xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 1334586b669c1d27aec2bffd0b1ed9f542cd7d19)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_common.h>
17 #include <rte_eth_ctrl.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <rte_flow.h>
23 
24 #include "testpmd.h"
25 
26 /** Parser token indices. */
27 enum index {
28 	/* Special tokens. */
29 	ZERO = 0,
30 	END,
31 
32 	/* Common tokens. */
33 	INTEGER,
34 	UNSIGNED,
35 	PREFIX,
36 	BOOLEAN,
37 	STRING,
38 	MAC_ADDR,
39 	IPV4_ADDR,
40 	IPV6_ADDR,
41 	RULE_ID,
42 	PORT_ID,
43 	GROUP_ID,
44 	PRIORITY_LEVEL,
45 
46 	/* Top-level command. */
47 	FLOW,
48 
49 	/* Sub-level commands. */
50 	VALIDATE,
51 	CREATE,
52 	DESTROY,
53 	FLUSH,
54 	QUERY,
55 	LIST,
56 	ISOLATE,
57 
58 	/* Destroy arguments. */
59 	DESTROY_RULE,
60 
61 	/* Query arguments. */
62 	QUERY_ACTION,
63 
64 	/* List arguments. */
65 	LIST_GROUP,
66 
67 	/* Validate/create arguments. */
68 	GROUP,
69 	PRIORITY,
70 	INGRESS,
71 	EGRESS,
72 	TRANSFER,
73 
74 	/* Validate/create pattern. */
75 	PATTERN,
76 	ITEM_PARAM_IS,
77 	ITEM_PARAM_SPEC,
78 	ITEM_PARAM_LAST,
79 	ITEM_PARAM_MASK,
80 	ITEM_PARAM_PREFIX,
81 	ITEM_NEXT,
82 	ITEM_END,
83 	ITEM_VOID,
84 	ITEM_INVERT,
85 	ITEM_ANY,
86 	ITEM_ANY_NUM,
87 	ITEM_PF,
88 	ITEM_VF,
89 	ITEM_VF_ID,
90 	ITEM_PHY_PORT,
91 	ITEM_PHY_PORT_INDEX,
92 	ITEM_PORT_ID,
93 	ITEM_PORT_ID_ID,
94 	ITEM_MARK,
95 	ITEM_MARK_ID,
96 	ITEM_RAW,
97 	ITEM_RAW_RELATIVE,
98 	ITEM_RAW_SEARCH,
99 	ITEM_RAW_OFFSET,
100 	ITEM_RAW_LIMIT,
101 	ITEM_RAW_PATTERN,
102 	ITEM_ETH,
103 	ITEM_ETH_DST,
104 	ITEM_ETH_SRC,
105 	ITEM_ETH_TYPE,
106 	ITEM_VLAN,
107 	ITEM_VLAN_TCI,
108 	ITEM_VLAN_PCP,
109 	ITEM_VLAN_DEI,
110 	ITEM_VLAN_VID,
111 	ITEM_VLAN_INNER_TYPE,
112 	ITEM_IPV4,
113 	ITEM_IPV4_TOS,
114 	ITEM_IPV4_TTL,
115 	ITEM_IPV4_PROTO,
116 	ITEM_IPV4_SRC,
117 	ITEM_IPV4_DST,
118 	ITEM_IPV6,
119 	ITEM_IPV6_TC,
120 	ITEM_IPV6_FLOW,
121 	ITEM_IPV6_PROTO,
122 	ITEM_IPV6_HOP,
123 	ITEM_IPV6_SRC,
124 	ITEM_IPV6_DST,
125 	ITEM_ICMP,
126 	ITEM_ICMP_TYPE,
127 	ITEM_ICMP_CODE,
128 	ITEM_UDP,
129 	ITEM_UDP_SRC,
130 	ITEM_UDP_DST,
131 	ITEM_TCP,
132 	ITEM_TCP_SRC,
133 	ITEM_TCP_DST,
134 	ITEM_TCP_FLAGS,
135 	ITEM_SCTP,
136 	ITEM_SCTP_SRC,
137 	ITEM_SCTP_DST,
138 	ITEM_SCTP_TAG,
139 	ITEM_SCTP_CKSUM,
140 	ITEM_VXLAN,
141 	ITEM_VXLAN_VNI,
142 	ITEM_E_TAG,
143 	ITEM_E_TAG_GRP_ECID_B,
144 	ITEM_NVGRE,
145 	ITEM_NVGRE_TNI,
146 	ITEM_MPLS,
147 	ITEM_MPLS_LABEL,
148 	ITEM_GRE,
149 	ITEM_GRE_PROTO,
150 	ITEM_FUZZY,
151 	ITEM_FUZZY_THRESH,
152 	ITEM_GTP,
153 	ITEM_GTP_TEID,
154 	ITEM_GTPC,
155 	ITEM_GTPU,
156 	ITEM_GENEVE,
157 	ITEM_GENEVE_VNI,
158 	ITEM_GENEVE_PROTO,
159 	ITEM_VXLAN_GPE,
160 	ITEM_VXLAN_GPE_VNI,
161 	ITEM_ARP_ETH_IPV4,
162 	ITEM_ARP_ETH_IPV4_SHA,
163 	ITEM_ARP_ETH_IPV4_SPA,
164 	ITEM_ARP_ETH_IPV4_THA,
165 	ITEM_ARP_ETH_IPV4_TPA,
166 	ITEM_IPV6_EXT,
167 	ITEM_IPV6_EXT_NEXT_HDR,
168 	ITEM_ICMP6,
169 	ITEM_ICMP6_TYPE,
170 	ITEM_ICMP6_CODE,
171 	ITEM_ICMP6_ND_NS,
172 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
173 	ITEM_ICMP6_ND_NA,
174 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
175 	ITEM_ICMP6_ND_OPT,
176 	ITEM_ICMP6_ND_OPT_TYPE,
177 	ITEM_ICMP6_ND_OPT_SLA_ETH,
178 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
179 	ITEM_ICMP6_ND_OPT_TLA_ETH,
180 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
181 
182 	/* Validate/create actions. */
183 	ACTIONS,
184 	ACTION_NEXT,
185 	ACTION_END,
186 	ACTION_VOID,
187 	ACTION_PASSTHRU,
188 	ACTION_JUMP,
189 	ACTION_JUMP_GROUP,
190 	ACTION_MARK,
191 	ACTION_MARK_ID,
192 	ACTION_FLAG,
193 	ACTION_QUEUE,
194 	ACTION_QUEUE_INDEX,
195 	ACTION_DROP,
196 	ACTION_COUNT,
197 	ACTION_COUNT_SHARED,
198 	ACTION_COUNT_ID,
199 	ACTION_RSS,
200 	ACTION_RSS_FUNC,
201 	ACTION_RSS_LEVEL,
202 	ACTION_RSS_FUNC_DEFAULT,
203 	ACTION_RSS_FUNC_TOEPLITZ,
204 	ACTION_RSS_FUNC_SIMPLE_XOR,
205 	ACTION_RSS_TYPES,
206 	ACTION_RSS_TYPE,
207 	ACTION_RSS_KEY,
208 	ACTION_RSS_KEY_LEN,
209 	ACTION_RSS_QUEUES,
210 	ACTION_RSS_QUEUE,
211 	ACTION_PF,
212 	ACTION_VF,
213 	ACTION_VF_ORIGINAL,
214 	ACTION_VF_ID,
215 	ACTION_PHY_PORT,
216 	ACTION_PHY_PORT_ORIGINAL,
217 	ACTION_PHY_PORT_INDEX,
218 	ACTION_PORT_ID,
219 	ACTION_PORT_ID_ORIGINAL,
220 	ACTION_PORT_ID_ID,
221 	ACTION_METER,
222 	ACTION_METER_ID,
223 	ACTION_OF_SET_MPLS_TTL,
224 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
225 	ACTION_OF_DEC_MPLS_TTL,
226 	ACTION_OF_SET_NW_TTL,
227 	ACTION_OF_SET_NW_TTL_NW_TTL,
228 	ACTION_OF_DEC_NW_TTL,
229 	ACTION_OF_COPY_TTL_OUT,
230 	ACTION_OF_COPY_TTL_IN,
231 	ACTION_OF_POP_VLAN,
232 	ACTION_OF_PUSH_VLAN,
233 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
234 	ACTION_OF_SET_VLAN_VID,
235 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
236 	ACTION_OF_SET_VLAN_PCP,
237 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
238 	ACTION_OF_POP_MPLS,
239 	ACTION_OF_POP_MPLS_ETHERTYPE,
240 	ACTION_OF_PUSH_MPLS,
241 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
242 	ACTION_VXLAN_ENCAP,
243 	ACTION_VXLAN_DECAP,
244 	ACTION_NVGRE_ENCAP,
245 	ACTION_NVGRE_DECAP,
246 };
247 
248 /** Maximum size for pattern in struct rte_flow_item_raw. */
249 #define ITEM_RAW_PATTERN_SIZE 40
250 
251 /** Storage size for struct rte_flow_item_raw including pattern. */
252 #define ITEM_RAW_SIZE \
253 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
254 
255 /** Maximum number of queue indices in struct rte_flow_action_rss. */
256 #define ACTION_RSS_QUEUE_NUM 32
257 
258 /** Storage for struct rte_flow_action_rss including external data. */
259 struct action_rss_data {
260 	struct rte_flow_action_rss conf;
261 	uint8_t key[RSS_HASH_KEY_LENGTH];
262 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
263 };
264 
265 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
266 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
267 
268 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
269 struct action_vxlan_encap_data {
270 	struct rte_flow_action_vxlan_encap conf;
271 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
272 	struct rte_flow_item_eth item_eth;
273 	struct rte_flow_item_vlan item_vlan;
274 	union {
275 		struct rte_flow_item_ipv4 item_ipv4;
276 		struct rte_flow_item_ipv6 item_ipv6;
277 	};
278 	struct rte_flow_item_udp item_udp;
279 	struct rte_flow_item_vxlan item_vxlan;
280 };
281 
282 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
283 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
284 
285 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
286 struct action_nvgre_encap_data {
287 	struct rte_flow_action_nvgre_encap conf;
288 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
289 	struct rte_flow_item_eth item_eth;
290 	struct rte_flow_item_vlan item_vlan;
291 	union {
292 		struct rte_flow_item_ipv4 item_ipv4;
293 		struct rte_flow_item_ipv6 item_ipv6;
294 	};
295 	struct rte_flow_item_nvgre item_nvgre;
296 };
297 
298 /** Maximum number of subsequent tokens and arguments on the stack. */
299 #define CTX_STACK_SIZE 16
300 
301 /** Parser context. */
302 struct context {
303 	/** Stack of subsequent token lists to process. */
304 	const enum index *next[CTX_STACK_SIZE];
305 	/** Arguments for stacked tokens. */
306 	const void *args[CTX_STACK_SIZE];
307 	enum index curr; /**< Current token index. */
308 	enum index prev; /**< Index of the last token seen. */
309 	int next_num; /**< Number of entries in next[]. */
310 	int args_num; /**< Number of entries in args[]. */
311 	uint32_t eol:1; /**< EOL has been detected. */
312 	uint32_t last:1; /**< No more arguments. */
313 	portid_t port; /**< Current port ID (for completions). */
314 	uint32_t objdata; /**< Object-specific data. */
315 	void *object; /**< Address of current object for relative offsets. */
316 	void *objmask; /**< Object a full mask must be written to. */
317 };
318 
319 /** Token argument. */
320 struct arg {
321 	uint32_t hton:1; /**< Use network byte ordering. */
322 	uint32_t sign:1; /**< Value is signed. */
323 	uint32_t bounded:1; /**< Value is bounded. */
324 	uintmax_t min; /**< Minimum value if bounded. */
325 	uintmax_t max; /**< Maximum value if bounded. */
326 	uint32_t offset; /**< Relative offset from ctx->object. */
327 	uint32_t size; /**< Field size. */
328 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
329 };
330 
331 /** Parser token definition. */
332 struct token {
333 	/** Type displayed during completion (defaults to "TOKEN"). */
334 	const char *type;
335 	/** Help displayed during completion (defaults to token name). */
336 	const char *help;
337 	/** Private data used by parser functions. */
338 	const void *priv;
339 	/**
340 	 * Lists of subsequent tokens to push on the stack. Each call to the
341 	 * parser consumes the last entry of that stack.
