xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 18aee2861a1f8c5f7511fed32ecc59295c26f79a)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_common.h>
17 #include <rte_eth_ctrl.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23 
24 #include "testpmd.h"
25 
26 /** Parser token indices. */
27 enum index {
28 	/* Special tokens. */
29 	ZERO = 0,
30 	END,
31 
32 	/* Common tokens. */
33 	INTEGER,
34 	UNSIGNED,
35 	PREFIX,
36 	BOOLEAN,
37 	STRING,
38 	MAC_ADDR,
39 	IPV4_ADDR,
40 	IPV6_ADDR,
41 	RULE_ID,
42 	PORT_ID,
43 	GROUP_ID,
44 	PRIORITY_LEVEL,
45 
46 	/* Top-level command. */
47 	FLOW,
48 
49 	/* Sub-level commands. */
50 	VALIDATE,
51 	CREATE,
52 	DESTROY,
53 	FLUSH,
54 	QUERY,
55 	LIST,
56 	ISOLATE,
57 
58 	/* Destroy arguments. */
59 	DESTROY_RULE,
60 
61 	/* Query arguments. */
62 	QUERY_ACTION,
63 
64 	/* List arguments. */
65 	LIST_GROUP,
66 
67 	/* Validate/create arguments. */
68 	GROUP,
69 	PRIORITY,
70 	INGRESS,
71 	EGRESS,
72 
73 	/* Validate/create pattern. */
74 	PATTERN,
75 	ITEM_PARAM_IS,
76 	ITEM_PARAM_SPEC,
77 	ITEM_PARAM_LAST,
78 	ITEM_PARAM_MASK,
79 	ITEM_PARAM_PREFIX,
80 	ITEM_NEXT,
81 	ITEM_END,
82 	ITEM_VOID,
83 	ITEM_INVERT,
84 	ITEM_ANY,
85 	ITEM_ANY_NUM,
86 	ITEM_PF,
87 	ITEM_VF,
88 	ITEM_VF_ID,
89 	ITEM_PORT,
90 	ITEM_PORT_INDEX,
91 	ITEM_RAW,
92 	ITEM_RAW_RELATIVE,
93 	ITEM_RAW_SEARCH,
94 	ITEM_RAW_OFFSET,
95 	ITEM_RAW_LIMIT,
96 	ITEM_RAW_PATTERN,
97 	ITEM_ETH,
98 	ITEM_ETH_DST,
99 	ITEM_ETH_SRC,
100 	ITEM_ETH_TYPE,
101 	ITEM_VLAN,
102 	ITEM_VLAN_TPID,
103 	ITEM_VLAN_TCI,
104 	ITEM_VLAN_PCP,
105 	ITEM_VLAN_DEI,
106 	ITEM_VLAN_VID,
107 	ITEM_IPV4,
108 	ITEM_IPV4_TOS,
109 	ITEM_IPV4_TTL,
110 	ITEM_IPV4_PROTO,
111 	ITEM_IPV4_SRC,
112 	ITEM_IPV4_DST,
113 	ITEM_IPV6,
114 	ITEM_IPV6_TC,
115 	ITEM_IPV6_FLOW,
116 	ITEM_IPV6_PROTO,
117 	ITEM_IPV6_HOP,
118 	ITEM_IPV6_SRC,
119 	ITEM_IPV6_DST,
120 	ITEM_ICMP,
121 	ITEM_ICMP_TYPE,
122 	ITEM_ICMP_CODE,
123 	ITEM_UDP,
124 	ITEM_UDP_SRC,
125 	ITEM_UDP_DST,
126 	ITEM_TCP,
127 	ITEM_TCP_SRC,
128 	ITEM_TCP_DST,
129 	ITEM_TCP_FLAGS,
130 	ITEM_SCTP,
131 	ITEM_SCTP_SRC,
132 	ITEM_SCTP_DST,
133 	ITEM_SCTP_TAG,
134 	ITEM_SCTP_CKSUM,
135 	ITEM_VXLAN,
136 	ITEM_VXLAN_VNI,
137 	ITEM_E_TAG,
138 	ITEM_E_TAG_GRP_ECID_B,
139 	ITEM_NVGRE,
140 	ITEM_NVGRE_TNI,
141 	ITEM_MPLS,
142 	ITEM_MPLS_LABEL,
143 	ITEM_GRE,
144 	ITEM_GRE_PROTO,
145 	ITEM_FUZZY,
146 	ITEM_FUZZY_THRESH,
147 	ITEM_GTP,
148 	ITEM_GTP_TEID,
149 	ITEM_GTPC,
150 	ITEM_GTPU,
151 	ITEM_GENEVE,
152 	ITEM_GENEVE_VNI,
153 	ITEM_GENEVE_PROTO,
154 
155 	/* Validate/create actions. */
156 	ACTIONS,
157 	ACTION_NEXT,
158 	ACTION_END,
159 	ACTION_VOID,
160 	ACTION_PASSTHRU,
161 	ACTION_MARK,
162 	ACTION_MARK_ID,
163 	ACTION_FLAG,
164 	ACTION_QUEUE,
165 	ACTION_QUEUE_INDEX,
166 	ACTION_DROP,
167 	ACTION_COUNT,
168 	ACTION_RSS,
169 	ACTION_RSS_FUNC,
170 	ACTION_RSS_LEVEL,
171 	ACTION_RSS_FUNC_DEFAULT,
172 	ACTION_RSS_FUNC_TOEPLITZ,
173 	ACTION_RSS_FUNC_SIMPLE_XOR,
174 	ACTION_RSS_TYPES,
175 	ACTION_RSS_TYPE,
176 	ACTION_RSS_KEY,
177 	ACTION_RSS_KEY_LEN,
178 	ACTION_RSS_QUEUES,
179 	ACTION_RSS_QUEUE,
180 	ACTION_PF,
181 	ACTION_VF,
182 	ACTION_VF_ORIGINAL,
183 	ACTION_VF_ID,
184 	ACTION_METER,
185 	ACTION_METER_ID,
186 };
187 
188 /** Maximum size for pattern in struct rte_flow_item_raw. */
189 #define ITEM_RAW_PATTERN_SIZE 40
190 
191 /** Storage size for struct rte_flow_item_raw including pattern. */
192 #define ITEM_RAW_SIZE \
193 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
194 
195 /** Maximum number of queue indices in struct rte_flow_action_rss. */
196 #define ACTION_RSS_QUEUE_NUM 32
197 
198 /** Storage for struct rte_flow_action_rss including external data. */
199 struct action_rss_data {
200 	struct rte_flow_action_rss conf;
201 	uint8_t key[RSS_HASH_KEY_LENGTH];
202 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
203 };
204 
205 /** Maximum number of subsequent tokens and arguments on the stack. */
206 #define CTX_STACK_SIZE 16
207 
208 /** Parser context. */
209 struct context {
210 	/** Stack of subsequent token lists to process. */
211 	const enum index *next[CTX_STACK_SIZE];
212 	/** Arguments for stacked tokens. */
213 	const void *args[CTX_STACK_SIZE];
214 	enum index curr; /**< Current token index. */
215 	enum index prev; /**< Index of the last token seen. */
216 	int next_num; /**< Number of entries in next[]. */
217 	int args_num; /**< Number of entries in args[]. */
218 	uint32_t eol:1; /**< EOL has been detected. */
219 	uint32_t last:1; /**< No more arguments. */
220 	portid_t port; /**< Current port ID (for completions). */
221 	uint32_t objdata; /**< Object-specific data. */
222 	void *object; /**< Address of current object for relative offsets. */
223 	void *objmask; /**< Object a full mask must be written to. */
224 };
225 
226 /** Token argument. */
227 struct arg {
228 	uint32_t hton:1; /**< Use network byte ordering. */
229 	uint32_t sign:1; /**< Value is signed. */
230 	uint32_t bounded:1; /**< Value is bounded. */
231 	uintmax_t min; /**< Minimum value if bounded. */
232 	uintmax_t max; /**< Maximum value if bounded. */
233 	uint32_t offset; /**< Relative offset from ctx->object. */
234 	uint32_t size; /**< Field size. */
235 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
236 };
237 
238 /** Parser token definition. */
239 struct token {
240 	/** Type displayed during completion (defaults to "TOKEN"). */
241 	const char *type;
242 	/** Help displayed during completion (defaults to token name). */
243 	const char *help;
244 	/** Private data used by parser functions. */
245 	const void *priv;
246 	/**
247 	 * Lists of subsequent tokens to push on the stack. Each call to the
248 	 * parser consumes the last entry of that stack.
249 	 */
250 	const enum index *const *next;
251 	/** Arguments stack for subsequent tokens that need them. */
252 	const struct arg *const *args;
253 	/**
254 	 * Token-processing callback, returns -1 in case of error, the
255 	 * length of the matched string otherwise. If NULL, attempts to
256 	 * match the token name.
257 	 *
258 	 * If buf is not NULL, the result should be stored in it according
259 	 * to context. An error is returned if not large enough.
260 	 */
261 	int (*call)(struct context *ctx, const struct token *token,
262 		    const char *str, unsigned int len,
263 		    void *buf, unsigned int size);
264 	/**
265 	 * Callback that provides possible values for this token, used for
266 	 * completion. Returns -1 in case of error, the number of possible
267 	 * values otherwise. If NULL, the token name is used.
268 	 *
269 	 * If buf is not NULL, entry index ent is written to buf and the
270 	 * full length of the entry is returned (same behavior as
271 	 * snprintf()).
