		break;
5763 	default:
5764 		break;
5765 	}
5766 	return mask;
5767 }
5768 
5769 
5770 
5771 /** Dispatch parsed buffer to function calls. */
5772 static void
5773 cmd_set_raw_parsed(const struct buffer *in)
5774 {
5775 	uint32_t n = in->args.vc.pattern_n;
5776 	int i = 0;
5777 	struct rte_flow_item *item = NULL;
5778 	size_t size = 0;
5779 	uint8_t *data = NULL;
5780 	uint8_t *data_tail = NULL;
5781 	size_t *total_size = NULL;
5782 	uint16_t upper_layer = 0;
5783 	uint16_t proto = 0;
5784 
5785 	RTE_ASSERT(in->command == SET_RAW_ENCAP ||
5786 		   in->command == SET_RAW_DECAP);
5787 	if (in->command == SET_RAW_ENCAP) {
5788 		total_size = &raw_encap_conf.size;
5789 		data = (uint8_t *)&raw_encap_conf.data;
5790 	} else {
5791 		total_size = &raw_decap_conf.size;
5792 		data = (uint8_t *)&raw_decap_conf.data;
5793 	}
5794 	*total_size = 0;
5795 	memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
5796 	/* process hdr from upper layer to low layer (L3/L4 -> L2). */
5797 	data_tail = data + ACTION_RAW_ENCAP_MAX_DATA;
5798 	for (i = n - 1 ; i >= 0; --i) {
5799 		item = in->args.vc.pattern + i;
5800 		if (item->spec == NULL)
5801 			item->spec = flow_item_default_mask(item);
5802 		switch (item->type) {
5803 		case RTE_FLOW_ITEM_TYPE_ETH:
5804 			size = sizeof(struct rte_flow_item_eth);
5805 			break;
5806 		case RTE_FLOW_ITEM_TYPE_VLAN:
5807 			size = sizeof(struct rte_flow_item_vlan);
5808 			proto = RTE_ETHER_TYPE_VLAN;
5809 			break;
5810 		case RTE_FLOW_ITEM_TYPE_IPV4:
5811 			size = sizeof(struct rte_flow_item_ipv4);
5812 			proto = RTE_ETHER_TYPE_IPV4;
5813 			break;
5814 		case RTE_FLOW_ITEM_TYPE_IPV6:
5815 			size = sizeof(struct rte_flow_item_ipv6);
5816 			proto = RTE_ETHER_TYPE_IPV6;
5817 			break;
5818 		case RTE_FLOW_ITEM_TYPE_UDP:
5819 			size = sizeof(struct rte_flow_item_udp);
5820 			proto = 0x11;
5821 			break;
5822 		case RTE_FLOW_ITEM_TYPE_TCP:
5823 			size = sizeof(struct rte_flow_item_tcp);
5824 			proto = 0x06;
5825 			break;
5826 		case RTE_FLOW_ITEM_TYPE_VXLAN:
5827 			size = sizeof(struct rte_flow_item_vxlan);
5828 			break;
5829 		case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
5830 			size = sizeof(struct rte_flow_item_vxlan_gpe);
5831 			break;
5832 		case RTE_FLOW_ITEM_TYPE_GRE:
5833 			size = sizeof(struct rte_flow_item_gre);
5834 			proto = 0x2F;
5835 			break;
5836 		case RTE_FLOW_ITEM_TYPE_GRE_KEY:
5837 			size = sizeof(rte_be32_t);
5838 			break;
5839 		case RTE_FLOW_ITEM_TYPE_MPLS:
5840 			size = sizeof(struct rte_flow_item_mpls);
5841 			break;
5842 		case RTE_FLOW_ITEM_TYPE_NVGRE:
5843 			size = sizeof(struct rte_flow_item_nvgre);
5844 			proto = 0x2F;
5845 			break;
5846 		default:
5847 			printf("Error - Not supported item\n");
5848 			*total_size = 0;
5849 			memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
5850 			return;
5851 		}
5852 		*total_size += size;
5853 		rte_memcpy(data_tail - (*total_size), item->spec, size);
5854 		/* update some fields which cannot be set by cmdline */
5855 		update_fields((data_tail - (*total_size)), item,
5856 			      upper_layer);
5857 		upper_layer = proto;
5858 	}
5859 	if (verbose_level & 0x1)
5860 		printf("total data size is %zu\n", (*total_size));
5861 	RTE_ASSERT((*total_size) <= ACTION_RAW_ENCAP_MAX_DATA);
5862 }
5863 
5864 /** Populate help strings for current token (cmdline API). */
5865 static int
5866 cmd_set_raw_get_help(cmdline_parse_token_hdr_t *hdr, char *dst,
5867 		     unsigned int size)
5868 {
5869 	struct context *ctx = &cmd_flow_context;
5870 	const struct token *token = &token_list[ctx->prev];
5871 
5872 	(void)hdr;
5873 	if (!size)
5874 		return -1;
5875 	/* Set token type and update global help with details. */
5876 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
5877 	if (token->help)
5878 		cmd_set_raw.help_str = token->help;
5879 	else
5880 		cmd_set_raw.help_str = token->name;
5881 	return 0;
5882 }
5883 
5884 /** Token definition template (cmdline API). */
5885 static struct cmdline_token_hdr cmd_set_raw_token_hdr = {
5886 	.ops = &(struct cmdline_token_ops){
5887 		.parse = cmd_flow_parse,
5888 		.complete_get_nb = cmd_flow_complete_get_nb,
5889 		.complete_get_elt = cmd_flow_complete_get_elt,
5890 		.get_help = cmd_set_raw_get_help,
5891 	},
5892 	.offset = 0,
5893 };
5894 
5895 /** Populate the next dynamic token. */
5896 static void
5897 cmd_set_raw_tok(cmdline_parse_token_hdr_t **hdr,
5898 	     cmdline_parse_token_hdr_t **hdr_inst)
5899 {
5900 	struct context *ctx = &cmd_flow_context;
5901 
5902 	/* Always reinitialize context before requesting the first token. */
5903 	if (!(hdr_inst - cmd_set_raw.tokens)) {
5904 		cmd_flow_context_init(ctx);
5905 		ctx->curr = START_SET;
5906 	}
5907 	/* Return NULL when no more tokens are expected. */
5908 	if (!ctx->next_num && (ctx->curr != START_SET)) {
5909 		*hdr = NULL;
5910 		return;
5911 	}
5912 	/* Determine if command should end here. */
5913 	if (ctx->eol && ctx->last && ctx->next_num) {
5914 		const enum index *list = ctx->next[ctx->next_num - 1];
5915 		int i;
5916 
5917 		for (i = 0; list[i]; ++i) {
5918 			if (list[i] != END)
5919 				continue;
5920 			*hdr = NULL;
5921 			return;
5922 		}
5923 	}
5924 	*hdr = &cmd_set_raw_token_hdr;
5925 }
5926 
5927 /** Token generator and output processing callback (cmdline API). */
5928 static void
5929 cmd_set_raw_cb(void *arg0, struct cmdline *cl, void *arg2)
5930 {
5931 	if (cl == NULL)
5932 		cmd_set_raw_tok(arg0, arg2);
5933 	else
5934 		cmd_set_raw_parsed(arg0);
5935 }
5936 
5937 /** Global parser instance (cmdline API). */
5938 cmdline_parse_inst_t cmd_set_raw = {
5939 	.f = cmd_set_raw_cb,
5940 	.data = NULL, /**< Unused. */
5941 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
5942 	.tokens = {
5943 		NULL,
5944 	}, /**< Tokens are returned by cmd_flow_tok(). */
5945 };
5946