342 	 */
343 	const enum index *const *next;
344 	/** Arguments stack for subsequent tokens that need them. */
345 	const struct arg *const *args;
346 	/**
347 	 * Token-processing callback, returns -1 in case of error, the
348 	 * length of the matched string otherwise. If NULL, attempts to
349 	 * match the token name.
350 	 *
351 	 * If buf is not NULL, the result should be stored in it according
352 	 * to context. An error is returned if not large enough.
353 	 */
354 	int (*call)(struct context *ctx, const struct token *token,
355 		    const char *str, unsigned int len,
356 		    void *buf, unsigned int size);
357 	/**
358 	 * Callback that provides possible values for this token, used for
359 	 * completion. Returns -1 in case of error, the number of possible
360 	 * values otherwise. If NULL, the token name is used.
361 	 *
362 	 * If buf is not NULL, entry index ent is written to buf and the
363 	 * full length of the entry is returned (same behavior as
364 	 * snprintf()).
365 	 */
366 	int (*comp)(struct context *ctx, const struct token *token,
367 		    unsigned int ent, char *buf, unsigned int size);
368 	/** Mandatory token name, no default value. */
369 	const char *name;
370 };
371 
372 /** Static initializer for the next field. */
373 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
374 
375 /** Static initializer for a NEXT() entry. */
376 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
377 
378 /** Static initializer for the args field. */
379 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
380 
381 /** Static initializer for ARGS() to target a field. */
382 #define ARGS_ENTRY(s, f) \
383 	(&(const struct arg){ \
384 		.offset = offsetof(s, f), \
385 		.size = sizeof(((s *)0)->f), \
386 	})
387 
388 /** Static initializer for ARGS() to target a bit-field. */
389 #define ARGS_ENTRY_BF(s, f, b) \
390 	(&(const struct arg){ \
391 		.size = sizeof(s), \
392 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
393 	})
394 
395 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
396 #define ARGS_ENTRY_MASK(s, f, m) \
397 	(&(const struct arg){ \
398 		.offset = offsetof(s, f), \
399 		.size = sizeof(((s *)0)->f), \
400 		.mask = (const void *)(m), \
401 	})
402 
403 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
404 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
405 	(&(const struct arg){ \
406 		.hton = 1, \
407 		.offset = offsetof(s, f), \
408 		.size = sizeof(((s *)0)->f), \
409 		.mask = (const void *)(m), \
410 	})
411 
412 /** Static initializer for ARGS() to target a pointer. */
413 #define ARGS_ENTRY_PTR(s, f) \
414 	(&(const struct arg){ \
415 		.size = sizeof(*((s *)0)->f), \
416 	})
417 
418 /** Static initializer for ARGS() with arbitrary offset and size. */
419 #define ARGS_ENTRY_ARB(o, s) \
420 	(&(const struct arg){ \
421 		.offset = (o), \
422 		.size = (s), \
423 	})
424 
425 /** Same as ARGS_ENTRY_ARB() with bounded values. */
426 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
427 	(&(const struct arg){ \
428 		.bounded = 1, \
429 		.min = (i), \
430 		.max = (a), \
431 		.offset = (o), \
432 		.size = (s), \
433 	})
434 
435 /** Same as ARGS_ENTRY() using network byte ordering. */
436 #define ARGS_ENTRY_HTON(s, f) \
437 	(&(const struct arg){ \
438 		.hton = 1, \
439 		.offset = offsetof(s, f), \
440 		.size = sizeof(((s *)0)->f), \
441 	})
442 
443 /** Parser output buffer layout expected by cmd_flow_parsed(). */
444 struct buffer {
445 	enum index command; /**< Flow command. */
446 	portid_t port; /**< Affected port ID. */
447 	union {
448 		struct {
449 			struct rte_flow_attr attr;
450 			struct rte_flow_item *pattern;
451 			struct rte_flow_action *actions;
452 			uint32_t pattern_n;
453 			uint32_t actions_n;
454 			uint8_t *data;
455 		} vc; /**< Validate/create arguments. */
456 		struct {
457 			uint32_t *rule;
458 			uint32_t rule_n;
459 		} destroy; /**< Destroy arguments. */
460 		struct {
461 			uint32_t rule;
462 			struct rte_flow_action action;
463 		} query; /**< Query arguments. */
464 		struct {
465 			uint32_t *group;
466 			uint32_t group_n;
467 		} list; /**< List arguments. */
468 		struct {
469 			int set;
470 		} isolate; /**< Isolated mode arguments. */
471 	} args; /**< Command arguments. */
472 };
473 
474 /** Private data for pattern items. */
475 struct parse_item_priv {
476 	enum rte_flow_item_type type; /**< Item type. */
477 	uint32_t size; /**< Size of item specification structure. */
478 };
479 
480 #define PRIV_ITEM(t, s) \
481 	(&(const struct parse_item_priv){ \
482 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
483 		.size = s, \
484 	})
485 
486 /** Private data for actions. */
487 struct parse_action_priv {
488 	enum rte_flow_action_type type; /**< Action type. */
489 	uint32_t size; /**< Size of action configuration structure. */
490 };
491 
492 #define PRIV_ACTION(t, s) \
493 	(&(const struct parse_action_priv){ \
494 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
495 		.size = s, \
496 	})
497 
498 static const enum index next_vc_attr[] = {
499 	GROUP,
500 	PRIORITY,
501 	INGRESS,
502 	EGRESS,
503 	TRANSFER,
504 	PATTERN,
505 	ZERO,
506 };
507 
508 static const enum index next_destroy_attr[] = {
509 	DESTROY_RULE,
510 	END,
511 	ZERO,
512 };
513 
514 static const enum index next_list_attr[] = {
515 	LIST_GROUP,
516 	END,
517 	ZERO,
518 };
519 
520 static const enum index item_param[] = {
521 	ITEM_PARAM_IS,
522 	ITEM_PARAM_SPEC,
523 	ITEM_PARAM_LAST,
524 	ITEM_PARAM_MASK,
525 	ITEM_PARAM_PREFIX,
526 	ZERO,
527 };
528 
529 static const enum index next_item[] = {
530 	ITEM_END,
531 	ITEM_VOID,
532 	ITEM_INVERT,
533 	ITEM_ANY,
534 	ITEM_PF,
535 	ITEM_VF,
536 	ITEM_PHY_PORT,
537 	ITEM_PORT_ID,
538 	ITEM_MARK,
539 	ITEM_RAW,
540 	ITEM_ETH,
541 	ITEM_VLAN,
542 	ITEM_IPV4,
543 	ITEM_IPV6,
544 	ITEM_ICMP,
545 	ITEM_UDP,
546 	ITEM_TCP,
547 	ITEM_SCTP,
548 	ITEM_VXLAN,
549 	ITEM_E_TAG,
550 	ITEM_NVGRE,
551 	ITEM_MPLS,
552 	ITEM_GRE,
553 	ITEM_FUZZY,
554 	ITEM_GTP,
555 	ITEM_GTPC,
556 	ITEM_GTPU,
557 	ITEM_GENEVE,
558 	ITEM_VXLAN_GPE,
559 	ITEM_ARP_ETH_IPV4,
560 	ITEM_IPV6_EXT,
561 	ITEM_ICMP6,
562 	ITEM_ICMP6_ND_NS,
563 	ITEM_ICMP6_ND_NA,
564 	ITEM_ICMP6_ND_OPT,
565 	ITEM_ICMP6_ND_OPT_SLA_ETH,
566 	ITEM_ICMP6_ND_OPT_TLA_ETH,
567 	ZERO,
568 };
569 
570 static const enum index item_fuzzy[] = {
571 	ITEM_FUZZY_THRESH,
572 	ITEM_NEXT,
573 	ZERO,
574 };
575 
576 static const enum index item_any[] = {
577 	ITEM_ANY_NUM,
578 	ITEM_NEXT,
579 	ZERO,
580 };
581 
582 static const enum index item_vf[] = {
583 	ITEM_VF_ID,
584 	ITEM_NEXT,
585 	ZERO,
586 };
587 
588 static const enum index item_phy_port[] = {
589 	ITEM_PHY_PORT_INDEX,
590 	ITEM_NEXT,
591 	ZERO,
592 };
593 
594 static const enum index item_port_id[] = {
595 	ITEM_PORT_ID_ID,
596 	ITEM_NEXT,
597 	ZERO,
598 };
599 
600 static const enum index item_mark[] = {
601 	ITEM_MARK_ID,
602 	ITEM_NEXT,
603 	ZERO,
604 };
605 
606 static const enum index item_raw[] = {
607 	ITEM_RAW_RELATIVE,
608 	ITEM_RAW_SEARCH,
609 	ITEM_RAW_OFFSET,
610 	ITEM_RAW_LIMIT,
611 	ITEM_RAW_PATTERN,
612 	ITEM_NEXT,
613 	ZERO,
614 };
615 
616 static const enum index item_eth[] = {
617 	ITEM_ETH_DST,
618 	ITEM_ETH_SRC,
619 	ITEM_ETH_TYPE,
620 	ITEM_NEXT,
621 	ZERO,
622 };
623 
624 static const enum index item_vlan[] = {
625 	ITEM_VLAN_TCI,
626 	ITEM_VLAN_PCP,
627 	ITEM_VLAN_DEI,
628 	ITEM_VLAN_VID,
629 	ITEM_VLAN_INNER_TYPE,
630 	ITEM_NEXT,
631 	ZERO,
632 };
633 
634 static const enum index item_ipv4[] = {
635 	ITEM_IPV4_TOS,
636 	ITEM_IPV4_TTL,
637 	ITEM_IPV4_PROTO,
638 	ITEM_IPV4_SRC,
639 	ITEM_IPV4_DST,
640 	ITEM_NEXT,
641 	ZERO,
642 };
643 
644 static const enum index item_ipv6[] = {
645 	ITEM_IPV6_TC,
646 	ITEM_IPV6_FLOW,
647 	ITEM_IPV6_PROTO,
648 	ITEM_IPV6_HOP,
649 	ITEM_IPV6_SRC,
650 	ITEM_IPV6_DST,
651 	ITEM_NEXT,
652 	ZERO,
653 };
654 
655 static const enum index item_icmp[] = {
656 	ITEM_ICMP_TYPE,
657 	ITEM_ICMP_CODE,
658 	ITEM_NEXT,
659 	ZERO,
660 };
661 
662 static const enum index item_udp[] = {
663 	ITEM_UDP_SRC,
664 	ITEM_UDP_DST,
665 	ITEM_NEXT,
666 	ZERO,
667 };
668 
669 static const enum index item_tcp[] = {
670 	ITEM_TCP_SRC,
671 	ITEM_TCP_DST,
672 	ITEM_TCP_FLAGS,
673 	ITEM_NEXT,
674 	ZERO,
675 };
676 
677 static const enum index item_sctp[] = {
678 	ITEM_SCTP_SRC,
679 	ITEM_SCTP_DST,
680 	ITEM_SCTP_TAG,
681 	ITEM_SCTP_CKSUM,
682 	ITEM_NEXT,
683 	ZERO,
684 };
685 
686 static const enum index item_vxlan[] = {
687 	ITEM_VXLAN_VNI,
688 	ITEM_NEXT,
689 	ZERO,
690 };
691 
692 static const enum index item_e_tag[] = {
693 	ITEM_E_TAG_GRP_ECID_B,
694 	ITEM_NEXT,
695 	ZERO,
696 };
697 
698 static const enum index item_nvgre[] = {
699 	ITEM_NVGRE_TNI,
700 	ITEM_NEXT,
701 	ZERO,
702 };
703 
704 static const enum index item_mpls[] = {
705 	ITEM_MPLS_LABEL,
706 	ITEM_NEXT,
707 	ZERO,
708 };
709 
710 static const enum index item_gre[] = {
711 	ITEM_GRE_PROTO,
712 	ITEM_NEXT,
713 	ZERO,
714 };
715 
716 static const enum index item_gtp[] = {
717 	ITEM_GTP_TEID,
718 	ITEM_NEXT,
719 	ZERO,
720 };
721 
722 static const enum index item_geneve[] = {
723 	ITEM_GENEVE_VNI,
724 	ITEM_GENEVE_PROTO,
725 	ITEM_NEXT,
726 	ZERO,
727 };
728 
729 static const enum index item_vxlan_gpe[] = {
730 	ITEM_VXLAN_GPE_VNI,
731 	ITEM_NEXT,
732 	ZERO,
733 };
734 
735 static const enum index item_arp_eth_ipv4[] = {
736 	ITEM_ARP_ETH_IPV4_SHA,
737 	ITEM_ARP_ETH_IPV4_SPA,
738 	ITEM_ARP_ETH_IPV4_THA,
739 	ITEM_ARP_ETH_IPV4_TPA,
740 	ITEM_NEXT,
741 	ZERO,
742 };
743 
744 static const enum index item_ipv6_ext[] = {
745 	ITEM_IPV6_EXT_NEXT_HDR,
746 	ITEM_NEXT,
747 	ZERO,
748 };
749 
750 static const enum index item_icmp6[] = {
751 	ITEM_ICMP6_TYPE,
752 	ITEM_ICMP6_CODE,
753 	ITEM_NEXT,
754 	ZERO,
755 };
756 
757 static const enum index item_icmp6_nd_ns[] = {
758 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
759 	ITEM_NEXT,
760 	ZERO,
761 };
762 
763 static const enum index item_icmp6_nd_na[] = {
764 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
765 	ITEM_NEXT,
766 	ZERO,
767 };
768 
769 static const enum index item_icmp6_nd_opt[] = {
770 	ITEM_ICMP6_ND_OPT_TYPE,
771 	ITEM_NEXT,
772 	ZERO,
773 };
774 
775 static const enum index item_icmp6_nd_opt_sla_eth[] = {
776 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
777 	ITEM_NEXT,
778 	ZERO,
779 };
780 
781 static const enum index item_icmp6_nd_opt_tla_eth[] = {
782 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
783 	ITEM_NEXT,
784 	ZERO,
785 };
786 
787 static const enum index next_action[] = {
788 	ACTION_END,
789 	ACTION_VOID,
790 	ACTION_PASSTHRU,
791 	ACTION_JUMP,
792 	ACTION_MARK,
793 	ACTION_FLAG,
794 	ACTION_QUEUE,
795 	ACTION_DROP,
796 	ACTION_COUNT,
797 	ACTION_RSS,
798 	ACTION_PF,
799 	ACTION_VF,
800 	ACTION_PHY_PORT,
801 	ACTION_PORT_ID,
802 	ACTION_METER,
803 	ACTION_OF_SET_MPLS_TTL,
804 	ACTION_OF_DEC_MPLS_TTL,
805 	ACTION_OF_SET_NW_TTL,
806 	ACTION_OF_DEC_NW_TTL,
807 	ACTION_OF_COPY_TTL_OUT,
808 	ACTION_OF_COPY_TTL_IN,
809 	ACTION_OF_POP_VLAN,
810 	ACTION_OF_PUSH_VLAN,
811 	ACTION_OF_SET_VLAN_VID,
812 	ACTION_OF_SET_VLAN_PCP,
813 	ACTION_OF_POP_MPLS,
814 	ACTION_OF_PUSH_MPLS,
815 	ACTION_VXLAN_ENCAP,
816 	ACTION_VXLAN_DECAP,
817 	ACTION_NVGRE_ENCAP,
818 	ACTION_NVGRE_DECAP,
819 	ZERO,
820 };
821 
822 static const enum index action_mark[] = {
823 	ACTION_MARK_ID,
824 	ACTION_NEXT,
825 	ZERO,
826 };
827 
828 static const enum index action_queue[] = {
829 	ACTION_QUEUE_INDEX,
830 	ACTION_NEXT,
831 	ZERO,
832 };
833 