272 	 */
273 	int (*comp)(struct context *ctx, const struct token *token,
274 		    unsigned int ent, char *buf, unsigned int size);
275 	/** Mandatory token name, no default value. */
276 	const char *name;
277 };
278 
279 /** Static initializer for the next field. */
280 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
281 
282 /** Static initializer for a NEXT() entry. */
283 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
284 
285 /** Static initializer for the args field. */
286 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
287 
288 /** Static initializer for ARGS() to target a field. */
289 #define ARGS_ENTRY(s, f) \
290 	(&(const struct arg){ \
291 		.offset = offsetof(s, f), \
292 		.size = sizeof(((s *)0)->f), \
293 	})
294 
295 /** Static initializer for ARGS() to target a bit-field. */
296 #define ARGS_ENTRY_BF(s, f, b) \
297 	(&(const struct arg){ \
298 		.size = sizeof(s), \
299 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
300 	})
301 
302 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
303 #define ARGS_ENTRY_MASK(s, f, m) \
304 	(&(const struct arg){ \
305 		.offset = offsetof(s, f), \
306 		.size = sizeof(((s *)0)->f), \
307 		.mask = (const void *)(m), \
308 	})
309 
310 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
311 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
312 	(&(const struct arg){ \
313 		.hton = 1, \
314 		.offset = offsetof(s, f), \
315 		.size = sizeof(((s *)0)->f), \
316 		.mask = (const void *)(m), \
317 	})
318 
319 /** Static initializer for ARGS() to target a pointer. */
320 #define ARGS_ENTRY_PTR(s, f) \
321 	(&(const struct arg){ \
322 		.size = sizeof(*((s *)0)->f), \
323 	})
324 
325 /** Static initializer for ARGS() with arbitrary offset and size. */
326 #define ARGS_ENTRY_ARB(o, s) \
327 	(&(const struct arg){ \
328 		.offset = (o), \
329 		.size = (s), \
330 	})
331 
332 /** Same as ARGS_ENTRY_ARB() with bounded values. */
333 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
334 	(&(const struct arg){ \
335 		.bounded = 1, \
336 		.min = (i), \
337 		.max = (a), \
338 		.offset = (o), \
339 		.size = (s), \
340 	})
341 
342 /** Same as ARGS_ENTRY() using network byte ordering. */
343 #define ARGS_ENTRY_HTON(s, f) \
344 	(&(const struct arg){ \
345 		.hton = 1, \
346 		.offset = offsetof(s, f), \
347 		.size = sizeof(((s *)0)->f), \
348 	})
349 
350 /** Parser output buffer layout expected by cmd_flow_parsed(). */
351 struct buffer {
352 	enum index command; /**< Flow command. */
353 	portid_t port; /**< Affected port ID. */
354 	union {
355 		struct {
356 			struct rte_flow_attr attr;
357 			struct rte_flow_item *pattern;
358 			struct rte_flow_action *actions;
359 			uint32_t pattern_n;
360 			uint32_t actions_n;
361 			uint8_t *data;
362 		} vc; /**< Validate/create arguments. */
363 		struct {
364 			uint32_t *rule;
365 			uint32_t rule_n;
366 		} destroy; /**< Destroy arguments. */
367 		struct {
368 			uint32_t rule;
369 			enum rte_flow_action_type action;
370 		} query; /**< Query arguments. */
371 		struct {
372 			uint32_t *group;
373 			uint32_t group_n;
374 		} list; /**< List arguments. */
375 		struct {
376 			int set;
377 		} isolate; /**< Isolated mode arguments. */
378 	} args; /**< Command arguments. */
379 };
380 
381 /** Private data for pattern items. */
382 struct parse_item_priv {
383 	enum rte_flow_item_type type; /**< Item type. */
384 	uint32_t size; /**< Size of item specification structure. */
385 };
386 
387 #define PRIV_ITEM(t, s) \
388 	(&(const struct parse_item_priv){ \
389 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
390 		.size = s, \
391 	})
392 
393 /** Private data for actions. */
394 struct parse_action_priv {
395 	enum rte_flow_action_type type; /**< Action type. */
396 	uint32_t size; /**< Size of action configuration structure. */
397 };
398 
399 #define PRIV_ACTION(t, s) \
400 	(&(const struct parse_action_priv){ \
401 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
402 		.size = s, \
403 	})
404 
405 static const enum index next_vc_attr[] = {
406 	GROUP,
407 	PRIORITY,
408 	INGRESS,
409 	EGRESS,
410 	PATTERN,
411 	ZERO,
412 };
413 
414 static const enum index next_destroy_attr[] = {
415 	DESTROY_RULE,
416 	END,
417 	ZERO,
418 };
419 
420 static const enum index next_list_attr[] = {
421 	LIST_GROUP,
422 	END,
423 	ZERO,
424 };
425 
426 static const enum index item_param[] = {
427 	ITEM_PARAM_IS,
428 	ITEM_PARAM_SPEC,
429 	ITEM_PARAM_LAST,
430 	ITEM_PARAM_MASK,
431 	ITEM_PARAM_PREFIX,
432 	ZERO,
433 };
434 
435 static const enum index next_item[] = {
436 	ITEM_END,
437 	ITEM_VOID,
438 	ITEM_INVERT,
439 	ITEM_ANY,
440 	ITEM_PF,
441 	ITEM_VF,
442 	ITEM_PORT,
443 	ITEM_RAW,
444 	ITEM_ETH,
445 	ITEM_VLAN,
446 	ITEM_IPV4,
447 	ITEM_IPV6,
448 	ITEM_ICMP,
449 	ITEM_UDP,
450 	ITEM_TCP,
451 	ITEM_SCTP,
452 	ITEM_VXLAN,
453 	ITEM_E_TAG,
454 	ITEM_NVGRE,
455 	ITEM_MPLS,
456 	ITEM_GRE,
457 	ITEM_FUZZY,
458 	ITEM_GTP,
459 	ITEM_GTPC,
460 	ITEM_GTPU,
461 	ITEM_GENEVE,
462 	ZERO,
463 };
464 
465 static const enum index item_fuzzy[] = {
466 	ITEM_FUZZY_THRESH,
467 	ITEM_NEXT,
468 	ZERO,
469 };
470 
471 static const enum index item_any[] = {
472 	ITEM_ANY_NUM,
473 	ITEM_NEXT,
474 	ZERO,
475 };
476 
477 static const enum index item_vf[] = {
478 	ITEM_VF_ID,
479 	ITEM_NEXT,
480 	ZERO,
481 };
482 
483 static const enum index item_port[] = {
484 	ITEM_PORT_INDEX,
485 	ITEM_NEXT,
486 	ZERO,
487 };
488 
489 static const enum index item_raw[] = {
490 	ITEM_RAW_RELATIVE,
491 	ITEM_RAW_SEARCH,
492 	ITEM_RAW_OFFSET,
493 	ITEM_RAW_LIMIT,
494 	ITEM_RAW_PATTERN,
495 	ITEM_NEXT,
496 	ZERO,
497 };
498 
499 static const enum index item_eth[] = {
500 	ITEM_ETH_DST,
501 	ITEM_ETH_SRC,
502 	ITEM_ETH_TYPE,
503 	ITEM_NEXT,
504 	ZERO,
505 };
506 
507 static const enum index item_vlan[] = {
508 	ITEM_VLAN_TPID,
509 	ITEM_VLAN_TCI,
510 	ITEM_VLAN_PCP,
511 	ITEM_VLAN_DEI,
512 	ITEM_VLAN_VID,
513 	ITEM_NEXT,
514 	ZERO,
515 };
516 
517 static const enum index item_ipv4[] = {
518 	ITEM_IPV4_TOS,
519 	ITEM_IPV4_TTL,
520 	ITEM_IPV4_PROTO,
521 	ITEM_IPV4_SRC,
522 	ITEM_IPV4_DST,
523 	ITEM_NEXT,
524 	ZERO,
525 };
526 
527 static const enum index item_ipv6[] = {
528 	ITEM_IPV6_TC,
529 	ITEM_IPV6_FLOW,
530 	ITEM_IPV6_PROTO,
531 	ITEM_IPV6_HOP,
532 	ITEM_IPV6_SRC,
533 	ITEM_IPV6_DST,
534 	ITEM_NEXT,
535 	ZERO,
536 };
537 
538 static const enum index item_icmp[] = {
539 	ITEM_ICMP_TYPE,
540 	ITEM_ICMP_CODE,
541 	ITEM_NEXT,
542 	ZERO,
543 };
544 
545 static const enum index item_udp[] = {
546 	ITEM_UDP_SRC,
547 	ITEM_UDP_DST,
548 	ITEM_NEXT,
549 	ZERO,
550 };
551 
552 static const enum index item_tcp[] = {
553 	ITEM_TCP_SRC,
554 	ITEM_TCP_DST,
555 	ITEM_TCP_FLAGS,
556 	ITEM_NEXT,
557 	ZERO,
558 };
559 
560 static const enum index item_sctp[] = {
561 	ITEM_SCTP_SRC,
562 	ITEM_SCTP_DST,
563 	ITEM_SCTP_TAG,
564 	ITEM_SCTP_CKSUM,
565 	ITEM_NEXT,
566 	ZERO,
567 };
568 
569 static const enum index item_vxlan[] = {
570 	ITEM_VXLAN_VNI,
571 	ITEM_NEXT,
572 	ZERO,
573 };
574 
575 static const enum index item_e_tag[] = {
576 	ITEM_E_TAG_GRP_ECID_B,
577 	ITEM_NEXT,
578 	ZERO,
579 };
580 
581 static const enum index item_nvgre[] = {
582 	ITEM_NVGRE_TNI,
583 	ITEM_NEXT,
584 	ZERO,
585 };
586 
587 static const enum index item_mpls[] = {
588 	ITEM_MPLS_LABEL,
589 	ITEM_NEXT,
590 	ZERO,
591 };
592 
593 static const enum index item_gre[] = {
594 	ITEM_GRE_PROTO,
595 	ITEM_NEXT,
596 	ZERO,
597 };
598 
599 static const enum index item_gtp[] = {
600 	ITEM_GTP_TEID,
601 	ITEM_NEXT,
602 	ZERO,
603 };
604 
605 static const enum index item_geneve[] = {
606 	ITEM_GENEVE_VNI,
607 	ITEM_GENEVE_PROTO,
608 	ITEM_NEXT,
609 	ZERO,
610 };
611 
612 static const enum index next_action[] = {
613 	ACTION_END,
614 	ACTION_VOID,
615 	ACTION_PASSTHRU,
616 	ACTION_MARK,
617 	ACTION_FLAG,
618 	ACTION_QUEUE,
619 	ACTION_DROP,
620 	ACTION_COUNT,
621 	ACTION_RSS,
622 	ACTION_PF,
623 	ACTION_VF,
624 	ACTION_METER,
625 	ZERO,
626 };
627 
628 static const enum index action_mark[] = {
629 	ACTION_MARK_ID,
630 	ACTION_NEXT,
631 	ZERO,
632 };
633 
634 static const enum index action_queue[] = {
635 	ACTION_QUEUE_INDEX,
636 	ACTION_NEXT,
637 	ZERO,
638 };
639 
640 static const enum index action_rss[] = {
641 	ACTION_RSS_FUNC,
642 	ACTION_RSS_LEVEL,
643 	ACTION_RSS_TYPES,
644 	ACTION_RSS_KEY,
645 	ACTION_RSS_KEY_LEN,
646 	ACTION_RSS_QUEUES,
647 	ACTION_NEXT,
648 	ZERO,
649 };
650 
651 static const enum index action_vf[] = {
652 	ACTION_VF_ORIGINAL,
653 	ACTION_VF_ID,
654 	ACTION_NEXT,
655 	ZERO,
656 };
657 
658 static const enum index action_meter[] = {
659 	ACTION_METER_ID,
660 	ACTION_NEXT,
661 	ZERO,
662 };
663 
664 static int parse_init(struct context *, const struct token *,
665 		      const char *, unsigned int,
666 		      void *, unsigned int);
667 static int parse_vc(struct context *, const struct token *,
668 		    const char *, unsigned int,
669 		    void *, unsigned int);
670 static int parse_vc_spec(struct context *, const struct token *,
671 			 const char *, unsigned int, void *, unsigned int);
672 static int parse_vc_conf(struct context *, const struct token *,
673 			 const char *, unsigned int, void *, unsigned int);
674 static int parse_vc_action_rss(struct context *, const struct token *,
675 			       const char *, unsigned int, void *,
676 			       unsigned int);
677 static int parse_vc_action_rss_func(struct context *, const struct token *,
678 				    const char *, unsigned int, void *,
679 				    unsigned int);
680 static int parse_vc_action_rss_type(struct context *, const struct token *,
681 				    const char *, unsigned int, void *,
682 				    unsigned int);
683 static int parse_vc_action_rss_queue(struct context *, const struct token *,
684 				     const char *, unsigned int, void *,
685 				     unsigned int);
686 static int parse_destroy(struct context *, const struct token *,
687 			 const char *, unsigned int,
688 			 void *, unsigned int);
689 static int parse_flush(struct context *, const struct token *,
690 		       const char *, unsigned int,
691 		       void *, unsigned int);
692 static int parse_query(struct context *, const struct token *,
693 		       const char *, unsigned int,
694 		       void *, unsigned int);
695 static int parse_action(struct context *, const struct token *,
696 			const char *, unsigned int,
697 			void *, unsigned int);
698 static int parse_list(struct context *, const struct token *,
699 		      const char *, unsigned int,
700 		      void *, unsigned int);
701 static int parse_isolate(struct context *, const struct token *,
702 			 const char *, unsigned int,
703 			 void *, unsigned int);
704 static int parse_int(struct context *, const struct token *,
705 		     const char *, unsigned int,
706 		     void *, unsigned int);
707 static int parse_prefix(struct context *, const struct token *,
708 			const char *, unsigned int,
709 			void *, unsigned int);
710 static int parse_boolean(struct context *, const struct token *,
711 			 const char *, unsigned int,
712 			 void *, unsigned int);
713 static int parse_string(struct context *, const struct token *,
714 			const char *, unsigned int,
715 			void *, unsigned int);
716 static int parse_mac_addr(struct context *, const struct token *,
717 			  const char *, unsigned int,
718 			  void *, unsigned int);
719 static int parse_ipv4_addr(struct context *, const struct token *,
720 			   const char *, unsigned int,
721 			   void *, unsigned int);
722 static int parse_ipv6_addr(struct context *, const struct token *,
723 			   const char *, unsigned int,
724 			   void *, unsigned int);
725 static int parse_port(struct context *, const struct token *,
726 		      const char *, unsigned int,
727 		      void *, unsigned int);
728 static int comp_none(struct context *, const struct token *,
729 		     unsigned int, char *, unsigned int);
730 static int comp_boolean(struct context *, const struct token *,
731 			unsigned int, char *, unsigned int);
732 static int comp_action(struct context *, const struct token *,
733 		       unsigned int, char *, unsigned int);
734 static int comp_port(struct context *, const struct token *,
735 		     unsigned int, char *, unsigned int);
736 static int comp_rule_id(struct context *, const struct token *,
737 			unsigned int, char *, unsigned int);
738 static int comp_vc_action_rss_type(struct context *, const struct token *,
739 				   unsigned int, char *, unsigned int);
740 static int comp_vc_action_rss_queue(struct context *, const struct token *,
741 				    unsigned int, char *, unsigned int);
742 
743 /** Token definitions. */
744 static const struct token token_list[] = {
745 	/* Special tokens. */
746 	[ZERO] = {
747 		.name = "ZERO",
748 		.help = "null entry, abused as the entry point",
749 		.next = NEXT(NEXT_ENTRY(FLOW)),
750 	},
751 	[END] = {
752 		.name = "",
753 		.type = "RETURN",
754 		.help = "command may end here",
755 	},
756 	/* Common tokens. */
757 	[INTEGER] = {
758 		.name = "{int}",
759 		.type = "INTEGER",
760 		.help = "integer value",
761 		.call = parse_int,
762 		.comp = comp_none,
763 	},
764 	[UNSIGNED] = {
765 		.name = "{unsigned}",
766 		.type = "UNSIGNED",
767 		.help = "unsigned integer value",
768 		.call = parse_int,
769 		.comp = comp_none,
770 	},
771 	[PREFIX] = {
772 		.name = "{prefix}",
773 		.type = "PREFIX",
774 		.help = "prefix length for bit-mask",
775 		.call = parse_prefix,
776 		.comp = comp_none,
777 	},
778 	[BOOLEAN] = {
779 		.name = "{boolean}",
780 		.type = "BOOLEAN",
781 		.help = "any boolean value",
782 		.call = parse_boolean,
783 		.comp = comp_boolean,
784 	},
785 	[STRING] = {
786 		.name = "{string}",
787 		.type = "STRING",
788 		.help = "fixed string",
789 		.call = parse_string,
790 		.comp = comp_none,
791 	},
792 	[MAC_ADDR] = {
793 		.name = "{MAC address}",
794 		.type = "MAC-48",
795 		.help = "standard MAC address notation",
796 		.call = parse_mac_addr,
797 		.comp = comp_none,
798 	},
799 	[IPV4_ADDR] = {
800 		.name = "{IPv4 address}",
801 		.type = "IPV4 ADDRESS",
802 		.help = "standard IPv4 address notation",
803 		.call = parse_ipv4_addr,
804 		.comp = comp_none,
805 	},
806 	[IPV6_ADDR] = {
807 		.name = "{IPv6 address}",
808 		.type = "IPV6 ADDRESS",
809 		.help = "standard IPv6 address notation",
810 		.call = parse_ipv6_addr,
811 		.comp = comp_none,
812 	},
813 	[RULE_ID] = {
814 		.name = "{rule id}",
815 		.type = "RULE ID",
816 		.help = "rule identifier",
817 		.call = parse_int,
818 		.comp = comp_rule_id,
819 	},
820 	[PORT_ID] = {
821 		.name = "{port_id}",
822 		.type = "PORT ID",
823 		.help = "port identifier",
824 		.call = parse_port,
825 		.comp = comp_port,
826 	},
827 	[GROUP_ID] = {
828 		.name = "{group_id}",
829 		.type = "GROUP ID",
830 		.help = "group identifier",
831 		.call = parse_int,
832 		.comp = comp_none,
833 	},
834 	[PRIORITY_LEVEL] = {
835 		.name = "{level}",
836 		.type = "PRIORITY",
837 		.help = "priority level",
838 		.call = parse_int,
839 		.comp = comp_none,
840 	},
841 	/* Top-level command. */
842 	[FLOW] = {
843 		.name = "flow",
844 		.type = "{command} {port_id} [{arg} [...]]",
845 		.help = "manage ingress/egress flow rules",
846 		.next = NEXT(NEXT_ENTRY
847 			     (VALIDATE,
848 			      CREATE,
849 			      DESTROY,
850 			      FLUSH,
851 			      LIST,
852 			      QUERY,
853 			      ISOLATE)),
854 		.call = parse_init,
855 	},
856 	/* Sub-level commands. */
857 	[VALIDATE] = {
858 		.name = "validate",
859 		.help = "check whether a flow rule can be created",
860 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
861 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
862 		.call = parse_vc,
863 	},
864 	[CREATE] = {
865 		.name = "create",
866 		.help = "create a flow rule",
867 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
868 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
869 		.call = parse_vc,
870 	},
871 	[DESTROY] = {
872 		.name = "destroy",
873 		.help = "destroy specific flow rules",
874 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
875 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
876 		.call = parse_destroy,
877 	},
878 	[FLUSH] = {
879 		.name = "flush",
880 		.help = "destroy all flow rules",
881 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
882 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
883 		.call = parse_flush,
884 	},
885 	[QUERY] = {
886 		.name = "query",
887 		.help = "query an existing flow rule",
888 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
889 			     NEXT_ENTRY(RULE_ID),
890 			     NEXT_ENTRY(PORT_ID)),
891 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action),
892 			     ARGS_ENTRY(struct buffer, args.query.rule),
893 			     ARGS_ENTRY(struct buffer, port)),
894 		.call = parse_query,
895 	},
896 	[LIST] = {
897 		.name = "list",
898 		.help = "list existing flow rules",
899 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
900 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
901 		.call = parse_list,
902 	},
903 	[ISOLATE] = {
904 		.name = "isolate",
905 		.help = "restrict ingress traffic to the defined flow rules",
906 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
907 			     NEXT_ENTRY(PORT_ID)),
908 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
909 			     ARGS_ENTRY(struct buffer, port)),
910 		.call = parse_isolate,
911 	},
912 	/* Destroy arguments. */
913 	[DESTROY_RULE] = {
914 		.name = "rule",
915 		.help = "specify a rule identifier",
916 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
917 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
918 		.call = parse_destroy,
919 	},
920 	/* Query arguments. */
921 	[QUERY_ACTION] = {
922 		.name = "{action}",
923 		.type = "ACTION",
924 		.help = "action to query, must be part of the rule",
925 		.call = parse_action,
926 		.comp = comp_action,
927 	},
928 	/* List arguments. */
929 	[LIST_GROUP] = {
930 		.name = "group",
931 		.help = "specify a group",
932 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
933 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
934 		.call = parse_list,
935 	},
936 	/* Validate/create attributes. */
937 	[GROUP] = {
938 		.name = "group",
939 		.help = "specify a group",
940 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
941 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
942 		.call = parse_vc,
943 	},
944 	[PRIORITY] = {
945 		.name = "priority",
946 		.help = "specify a priority level",
947 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
948 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
949 		.call = parse_vc,
950 	},
951 	[INGRESS] = {
952 		.name = "ingress",
953 		.help = "affect rule to ingress",
954 		.next = NEXT(next_vc_attr),
955 		.call = parse_vc,
956 	},
957 	[EGRESS] = {
958 		.name = "egress",
959 		.help = "affect rule to egress",
960 		.next = NEXT(next_vc_attr),
961 		.call = parse_vc,
962 	},
963 	/* Validate/create pattern. */
964 	[PATTERN] = {
965 		.name = "pattern",
966 		.help = "submit a list of pattern items",
967 		.next = NEXT(next_item),
968 		.call = parse_vc,
969 	},
970 	[ITEM_PARAM_IS] = {
971 		.name = "is",
972 		.help = "match value perfectly (with full bit-mask)",
973 		.call = parse_vc_spec,
974 	},
975 	[ITEM_PARAM_SPEC] = {
976 		.name = "spec",
977 		.help = "match value according to configured bit-mask",
978 		.call = parse_vc_spec,
979 	},
980 	[ITEM_PARAM_LAST] = {
981 		.name = "last",
982 		.help = "specify upper bound to establish a range",
983 		.call = parse_vc_spec,
984 	},
985 	[ITEM_PARAM_MASK] = {
986 		.name = "mask",
987 		.help = "specify bit-mask with relevant bits set to one",
988 		.call = parse_vc_spec,
989 	},
990 	[ITEM_PARAM_PREFIX] = {
991 		.name = "prefix",
992 		.help = "generate bit-mask from a prefix length",
993 		.call = parse_vc_spec,
994 	},
995 	[ITEM_NEXT] = {
996 		.name = "/",
997 		.help = "specify next pattern item",
998 		.next = NEXT(next_item),
999 	},
1000 	[ITEM_END] = {
1001 		.name = "end",
1002 		.help = "end list of pattern items",
1003 		.priv = PRIV_ITEM(END, 0),
1004 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1005 		.call = parse_vc,
1006 	},
1007 	[ITEM_VOID] = {
1008 		.name = "void",
1009 		.help = "no-op pattern item",
1010 		.priv = PRIV_ITEM(VOID, 0),
1011 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1012 		.call = parse_vc,
1013 	},
1014 	[ITEM_INVERT] = {
1015 		.name = "invert",
1016 		.help = "perform actions when pattern does not match",
1017 		.priv = PRIV_ITEM(INVERT, 0),
1018 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1019 		.call = parse_vc,
1020 	},
1021 	[ITEM_ANY] = {
1022 		.name = "any",
1023 		.help = "match any protocol for the current layer",
1024 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1025 		.next = NEXT(item_any),
1026 		.call = parse_vc,
1027 	},
1028 	[ITEM_ANY_NUM] = {
1029 		.name = "num",
1030 		.help = "number of layers covered",
1031 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1032 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1033 	},
1034 	[ITEM_PF] = {
1035 		.name = "pf",
1036 		.help = "match packets addressed to the physical function",
1037 		.priv = PRIV_ITEM(PF, 0),
1038 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1039 		.call = parse_vc,
1040 	},
1041 	[ITEM_VF] = {
1042 		.name = "vf",
1043 		.help = "match packets addressed to a virtual function ID",
1044 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1045 		.next = NEXT(item_vf),
1046 		.call = parse_vc,
1047 	},
1048 	[ITEM_VF_ID] = {
1049 		.name = "id",
1050 		.help = "destination VF ID",
1051 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1052 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1053 	},
1054 	[ITEM_PORT] = {
1055 		.name = "port",
1056 		.help = "device-specific physical port index to use",
1057 		.priv = PRIV_ITEM(PORT, sizeof(struct rte_flow_item_port)),
1058 		.next = NEXT(item_port),
1059 		.call = parse_vc,
1060 	},
1061 	[ITEM_PORT_INDEX] = {
1062 		.name = "index",
1063 		.help = "physical port index",
1064 		.next = NEXT(item_port, NEXT_ENTRY(UNSIGNED), item_param),
1065 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port, index)),
1066 	},
1067 	[ITEM_RAW] = {
1068 		.name = "raw",
1069 		.help = "match an arbitrary byte string",
1070 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1071 		.next = NEXT(item_raw),
1072 		.call = parse_vc,
1073 	},
1074 	[ITEM_RAW_RELATIVE] = {
1075 		.name = "relative",
1076 		.help = "look for pattern after the previous item",
1077 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1078 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1079 					   relative, 1)),
1080 	},
1081 	[ITEM_RAW_SEARCH] = {
1082 		.name = "search",
1083 		.help = "search pattern from offset (see also limit)",
1084 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1085 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1086 					   search, 1)),
1087 	},
1088 	[ITEM_RAW_OFFSET] = {
1089 		.name = "offset",
1090 		.help = "absolute or relative offset for pattern",
1091 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1092 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1093 	},
1094 	[ITEM_RAW_LIMIT] = {
1095 		.name = "limit",
1096 		.help = "search area limit for start of pattern",
1097 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1098 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1099 	},
1100 	[ITEM_RAW_PATTERN] = {
1101 		.name = "pattern",
1102 		.help = "byte string to look for",
1103 		.next = NEXT(item_raw,
1104 			     NEXT_ENTRY(STRING),
1105 			     NEXT_ENTRY(ITEM_PARAM_IS,
1106 					ITEM_PARAM_SPEC,
1107 					ITEM_PARAM_MASK)),
1108 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1109 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1110 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1111 					    ITEM_RAW_PATTERN_SIZE)),
1112 	},
1113 	[ITEM_ETH] = {
1114 		.name = "eth",
1115 		.help = "match Ethernet header",
1116 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1117 		.next = NEXT(item_eth),
1118 		.call = parse_vc,
1119 	},
1120 	[ITEM_ETH_DST] = {
1121 		.name = "dst",
1122 		.help = "destination MAC",
1123 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1124 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1125 	},
1126 	[ITEM_ETH_SRC] = {
1127 		.name = "src",
1128 		.help = "source MAC",
1129 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1130 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1131 	},
1132 	[ITEM_ETH_TYPE] = {
1133 		.name = "type",
1134 		.help = "EtherType",
1135 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1136 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1137 	},
1138 	[ITEM_VLAN] = {
1139 		.name = "vlan",
1140 		.help = "match 802.1Q/ad VLAN tag",
1141 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1142 		.next = NEXT(item_vlan),
1143 		.call = parse_vc,
1144 	},
1145 	[ITEM_VLAN_TPID] = {
1146 		.name = "tpid",
1147 		.help = "tag protocol identifier",
1148 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1149 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tpid)),
1150 	},
1151 	[ITEM_VLAN_TCI] = {
1152 		.name = "tci",
1153 		.help = "tag control information",
1154 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1155 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1156 	},
1157 	[ITEM_VLAN_PCP] = {
1158 		.name = "pcp",
1159 		.help = "priority code point",
1160 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1161 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1162 						  tci, "\xe0\x00")),
1163 	},
1164 	[ITEM_VLAN_DEI] = {
1165 		.name = "dei",
1166 		.help = "drop eligible indicator",
1167 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1168 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1169 						  tci, "\x10\x00")),
1170 	},
1171 	[ITEM_VLAN_VID] = {
1172 		.name = "vid",
1173 		.help = "VLAN identifier",
1174 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1175 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1176 						  tci, "\x0f\xff")),
1177 	},
1178 	[ITEM_IPV4] = {
1179 		.name = "ipv4",
1180 		.help = "match IPv4 header",
1181 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1182 		.next = NEXT(item_ipv4),
1183 		.call = parse_vc,
1184 	},
1185 	[ITEM_IPV4_TOS] = {
1186 		.name = "tos",
1187 		.help = "type of service",