834 static const enum index action_count[] = {
835 	ACTION_COUNT_ID,
836 	ACTION_COUNT_SHARED,
837 	ACTION_NEXT,
838 	ZERO,
839 };
840 
841 static const enum index action_rss[] = {
842 	ACTION_RSS_FUNC,
843 	ACTION_RSS_LEVEL,
844 	ACTION_RSS_TYPES,
845 	ACTION_RSS_KEY,
846 	ACTION_RSS_KEY_LEN,
847 	ACTION_RSS_QUEUES,
848 	ACTION_NEXT,
849 	ZERO,
850 };
851 
852 static const enum index action_vf[] = {
853 	ACTION_VF_ORIGINAL,
854 	ACTION_VF_ID,
855 	ACTION_NEXT,
856 	ZERO,
857 };
858 
859 static const enum index action_phy_port[] = {
860 	ACTION_PHY_PORT_ORIGINAL,
861 	ACTION_PHY_PORT_INDEX,
862 	ACTION_NEXT,
863 	ZERO,
864 };
865 
866 static const enum index action_port_id[] = {
867 	ACTION_PORT_ID_ORIGINAL,
868 	ACTION_PORT_ID_ID,
869 	ACTION_NEXT,
870 	ZERO,
871 };
872 
873 static const enum index action_meter[] = {
874 	ACTION_METER_ID,
875 	ACTION_NEXT,
876 	ZERO,
877 };
878 
879 static const enum index action_of_set_mpls_ttl[] = {
880 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
881 	ACTION_NEXT,
882 	ZERO,
883 };
884 
885 static const enum index action_of_set_nw_ttl[] = {
886 	ACTION_OF_SET_NW_TTL_NW_TTL,
887 	ACTION_NEXT,
888 	ZERO,
889 };
890 
891 static const enum index action_of_push_vlan[] = {
892 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
893 	ACTION_NEXT,
894 	ZERO,
895 };
896 
897 static const enum index action_of_set_vlan_vid[] = {
898 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
899 	ACTION_NEXT,
900 	ZERO,
901 };
902 
903 static const enum index action_of_set_vlan_pcp[] = {
904 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
905 	ACTION_NEXT,
906 	ZERO,
907 };
908 
909 static const enum index action_of_pop_mpls[] = {
910 	ACTION_OF_POP_MPLS_ETHERTYPE,
911 	ACTION_NEXT,
912 	ZERO,
913 };
914 
915 static const enum index action_of_push_mpls[] = {
916 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
917 	ACTION_NEXT,
918 	ZERO,
919 };
920 
921 static const enum index action_jump[] = {
922 	ACTION_JUMP_GROUP,
923 	ACTION_NEXT,
924 	ZERO,
925 };
926 
927 static int parse_init(struct context *, const struct token *,
928 		      const char *, unsigned int,
929 		      void *, unsigned int);
930 static int parse_vc(struct context *, const struct token *,
931 		    const char *, unsigned int,
932 		    void *, unsigned int);
933 static int parse_vc_spec(struct context *, const struct token *,
934 			 const char *, unsigned int, void *, unsigned int);
935 static int parse_vc_conf(struct context *, const struct token *,
936 			 const char *, unsigned int, void *, unsigned int);
937 static int parse_vc_action_rss(struct context *, const struct token *,
938 			       const char *, unsigned int, void *,
939 			       unsigned int);
940 static int parse_vc_action_rss_func(struct context *, const struct token *,
941 				    const char *, unsigned int, void *,
942 				    unsigned int);
943 static int parse_vc_action_rss_type(struct context *, const struct token *,
944 				    const char *, unsigned int, void *,
945 				    unsigned int);
946 static int parse_vc_action_rss_queue(struct context *, const struct token *,
947 				     const char *, unsigned int, void *,
948 				     unsigned int);
949 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
950 				       const char *, unsigned int, void *,
951 				       unsigned int);
952 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
953 				       const char *, unsigned int, void *,
954 				       unsigned int);
955 static int parse_destroy(struct context *, const struct token *,
956 			 const char *, unsigned int,
957 			 void *, unsigned int);
958 static int parse_flush(struct context *, const struct token *,
959 		       const char *, unsigned int,
960 		       void *, unsigned int);
961 static int parse_query(struct context *, const struct token *,
962 		       const char *, unsigned int,
963 		       void *, unsigned int);
964 static int parse_action(struct context *, const struct token *,
965 			const char *, unsigned int,
966 			void *, unsigned int);
967 static int parse_list(struct context *, const struct token *,
968 		      const char *, unsigned int,
969 		      void *, unsigned int);
970 static int parse_isolate(struct context *, const struct token *,
971 			 const char *, unsigned int,
972 			 void *, unsigned int);
973 static int parse_int(struct context *, const struct token *,
974 		     const char *, unsigned int,
975 		     void *, unsigned int);
976 static int parse_prefix(struct context *, const struct token *,
977 			const char *, unsigned int,
978 			void *, unsigned int);
979 static int parse_boolean(struct context *, const struct token *,
980 			 const char *, unsigned int,
981 			 void *, unsigned int);
982 static int parse_string(struct context *, const struct token *,
983 			const char *, unsigned int,
984 			void *, unsigned int);
985 static int parse_mac_addr(struct context *, const struct token *,
986 			  const char *, unsigned int,
987 			  void *, unsigned int);
988 static int parse_ipv4_addr(struct context *, const struct token *,
989 			   const char *, unsigned int,
990 			   void *, unsigned int);
991 static int parse_ipv6_addr(struct context *, const struct token *,
992 			   const char *, unsigned int,
993 			   void *, unsigned int);
994 static int parse_port(struct context *, const struct token *,
995 		      const char *, unsigned int,
996 		      void *, unsigned int);
997 static int comp_none(struct context *, const struct token *,
998 		     unsigned int, char *, unsigned int);
999 static int comp_boolean(struct context *, const struct token *,
1000 			unsigned int, char *, unsigned int);
1001 static int comp_action(struct context *, const struct token *,
1002 		       unsigned int, char *, unsigned int);
1003 static int comp_port(struct context *, const struct token *,
1004 		     unsigned int, char *, unsigned int);
1005 static int comp_rule_id(struct context *, const struct token *,
1006 			unsigned int, char *, unsigned int);
1007 static int comp_vc_action_rss_type(struct context *, const struct token *,
1008 				   unsigned int, char *, unsigned int);
1009 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1010 				    unsigned int, char *, unsigned int);
1011 
1012 /** Token definitions. */
1013 static const struct token token_list[] = {
1014 	/* Special tokens. */
1015 	[ZERO] = {
1016 		.name = "ZERO",
1017 		.help = "null entry, abused as the entry point",
1018 		.next = NEXT(NEXT_ENTRY(FLOW)),
1019 	},
1020 	[END] = {
1021 		.name = "",
1022 		.type = "RETURN",
1023 		.help = "command may end here",
1024 	},
1025 	/* Common tokens. */
1026 	[INTEGER] = {
1027 		.name = "{int}",
1028 		.type = "INTEGER",
1029 		.help = "integer value",
1030 		.call = parse_int,
1031 		.comp = comp_none,
1032 	},
1033 	[UNSIGNED] = {
1034 		.name = "{unsigned}",
1035 		.type = "UNSIGNED",
1036 		.help = "unsigned integer value",
1037 		.call = parse_int,
1038 		.comp = comp_none,
1039 	},
1040 	[PREFIX] = {
1041 		.name = "{prefix}",
1042 		.type = "PREFIX",
1043 		.help = "prefix length for bit-mask",
1044 		.call = parse_prefix,
1045 		.comp = comp_none,
1046 	},
1047 	[BOOLEAN] = {
1048 		.name = "{boolean}",
1049 		.type = "BOOLEAN",
1050 		.help = "any boolean value",
1051 		.call = parse_boolean,
1052 		.comp = comp_boolean,
1053 	},
1054 	[STRING] = {
1055 		.name = "{string}",
1056 		.type = "STRING",
1057 		.help = "fixed string",
1058 		.call = parse_string,
1059 		.comp = comp_none,
1060 	},
1061 	[MAC_ADDR] = {
1062 		.name = "{MAC address}",
1063 		.type = "MAC-48",
1064 		.help = "standard MAC address notation",
1065 		.call = parse_mac_addr,
1066 		.comp = comp_none,
1067 	},
1068 	[IPV4_ADDR] = {
1069 		.name = "{IPv4 address}",
1070 		.type = "IPV4 ADDRESS",
1071 		.help = "standard IPv4 address notation",
1072 		.call = parse_ipv4_addr,
1073 		.comp = comp_none,
1074 	},
1075 	[IPV6_ADDR] = {
1076 		.name = "{IPv6 address}",
1077 		.type = "IPV6 ADDRESS",
1078 		.help = "standard IPv6 address notation",
1079 		.call = parse_ipv6_addr,
1080 		.comp = comp_none,
1081 	},
1082 	[RULE_ID] = {
1083 		.name = "{rule id}",
1084 		.type = "RULE ID",
1085 		.help = "rule identifier",
1086 		.call = parse_int,
1087 		.comp = comp_rule_id,
1088 	},
1089 	[PORT_ID] = {
1090 		.name = "{port_id}",
1091 		.type = "PORT ID",
1092 		.help = "port identifier",
1093 		.call = parse_port,
1094 		.comp = comp_port,
1095 	},
1096 	[GROUP_ID] = {
1097 		.name = "{group_id}",
1098 		.type = "GROUP ID",
1099 		.help = "group identifier",
1100 		.call = parse_int,
1101 		.comp = comp_none,
1102 	},
1103 	[PRIORITY_LEVEL] = {
1104 		.name = "{level}",
1105 		.type = "PRIORITY",
1106 		.help = "priority level",
1107 		.call = parse_int,
1108 		.comp = comp_none,
1109 	},
1110 	/* Top-level command. */
1111 	[FLOW] = {
1112 		.name = "flow",
1113 		.type = "{command} {port_id} [{arg} [...]]",
1114 		.help = "manage ingress/egress flow rules",
1115 		.next = NEXT(NEXT_ENTRY
1116 			     (VALIDATE,
1117 			      CREATE,
1118 			      DESTROY,
1119 			      FLUSH,
1120 			      LIST,
1121 			      QUERY,
1122 			      ISOLATE)),
1123 		.call = parse_init,
1124 	},
1125 	/* Sub-level commands. */
1126 	[VALIDATE] = {
1127 		.name = "validate",
1128 		.help = "check whether a flow rule can be created",
1129 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1130 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1131 		.call = parse_vc,
1132 	},
1133 	[CREATE] = {
1134 		.name = "create",
1135 		.help = "create a flow rule",
1136 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1137 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1138 		.call = parse_vc,
1139 	},
1140 	[DESTROY] = {
1141 		.name = "destroy",
1142 		.help = "destroy specific flow rules",
1143 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1144 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1145 		.call = parse_destroy,
1146 	},
1147 	[FLUSH] = {
1148 		.name = "flush",
1149 		.help = "destroy all flow rules",
1150 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1151 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1152 		.call = parse_flush,
1153 	},
1154 	[QUERY] = {
1155 		.name = "query",
1156 		.help = "query an existing flow rule",
1157 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1158 			     NEXT_ENTRY(RULE_ID),
1159 			     NEXT_ENTRY(PORT_ID)),
1160 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1161 			     ARGS_ENTRY(struct buffer, args.query.rule),
1162 			     ARGS_ENTRY(struct buffer, port)),
1163 		.call = parse_query,
1164 	},
1165 	[LIST] = {
1166 		.name = "list",
1167 		.help = "list existing flow rules",
1168 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1169 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1170 		.call = parse_list,
1171 	},
1172 	[ISOLATE] = {
1173 		.name = "isolate",
1174 		.help = "restrict ingress traffic to the defined flow rules",
1175 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1176 			     NEXT_ENTRY(PORT_ID)),
1177 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1178 			     ARGS_ENTRY(struct buffer, port)),
1179 		.call = parse_isolate,
1180 	},
1181 	/* Destroy arguments. */
1182 	[DESTROY_RULE] = {
1183 		.name = "rule",
1184 		.help = "specify a rule identifier",
1185 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1186 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1187 		.call = parse_destroy,
1188 	},
1189 	/* Query arguments. */