1188 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1189 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1190 					     hdr.type_of_service)),
1191 	},
1192 	[ITEM_IPV4_TTL] = {
1193 		.name = "ttl",
1194 		.help = "time to live",
1195 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1196 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1197 					     hdr.time_to_live)),
1198 	},
1199 	[ITEM_IPV4_PROTO] = {
1200 		.name = "proto",
1201 		.help = "next protocol ID",
1202 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1203 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1204 					     hdr.next_proto_id)),
1205 	},
1206 	[ITEM_IPV4_SRC] = {
1207 		.name = "src",
1208 		.help = "source address",
1209 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1210 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1211 					     hdr.src_addr)),
1212 	},
1213 	[ITEM_IPV4_DST] = {
1214 		.name = "dst",
1215 		.help = "destination address",
1216 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1217 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1218 					     hdr.dst_addr)),
1219 	},
1220 	[ITEM_IPV6] = {
1221 		.name = "ipv6",
1222 		.help = "match IPv6 header",
1223 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1224 		.next = NEXT(item_ipv6),
1225 		.call = parse_vc,
1226 	},
1227 	[ITEM_IPV6_TC] = {
1228 		.name = "tc",
1229 		.help = "traffic class",
1230 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1231 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1232 						  hdr.vtc_flow,
1233 						  "\x0f\xf0\x00\x00")),
1234 	},
1235 	[ITEM_IPV6_FLOW] = {
1236 		.name = "flow",
1237 		.help = "flow label",
1238 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1239 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1240 						  hdr.vtc_flow,
1241 						  "\x00\x0f\xff\xff")),
1242 	},
1243 	[ITEM_IPV6_PROTO] = {
1244 		.name = "proto",
1245 		.help = "protocol (next header)",
1246 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1247 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1248 					     hdr.proto)),
1249 	},
1250 	[ITEM_IPV6_HOP] = {
1251 		.name = "hop",
1252 		.help = "hop limit",
1253 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1254 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1255 					     hdr.hop_limits)),
1256 	},
1257 	[ITEM_IPV6_SRC] = {
1258 		.name = "src",
1259 		.help = "source address",
1260 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1261 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1262 					     hdr.src_addr)),
1263 	},
1264 	[ITEM_IPV6_DST] = {
1265 		.name = "dst",
1266 		.help = "destination address",
1267 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1268 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1269 					     hdr.dst_addr)),
1270 	},
1271 	[ITEM_ICMP] = {
1272 		.name = "icmp",
1273 		.help = "match ICMP header",
1274 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1275 		.next = NEXT(item_icmp),
1276 		.call = parse_vc,
1277 	},
1278 	[ITEM_ICMP_TYPE] = {
1279 		.name = "type",
1280 		.help = "ICMP packet type",
1281 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1282 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1283 					     hdr.icmp_type)),
1284 	},
1285 	[ITEM_ICMP_CODE] = {
1286 		.name = "code",
1287 		.help = "ICMP packet code",
1288 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1289 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1290 					     hdr.icmp_code)),
1291 	},
1292 	[ITEM_UDP] = {
1293 		.name = "udp",
1294 		.help = "match UDP header",
1295 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1296 		.next = NEXT(item_udp),
1297 		.call = parse_vc,
1298 	},
1299 	[ITEM_UDP_SRC] = {
1300 		.name = "src",
1301 		.help = "UDP source port",
1302 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1303 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1304 					     hdr.src_port)),
1305 	},
1306 	[ITEM_UDP_DST] = {
1307 		.name = "dst",
1308 		.help = "UDP destination port",
1309 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1310 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1311 					     hdr.dst_port)),
1312 	},
1313 	[ITEM_TCP] = {
1314 		.name = "tcp",
1315 		.help = "match TCP header",
1316 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1317 		.next = NEXT(item_tcp),
1318 		.call = parse_vc,
1319 	},
1320 	[ITEM_TCP_SRC] = {
1321 		.name = "src",
1322 		.help = "TCP source port",
1323 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1324 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1325 					     hdr.src_port)),
1326 	},
1327 	[ITEM_TCP_DST] = {
1328 		.name = "dst",
1329 		.help = "TCP destination port",
1330 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1331 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1332 					     hdr.dst_port)),
1333 	},
1334 	[ITEM_TCP_FLAGS] = {
1335 		.name = "flags",
1336 		.help = "TCP flags",
1337 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1338 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1339 					     hdr.tcp_flags)),
1340 	},
1341 	[ITEM_SCTP] = {
1342 		.name = "sctp",
1343 		.help = "match SCTP header",
1344 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1345 		.next = NEXT(item_sctp),
1346 		.call = parse_vc,
1347 	},
1348 	[ITEM_SCTP_SRC] = {
1349 		.name = "src",
1350 		.help = "SCTP source port",
1351 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1352 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1353 					     hdr.src_port)),
1354 	},
1355 	[ITEM_SCTP_DST] = {
1356 		.name = "dst",
1357 		.help = "SCTP destination port",
1358 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1359 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1360 					     hdr.dst_port)),
1361 	},
1362 	[ITEM_SCTP_TAG] = {
1363 		.name = "tag",
1364 		.help = "validation tag",
1365 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1366 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1367 					     hdr.tag)),
1368 	},
1369 	[ITEM_SCTP_CKSUM] = {
1370 		.name = "cksum",
1371 		.help = "checksum",
1372 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1373 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1374 					     hdr.cksum)),
1375 	},
1376 	[ITEM_VXLAN] = {
1377 		.name = "vxlan",
1378 		.help = "match VXLAN header",
1379 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1380 		.next = NEXT(item_vxlan),
1381 		.call = parse_vc,
1382 	},
1383 	[ITEM_VXLAN_VNI] = {
1384 		.name = "vni",
1385 		.help = "VXLAN identifier",
1386 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1387 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1388 	},
1389 	[ITEM_E_TAG] = {
1390 		.name = "e_tag",
1391 		.help = "match E-Tag header",
1392 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1393 		.next = NEXT(item_e_tag),
1394 		.call = parse_vc,
1395 	},
1396 	[ITEM_E_TAG_GRP_ECID_B] = {
1397 		.name = "grp_ecid_b",
1398 		.help = "GRP and E-CID base",
1399 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1400 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1401 						  rsvd_grp_ecid_b,
1402 						  "\x3f\xff")),
1403 	},
1404 	[ITEM_NVGRE] = {
1405 		.name = "nvgre",
1406 		.help = "match NVGRE header",
1407 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1408 		.next = NEXT(item_nvgre),
1409 		.call = parse_vc,
1410 	},
1411 	[ITEM_NVGRE_TNI] = {
1412 		.name = "tni",
1413 		.help = "virtual subnet ID",
1414 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1415 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1416 	},
1417 	[ITEM_MPLS] = {
1418 		.name = "mpls",
1419 		.help = "match MPLS header",
1420 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1421 		.next = NEXT(item_mpls),
1422 		.call = parse_vc,
1423 	},
1424 	[ITEM_MPLS_LABEL] = {
1425 		.name = "label",
1426 		.help = "MPLS label",
1427 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1428 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1429 						  label_tc_s,
1430 						  "\xff\xff\xf0")),
1431 	},
1432 	[ITEM_GRE] = {
1433 		.name = "gre",
1434 		.help = "match GRE header",
1435 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1436 		.next = NEXT(item_gre),
1437 		.call = parse_vc,
1438 	},
1439 	[ITEM_GRE_PROTO] = {
1440 		.name = "protocol",
1441 		.help = "GRE protocol type",
1442 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1443 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1444 					     protocol)),
1445 	},
1446 	[ITEM_FUZZY] = {
1447 		.name = "fuzzy",
1448 		.help = "fuzzy pattern match, expect faster than default",
1449 		.priv = PRIV_ITEM(FUZZY,
1450 				sizeof(struct rte_flow_item_fuzzy)),
1451 		.next = NEXT(item_fuzzy),
1452 		.call = parse_vc,
1453 	},
1454 	[ITEM_FUZZY_THRESH] = {
1455 		.name = "thresh",
1456 		.help = "match accuracy threshold",
1457 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1458 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1459 					thresh)),
1460 	},
1461 	[ITEM_GTP] = {
1462 		.name = "gtp",
1463 		.help = "match GTP header",
1464 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1465 		.next = NEXT(item_gtp),
1466 		.call = parse_vc,
1467 	},
1468 	[ITEM_GTP_TEID] = {
1469 		.name = "teid",
1470 		.help = "tunnel endpoint identifier",
1471 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1472 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1473 	},
1474 	[ITEM_GTPC] = {
1475 		.name = "gtpc",
1476 		.help = "match GTP header",
1477 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1478 		.next = NEXT(item_gtp),
1479 		.call = parse_vc,
1480 	},
1481 	[ITEM_GTPU] = {
1482 		.name = "gtpu",
1483 		.help = "match GTP header",
1484 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1485 		.next = NEXT(item_gtp),
1486 		.call = parse_vc,
1487 	},
1488 	[ITEM_GENEVE] = {
1489 		.name = "geneve",
1490 		.help = "match GENEVE header",
1491 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1492 		.next = NEXT(item_geneve),
1493 		.call = parse_vc,
1494 	},
1495 	[ITEM_GENEVE_VNI] = {
1496 		.name = "vni",
1497 		.help = "virtual network identifier",
1498 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1499 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
1500 	},
1501 	[ITEM_GENEVE_PROTO] = {
1502 		.name = "protocol",
1503 		.help = "GENEVE protocol type",
1504 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1505 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
1506 					     protocol)),
1507 	},
1508 
1509 	/* Validate/create actions. */
1510 	[ACTIONS] = {
1511 		.name = "actions",
1512 		.help = "submit a list of associated actions",
1513 		.next = NEXT(next_action),
1514 		.call = parse_vc,
1515 	},
1516 	[ACTION_NEXT] = {
1517 		.name = "/",
1518 		.help = "specify next action",
1519 		.next = NEXT(next_action),
1520 	},
1521 	[ACTION_END] = {
1522 		.name = "end",
1523 		.help = "end list of actions",
1524 		.priv = PRIV_ACTION(END, 0),
1525 		.call = parse_vc,
1526 	},
1527 	[ACTION_VOID] = {
1528 		.name = "void",
1529 		.help = "no-op action",
1530 		.priv = PRIV_ACTION(VOID, 0),
1531 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1532 		.call = parse_vc,
1533 	},
1534 	[ACTION_PASSTHRU] = {
1535 		.name = "passthru",
1536 		.help = "let subsequent rule process matched packets",
1537 		.priv = PRIV_ACTION(PASSTHRU, 0),
1538 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1539 		.call = parse_vc,
1540 	},
1541 	[ACTION_MARK] = {
1542 		.name = "mark",
1543 		.help = "attach 32 bit value to packets",
1544 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
1545 		.next = NEXT(action_mark),
1546 		.call = parse_vc,
1547 	},
1548 	[ACTION_MARK_ID] = {
1549 		.name = "id",
1550 		.help = "32 bit value to return with packets",
1551 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
1552 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
1553 		.call = parse_vc_conf,
1554 	},
1555 	[ACTION_FLAG] = {
1556 		.name = "flag",
1557 		.help = "flag packets",
1558 		.priv = PRIV_ACTION(FLAG, 0),
1559 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1560 		.call = parse_vc,
1561 	},
1562 	[ACTION_QUEUE] = {
1563 		.name = "queue",
1564 		.help = "assign packets to a given queue index",
1565 		.priv = PRIV_ACTION(QUEUE,
1566 				    sizeof(struct rte_flow_action_queue)),
1567 		.next = NEXT(action_queue),
1568 		.call = parse_vc,
1569 	},
1570 	[ACTION_QUEUE_INDEX] = {
1571 		.name = "index",
1572 		.help = "queue index to use",
1573 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
1574 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
1575 		.call = parse_vc_conf,
1576 	},
1577 	[ACTION_DROP] = {
1578 		.name = "drop",
1579 		.help = "drop packets (note: passthru has priority)",
1580 		.priv = PRIV_ACTION(DROP, 0),
1581 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1582 		.call = parse_vc,
1583 	},
1584 	[ACTION_COUNT] = {
1585 		.name = "count",
1586 		.help = "enable counters for this rule",
1587 		.priv = PRIV_ACTION(COUNT, 0),
1588 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1589 		.call = parse_vc,
1590 	},
1591 	[ACTION_RSS] = {
1592 		.name = "rss",
1593 		.help = "spread packets among several queues",
1594 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
1595 		.next = NEXT(action_rss),
1596 		.call = parse_vc_action_rss,
1597 	},
1598 	[ACTION_RSS_FUNC] = {
1599 		.name = "func",
1600 		.help = "RSS hash function to apply",
1601 		.next = NEXT(action_rss,
1602 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
1603 					ACTION_RSS_FUNC_TOEPLITZ,
1604 					ACTION_RSS_FUNC_SIMPLE_XOR)),
1605 	},
1606 	[ACTION_RSS_FUNC_DEFAULT] = {
1607 		.name = "default",
1608 		.help = "default hash function",
1609 		.call = parse_vc_action_rss_func,
1610 	},
1611 	[ACTION_RSS_FUNC_TOEPLITZ] = {
1612 		.name = "toeplitz",
1613 		.help = "Toeplitz hash function",
1614 		.call = parse_vc_action_rss_func,
1615 	},
1616 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
1617 		.name = "simple_xor",
1618 		.help = "simple XOR hash function",
1619 		.call = parse_vc_action_rss_func,
1620 	},
1621 	[ACTION_RSS_LEVEL] = {
1622 		.name = "level",
1623 		.help = "encapsulation level for \"types\"",
1624 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
1625 		.args = ARGS(ARGS_ENTRY_ARB
1626 			     (offsetof(struct action_rss_data, conf) +
1627 			      offsetof(struct rte_flow_action_rss, level),
1628 			      sizeof(((struct rte_flow_action_rss *)0)->
1629 				     level))),
1630 	},
1631 	[ACTION_RSS_TYPES] = {
1632 		.name = "types",
1633 		.help = "specific RSS hash types",
1634 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
1635 	},
1636 	[ACTION_RSS_TYPE] = {
1637 		.name = "{type}",
1638 		.help = "RSS hash type",
1639 		.call = parse_vc_action_rss_type,
1640 		.comp = comp_vc_action_rss_type,
1641 	},
1642 	[ACTION_RSS_KEY] = {
1643 		.name = "key",
1644 		.help = "RSS hash key",
1645 		.next = NEXT(action_rss, NEXT_ENTRY(STRING)),
1646 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
1647 			     ARGS_ENTRY_ARB
1648 			     (offsetof(struct action_rss_data, conf) +
1649 			      offsetof(struct rte_flow_action_rss, key_len),
1650 			      sizeof(((struct rte_flow_action_rss *)0)->
1651 				     key_len)),
1652 			     ARGS_ENTRY(struct action_rss_data, key)),
1653 	},
1654 	[ACTION_RSS_KEY_LEN] = {
1655 		.name = "key_len",
1656 		.help = "RSS hash key length in bytes",
1657 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
1658 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
1659 			     (offsetof(struct action_rss_data, conf) +
1660 			      offsetof(struct rte_flow_action_rss, key_len),
1661 			      sizeof(((struct rte_flow_action_rss *)0)->
1662 				     key_len),
1663 			      0,
1664 			      RSS_HASH_KEY_LENGTH)),
1665 	},
1666 	[ACTION_RSS_QUEUES] = {
1667 		.name = "queues",
1668 		.help = "queue indices to use",
1669 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
1670 		.call = parse_vc_conf,
1671 	},
1672 	[ACTION_RSS_QUEUE] = {
1673 		.name = "{queue}",
1674 		.help = "queue index",
1675 		.call = parse_vc_action_rss_queue,
1676 		.comp = comp_vc_action_rss_queue,
1677 	},
1678 	[ACTION_PF] = {
1679 		.name = "pf",
1680 		.help = "redirect packets to physical device function",
1681 		.priv = PRIV_ACTION(PF, 0),
1682 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
1683 		.call = parse_vc,
1684 	},
1685 	[ACTION_VF] = {
1686 		.name = "vf",
1687 		.help = "redirect packets to virtual device function",
1688 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
1689 		.next = NEXT(action_vf),
1690 		.call = parse_vc,
1691 	},
1692 	[ACTION_VF_ORIGINAL] = {
1693 		.name = "original",
1694 		.help = "use original VF ID if possible",
1695 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
1696 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
1697 					   original, 1)),
1698 		.call = parse_vc_conf,
1699 	},
1700 	[ACTION_VF_ID] = {
1701 		.name = "id",
1702 		.help = "VF ID to redirect packets to",
1703 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
1704 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
1705 		.call = parse_vc_conf,
1706 	},
1707 	[ACTION_METER] = {
1708 		.name = "meter",
1709 		.help = "meter the directed packets at given id",
1710 		.priv = PRIV_ACTION(METER,
1711 				    sizeof(struct rte_flow_action_meter)),
1712 		.next = NEXT(action_meter),
1713 		.call = parse_vc,
1714 	},
1715 	[ACTION_METER_ID] = {
1716 		.name = "mtr_id",
1717 		.help = "meter id to use",
1718 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
1719 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
1720 		.call = parse_vc_conf,
1721 	},
1722 };
1723 
1724 /** Remove and return last entry from argument stack. */
1725 static const struct arg *
1726 pop_args(struct context *ctx)
1727 {
1728 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
1729 }
1730 
1731 /** Add entry on top of the argument stack. */
1732 static int
1733 push_args(struct context *ctx, const struct arg *arg)
1734 {
1735 	if (ctx->args_num == CTX_STACK_SIZE)
1736 		return -1;
1737 	ctx->args[ctx->args_num++] = arg;
1738 	return 0;
1739 }
1740 
1741 /** Spread value into buffer according to bit-mask. */
1742 static size_t
1743 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
1744 {
1745 	uint32_t i = arg->size;
1746 	uint32_t end = 0;
1747 	int sub = 1;
1748 	int add = 0;
1749 	size_t len = 0;
1750 
1751 	if (!arg->mask)
1752 		return 0;
1753 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1754 	if (!arg->hton) {
1755 		i = 0;
1756 		end = arg->size;
1757 		sub = 0;
1758 		add = 1;
1759 	}
1760 #endif
1761 	while (i != end) {
1762 		unsigned int shift = 0;
1763 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
1764 
1765 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
1766 			if (!(arg->mask[i] & (1 << shift)))
1767 				continue;
1768 			++len;
1769 			if (!dst)
1770 				continue;
1771 			*buf &= ~(1 << shift);
1772 			*buf |= (val & 1) << shift;
1773 			val >>= 1;
1774 		}
1775 		i += add;
1776 	}
1777 	return len;
1778 }
1779 
1780 /** Compare a string with a partial one of a given length. */
1781 static int
1782 strcmp_partial(const char *full, const char *partial, size_t partial_len)
1783 {
1784 	int r = strncmp(full, partial, partial_len);
1785 
1786 	if (r)
1787 		return r;
1788 	if (strlen(full) <= partial_len)
1789 		return 0;
1790 	return full[partial_len];
1791 }
1792 
1793 /**
1794  * Parse a prefix length and generate a bit-mask.
1795  *
1796  * Last argument (ctx->args) is retrieved to determine mask size, storage
1797  * location and whether the result must use network byte ordering.
1798  */
1799 static int
1800 parse_prefix(struct context *ctx, const struct token *token,
1801 	     const char *str, unsigned int len,
1802 	     void *buf, unsigned int size)
1803 {
1804 	const struct arg *arg = pop_args(ctx);
1805 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
1806 	char *end;
1807 	uintmax_t u;
1808 	unsigned int bytes;
1809 	unsigned int extra;
1810 
1811 	(void)token;
1812 	/* Argument is expected. */
1813 	if (!arg)
1814 		return -1;
1815 	errno = 0;
1816 	u = strtoumax(str, &end, 0);
1817 	if (errno || (size_t)(end - str) != len)
1818 		goto error;
1819 	if (arg->mask) {
1820 		uintmax_t v = 0;
1821 
1822 		extra = arg_entry_bf_fill(NULL, 0, arg);
1823 		if (u > extra)
1824 			goto error;
1825 		if (!ctx->object)
1826 			return len;
1827 		extra -= u;
1828 		while (u--)
1829 			(v <<= 1, v |= 1);
1830 		v <<= extra;
1831 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
1832 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
1833 			goto error;
1834 		return len;
1835 	}
1836 	bytes = u / 8;
1837 	extra = u % 8;
1838 	size = arg->size;
1839 	if (bytes > size || bytes + !!extra > size)
1840 		goto error;
1841 	if (!ctx->object)
1842 		return len;
1843 	buf = (uint8_t *)ctx->object + arg->offset;
1844 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
1845 	if (!arg->hton) {
1846 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
1847 		memset(buf, 0x00, size - bytes);
1848 		if (extra)
1849 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
1850 	} else
1851 #endif
1852 	{
1853 		memset(buf, 0xff, bytes);
1854 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
1855 		if (extra)
1856 			((uint8_t *)buf)[bytes] = conv[extra];
1857 	}
1858 	if (ctx->objmask)
1859 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
1860 	return len;
1861 error:
1862 	push_args(ctx, arg);
1863 	return -1;
1864 }
1865 
1866 /** Default parsing function for token name matching. */
1867 static int
1868 parse_default(struct context *ctx, const struct token *token,
1869 	      const char *str, unsigned int len,
1870 	      void *buf, unsigned int size)
1871 {
1872 	(void)ctx;
1873 	(void)buf;
1874 	(void)size;
1875 	if (strcmp_partial(token->name, str, len))
1876 		return -1;
1877 	return len;
1878 }
1879 
1880 /** Parse flow command, initialize output buffer for subsequent tokens. */
1881 static int
1882 parse_init(struct context *ctx, const struct token *token,
1883 	   const char *str, unsigned int len,
1884 	   void *buf, unsigned int size)
1885 {
1886 	struct buffer *out = buf;
1887 
1888 	/* Token name must match. */
1889 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1890 		return -1;
1891 	/* Nothing else to do if there is no buffer. */
1892 	if (!out)
1893 		return len;
1894 	/* Make sure buffer is large enough. */
1895 	if (size < sizeof(*out))
1896 		return -1;
1897 	/* Initialize buffer. */
1898 	memset(out, 0x00, sizeof(*out));
1899 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
1900 	ctx->objdata = 0;
1901 	ctx->object = out;
1902 	ctx->objmask = NULL;
1903 	return len;
1904 }
1905 
1906 /** Parse tokens for validate/create commands. */
1907 static int
1908 parse_vc(struct context *ctx, const struct token *token,
1909 	 const char *str, unsigned int len,
1910 	 void *buf, unsigned int size)
1911 {
1912 	struct buffer *out = buf;
1913 	uint8_t *data;
1914 	uint32_t data_size;
1915 
1916 	/* Token name must match. */
1917 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
1918 		return -1;
1919 	/* Nothing else to do if there is no buffer. */
1920 	if (!out)
1921 		return len;
1922 	if (!out->command) {
1923 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
1924 			return -1;
1925 		if (sizeof(*out) > size)
1926 			return -1;
1927 		out->command = ctx->curr;
1928 		ctx->objdata = 0;
1929 		ctx->object = out;
1930 		ctx->objmask = NULL;
1931 		out->args.vc.data = (uint8_t *)out + size;
1932 		return len;
1933 	}
1934 	ctx->objdata = 0;
1935 	ctx->object = &out->args.vc.attr;
1936 	ctx->objmask = NULL;
1937 	switch (ctx->curr) {
1938 	case GROUP:
1939 	case PRIORITY:
1940 		return len;
1941 	case INGRESS:
1942 		out->args.vc.attr.ingress = 1;
1943 		return len;
1944 	case EGRESS:
1945 		out->args.vc.attr.egress = 1;
1946 		return len;
1947 	case PATTERN:
1948 		out->args.vc.pattern =
1949 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
1950 					       sizeof(double));
1951 		ctx->object = out->args.vc.pattern;
1952 		ctx->objmask = NULL;
1953 		return len;
1954 	case ACTIONS:
1955 		out->args.vc.actions =
1956 			(void *)RTE_ALIGN_CEIL((uintptr_t)
1957 					       (out->args.vc.pattern +
1958 						out->args.vc.pattern_n),
1959 					       sizeof(double));
1960 		ctx->object = out->args.vc.actions;
1961 		ctx->objmask = NULL;
1962 		return len;
1963 	default:
1964 		if (!token->priv)
1965 			return -1;
1966 		break;
1967 	}
1968 	if (!out->args.vc.actions) {
1969 		const struct parse_item_priv *priv = token->priv;
1970 		struct rte_flow_item *item =
1971 			out->args.vc.pattern + out->args.vc.pattern_n;
1972 
1973 		data_size = priv->size * 3; /* spec, last, mask */
1974 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
1975 					       (out->args.vc.data - data_size),
1976 					       sizeof(double));
1977 		if ((uint8_t *)item + sizeof(*item) > data)
1978 			return -1;
1979 		*item = (struct rte_flow_item){
1980 			.type = priv->type,
1981 		};
1982 		++out->args.vc.pattern_n;
1983 		ctx->object = item;
1984 		ctx->objmask = NULL;
1985 	} else {
1986 		const struct parse_action_priv *priv = token->priv;
1987 		struct rte_flow_action *action =
1988 			out->args.vc.actions + out->args.vc.actions_n;
1989 
1990 		data_size = priv->size; /* configuration */
1991 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
1992 					       (out->args.vc.data - data_size),
1993 					       sizeof(double));
1994 		if ((uint8_t *)action + sizeof(*action) > data)
1995 			return -1;
1996 		*action = (struct rte_flow_action){
1997 			.type = priv->type,
1998 			.conf = data_size ? data : NULL,
1999 		};
2000 		++out->args.vc.actions_n;
2001 		ctx->object = action;
2002 		ctx->objmask = NULL;
2003 	}
2004 	memset(data, 0, data_size);
2005 	out->args.vc.data = data;
2006 	ctx->objdata = data_size;
2007 	return len;
2008 }
2009 
2010 /** Parse pattern item parameter type. */
2011 static int
2012 parse_vc_spec(struct context *ctx, const struct token *token,
2013 	      const char *str, unsigned int len,
2014 	      void *buf, unsigned int size)
2015 {
2016 	struct buffer *out = buf;
2017 	struct rte_flow_item *item;
2018 	uint32_t data_size;
2019 	int index;
2020 	int objmask = 0;
2021 
2022 	(void)size;
2023 	/* Token name must match. */