1190 	[QUERY_ACTION] = {
1191 		.name = "{action}",
1192 		.type = "ACTION",
1193 		.help = "action to query, must be part of the rule",
1194 		.call = parse_action,
1195 		.comp = comp_action,
1196 	},
1197 	/* List arguments. */
1198 	[LIST_GROUP] = {
1199 		.name = "group",
1200 		.help = "specify a group",
1201 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1202 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1203 		.call = parse_list,
1204 	},
1205 	/* Validate/create attributes. */
1206 	[GROUP] = {
1207 		.name = "group",
1208 		.help = "specify a group",
1209 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1210 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1211 		.call = parse_vc,
1212 	},
1213 	[PRIORITY] = {
1214 		.name = "priority",
1215 		.help = "specify a priority level",
1216 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1217 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1218 		.call = parse_vc,
1219 	},
1220 	[INGRESS] = {
1221 		.name = "ingress",
1222 		.help = "affect rule to ingress",
1223 		.next = NEXT(next_vc_attr),
1224 		.call = parse_vc,
1225 	},
1226 	[EGRESS] = {
1227 		.name = "egress",
1228 		.help = "affect rule to egress",
1229 		.next = NEXT(next_vc_attr),
1230 		.call = parse_vc,
1231 	},
1232 	[TRANSFER] = {
1233 		.name = "transfer",
1234 		.help = "apply rule directly to endpoints found in pattern",
1235 		.next = NEXT(next_vc_attr),
1236 		.call = parse_vc,
1237 	},
1238 	/* Validate/create pattern. */
1239 	[PATTERN] = {
1240 		.name = "pattern",
1241 		.help = "submit a list of pattern items",
1242 		.next = NEXT(next_item),
1243 		.call = parse_vc,
1244 	},
1245 	[ITEM_PARAM_IS] = {
1246 		.name = "is",
1247 		.help = "match value perfectly (with full bit-mask)",
1248 		.call = parse_vc_spec,
1249 	},
1250 	[ITEM_PARAM_SPEC] = {
1251 		.name = "spec",
1252 		.help = "match value according to configured bit-mask",
1253 		.call = parse_vc_spec,
1254 	},
1255 	[ITEM_PARAM_LAST] = {
1256 		.name = "last",
1257 		.help = "specify upper bound to establish a range",
1258 		.call = parse_vc_spec,
1259 	},
1260 	[ITEM_PARAM_MASK] = {
1261 		.name = "mask",
1262 		.help = "specify bit-mask with relevant bits set to one",
1263 		.call = parse_vc_spec,
1264 	},
1265 	[ITEM_PARAM_PREFIX] = {
1266 		.name = "prefix",
1267 		.help = "generate bit-mask from a prefix length",
1268 		.call = parse_vc_spec,
1269 	},
1270 	[ITEM_NEXT] = {
1271 		.name = "/",
1272 		.help = "specify next pattern item",
1273 		.next = NEXT(next_item),
1274 	},
1275 	[ITEM_END] = {
1276 		.name = "end",
1277 		.help = "end list of pattern items",
1278 		.priv = PRIV_ITEM(END, 0),
1279 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1280 		.call = parse_vc,
1281 	},
1282 	[ITEM_VOID] = {
1283 		.name = "void",
1284 		.help = "no-op pattern item",
1285 		.priv = PRIV_ITEM(VOID, 0),
1286 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1287 		.call = parse_vc,
1288 	},
1289 	[ITEM_INVERT] = {
1290 		.name = "invert",
1291 		.help = "perform actions when pattern does not match",
1292 		.priv = PRIV_ITEM(INVERT, 0),
1293 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1294 		.call = parse_vc,
1295 	},
1296 	[ITEM_ANY] = {
1297 		.name = "any",
1298 		.help = "match any protocol for the current layer",
1299 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1300 		.next = NEXT(item_any),
1301 		.call = parse_vc,
1302 	},
1303 	[ITEM_ANY_NUM] = {
1304 		.name = "num",
1305 		.help = "number of layers covered",
1306 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1307 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1308 	},
1309 	[ITEM_PF] = {
1310 		.name = "pf",
1311 		.help = "match traffic from/to the physical function",
1312 		.priv = PRIV_ITEM(PF, 0),
1313 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1314 		.call = parse_vc,
1315 	},
1316 	[ITEM_VF] = {
1317 		.name = "vf",
1318 		.help = "match traffic from/to a virtual function ID",
1319 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1320 		.next = NEXT(item_vf),
1321 		.call = parse_vc,
1322 	},
1323 	[ITEM_VF_ID] = {
1324 		.name = "id",
1325 		.help = "VF ID",
1326 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1327 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1328 	},
1329 	[ITEM_PHY_PORT] = {
1330 		.name = "phy_port",
1331 		.help = "match traffic from/to a specific physical port",
1332 		.priv = PRIV_ITEM(PHY_PORT,
1333 				  sizeof(struct rte_flow_item_phy_port)),
1334 		.next = NEXT(item_phy_port),
1335 		.call = parse_vc,
1336 	},
1337 	[ITEM_PHY_PORT_INDEX] = {
1338 		.name = "index",
1339 		.help = "physical port index",
1340 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1341 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1342 	},
1343 	[ITEM_PORT_ID] = {
1344 		.name = "port_id",
1345 		.help = "match traffic from/to a given DPDK port ID",
1346 		.priv = PRIV_ITEM(PORT_ID,
1347 				  sizeof(struct rte_flow_item_port_id)),
1348 		.next = NEXT(item_port_id),
1349 		.call = parse_vc,
1350 	},
1351 	[ITEM_PORT_ID_ID] = {
1352 		.name = "id",
1353 		.help = "DPDK port ID",
1354 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1355 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1356 	},
1357 	[ITEM_MARK] = {
1358 		.name = "mark",
1359 		.help = "match traffic against value set in previously matched rule",
1360 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1361 		.next = NEXT(item_mark),
1362 		.call = parse_vc,
1363 	},
1364 	[ITEM_MARK_ID] = {
1365 		.name = "id",
1366 		.help = "Integer value to match against",
1367 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1368 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1369 	},
1370 	[ITEM_RAW] = {
1371 		.name = "raw",
1372 		.help = "match an arbitrary byte string",
1373 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1374 		.next = NEXT(item_raw),
1375 		.call = parse_vc,
1376 	},
1377 	[ITEM_RAW_RELATIVE] = {
1378 		.name = "relative",
1379 		.help = "look for pattern after the previous item",
1380 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1381 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1382 					   relative, 1)),
1383 	},
1384 	[ITEM_RAW_SEARCH] = {
1385 		.name = "search",
1386 		.help = "search pattern from offset (see also limit)",
1387 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1388 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1389 					   search, 1)),
1390 	},
1391 	[ITEM_RAW_OFFSET] = {
1392 		.name = "offset",
1393 		.help = "absolute or relative offset for pattern",
1394 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1395 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1396 	},
1397 	[ITEM_RAW_LIMIT] = {
1398 		.name = "limit",
1399 		.help = "search area limit for start of pattern",
1400 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
1401 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
1402 	},
1403 	[ITEM_RAW_PATTERN] = {
1404 		.name = "pattern",
1405 		.help = "byte string to look for",
1406 		.next = NEXT(item_raw,
1407 			     NEXT_ENTRY(STRING),
1408 			     NEXT_ENTRY(ITEM_PARAM_IS,
1409 					ITEM_PARAM_SPEC,
1410 					ITEM_PARAM_MASK)),
1411 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
1412 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
1413 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
1414 					    ITEM_RAW_PATTERN_SIZE)),
1415 	},
1416 	[ITEM_ETH] = {
1417 		.name = "eth",
1418 		.help = "match Ethernet header",
1419 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
1420 		.next = NEXT(item_eth),
1421 		.call = parse_vc,
1422 	},
1423 	[ITEM_ETH_DST] = {
1424 		.name = "dst",
1425 		.help = "destination MAC",
1426 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1427 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
1428 	},
1429 	[ITEM_ETH_SRC] = {
1430 		.name = "src",
1431 		.help = "source MAC",
1432 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
1433 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
1434 	},
1435 	[ITEM_ETH_TYPE] = {
1436 		.name = "type",
1437 		.help = "EtherType",
1438 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
1439 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
1440 	},
1441 	[ITEM_VLAN] = {
1442 		.name = "vlan",
1443 		.help = "match 802.1Q/ad VLAN tag",
1444 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
1445 		.next = NEXT(item_vlan),
1446 		.call = parse_vc,
1447 	},
1448 	[ITEM_VLAN_TCI] = {
1449 		.name = "tci",
1450 		.help = "tag control information",
1451 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1452 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
1453 	},
1454 	[ITEM_VLAN_PCP] = {
1455 		.name = "pcp",
1456 		.help = "priority code point",
1457 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1458 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1459 						  tci, "\xe0\x00")),
1460 	},
1461 	[ITEM_VLAN_DEI] = {
1462 		.name = "dei",
1463 		.help = "drop eligible indicator",
1464 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1465 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1466 						  tci, "\x10\x00")),
1467 	},
1468 	[ITEM_VLAN_VID] = {
1469 		.name = "vid",
1470 		.help = "VLAN identifier",
1471 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1472 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
1473 						  tci, "\x0f\xff")),
1474 	},
1475 	[ITEM_VLAN_INNER_TYPE] = {
1476 		.name = "inner_type",
1477 		.help = "inner EtherType",
1478 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
1479 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
1480 					     inner_type)),
1481 	},
1482 	[ITEM_IPV4] = {
1483 		.name = "ipv4",
1484 		.help = "match IPv4 header",
1485 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
1486 		.next = NEXT(item_ipv4),
1487 		.call = parse_vc,
1488 	},
1489 	[ITEM_IPV4_TOS] = {
1490 		.name = "tos",
1491 		.help = "type of service",
1492 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1493 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1494 					     hdr.type_of_service)),
1495 	},
1496 	[ITEM_IPV4_TTL] = {
1497 		.name = "ttl",
1498 		.help = "time to live",
1499 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1500 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1501 					     hdr.time_to_live)),
1502 	},
1503 	[ITEM_IPV4_PROTO] = {
1504 		.name = "proto",
1505 		.help = "next protocol ID",
1506 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
1507 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1508 					     hdr.next_proto_id)),
1509 	},
1510 	[ITEM_IPV4_SRC] = {
1511 		.name = "src",
1512 		.help = "source address",
1513 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1514 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1515 					     hdr.src_addr)),
1516 	},
1517 	[ITEM_IPV4_DST] = {
1518 		.name = "dst",
1519 		.help = "destination address",
1520 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
1521 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
1522 					     hdr.dst_addr)),
1523 	},
1524 	[ITEM_IPV6] = {
1525 		.name = "ipv6",
1526 		.help = "match IPv6 header",
1527 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
1528 		.next = NEXT(item_ipv6),
1529 		.call = parse_vc,
1530 	},
1531 	[ITEM_IPV6_TC] = {
1532 		.name = "tc",
1533 		.help = "traffic class",
1534 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1535 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1536 						  hdr.vtc_flow,
1537 						  "\x0f\xf0\x00\x00")),
1538 	},
1539 	[ITEM_IPV6_FLOW] = {
1540 		.name = "flow",
1541 		.help = "flow label",
1542 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1543 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
1544 						  hdr.vtc_flow,
1545 						  "\x00\x0f\xff\xff")),
1546 	},
1547 	[ITEM_IPV6_PROTO] = {
1548 		.name = "proto",
1549 		.help = "protocol (next header)",
1550 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1551 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1552 					     hdr.proto)),
1553 	},
1554 	[ITEM_IPV6_HOP] = {
1555 		.name = "hop",
1556 		.help = "hop limit",
1557 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
1558 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1559 					     hdr.hop_limits)),
1560 	},
1561 	[ITEM_IPV6_SRC] = {
1562 		.name = "src",
1563 		.help = "source address",
1564 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1565 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1566 					     hdr.src_addr)),
1567 	},
1568 	[ITEM_IPV6_DST] = {
1569 		.name = "dst",
1570 		.help = "destination address",
1571 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
1572 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
1573 					     hdr.dst_addr)),
1574 	},
1575 	[ITEM_ICMP] = {
1576 		.name = "icmp",
1577 		.help = "match ICMP header",
1578 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
1579 		.next = NEXT(item_icmp),
1580 		.call = parse_vc,
1581 	},
1582 	[ITEM_ICMP_TYPE] = {
1583 		.name = "type",
1584 		.help = "ICMP packet type",
1585 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1586 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1587 					     hdr.icmp_type)),
1588 	},
1589 	[ITEM_ICMP_CODE] = {
1590 		.name = "code",
1591 		.help = "ICMP packet code",
1592 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
1593 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
1594 					     hdr.icmp_code)),
1595 	},
1596 	[ITEM_UDP] = {
1597 		.name = "udp",
1598 		.help = "match UDP header",
1599 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
1600 		.next = NEXT(item_udp),
1601 		.call = parse_vc,
1602 	},
1603 	[ITEM_UDP_SRC] = {
1604 		.name = "src",
1605 		.help = "UDP source port",
1606 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1607 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1608 					     hdr.src_port)),
1609 	},
1610 	[ITEM_UDP_DST] = {
1611 		.name = "dst",
1612 		.help = "UDP destination port",
1613 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
1614 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
1615 					     hdr.dst_port)),
1616 	},
1617 	[ITEM_TCP] = {
1618 		.name = "tcp",
1619 		.help = "match TCP header",
1620 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
1621 		.next = NEXT(item_tcp),
1622 		.call = parse_vc,
1623 	},
1624 	[ITEM_TCP_SRC] = {
1625 		.name = "src",
1626 		.help = "TCP source port",
1627 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1628 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1629 					     hdr.src_port)),
1630 	},
1631 	[ITEM_TCP_DST] = {
1632 		.name = "dst",
1633 		.help = "TCP destination port",
1634 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1635 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1636 					     hdr.dst_port)),
1637 	},
1638 	[ITEM_TCP_FLAGS] = {
1639 		.name = "flags",
1640 		.help = "TCP flags",
1641 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
1642 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
1643 					     hdr.tcp_flags)),
1644 	},
1645 	[ITEM_SCTP] = {
1646 		.name = "sctp",
1647 		.help = "match SCTP header",
1648 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
1649 		.next = NEXT(item_sctp),
1650 		.call = parse_vc,
1651 	},
1652 	[ITEM_SCTP_SRC] = {
1653 		.name = "src",
1654 		.help = "SCTP source port",
1655 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1656 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1657 					     hdr.src_port)),
1658 	},
1659 	[ITEM_SCTP_DST] = {
1660 		.name = "dst",
1661 		.help = "SCTP destination port",
1662 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1663 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1664 					     hdr.dst_port)),
1665 	},
1666 	[ITEM_SCTP_TAG] = {
1667 		.name = "tag",
1668 		.help = "validation tag",
1669 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1670 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1671 					     hdr.tag)),
1672 	},
1673 	[ITEM_SCTP_CKSUM] = {
1674 		.name = "cksum",
1675 		.help = "checksum",
1676 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
1677 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
1678 					     hdr.cksum)),
1679 	},
1680 	[ITEM_VXLAN] = {
1681 		.name = "vxlan",
1682 		.help = "match VXLAN header",
1683 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
1684 		.next = NEXT(item_vxlan),
1685 		.call = parse_vc,
1686 	},
1687 	[ITEM_VXLAN_VNI] = {
1688 		.name = "vni",
1689 		.help = "VXLAN identifier",
1690 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
1691 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
1692 	},
1693 	[ITEM_E_TAG] = {
1694 		.name = "e_tag",
1695 		.help = "match E-Tag header",
1696 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
1697 		.next = NEXT(item_e_tag),
1698 		.call = parse_vc,
1699 	},
1700 	[ITEM_E_TAG_GRP_ECID_B] = {
1701 		.name = "grp_ecid_b",
1702 		.help = "GRP and E-CID base",
1703 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
1704 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
1705 						  rsvd_grp_ecid_b,
1706 						  "\x3f\xff")),
1707 	},
1708 	[ITEM_NVGRE] = {
1709 		.name = "nvgre",
1710 		.help = "match NVGRE header",
1711 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
1712 		.next = NEXT(item_nvgre),
1713 		.call = parse_vc,
1714 	},
1715 	[ITEM_NVGRE_TNI] = {
1716 		.name = "tni",
1717 		.help = "virtual subnet ID",
1718 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
1719 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
1720 	},
1721 	[ITEM_MPLS] = {
1722 		.name = "mpls",
1723 		.help = "match MPLS header",
1724 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
1725 		.next = NEXT(item_mpls),
1726 		.call = parse_vc,
1727 	},
1728 	[ITEM_MPLS_LABEL] = {
1729 		.name = "label",
1730 		.help = "MPLS label",
1731 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
1732 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
1733 						  label_tc_s,
1734 						  "\xff\xff\xf0")),
1735 	},
1736 	[ITEM_GRE] = {
1737 		.name = "gre",
1738 		.help = "match GRE header",
1739 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
1740 		.next = NEXT(item_gre),
1741 		.call = parse_vc,
1742 	},
1743 	[ITEM_GRE_PROTO] = {
1744 		.name = "protocol",
1745 		.help = "GRE protocol type",
1746 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
1747 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
1748 					     protocol)),
1749 	},
1750 	[ITEM_FUZZY] = {
1751 		.name = "fuzzy",
1752 		.help = "fuzzy pattern match, expect faster than default",
1753 		.priv = PRIV_ITEM(FUZZY,
1754 				sizeof(struct rte_flow_item_fuzzy)),
1755 		.next = NEXT(item_fuzzy),
1756 		.call = parse_vc,
1757 	},
1758 	[ITEM_FUZZY_THRESH] = {
1759 		.name = "thresh",
1760 		.help = "match accuracy threshold",
1761 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
1762 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
1763 					thresh)),
1764 	},
1765 	[ITEM_GTP] = {
1766 		.name = "gtp",
1767 		.help = "match GTP header",
1768 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
1769 		.next = NEXT(item_gtp),
1770 		.call = parse_vc,
1771 	},
1772 	[ITEM_GTP_TEID] = {
1773 		.name = "teid",
1774 		.help = "tunnel endpoint identifier",
1775 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
1776 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
1777 	},
1778 	[ITEM_GTPC] = {
1779 		.name = "gtpc",
1780 		.help = "match GTP header",
1781 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
1782 		.next = NEXT(item_gtp),
1783 		.call = parse_vc,
1784 	},
1785 	[ITEM_GTPU] = {
1786 		.name = "gtpu",
1787 		.help = "match GTP header",
1788 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
1789 		.next = NEXT(item_gtp),
1790 		.call = parse_vc,
1791 	},
1792 	[ITEM_GENEVE] = {
1793 		.name = "geneve",
1794 		.help = "match GENEVE header",
1795 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
1796 		.next = NEXT(item_geneve),
1797 		.call = parse_vc,
1798 	},
1799 	[ITEM_GENEVE_VNI] = {
1800 		.name = "vni",
1801 		.help = "virtual network identifier",
1802 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1803 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
1804 	},
1805 	[ITEM_GENEVE_PROTO] = {
1806 		.name = "protocol",
1807 		.help = "GENEVE protocol type",
1808 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
1809 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
1810 					     protocol)),
1811 	},
1812 	[ITEM_VXLAN_GPE] = {
1813 		.name = "vxlan-gpe",
1814 		.help = "match VXLAN-GPE header",
1815 		.priv = PRIV_ITEM(VXLAN_GPE,
1816 				  sizeof(struct rte_flow_item_vxlan_gpe)),
1817 		.next = NEXT(item_vxlan_gpe),
1818 		.call = parse_vc,
1819 	},
1820 	[ITEM_VXLAN_GPE_VNI] = {
1821 		.name = "vni",
1822 		.help = "VXLAN-GPE identifier",
1823 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
1824 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
1825 					     vni)),
1826 	},
1827 	[ITEM_ARP_ETH_IPV4] = {
1828 		.name = "arp_eth_ipv4",
1829 		.help = "match ARP header for Ethernet/IPv4",
1830 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
1831 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
1832 		.next = NEXT(item_arp_eth_ipv4),
1833 		.call = parse_vc,
1834 	},
1835 	[ITEM_ARP_ETH_IPV4_SHA] = {
1836 		.name = "sha",
1837 		.help = "sender hardware address",
1838 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1839 			     item_param),
1840 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1841 					     sha)),
1842 	},
1843 	[ITEM_ARP_ETH_IPV4_SPA] = {
1844 		.name = "spa",
1845 		.help = "sender IPv4 address",
1846 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1847 			     item_param),
1848 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1849 					     spa)),
1850 	},
1851 	[ITEM_ARP_ETH_IPV4_THA] = {
1852 		.name = "tha",
1853 		.help = "target hardware address",
1854 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
1855 			     item_param),
1856 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1857 					     tha)),
1858 	},
1859 	[ITEM_ARP_ETH_IPV4_TPA] = {
1860 		.name = "tpa",
1861 		.help = "target IPv4 address",
1862 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
1863 			     item_param),
1864 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
1865 					     tpa)),
1866 	},
1867 	[ITEM_IPV6_EXT] = {
1868 		.name = "ipv6_ext",
1869 		.help = "match presence of any IPv6 extension header",
1870 		.priv = PRIV_ITEM(IPV6_EXT,
1871 				  sizeof(struct rte_flow_item_ipv6_ext)),
1872 		.next = NEXT(item_ipv6_ext),
1873 		.call = parse_vc,
1874 	},
1875 	[ITEM_IPV6_EXT_NEXT_HDR] = {
1876 		.name = "next_hdr",
1877 		.help = "next header",
1878 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
1879 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
1880 					     next_hdr)),
1881 	},
1882 	[ITEM_ICMP6] = {