2024 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2025 		return -1;
2026 	/* Parse parameter types. */
2027 	switch (ctx->curr) {
2028 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
2029 
2030 	case ITEM_PARAM_IS:
2031 		index = 0;
2032 		objmask = 1;
2033 		break;
2034 	case ITEM_PARAM_SPEC:
2035 		index = 0;
2036 		break;
2037 	case ITEM_PARAM_LAST:
2038 		index = 1;
2039 		break;
2040 	case ITEM_PARAM_PREFIX:
2041 		/* Modify next token to expect a prefix. */
2042 		if (ctx->next_num < 2)
2043 			return -1;
2044 		ctx->next[ctx->next_num - 2] = prefix;
2045 		/* Fall through. */
2046 	case ITEM_PARAM_MASK:
2047 		index = 2;
2048 		break;
2049 	default:
2050 		return -1;
2051 	}
2052 	/* Nothing else to do if there is no buffer. */
2053 	if (!out)
2054 		return len;
2055 	if (!out->args.vc.pattern_n)
2056 		return -1;
2057 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
2058 	data_size = ctx->objdata / 3; /* spec, last, mask */
2059 	/* Point to selected object. */
2060 	ctx->object = out->args.vc.data + (data_size * index);
2061 	if (objmask) {
2062 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
2063 		item->mask = ctx->objmask;
2064 	} else
2065 		ctx->objmask = NULL;
2066 	/* Update relevant item pointer. */
2067 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
2068 		ctx->object;
2069 	return len;
2070 }
2071 
2072 /** Parse action configuration field. */
2073 static int
2074 parse_vc_conf(struct context *ctx, const struct token *token,
2075 	      const char *str, unsigned int len,
2076 	      void *buf, unsigned int size)
2077 {
2078 	struct buffer *out = buf;
2079 
2080 	(void)size;
2081 	/* Token name must match. */
2082 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2083 		return -1;
2084 	/* Nothing else to do if there is no buffer. */
2085 	if (!out)
2086 		return len;
2087 	/* Point to selected object. */
2088 	ctx->object = out->args.vc.data;
2089 	ctx->objmask = NULL;
2090 	return len;
2091 }
2092 
2093 /** Parse RSS action. */
2094 static int
2095 parse_vc_action_rss(struct context *ctx, const struct token *token,
2096 		    const char *str, unsigned int len,
2097 		    void *buf, unsigned int size)
2098 {
2099 	struct buffer *out = buf;
2100 	struct rte_flow_action *action;
2101 	struct action_rss_data *action_rss_data;
2102 	unsigned int i;
2103 	int ret;
2104 
2105 	ret = parse_vc(ctx, token, str, len, buf, size);
2106 	if (ret < 0)
2107 		return ret;
2108 	/* Nothing else to do if there is no buffer. */
2109 	if (!out)
2110 		return ret;
2111 	if (!out->args.vc.actions_n)
2112 		return -1;
2113 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
2114 	/* Point to selected object. */
2115 	ctx->object = out->args.vc.data;
2116 	ctx->objmask = NULL;
2117 	/* Set up default configuration. */
2118 	action_rss_data = ctx->object;
2119 	*action_rss_data = (struct action_rss_data){
2120 		.conf = (struct rte_flow_action_rss){
2121 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2122 			.level = 0,
2123 			.types = rss_hf,
2124 			.key_len = sizeof(action_rss_data->key),
2125 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
2126 			.key = action_rss_data->key,
2127 			.queue = action_rss_data->queue,
2128 		},
2129 		.key = "testpmd's default RSS hash key",
2130 		.queue = { 0 },
2131 	};
2132 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
2133 		action_rss_data->queue[i] = i;
2134 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
2135 	    ctx->port != (portid_t)RTE_PORT_ALL) {
2136 		struct rte_eth_dev_info info;
2137 
2138 		rte_eth_dev_info_get(ctx->port, &info);
2139 		action_rss_data->conf.key_len =
2140 			RTE_MIN(sizeof(action_rss_data->key),
2141 				info.hash_key_size);
2142 	}
2143 	action->conf = &action_rss_data->conf;
2144 	return ret;
2145 }
2146 
2147 /**
2148  * Parse func field for RSS action.
2149  *
2150  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
2151  * ACTION_RSS_FUNC_* index that called this function.
2152  */
2153 static int
2154 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
2155 			 const char *str, unsigned int len,
2156 			 void *buf, unsigned int size)
2157 {
2158 	struct action_rss_data *action_rss_data;
2159 	enum rte_eth_hash_function func;
2160 
2161 	(void)buf;
2162 	(void)size;
2163 	/* Token name must match. */
2164 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2165 		return -1;
2166 	switch (ctx->curr) {
2167 	case ACTION_RSS_FUNC_DEFAULT:
2168 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
2169 		break;
2170 	case ACTION_RSS_FUNC_TOEPLITZ:
2171 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
2172 		break;
2173 	case ACTION_RSS_FUNC_SIMPLE_XOR:
2174 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
2175 		break;
2176 	default:
2177 		return -1;
2178 	}
2179 	if (!ctx->object)
2180 		return len;
2181 	action_rss_data = ctx->object;
2182 	action_rss_data->conf.func = func;
2183 	return len;
2184 }
2185 
2186 /**
2187  * Parse type field for RSS action.
2188  *
2189  * Valid tokens are type field names and the "end" token.
2190  */
2191 static int
2192 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
2193 			  const char *str, unsigned int len,
2194 			  void *buf, unsigned int size)
2195 {
2196 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
2197 	struct action_rss_data *action_rss_data;
2198 	unsigned int i;
2199 
2200 	(void)token;
2201 	(void)buf;
2202 	(void)size;
2203 	if (ctx->curr != ACTION_RSS_TYPE)
2204 		return -1;
2205 	if (!(ctx->objdata >> 16) && ctx->object) {
2206 		action_rss_data = ctx->object;
2207 		action_rss_data->conf.types = 0;
2208 	}
2209 	if (!strcmp_partial("end", str, len)) {
2210 		ctx->objdata &= 0xffff;
2211 		return len;
2212 	}
2213 	for (i = 0; rss_type_table[i].str; ++i)
2214 		if (!strcmp_partial(rss_type_table[i].str, str, len))
2215 			break;
2216 	if (!rss_type_table[i].str)
2217 		return -1;
2218 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
2219 	/* Repeat token. */
2220 	if (ctx->next_num == RTE_DIM(ctx->next))
2221 		return -1;
2222 	ctx->next[ctx->next_num++] = next;
2223 	if (!ctx->object)
2224 		return len;
2225 	action_rss_data = ctx->object;
2226 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
2227 	return len;
2228 }
2229 
2230 /**
2231  * Parse queue field for RSS action.
2232  *
2233  * Valid tokens are queue indices and the "end" token.
2234  */
2235 static int
2236 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
2237 			  const char *str, unsigned int len,
2238 			  void *buf, unsigned int size)
2239 {
2240 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
2241 	struct action_rss_data *action_rss_data;
2242 	int ret;
2243 	int i;
2244 
2245 	(void)token;
2246 	(void)buf;
2247 	(void)size;
2248 	if (ctx->curr != ACTION_RSS_QUEUE)
2249 		return -1;
2250 	i = ctx->objdata >> 16;
2251 	if (!strcmp_partial("end", str, len)) {
2252 		ctx->objdata &= 0xffff;
2253 		return len;
2254 	}
2255 	if (i >= ACTION_RSS_QUEUE_NUM)
2256 		return -1;
2257 	if (push_args(ctx,
2258 		      ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
2259 				     i * sizeof(action_rss_data->queue[i]),
2260 				     sizeof(action_rss_data->queue[i]))))
2261 		return -1;
2262 	ret = parse_int(ctx, token, str, len, NULL, 0);
2263 	if (ret < 0) {
2264 		pop_args(ctx);
2265 		return -1;
2266 	}
2267 	++i;
2268 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
2269 	/* Repeat token. */
2270 	if (ctx->next_num == RTE_DIM(ctx->next))
2271 		return -1;
2272 	ctx->next[ctx->next_num++] = next;
2273 	if (!ctx->object)
2274 		return len;
2275 	action_rss_data = ctx->object;
2276 	action_rss_data->conf.queue_num = i;
2277 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
2278 	return len;
2279 }
2280 
2281 /** Parse tokens for destroy command. */
2282 static int
2283 parse_destroy(struct context *ctx, const struct token *token,
2284 	      const char *str, unsigned int len,
2285 	      void *buf, unsigned int size)
2286 {
2287 	struct buffer *out = buf;
2288 
2289 	/* Token name must match. */
2290 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2291 		return -1;
2292 	/* Nothing else to do if there is no buffer. */
2293 	if (!out)
2294 		return len;
2295 	if (!out->command) {
2296 		if (ctx->curr != DESTROY)
2297 			return -1;
2298 		if (sizeof(*out) > size)
2299 			return -1;
2300 		out->command = ctx->curr;
2301 		ctx->objdata = 0;
2302 		ctx->object = out;
2303 		ctx->objmask = NULL;
2304 		out->args.destroy.rule =
2305 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2306 					       sizeof(double));
2307 		return len;
2308 	}
2309 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
2310 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
2311 		return -1;
2312 	ctx->objdata = 0;
2313 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
2314 	ctx->objmask = NULL;
2315 	return len;
2316 }
2317 
2318 /** Parse tokens for flush command. */
2319 static int
2320 parse_flush(struct context *ctx, const struct token *token,
2321 	    const char *str, unsigned int len,
2322 	    void *buf, unsigned int size)
2323 {
2324 	struct buffer *out = buf;
2325 
2326 	/* Token name must match. */
2327 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2328 		return -1;
2329 	/* Nothing else to do if there is no buffer. */
2330 	if (!out)
2331 		return len;
2332 	if (!out->command) {
2333 		if (ctx->curr != FLUSH)
2334 			return -1;
2335 		if (sizeof(*out) > size)
2336 			return -1;
2337 		out->command = ctx->curr;
2338 		ctx->objdata = 0;
2339 		ctx->object = out;
2340 		ctx->objmask = NULL;
2341 	}
2342 	return len;
2343 }
2344 
2345 /** Parse tokens for query command. */
2346 static int
2347 parse_query(struct context *ctx, const struct token *token,
2348 	    const char *str, unsigned int len,
2349 	    void *buf, unsigned int size)
2350 {
2351 	struct buffer *out = buf;
2352 
2353 	/* Token name must match. */
2354 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2355 		return -1;
2356 	/* Nothing else to do if there is no buffer. */
2357 	if (!out)
2358 		return len;
2359 	if (!out->command) {
2360 		if (ctx->curr != QUERY)
2361 			return -1;
2362 		if (sizeof(*out) > size)
2363 			return -1;
2364 		out->command = ctx->curr;
2365 		ctx->objdata = 0;
2366 		ctx->object = out;
2367 		ctx->objmask = NULL;
2368 	}
2369 	return len;
2370 }
2371 
2372 /** Parse action names. */
2373 static int
2374 parse_action(struct context *ctx, const struct token *token,
2375 	     const char *str, unsigned int len,
2376 	     void *buf, unsigned int size)
2377 {
2378 	struct buffer *out = buf;
2379 	const struct arg *arg = pop_args(ctx);
2380 	unsigned int i;
2381 
2382 	(void)size;
2383 	/* Argument is expected. */
2384 	if (!arg)
2385 		return -1;
2386 	/* Parse action name. */
2387 	for (i = 0; next_action[i]; ++i) {
2388 		const struct parse_action_priv *priv;
2389 
2390 		token = &token_list[next_action[i]];
2391 		if (strcmp_partial(token->name, str, len))
2392 			continue;
2393 		priv = token->priv;
2394 		if (!priv)
2395 			goto error;
2396 		if (out)
2397 			memcpy((uint8_t *)ctx->object + arg->offset,
2398 			       &priv->type,
2399 			       arg->size);
2400 		return len;
2401 	}
2402 error:
2403 	push_args(ctx, arg);
2404 	return -1;
2405 }
2406 
2407 /** Parse tokens for list command. */
2408 static int
2409 parse_list(struct context *ctx, const struct token *token,
2410 	   const char *str, unsigned int len,
2411 	   void *buf, unsigned int size)
2412 {
2413 	struct buffer *out = buf;
2414 
2415 	/* Token name must match. */
2416 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2417 		return -1;
2418 	/* Nothing else to do if there is no buffer. */
2419 	if (!out)
2420 		return len;
2421 	if (!out->command) {
2422 		if (ctx->curr != LIST)
2423 			return -1;
2424 		if (sizeof(*out) > size)
2425 			return -1;
2426 		out->command = ctx->curr;
2427 		ctx->objdata = 0;
2428 		ctx->object = out;
2429 		ctx->objmask = NULL;
2430 		out->args.list.group =
2431 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2432 					       sizeof(double));
2433 		return len;
2434 	}
2435 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
2436 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
2437 		return -1;
2438 	ctx->objdata = 0;
2439 	ctx->object = out->args.list.group + out->args.list.group_n++;
2440 	ctx->objmask = NULL;
2441 	return len;
2442 }
2443 
2444 /** Parse tokens for isolate command. */
2445 static int
2446 parse_isolate(struct context *ctx, const struct token *token,
2447 	      const char *str, unsigned int len,
2448 	      void *buf, unsigned int size)
2449 {
2450 	struct buffer *out = buf;
2451 
2452 	/* Token name must match. */
2453 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2454 		return -1;
2455 	/* Nothing else to do if there is no buffer. */
2456 	if (!out)
2457 		return len;
2458 	if (!out->command) {
2459 		if (ctx->curr != ISOLATE)
2460 			return -1;
2461 		if (sizeof(*out) > size)
2462 			return -1;
2463 		out->command = ctx->curr;
2464 		ctx->objdata = 0;
2465 		ctx->object = out;
2466 		ctx->objmask = NULL;
2467 	}
2468 	return len;
2469 }
2470 
2471 /**
2472  * Parse signed/unsigned integers 8 to 64-bit long.