1883 		.name = "icmp6",
1884 		.help = "match any ICMPv6 header",
1885 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
1886 		.next = NEXT(item_icmp6),
1887 		.call = parse_vc,
1888 	},
1889 	[ITEM_ICMP6_TYPE] = {
1890 		.name = "type",
1891 		.help = "ICMPv6 type",
1892 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
1893 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
1894 					     type)),
1895 	},
1896 	[ITEM_ICMP6_CODE] = {
1897 		.name = "code",
1898 		.help = "ICMPv6 code",
1899 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
1900 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
1901 					     code)),
1902 	},
1903 	[ITEM_ICMP6_ND_NS] = {
1904 		.name = "icmp6_nd_ns",
1905 		.help = "match ICMPv6 neighbor discovery solicitation",
1906 		.priv = PRIV_ITEM(ICMP6_ND_NS,
1907 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
1908 		.next = NEXT(item_icmp6_nd_ns),
1909 		.call = parse_vc,
1910 	},
1911 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
1912 		.name = "target_addr",
1913 		.help = "target address",
1914 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
1915 			     item_param),
1916 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
1917 					     target_addr)),
1918 	},
1919 	[ITEM_ICMP6_ND_NA] = {
1920 		.name = "icmp6_nd_na",
1921 		.help = "match ICMPv6 neighbor discovery advertisement",
1922 		.priv = PRIV_ITEM(ICMP6_ND_NA,
1923 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
1924 		.next = NEXT(item_icmp6_nd_na),
1925 		.call = parse_vc,
1926 	},
1927 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
1928 		.name = "target_addr",
1929 		.help = "target address",
1930 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
1931 			     item_param),
1932 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
1933 					     target_addr)),
1934 	},
1935 	[ITEM_ICMP6_ND_OPT] = {
1936 		.name = "icmp6_nd_opt",
1937 		.help = "match presence of any ICMPv6 neighbor discovery"
1938 			" option",
1939 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
1940 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
1941 		.next = NEXT(item_icmp6_nd_opt),
1942 		.call = parse_vc,
1943 	},
1944 	[ITEM_ICMP6_ND_OPT_TYPE] = {
1945 		.name = "type",
1946 		.help = "ND option type",
1947 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
1948 			     item_param),
1949 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
1950 					     type)),
1951 	},
1952 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
1953 		.name = "icmp6_nd_opt_sla_eth",
1954 		.help = "match ICMPv6 neighbor discovery source Ethernet"
1955 			" link-layer address option",
1956 		.priv = PRIV_ITEM
1957 			(ICMP6_ND_OPT_SLA_ETH,
1958 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
1959 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
1960 		.call = parse_vc,
1961 	},
1962 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
1963 		.name = "sla",
1964 		.help = "source Ethernet LLA",
1965 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
1966 			     item_param),
1967 		.args = ARGS(ARGS_ENTRY_HTON
1968 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
1969 	},
1970 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
1971 		.name = "icmp6_nd_opt_tla_eth",
1972 		.help = "match ICMPv6 neighbor discovery target Ethernet"
1973 			" link-layer address option",
1974 		.priv = PRIV_ITEM
1975 			(ICMP6_ND_OPT_TLA_ETH,
1976 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
1977 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
1978 		.call = parse_vc,
1979 	},
1980 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
1981 		.name = "tla",
1982 		.help = "target Ethernet LLA",
1983 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
1984 			     item_param),
1985 		.args = ARGS(ARGS_ENTRY_HTON
1986 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
1987 	},
1988 
1989 	/* Validate/create actions. */
1990 	[ACTIONS] = {
1991 		.name = "actions",
1992 		.help = "submit a list of associated actions",
1993 		.next = NEXT(next_action),
1994 		.call = parse_vc,
1995 	},
1996 	[ACTION_NEXT] = {
1997 		.name = "/",
1998 		.help = "specify next action",
1999 		.next = NEXT(next_action),
2000 	},
2001 	[ACTION_END] = {
2002 		.name = "end",
2003 		.help = "end list of actions",
2004 		.priv = PRIV_ACTION(END, 0),
2005 		.call = parse_vc,
2006 	},
2007 	[ACTION_VOID] = {
2008 		.name = "void",
2009 		.help = "no-op action",
2010 		.priv = PRIV_ACTION(VOID, 0),
2011 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2012 		.call = parse_vc,
2013 	},
2014 	[ACTION_PASSTHRU] = {
2015 		.name = "passthru",
2016 		.help = "let subsequent rule process matched packets",
2017 		.priv = PRIV_ACTION(PASSTHRU, 0),
2018 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2019 		.call = parse_vc,
2020 	},
2021 	[ACTION_JUMP] = {
2022 		.name = "jump",
2023 		.help = "redirect traffic to a given group",
2024 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2025 		.next = NEXT(action_jump),
2026 		.call = parse_vc,
2027 	},
2028 	[ACTION_JUMP_GROUP] = {
2029 		.name = "group",
2030 		.help = "group to redirect traffic to",
2031 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2032 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2033 		.call = parse_vc_conf,
2034 	},
2035 	[ACTION_MARK] = {
2036 		.name = "mark",
2037 		.help = "attach 32 bit value to packets",
2038 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2039 		.next = NEXT(action_mark),
2040 		.call = parse_vc,
2041 	},
2042 	[ACTION_MARK_ID] = {
2043 		.name = "id",
2044 		.help = "32 bit value to return with packets",
2045 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2046 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2047 		.call = parse_vc_conf,
2048 	},
2049 	[ACTION_FLAG] = {
2050 		.name = "flag",
2051 		.help = "flag packets",
2052 		.priv = PRIV_ACTION(FLAG, 0),
2053 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2054 		.call = parse_vc,
2055 	},
2056 	[ACTION_QUEUE] = {
2057 		.name = "queue",
2058 		.help = "assign packets to a given queue index",
2059 		.priv = PRIV_ACTION(QUEUE,
2060 				    sizeof(struct rte_flow_action_queue)),
2061 		.next = NEXT(action_queue),
2062 		.call = parse_vc,
2063 	},
2064 	[ACTION_QUEUE_INDEX] = {
2065 		.name = "index",
2066 		.help = "queue index to use",
2067 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2068 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2069 		.call = parse_vc_conf,
2070 	},
2071 	[ACTION_DROP] = {
2072 		.name = "drop",
2073 		.help = "drop packets (note: passthru has priority)",
2074 		.priv = PRIV_ACTION(DROP, 0),
2075 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2076 		.call = parse_vc,
2077 	},
2078 	[ACTION_COUNT] = {
2079 		.name = "count",
2080 		.help = "enable counters for this rule",
2081 		.priv = PRIV_ACTION(COUNT,
2082 				    sizeof(struct rte_flow_action_count)),
2083 		.next = NEXT(action_count),
2084 		.call = parse_vc,
2085 	},
2086 	[ACTION_COUNT_ID] = {
2087 		.name = "identifier",
2088 		.help = "counter identifier to use",
2089 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2090 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2091 		.call = parse_vc_conf,
2092 	},
2093 	[ACTION_COUNT_SHARED] = {
2094 		.name = "shared",
2095 		.help = "shared counter",
2096 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
2097 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
2098 					   shared, 1)),
2099 		.call = parse_vc_conf,
2100 	},
2101 	[ACTION_RSS] = {
2102 		.name = "rss",
2103 		.help = "spread packets among several queues",
2104 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
2105 		.next = NEXT(action_rss),
2106 		.call = parse_vc_action_rss,
2107 	},
2108 	[ACTION_RSS_FUNC] = {
2109 		.name = "func",
2110 		.help = "RSS hash function to apply",
2111 		.next = NEXT(action_rss,
2112 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
2113 					ACTION_RSS_FUNC_TOEPLITZ,
2114 					ACTION_RSS_FUNC_SIMPLE_XOR)),
2115 	},
2116 	[ACTION_RSS_FUNC_DEFAULT] = {
2117 		.name = "default",
2118 		.help = "default hash function",
2119 		.call = parse_vc_action_rss_func,
2120 	},
2121 	[ACTION_RSS_FUNC_TOEPLITZ] = {
2122 		.name = "toeplitz",
2123 		.help = "Toeplitz hash function",
2124 		.call = parse_vc_action_rss_func,
2125 	},
2126 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
2127 		.name = "simple_xor",
2128 		.help = "simple XOR hash function",
2129 		.call = parse_vc_action_rss_func,
2130 	},
2131 	[ACTION_RSS_LEVEL] = {
2132 		.name = "level",
2133 		.help = "encapsulation level for \"types\"",
2134 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2135 		.args = ARGS(ARGS_ENTRY_ARB
2136 			     (offsetof(struct action_rss_data, conf) +
2137 			      offsetof(struct rte_flow_action_rss, level),
2138 			      sizeof(((struct rte_flow_action_rss *)0)->
2139 				     level))),
2140 	},
2141 	[ACTION_RSS_TYPES] = {
2142 		.name = "types",
2143 		.help = "specific RSS hash types",
2144 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
2145 	},
2146 	[ACTION_RSS_TYPE] = {
2147 		.name = "{type}",
2148 		.help = "RSS hash type",
2149 		.call = parse_vc_action_rss_type,
2150 		.comp = comp_vc_action_rss_type,
2151 	},
2152 	[ACTION_RSS_KEY] = {
2153 		.name = "key",
2154 		.help = "RSS hash key",
2155 		.next = NEXT(action_rss, NEXT_ENTRY(STRING)),
2156 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
2157 			     ARGS_ENTRY_ARB
2158 			     (offsetof(struct action_rss_data, conf) +
2159 			      offsetof(struct rte_flow_action_rss, key_len),
2160 			      sizeof(((struct rte_flow_action_rss *)0)->
2161 				     key_len)),
2162 			     ARGS_ENTRY(struct action_rss_data, key)),
2163 	},
2164 	[ACTION_RSS_KEY_LEN] = {
2165 		.name = "key_len",
2166 		.help = "RSS hash key length in bytes",
2167 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
2168 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
2169 			     (offsetof(struct action_rss_data, conf) +
2170 			      offsetof(struct rte_flow_action_rss, key_len),
2171 			      sizeof(((struct rte_flow_action_rss *)0)->
2172 				     key_len),
2173 			      0,
2174 			      RSS_HASH_KEY_LENGTH)),
2175 	},
2176 	[ACTION_RSS_QUEUES] = {
2177 		.name = "queues",
2178 		.help = "queue indices to use",
2179 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
2180 		.call = parse_vc_conf,
2181 	},
2182 	[ACTION_RSS_QUEUE] = {
2183 		.name = "{queue}",
2184 		.help = "queue index",
2185 		.call = parse_vc_action_rss_queue,
2186 		.comp = comp_vc_action_rss_queue,
2187 	},
2188 	[ACTION_PF] = {
2189 		.name = "pf",
2190 		.help = "direct traffic to physical function",
2191 		.priv = PRIV_ACTION(PF, 0),
2192 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2193 		.call = parse_vc,
2194 	},
2195 	[ACTION_VF] = {
2196 		.name = "vf",
2197 		.help = "direct traffic to a virtual function ID",
2198 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
2199 		.next = NEXT(action_vf),
2200 		.call = parse_vc,
2201 	},
2202 	[ACTION_VF_ORIGINAL] = {
2203 		.name = "original",
2204 		.help = "use original VF ID if possible",
2205 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
2206 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
2207 					   original, 1)),
2208 		.call = parse_vc_conf,
2209 	},
2210 	[ACTION_VF_ID] = {
2211 		.name = "id",
2212 		.help = "VF ID",
2213 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
2214 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
2215 		.call = parse_vc_conf,
2216 	},
2217 	[ACTION_PHY_PORT] = {
2218 		.name = "phy_port",
2219 		.help = "direct packets to physical port index",
2220 		.priv = PRIV_ACTION(PHY_PORT,
2221 				    sizeof(struct rte_flow_action_phy_port)),
2222 		.next = NEXT(action_phy_port),
2223 		.call = parse_vc,
2224 	},
2225 	[ACTION_PHY_PORT_ORIGINAL] = {
2226 		.name = "original",
2227 		.help = "use original port index if possible",
2228 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
2229 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
2230 					   original, 1)),
2231 		.call = parse_vc_conf,
2232 	},
2233 	[ACTION_PHY_PORT_INDEX] = {
2234 		.name = "index",
2235 		.help = "physical port index",
2236 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
2237 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
2238 					index)),
2239 		.call = parse_vc_conf,
2240 	},
2241 	[ACTION_PORT_ID] = {
2242 		.name = "port_id",
2243 		.help = "direct matching traffic to a given DPDK port ID",
2244 		.priv = PRIV_ACTION(PORT_ID,
2245 				    sizeof(struct rte_flow_action_port_id)),
2246 		.next = NEXT(action_port_id),
2247 		.call = parse_vc,
2248 	},
2249 	[ACTION_PORT_ID_ORIGINAL] = {
2250 		.name = "original",
2251 		.help = "use original DPDK port ID if possible",
2252 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
2253 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
2254 					   original, 1)),
2255 		.call = parse_vc_conf,
2256 	},
2257 	[ACTION_PORT_ID_ID] = {
2258 		.name = "id",
2259 		.help = "DPDK port ID",
2260 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
2261 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
2262 		.call = parse_vc_conf,
2263 	},
2264 	[ACTION_METER] = {
2265 		.name = "meter",
2266 		.help = "meter the directed packets at given id",
2267 		.priv = PRIV_ACTION(METER,
2268 				    sizeof(struct rte_flow_action_meter)),
2269 		.next = NEXT(action_meter),
2270 		.call = parse_vc,
2271 	},
2272 	[ACTION_METER_ID] = {
2273 		.name = "mtr_id",
2274 		.help = "meter id to use",
2275 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
2276 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
2277 		.call = parse_vc_conf,
2278 	},
2279 	[ACTION_OF_SET_MPLS_TTL] = {
2280 		.name = "of_set_mpls_ttl",
2281 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
2282 		.priv = PRIV_ACTION
2283 			(OF_SET_MPLS_TTL,
2284 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
2285 		.next = NEXT(action_of_set_mpls_ttl),
2286 		.call = parse_vc,
2287 	},
2288 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
2289 		.name = "mpls_ttl",
2290 		.help = "MPLS TTL",
2291 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
2292 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
2293 					mpls_ttl)),
2294 		.call = parse_vc_conf,
2295 	},
2296 	[ACTION_OF_DEC_MPLS_TTL] = {
2297 		.name = "of_dec_mpls_ttl",
2298 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
2299 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
2300 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2301 		.call = parse_vc,
2302 	},
2303 	[ACTION_OF_SET_NW_TTL] = {
2304 		.name = "of_set_nw_ttl",
2305 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
2306 		.priv = PRIV_ACTION
2307 			(OF_SET_NW_TTL,
2308 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
2309 		.next = NEXT(action_of_set_nw_ttl),
2310 		.call = parse_vc,
2311 	},
2312 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
2313 		.name = "nw_ttl",
2314 		.help = "IP TTL",
2315 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
2316 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
2317 					nw_ttl)),
2318 		.call = parse_vc_conf,
2319 	},
2320 	[ACTION_OF_DEC_NW_TTL] = {
2321 		.name = "of_dec_nw_ttl",
2322 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
2323 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
2324 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2325 		.call = parse_vc,
2326 	},
2327 	[ACTION_OF_COPY_TTL_OUT] = {
2328 		.name = "of_copy_ttl_out",
2329 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
2330 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
2331 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2332 		.call = parse_vc,
2333 	},
2334 	[ACTION_OF_COPY_TTL_IN] = {
2335 		.name = "of_copy_ttl_in",
2336 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
2337 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
2338 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2339 		.call = parse_vc,
2340 	},
2341 	[ACTION_OF_POP_VLAN] = {
2342 		.name = "of_pop_vlan",
2343 		.help = "OpenFlow's OFPAT_POP_VLAN",
2344 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
2345 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2346 		.call = parse_vc,
2347 	},
2348 	[ACTION_OF_PUSH_VLAN] = {
2349 		.name = "of_push_vlan",
2350 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
2351 		.priv = PRIV_ACTION
2352 			(OF_PUSH_VLAN,
2353 			 sizeof(struct rte_flow_action_of_push_vlan)),
2354 		.next = NEXT(action_of_push_vlan),
2355 		.call = parse_vc,
2356 	},
2357 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
2358 		.name = "ethertype",
2359 		.help = "EtherType",
2360 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
2361 		.args = ARGS(ARGS_ENTRY_HTON
2362 			     (struct rte_flow_action_of_push_vlan,
2363 			      ethertype)),
2364 		.call = parse_vc_conf,
2365 	},
2366 	[ACTION_OF_SET_VLAN_VID] = {
2367 		.name = "of_set_vlan_vid",
2368 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
2369 		.priv = PRIV_ACTION
2370 			(OF_SET_VLAN_VID,
2371 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
2372 		.next = NEXT(action_of_set_vlan_vid),
2373 		.call = parse_vc,
2374 	},
2375 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
2376 		.name = "vlan_vid",
2377 		.help = "VLAN id",
2378 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
2379 		.args = ARGS(ARGS_ENTRY_HTON
2380 			     (struct rte_flow_action_of_set_vlan_vid,
2381 			      vlan_vid)),
2382 		.call = parse_vc_conf,
2383 	},
2384 	[ACTION_OF_SET_VLAN_PCP] = {
2385 		.name = "of_set_vlan_pcp",
2386 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
2387 		.priv = PRIV_ACTION
2388 			(OF_SET_VLAN_PCP,
2389 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
2390 		.next = NEXT(action_of_set_vlan_pcp),
2391 		.call = parse_vc,
2392 	},
2393 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
2394 		.name = "vlan_pcp",
2395 		.help = "VLAN priority",
2396 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
2397 		.args = ARGS(ARGS_ENTRY_HTON
2398 			     (struct rte_flow_action_of_set_vlan_pcp,
2399 			      vlan_pcp)),
2400 		.call = parse_vc_conf,
2401 	},
2402 	[ACTION_OF_POP_MPLS] = {
2403 		.name = "of_pop_mpls",
2404 		.help = "OpenFlow's OFPAT_POP_MPLS",
2405 		.priv = PRIV_ACTION(OF_POP_MPLS,
2406 				    sizeof(struct rte_flow_action_of_pop_mpls)),
2407 		.next = NEXT(action_of_pop_mpls),
2408 		.call = parse_vc,
2409 	},
2410 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
2411 		.name = "ethertype",
2412 		.help = "EtherType",
2413 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
2414 		.args = ARGS(ARGS_ENTRY_HTON
2415 			     (struct rte_flow_action_of_pop_mpls,
2416 			      ethertype)),
2417 		.call = parse_vc_conf,
2418 	},
2419 	[ACTION_OF_PUSH_MPLS] = {
2420 		.name = "of_push_mpls",
2421 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
2422 		.priv = PRIV_ACTION
2423 			(OF_PUSH_MPLS,
2424 			 sizeof(struct rte_flow_action_of_push_mpls)),
2425 		.next = NEXT(action_of_push_mpls),
2426 		.call = parse_vc,
2427 	},
2428 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
2429 		.name = "ethertype",
2430 		.help = "EtherType",
2431 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
2432 		.args = ARGS(ARGS_ENTRY_HTON
2433 			     (struct rte_flow_action_of_push_mpls,
2434 			      ethertype)),
2435 		.call = parse_vc_conf,
2436 	},
2437 	[ACTION_VXLAN_ENCAP] = {
2438 		.name = "vxlan_encap",
2439 		.help = "VXLAN encapsulation, uses configuration set by \"set"
2440 			" vxlan\"",
2441 		.priv = PRIV_ACTION(VXLAN_ENCAP,
2442 				    sizeof(struct action_vxlan_encap_data)),
2443 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2444 		.call = parse_vc_action_vxlan_encap,
2445 	},
2446 	[ACTION_VXLAN_DECAP] = {
2447 		.name = "vxlan_decap",
2448 		.help = "Performs a decapsulation action by stripping all"
2449 			" headers of the VXLAN tunnel network overlay from the"
2450 			" matched flow.",
2451 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
2452 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2453 		.call = parse_vc,
2454 	},
2455 	[ACTION_NVGRE_ENCAP] = {
2456 		.name = "nvgre_encap",
2457 		.help = "NVGRE encapsulation, uses configuration set by \"set"
2458 			" nvgre\"",
2459 		.priv = PRIV_ACTION(NVGRE_ENCAP,
2460 				    sizeof(struct action_nvgre_encap_data)),
2461 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2462 		.call = parse_vc_action_nvgre_encap,
2463 	},
2464 	[ACTION_NVGRE_DECAP] = {
2465 		.name = "nvgre_decap",
2466 		.help = "Performs a decapsulation action by stripping all"
2467 			" headers of the NVGRE tunnel network overlay from the"
2468 			" matched flow.",
2469 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
2470 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2471 		.call = parse_vc,
2472 	},
2473 };
2474 
2475 /** Remove and return last entry from argument stack. */
2476 static const struct arg *
2477 pop_args(struct context *ctx)
2478 {
2479 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
2480 }
2481 
2482 /** Add entry on top of the argument stack. */
2483 static int
2484 push_args(struct context *ctx, const struct arg *arg)
2485 {
2486 	if (ctx->args_num == CTX_STACK_SIZE)
2487 		return -1;
2488 	ctx->args[ctx->args_num++] = arg;
2489 	return 0;
2490 }
2491 
2492 /** Spread value into buffer according to bit-mask. */
2493 static size_t
2494 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
2495 {
2496 	uint32_t i = arg->size;
2497 	uint32_t end = 0;
2498 	int sub = 1;
2499 	int add = 0;
2500 	size_t len = 0;
2501 
2502 	if (!arg->mask)
2503 		return 0;
2504 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2505 	if (!arg->hton) {
2506 		i = 0;
2507 		end = arg->size;
2508 		sub = 0;
2509 		add = 1;
2510 	}
2511 #endif
2512 	while (i != end) {
2513 		unsigned int shift = 0;
2514 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
2515 
2516 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
2517 			if (!(arg->mask[i] & (1 << shift)))
2518 				continue;
2519 			++len;
2520 			if (!dst)
2521 				continue;
2522 			*buf &= ~(1 << shift);
2523 			*buf |= (val & 1) << shift;
2524 			val >>= 1;
2525 		}
2526 		i += add;
2527 	}
2528 	return len;
2529 }
2530 
2531 /** Compare a string with a partial one of a given length. */
2532 static int
2533 strcmp_partial(const char *full, const char *partial, size_t partial_len)
2534 {
2535 	int r = strncmp(full, partial, partial_len);
2536 
2537 	if (r)
2538 		return r;
2539 	if (strlen(full) <= partial_len)
2540 		return 0;
2541 	return full[partial_len];
2542 }
2543 
2544 /**
2545  * Parse a prefix length and generate a bit-mask.
2546  *
2547  * Last argument (ctx->args) is retrieved to determine mask size, storage
2548  * location and whether the result must use network byte ordering.