2473  *
2474  * Last argument (ctx->args) is retrieved to determine integer type and
2475  * storage location.
2476  */
2477 static int
2478 parse_int(struct context *ctx, const struct token *token,
2479 	  const char *str, unsigned int len,
2480 	  void *buf, unsigned int size)
2481 {
2482 	const struct arg *arg = pop_args(ctx);
2483 	uintmax_t u;
2484 	char *end;
2485 
2486 	(void)token;
2487 	/* Argument is expected. */
2488 	if (!arg)
2489 		return -1;
2490 	errno = 0;
2491 	u = arg->sign ?
2492 		(uintmax_t)strtoimax(str, &end, 0) :
2493 		strtoumax(str, &end, 0);
2494 	if (errno || (size_t)(end - str) != len)
2495 		goto error;
2496 	if (arg->bounded &&
2497 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
2498 			    (intmax_t)u > (intmax_t)arg->max)) ||
2499 	     (!arg->sign && (u < arg->min || u > arg->max))))
2500 		goto error;
2501 	if (!ctx->object)
2502 		return len;
2503 	if (arg->mask) {
2504 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
2505 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2506 			goto error;
2507 		return len;
2508 	}
2509 	buf = (uint8_t *)ctx->object + arg->offset;
2510 	size = arg->size;
2511 objmask:
2512 	switch (size) {
2513 	case sizeof(uint8_t):
2514 		*(uint8_t *)buf = u;
2515 		break;
2516 	case sizeof(uint16_t):
2517 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
2518 		break;
2519 	case sizeof(uint8_t [3]):
2520 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2521 		if (!arg->hton) {
2522 			((uint8_t *)buf)[0] = u;
2523 			((uint8_t *)buf)[1] = u >> 8;
2524 			((uint8_t *)buf)[2] = u >> 16;
2525 			break;
2526 		}
2527 #endif
2528 		((uint8_t *)buf)[0] = u >> 16;
2529 		((uint8_t *)buf)[1] = u >> 8;
2530 		((uint8_t *)buf)[2] = u;
2531 		break;
2532 	case sizeof(uint32_t):
2533 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
2534 		break;
2535 	case sizeof(uint64_t):
2536 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
2537 		break;
2538 	default:
2539 		goto error;
2540 	}
2541 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
2542 		u = -1;
2543 		buf = (uint8_t *)ctx->objmask + arg->offset;
2544 		goto objmask;
2545 	}
2546 	return len;
2547 error:
2548 	push_args(ctx, arg);
2549 	return -1;
2550 }
2551 
2552 /**
2553  * Parse a string.
2554  *
2555  * Three arguments (ctx->args) are retrieved from the stack to store data,
2556  * its actual length and address (in that order).
2557  */
2558 static int
2559 parse_string(struct context *ctx, const struct token *token,
2560 	     const char *str, unsigned int len,
2561 	     void *buf, unsigned int size)
2562 {
2563 	const struct arg *arg_data = pop_args(ctx);
2564 	const struct arg *arg_len = pop_args(ctx);
2565 	const struct arg *arg_addr = pop_args(ctx);
2566 	char tmp[16]; /* Ought to be enough. */
2567 	int ret;
2568 
2569 	/* Arguments are expected. */
2570 	if (!arg_data)
2571 		return -1;
2572 	if (!arg_len) {
2573 		push_args(ctx, arg_data);
2574 		return -1;
2575 	}
2576 	if (!arg_addr) {
2577 		push_args(ctx, arg_len);
2578 		push_args(ctx, arg_data);
2579 		return -1;
2580 	}
2581 	size = arg_data->size;
2582 	/* Bit-mask fill is not supported. */
2583 	if (arg_data->mask || size < len)
2584 		goto error;
2585 	if (!ctx->object)
2586 		return len;
2587 	/* Let parse_int() fill length information first. */
2588 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
2589 	if (ret < 0)
2590 		goto error;
2591 	push_args(ctx, arg_len);
2592 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
2593 	if (ret < 0) {
2594 		pop_args(ctx);
2595 		goto error;
2596 	}
2597 	buf = (uint8_t *)ctx->object + arg_data->offset;
2598 	/* Output buffer is not necessarily NUL-terminated. */
2599 	memcpy(buf, str, len);
2600 	memset((uint8_t *)buf + len, 0x00, size - len);
2601 	if (ctx->objmask)
2602 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
2603 	/* Save address if requested. */
2604 	if (arg_addr->size) {
2605 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
2606 		       (void *[]){
2607 			(uint8_t *)ctx->object + arg_data->offset
2608 		       },
2609 		       arg_addr->size);
2610 		if (ctx->objmask)
2611 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
2612 			       (void *[]){
2613 				(uint8_t *)ctx->objmask + arg_data->offset
2614 			       },
2615 			       arg_addr->size);
2616 	}
2617 	return len;
2618 error:
2619 	push_args(ctx, arg_addr);
2620 	push_args(ctx, arg_len);
2621 	push_args(ctx, arg_data);
2622 	return -1;
2623 }
2624 
2625 /**
2626  * Parse a MAC address.
2627  *
2628  * Last argument (ctx->args) is retrieved to determine storage size and
2629  * location.
2630  */
2631 static int
2632 parse_mac_addr(struct context *ctx, const struct token *token,
2633 	       const char *str, unsigned int len,
2634 	       void *buf, unsigned int size)
2635 {
2636 	const struct arg *arg = pop_args(ctx);
2637 	struct ether_addr tmp;
2638 	int ret;
2639 
2640 	(void)token;
2641 	/* Argument is expected. */
2642 	if (!arg)
2643 		return -1;
2644 	size = arg->size;
2645 	/* Bit-mask fill is not supported. */
2646 	if (arg->mask || size != sizeof(tmp))
2647 		goto error;
2648 	/* Only network endian is supported. */
2649 	if (!arg->hton)
2650 		goto error;
2651 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
2652 	if (ret < 0 || (unsigned int)ret != len)
2653 		goto error;
2654 	if (!ctx->object)
2655 		return len;
2656 	buf = (uint8_t *)ctx->object + arg->offset;
2657 	memcpy(buf, &tmp, size);
2658 	if (ctx->objmask)
2659 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2660 	return len;
2661 error:
2662 	push_args(ctx, arg);
2663 	return -1;
2664 }
2665 
2666 /**
2667  * Parse an IPv4 address.
2668  *
2669  * Last argument (ctx->args) is retrieved to determine storage size and
2670  * location.
2671  */
2672 static int
2673 parse_ipv4_addr(struct context *ctx, const struct token *token,
2674 		const char *str, unsigned int len,
2675 		void *buf, unsigned int size)
2676 {
2677 	const struct arg *arg = pop_args(ctx);
2678 	char str2[len + 1];
2679 	struct in_addr tmp;
2680 	int ret;
2681 
2682 	/* Argument is expected. */
2683 	if (!arg)
2684 		return -1;
2685 	size = arg->size;
2686 	/* Bit-mask fill is not supported. */
2687 	if (arg->mask || size != sizeof(tmp))
2688 		goto error;
2689 	/* Only network endian is supported. */
2690 	if (!arg->hton)
2691 		goto error;
2692 	memcpy(str2, str, len);
2693 	str2[len] = '\0';
2694 	ret = inet_pton(AF_INET, str2, &tmp);
2695 	if (ret != 1) {
2696 		/* Attempt integer parsing. */
2697 		push_args(ctx, arg);
2698 		return parse_int(ctx, token, str, len, buf, size);
2699 	}
2700 	if (!ctx->object)
2701 		return len;
2702 	buf = (uint8_t *)ctx->object + arg->offset;
2703 	memcpy(buf, &tmp, size);
2704 	if (ctx->objmask)
2705 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2706 	return len;
2707 error:
2708 	push_args(ctx, arg);
2709 	return -1;
2710 }
2711 
2712 /**
2713  * Parse an IPv6 address.
2714  *
2715  * Last argument (ctx->args) is retrieved to determine storage size and
2716  * location.
2717  */
2718 static int
2719 parse_ipv6_addr(struct context *ctx, const struct token *token,
2720 		const char *str, unsigned int len,
2721 		void *buf, unsigned int size)
2722 {
2723 	const struct arg *arg = pop_args(ctx);
2724 	char str2[len + 1];
2725 	struct in6_addr tmp;
2726 	int ret;
2727 
2728 	(void)token;
2729 	/* Argument is expected. */
2730 	if (!arg)
2731 		return -1;
2732 	size = arg->size;
2733 	/* Bit-mask fill is not supported. */
2734 	if (arg->mask || size != sizeof(tmp))
2735 		goto error;
2736 	/* Only network endian is supported. */
2737 	if (!arg->hton)
2738 		goto error;
2739 	memcpy(str2, str, len);
2740 	str2[len] = '\0';
2741 	ret = inet_pton(AF_INET6, str2, &tmp);
2742 	if (ret != 1)
2743 		goto error;
2744 	if (!ctx->object)
2745 		return len;
2746 	buf = (uint8_t *)ctx->object + arg->offset;
2747 	memcpy(buf, &tmp, size);
2748 	if (ctx->objmask)
2749 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2750 	return len;
2751 error:
2752 	push_args(ctx, arg);
2753 	return -1;
2754 }
2755 
2756 /** Boolean values (even indices stand for false). */
2757 static const char *const boolean_name[] = {
2758 	"0", "1",
2759 	"false", "true",
2760 	"no", "yes",
2761 	"N", "Y",
2762 	"off", "on",
2763 	NULL,
2764 };
2765 
2766 /**
2767  * Parse a boolean value.
2768  *
2769  * Last argument (ctx->args) is retrieved to determine storage size and
2770  * location.
2771  */
2772 static int
2773 parse_boolean(struct context *ctx, const struct token *token,
2774 	      const char *str, unsigned int len,
2775 	      void *buf, unsigned int size)
2776 {
2777 	const struct arg *arg = pop_args(ctx);
2778 	unsigned int i;
2779 	int ret;
2780 
2781 	/* Argument is expected. */
2782 	if (!arg)
2783 		return -1;
2784 	for (i = 0; boolean_name[i]; ++i)
2785 		if (!strcmp_partial(boolean_name[i], str, len))
2786 			break;
2787 	/* Process token as integer. */
2788 	if (boolean_name[i])
2789 		str = i & 1 ? "1" : "0";
2790 	push_args(ctx, arg);
2791 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
2792 	return ret > 0 ? (int)len : ret;
2793 }
2794 
2795 /** Parse port and update context. */
2796 static int
2797 parse_port(struct context *ctx, const struct token *token,
2798 	   const char *str, unsigned int len,
2799 	   void *buf, unsigned int size)
2800 {
2801 	struct buffer *out = &(struct buffer){ .port = 0 };
2802 	int ret;
2803 
2804 	if (buf)
2805 		out = buf;
2806 	else {
2807 		ctx->objdata = 0;
2808 		ctx->object = out;
2809 		ctx->objmask = NULL;
2810 		size = sizeof(*out);
2811 	}
2812 	ret = parse_int(ctx, token, str, len, out, size);
2813 	if (ret >= 0)
2814 		ctx->port = out->port;
2815 	if (!buf)
2816 		ctx->object = NULL;
2817 	return ret;
2818 }
2819 
2820 /** No completion. */
2821 static int
2822 comp_none(struct context *ctx, const struct token *token,
2823 	  unsigned int ent, char *buf, unsigned int size)
2824 {
2825 	(void)ctx;
2826 	(void)token;
2827 	(void)ent;
2828 	(void)buf;
2829 	(void)size;
2830 	return 0;
2831 }
2832 
2833 /** Complete boolean values. */
2834 static int
2835 comp_boolean(struct context *ctx, const struct token *token,
2836 	     unsigned int ent, char *buf, unsigned int size)
2837 {
2838 	unsigned int i;
2839 
2840 	(void)ctx;
2841 	(void)token;
2842 	for (i = 0; boolean_name[i]; ++i)
2843 		if (buf && i == ent)
2844 			return snprintf(buf, size, "%s", boolean_name[i]);
2845 	if (buf)
2846 		return -1;
2847 	return i;
2848 }
2849 
2850 /** Complete action names. */
2851 static int
2852 comp_action(struct context *ctx, const struct token *token,
2853 	    unsigned int ent, char *buf, unsigned int size)
2854 {
2855 	unsigned int i;
2856 
2857 	(void)ctx;
2858 	(void)token;
2859 	for (i = 0; next_action[i]; ++i)
2860 		if (buf && i == ent)
2861 			return snprintf(buf, size, "%s",
2862 					token_list[next_action[i]].name);
2863 	if (buf)
2864 		return -1;
2865 	return i;
2866 }
2867 
2868 /** Complete available ports. */
2869 static int
2870 comp_port(struct context *ctx, const struct token *token,
2871 	  unsigned int ent, char *buf, unsigned int size)
2872 {
2873 	unsigned int i = 0;
2874 	portid_t p;
2875 
2876 	(void)ctx;
2877 	(void)token;
2878 	RTE_ETH_FOREACH_DEV(p) {
2879 		if (buf && i == ent)
2880 			return snprintf(buf, size, "%u", p);
2881 		++i;
2882 	}
2883 	if (buf)
2884 		return -1;
2885 	return i;
2886 }
2887 
2888 /** Complete available rule IDs. */
2889 static int
2890 comp_rule_id(struct context *ctx, const struct token *token,
2891 	     unsigned int ent, char *buf, unsigned int size)
2892 {
2893 	unsigned int i = 0;
2894 	struct rte_port *port;
2895 	struct port_flow *pf;
2896 
2897 	(void)token;
2898 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
2899 	    ctx->port == (portid_t)RTE_PORT_ALL)
2900 		return -1;
2901 	port = &ports[ctx->port];
2902 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
2903 		if (buf && i == ent)
2904 			return snprintf(buf, size, "%u", pf->id);
2905 		++i;
2906 	}
2907 	if (buf)
2908 		return -1;
2909 	return i;
2910 }
2911 
2912 /** Complete type field for RSS action. */
2913 static int
2914 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
2915 			unsigned int ent, char *buf, unsigned int size)
2916 {
2917 	unsigned int i;
2918 
2919 	(void)ctx;
2920 	(void)token;
2921 	for (i = 0; rss_type_table[i].str; ++i)
2922 		;
2923 	if (!buf)
2924 		return i + 1;
2925 	if (ent < i)
2926 		return snprintf(buf, size, "%s", rss_type_table[ent].str);
2927 	if (ent == i)
2928 		return snprintf(buf, size, "end");
2929 	return -1;
2930 }
2931 
2932 /** Complete queue field for RSS action. */
2933 static int
2934 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
2935 			 unsigned int ent, char *buf, unsigned int size)
2936 {
2937 	(void)ctx;
2938 	(void)token;
2939 	if (!buf)
2940 		return nb_rxq + 1;
2941 	if (ent < nb_rxq)
2942 		return snprintf(buf, size, "%u", ent);
2943 	if (ent == nb_rxq)
2944 		return snprintf(buf, size, "end");
2945 	return -1;
2946 }
2947 
2948 /** Internal context. */
2949 static struct context cmd_flow_context;
2950 
2951 /** Global parser instance (cmdline API). */
2952 cmdline_parse_inst_t cmd_flow;
2953 
2954 /** Initialize context. */
2955 static void
2956 cmd_flow_context_init(struct context *ctx)
2957 {
2958 	/* A full memset() is not necessary. */
2959 	ctx->curr = ZERO;
2960 	ctx->prev = ZERO;
2961 	ctx->next_num = 0;
2962 	ctx->args_num = 0;
2963 	ctx->eol = 0;
2964 	ctx->last = 0;
2965 	ctx->port = 0;
2966 	ctx->objdata = 0;
2967 	ctx->object = NULL;
2968 	ctx->objmask = NULL;
2969 }
2970 
2971 /** Parse a token (cmdline API). */
2972 static int
2973 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
2974 	       unsigned int size)
2975 {
2976 	struct context *ctx = &cmd_flow_context;
2977 	const struct token *token;
2978 	const enum index *list;
2979 	int len;
2980 	int i;
2981 
2982 	(void)hdr;
2983 	token = &token_list[ctx->curr];
2984 	/* Check argument length. */
2985 	ctx->eol = 0;
2986 	ctx->last = 1;
2987 	for (len = 0; src[len]; ++len)
2988 		if (src[len] == '#' || isspace(src[len]))
2989 			break;
2990 	if (!len)
2991 		return -1;
2992 	/* Last argument and EOL detection. */
2993 	for (i = len; src[i]; ++i)
2994 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
2995 			break;
2996 		else if (!isspace(src[i])) {
2997 			ctx->last = 0;
2998 			break;
2999 		}
3000 	for (; src[i]; ++i)
3001 		if (src[i] == '\r' || src[i] == '\n') {
3002 			ctx->eol = 1;
3003 			break;
3004 		}
3005 	/* Initialize context if necessary. */
3006 	if (!ctx->next_num) {
3007 		if (!token->next)
3008 			return 0;
3009 		ctx->next[ctx->next_num++] = token->next[0];
3010 	}
3011 	/* Process argument through candidates. */
3012 	ctx->prev = ctx->curr;
3013 	list = ctx->next[ctx->next_num - 1];
3014 	for (i = 0; list[i]; ++i) {
3015 		const struct token *next = &token_list[list[i]];
3016 		int tmp;
3017 
3018 		ctx->curr = list[i];
3019 		if (next->call)
3020 			tmp = next->call(ctx, next, src, len, result, size);
3021 		else
3022 			tmp = parse_default(ctx, next, src, len, result, size);
3023 		if (tmp == -1 || tmp != len)
3024 			continue;
3025 		token = next;
3026 		break;
3027 	}
3028 	if (!list[i])
3029 		return -1;
3030 	--ctx->next_num;
3031 	/* Push subsequent tokens if any. */
3032 	if (token->next)
3033 		for (i = 0; token->next[i]; ++i) {
3034 			if (ctx->next_num == RTE_DIM(ctx->next))
3035 				return -1;
3036 			ctx->next[ctx->next_num++] = token->next[i];
3037 		}
3038 	/* Push arguments if any. */
3039 	if (token->args)
3040 		for (i = 0; token->args[i]; ++i) {
3041 			if (ctx->args_num == RTE_DIM(ctx->args))
3042 				return -1;
3043 			ctx->args[ctx->args_num++] = token->args[i];
3044 		}
3045 	return len;
3046 }
3047 
3048 /** Return number of completion entries (cmdline API). */
3049 static int
3050 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
3051 {
3052 	struct context *ctx = &cmd_flow_context;
3053 	const struct token *token = &token_list[ctx->curr];
3054 	const enum index *list;
3055 	int i;
3056 
3057 	(void)hdr;
3058 	/* Count number of tokens in current list. */
3059 	if (ctx->next_num)
3060 		list = ctx->next[ctx->next_num - 1];
3061 	else
3062 		list = token->next[0];
3063 	for (i = 0; list[i]; ++i)
3064 		;
3065 	if (!i)
3066 		return 0;
3067 	/*
3068 	 * If there is a single token, use its completion callback, otherwise
3069 	 * return the number of entries.
3070 	 */
3071 	token = &token_list[list[0]];
3072 	if (i == 1 && token->comp) {
3073 		/* Save index for cmd_flow_get_help(). */
3074 		ctx->prev = list[0];
3075 		return token->comp(ctx, token, 0, NULL, 0);
3076 	}
3077 	return i;
3078 }
3079 
3080 /** Return a completion entry (cmdline API). */
3081 static int
3082 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
3083 			  char *dst, unsigned int size)
3084 {
3085 	struct context *ctx = &cmd_flow_context;
3086 	const struct token *token = &token_list[ctx->curr];
3087 	const enum index *list;
3088 	int i;
3089 
3090 	(void)hdr;
3091 	/* Count number of tokens in current list. */
3092 	if (ctx->next_num)
3093 		list = ctx->next[ctx->next_num - 1];
3094 	else
3095 		list = token->next[0];
3096 	for (i = 0; list[i]; ++i)
3097 		;
3098 	if (!i)
3099 		return -1;
3100 	/* If there is a single token, use its completion callback. */
3101 	token = &token_list[list[0]];
3102 	if (i == 1 && token->comp) {
3103 		/* Save index for cmd_flow_get_help(). */
3104 		ctx->prev = list[0];
3105 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
3106 	}
3107 	/* Otherwise make sure the index is valid and use defaults. */
3108 	if (index >= i)
3109 		return -1;
3110 	token = &token_list[list[index]];
3111 	snprintf(dst, size, "%s", token->name);
3112 	/* Save index for cmd_flow_get_help(). */
3113 	ctx->prev = list[index];
3114 	return 0;
3115 }
3116 
3117 /** Populate help strings for current token (cmdline API). */
3118 static int
3119 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
3120 {
3121 	struct context *ctx = &cmd_flow_context;
3122 	const struct token *token = &token_list[ctx->prev];
3123 
3124 	(void)hdr;
3125 	if (!size)
3126 		return -1;
3127 	/* Set token type and update global help with details. */
3128 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
3129 	if (token->help)
3130 		cmd_flow.help_str = token->help;
3131 	else
3132 		cmd_flow.help_str = token->name;
3133 	return 0;
3134 }
3135 
3136 /** Token definition template (cmdline API). */
3137 static struct cmdline_token_hdr cmd_flow_token_hdr = {
3138 	.ops = &(struct cmdline_token_ops){
3139 		.parse = cmd_flow_parse,
3140 		.complete_get_nb = cmd_flow_complete_get_nb,
3141 		.complete_get_elt = cmd_flow_complete_get_elt,
3142 		.get_help = cmd_flow_get_help,
3143 	},
3144 	.offset = 0,
3145 };
3146 
3147 /** Populate the next dynamic token. */
3148 static void
3149 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
3150 	     cmdline_parse_token_hdr_t **hdr_inst)
3151 {
3152 	struct context *ctx = &cmd_flow_context;
3153 
3154 	/* Always reinitialize context before requesting the first token. */
3155 	if (!(hdr_inst - cmd_flow.tokens))
3156 		cmd_flow_context_init(ctx);
3157 	/* Return NULL when no more tokens are expected. */
3158 	if (!ctx->next_num && ctx->curr) {
3159 		*hdr = NULL;
3160 		return;
3161 	}
3162 	/* Determine if command should end here. */
3163 	if (ctx->eol && ctx->last && ctx->next_num) {
3164 		const enum index *list = ctx->next[ctx->next_num - 1];
3165 		int i;
3166 
3167 		for (i = 0; list[i]; ++i) {
3168 			if (list[i] != END)
3169 				continue;
3170 			*hdr = NULL;
3171 			return;
3172 		}
3173 	}
3174 	*hdr = &cmd_flow_token_hdr;
3175 }
3176 
3177 /** Dispatch parsed buffer to function calls. */
3178 static void
3179 cmd_flow_parsed(const struct buffer *in)
3180 {
3181 	switch (in->command) {
3182 	case VALIDATE:
3183 		port_flow_validate(in->port, &in->args.vc.attr,
3184 				   in->args.vc.pattern, in->args.vc.actions);
3185 		break;
3186 	case CREATE:
3187 		port_flow_create(in->port, &in->args.vc.attr,
3188 				 in->args.vc.pattern, in->args.vc.actions);
3189 		break;
3190 	case DESTROY:
3191 		port_flow_destroy(in->port, in->args.destroy.rule_n,
3192 				  in->args.destroy.rule);
3193 		break;
3194 	case FLUSH:
3195 		port_flow_flush(in->port);
3196 		break;
3197 	case QUERY:
3198 		port_flow_query(in->port, in->args.query.rule,
3199 				in->args.query.action);
3200 		break;
3201 	case LIST:
3202 		port_flow_list(in->port, in->args.list.group_n,
3203 			       in->args.list.group);
3204 		break;
3205 	case ISOLATE:
3206 		port_flow_isolate(in->port, in->args.isolate.set);
3207 		break;
3208 	default:
3209 		break;
3210 	}
3211 }
3212 
3213 /** Token generator and output processing callback (cmdline API). */
3214 static void
3215 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
3216 {
3217 	if (cl == NULL)
3218 		cmd_flow_tok(arg0, arg2);
3219 	else
3220 		cmd_flow_parsed(arg0);
3221 }
3222 
3223 /** Global parser instance (cmdline API). */
3224 cmdline_parse_inst_t cmd_flow = {
3225 	.f = cmd_flow_cb,
3226 	.data = NULL, /**< Unused. */
3227 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
3228 	.tokens = {
3229 		NULL,
3230 	}, /**< Tokens are returned by cmd_flow_tok(). */
3231 };
3232