2549  */
2550 static int
2551 parse_prefix(struct context *ctx, const struct token *token,
2552 	     const char *str, unsigned int len,
2553 	     void *buf, unsigned int size)
2554 {
2555 	const struct arg *arg = pop_args(ctx);
2556 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
2557 	char *end;
2558 	uintmax_t u;
2559 	unsigned int bytes;
2560 	unsigned int extra;
2561 
2562 	(void)token;
2563 	/* Argument is expected. */
2564 	if (!arg)
2565 		return -1;
2566 	errno = 0;
2567 	u = strtoumax(str, &end, 0);
2568 	if (errno || (size_t)(end - str) != len)
2569 		goto error;
2570 	if (arg->mask) {
2571 		uintmax_t v = 0;
2572 
2573 		extra = arg_entry_bf_fill(NULL, 0, arg);
2574 		if (u > extra)
2575 			goto error;
2576 		if (!ctx->object)
2577 			return len;
2578 		extra -= u;
2579 		while (u--)
2580 			(v <<= 1, v |= 1);
2581 		v <<= extra;
2582 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
2583 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
2584 			goto error;
2585 		return len;
2586 	}
2587 	bytes = u / 8;
2588 	extra = u % 8;
2589 	size = arg->size;
2590 	if (bytes > size || bytes + !!extra > size)
2591 		goto error;
2592 	if (!ctx->object)
2593 		return len;
2594 	buf = (uint8_t *)ctx->object + arg->offset;
2595 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
2596 	if (!arg->hton) {
2597 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
2598 		memset(buf, 0x00, size - bytes);
2599 		if (extra)
2600 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
2601 	} else
2602 #endif
2603 	{
2604 		memset(buf, 0xff, bytes);
2605 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
2606 		if (extra)
2607 			((uint8_t *)buf)[bytes] = conv[extra];
2608 	}
2609 	if (ctx->objmask)
2610 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
2611 	return len;
2612 error:
2613 	push_args(ctx, arg);
2614 	return -1;
2615 }
2616 
2617 /** Default parsing function for token name matching. */
2618 static int
2619 parse_default(struct context *ctx, const struct token *token,
2620 	      const char *str, unsigned int len,
2621 	      void *buf, unsigned int size)
2622 {
2623 	(void)ctx;
2624 	(void)buf;
2625 	(void)size;
2626 	if (strcmp_partial(token->name, str, len))
2627 		return -1;
2628 	return len;
2629 }
2630 
2631 /** Parse flow command, initialize output buffer for subsequent tokens. */
2632 static int
2633 parse_init(struct context *ctx, const struct token *token,
2634 	   const char *str, unsigned int len,
2635 	   void *buf, unsigned int size)
2636 {
2637 	struct buffer *out = buf;
2638 
2639 	/* Token name must match. */
2640 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2641 		return -1;
2642 	/* Nothing else to do if there is no buffer. */
2643 	if (!out)
2644 		return len;
2645 	/* Make sure buffer is large enough. */
2646 	if (size < sizeof(*out))
2647 		return -1;
2648 	/* Initialize buffer. */
2649 	memset(out, 0x00, sizeof(*out));
2650 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
2651 	ctx->objdata = 0;
2652 	ctx->object = out;
2653 	ctx->objmask = NULL;
2654 	return len;
2655 }
2656 
2657 /** Parse tokens for validate/create commands. */
2658 static int
2659 parse_vc(struct context *ctx, const struct token *token,
2660 	 const char *str, unsigned int len,
2661 	 void *buf, unsigned int size)
2662 {
2663 	struct buffer *out = buf;
2664 	uint8_t *data;
2665 	uint32_t data_size;
2666 
2667 	/* Token name must match. */
2668 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2669 		return -1;
2670 	/* Nothing else to do if there is no buffer. */
2671 	if (!out)
2672 		return len;
2673 	if (!out->command) {
2674 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
2675 			return -1;
2676 		if (sizeof(*out) > size)
2677 			return -1;
2678 		out->command = ctx->curr;
2679 		ctx->objdata = 0;
2680 		ctx->object = out;
2681 		ctx->objmask = NULL;
2682 		out->args.vc.data = (uint8_t *)out + size;
2683 		return len;
2684 	}
2685 	ctx->objdata = 0;
2686 	ctx->object = &out->args.vc.attr;
2687 	ctx->objmask = NULL;
2688 	switch (ctx->curr) {
2689 	case GROUP:
2690 	case PRIORITY:
2691 		return len;
2692 	case INGRESS:
2693 		out->args.vc.attr.ingress = 1;
2694 		return len;
2695 	case EGRESS:
2696 		out->args.vc.attr.egress = 1;
2697 		return len;
2698 	case TRANSFER:
2699 		out->args.vc.attr.transfer = 1;
2700 		return len;
2701 	case PATTERN:
2702 		out->args.vc.pattern =
2703 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
2704 					       sizeof(double));
2705 		ctx->object = out->args.vc.pattern;
2706 		ctx->objmask = NULL;
2707 		return len;
2708 	case ACTIONS:
2709 		out->args.vc.actions =
2710 			(void *)RTE_ALIGN_CEIL((uintptr_t)
2711 					       (out->args.vc.pattern +
2712 						out->args.vc.pattern_n),
2713 					       sizeof(double));
2714 		ctx->object = out->args.vc.actions;
2715 		ctx->objmask = NULL;
2716 		return len;
2717 	default:
2718 		if (!token->priv)
2719 			return -1;
2720 		break;
2721 	}
2722 	if (!out->args.vc.actions) {
2723 		const struct parse_item_priv *priv = token->priv;
2724 		struct rte_flow_item *item =
2725 			out->args.vc.pattern + out->args.vc.pattern_n;
2726 
2727 		data_size = priv->size * 3; /* spec, last, mask */
2728 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
2729 					       (out->args.vc.data - data_size),
2730 					       sizeof(double));
2731 		if ((uint8_t *)item + sizeof(*item) > data)
2732 			return -1;
2733 		*item = (struct rte_flow_item){
2734 			.type = priv->type,
2735 		};
2736 		++out->args.vc.pattern_n;
2737 		ctx->object = item;
2738 		ctx->objmask = NULL;
2739 	} else {
2740 		const struct parse_action_priv *priv = token->priv;
2741 		struct rte_flow_action *action =
2742 			out->args.vc.actions + out->args.vc.actions_n;
2743 
2744 		data_size = priv->size; /* configuration */
2745 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
2746 					       (out->args.vc.data - data_size),
2747 					       sizeof(double));
2748 		if ((uint8_t *)action + sizeof(*action) > data)
2749 			return -1;
2750 		*action = (struct rte_flow_action){
2751 			.type = priv->type,
2752 			.conf = data_size ? data : NULL,
2753 		};
2754 		++out->args.vc.actions_n;
2755 		ctx->object = action;
2756 		ctx->objmask = NULL;
2757 	}
2758 	memset(data, 0, data_size);
2759 	out->args.vc.data = data;
2760 	ctx->objdata = data_size;
2761 	return len;
2762 }
2763 
2764 /** Parse pattern item parameter type. */
2765 static int
2766 parse_vc_spec(struct context *ctx, const struct token *token,
2767 	      const char *str, unsigned int len,
2768 	      void *buf, unsigned int size)
2769 {
2770 	struct buffer *out = buf;
2771 	struct rte_flow_item *item;
2772 	uint32_t data_size;
2773 	int index;
2774 	int objmask = 0;
2775 
2776 	(void)size;
2777 	/* Token name must match. */
2778 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2779 		return -1;
2780 	/* Parse parameter types. */
2781 	switch (ctx->curr) {
2782 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
2783 
2784 	case ITEM_PARAM_IS:
2785 		index = 0;
2786 		objmask = 1;
2787 		break;
2788 	case ITEM_PARAM_SPEC:
2789 		index = 0;
2790 		break;
2791 	case ITEM_PARAM_LAST:
2792 		index = 1;
2793 		break;
2794 	case ITEM_PARAM_PREFIX:
2795 		/* Modify next token to expect a prefix. */
2796 		if (ctx->next_num < 2)
2797 			return -1;
2798 		ctx->next[ctx->next_num - 2] = prefix;
2799 		/* Fall through. */
2800 	case ITEM_PARAM_MASK:
2801 		index = 2;
2802 		break;
2803 	default:
2804 		return -1;
2805 	}
2806 	/* Nothing else to do if there is no buffer. */
2807 	if (!out)
2808 		return len;
2809 	if (!out->args.vc.pattern_n)
2810 		return -1;
2811 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
2812 	data_size = ctx->objdata / 3; /* spec, last, mask */
2813 	/* Point to selected object. */
2814 	ctx->object = out->args.vc.data + (data_size * index);
2815 	if (objmask) {
2816 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
2817 		item->mask = ctx->objmask;
2818 	} else
2819 		ctx->objmask = NULL;
2820 	/* Update relevant item pointer. */
2821 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
2822 		ctx->object;
2823 	return len;
2824 }
2825 
2826 /** Parse action configuration field. */
2827 static int
2828 parse_vc_conf(struct context *ctx, const struct token *token,
2829 	      const char *str, unsigned int len,
2830 	      void *buf, unsigned int size)
2831 {
2832 	struct buffer *out = buf;
2833 
2834 	(void)size;
2835 	/* Token name must match. */
2836 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2837 		return -1;
2838 	/* Nothing else to do if there is no buffer. */
2839 	if (!out)
2840 		return len;
2841 	/* Point to selected object. */
2842 	ctx->object = out->args.vc.data;
2843 	ctx->objmask = NULL;
2844 	return len;
2845 }
2846 
2847 /** Parse RSS action. */
2848 static int
2849 parse_vc_action_rss(struct context *ctx, const struct token *token,
2850 		    const char *str, unsigned int len,
2851 		    void *buf, unsigned int size)
2852 {
2853 	struct buffer *out = buf;
2854 	struct rte_flow_action *action;
2855 	struct action_rss_data *action_rss_data;
2856 	unsigned int i;
2857 	int ret;
2858 
2859 	ret = parse_vc(ctx, token, str, len, buf, size);
2860 	if (ret < 0)
2861 		return ret;
2862 	/* Nothing else to do if there is no buffer. */
2863 	if (!out)
2864 		return ret;
2865 	if (!out->args.vc.actions_n)
2866 		return -1;
2867 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
2868 	/* Point to selected object. */
2869 	ctx->object = out->args.vc.data;
2870 	ctx->objmask = NULL;
2871 	/* Set up default configuration. */
2872 	action_rss_data = ctx->object;
2873 	*action_rss_data = (struct action_rss_data){
2874 		.conf = (struct rte_flow_action_rss){
2875 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
2876 			.level = 0,
2877 			.types = rss_hf,
2878 			.key_len = sizeof(action_rss_data->key),
2879 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
2880 			.key = action_rss_data->key,
2881 			.queue = action_rss_data->queue,
2882 		},
2883 		.key = "testpmd's default RSS hash key, "
2884 			"override it for better balancing",
2885 		.queue = { 0 },
2886 	};
2887 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
2888 		action_rss_data->queue[i] = i;
2889 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
2890 	    ctx->port != (portid_t)RTE_PORT_ALL) {
2891 		struct rte_eth_dev_info info;
2892 
2893 		rte_eth_dev_info_get(ctx->port, &info);
2894 		action_rss_data->conf.key_len =
2895 			RTE_MIN(sizeof(action_rss_data->key),
2896 				info.hash_key_size);
2897 	}
2898 	action->conf = &action_rss_data->conf;
2899 	return ret;
2900 }
2901 
2902 /**
2903  * Parse func field for RSS action.
2904  *
2905  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
2906  * ACTION_RSS_FUNC_* index that called this function.
2907  */
2908 static int
2909 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
2910 			 const char *str, unsigned int len,
2911 			 void *buf, unsigned int size)
2912 {
2913 	struct action_rss_data *action_rss_data;
2914 	enum rte_eth_hash_function func;
2915 
2916 	(void)buf;
2917 	(void)size;
2918 	/* Token name must match. */
2919 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
2920 		return -1;
2921 	switch (ctx->curr) {
2922 	case ACTION_RSS_FUNC_DEFAULT:
2923 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
2924 		break;
2925 	case ACTION_RSS_FUNC_TOEPLITZ:
2926 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
2927 		break;
2928 	case ACTION_RSS_FUNC_SIMPLE_XOR:
2929 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
2930 		break;
2931 	default:
2932 		return -1;
2933 	}
2934 	if (!ctx->object)
2935 		return len;
2936 	action_rss_data = ctx->object;
2937 	action_rss_data->conf.func = func;
2938 	return len;
2939 }
2940 
2941 /**
2942  * Parse type field for RSS action.
2943  *
2944  * Valid tokens are type field names and the "end" token.
2945  */
2946 static int
2947 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
2948 			  const char *str, unsigned int len,
2949 			  void *buf, unsigned int size)
2950 {
2951 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
2952 	struct action_rss_data *action_rss_data;
2953 	unsigned int i;
2954 
2955 	(void)token;
2956 	(void)buf;
2957 	(void)size;
2958 	if (ctx->curr != ACTION_RSS_TYPE)
2959 		return -1;
2960 	if (!(ctx->objdata >> 16) && ctx->object) {
2961 		action_rss_data = ctx->object;
2962 		action_rss_data->conf.types = 0;
2963 	}
2964 	if (!strcmp_partial("end", str, len)) {
2965 		ctx->objdata &= 0xffff;
2966 		return len;
2967 	}
2968 	for (i = 0; rss_type_table[i].str; ++i)
2969 		if (!strcmp_partial(rss_type_table[i].str, str, len))
2970 			break;
2971 	if (!rss_type_table[i].str)
2972 		return -1;
2973 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
2974 	/* Repeat token. */
2975 	if (ctx->next_num == RTE_DIM(ctx->next))
2976 		return -1;
2977 	ctx->next[ctx->next_num++] = next;
2978 	if (!ctx->object)
2979 		return len;
2980 	action_rss_data = ctx->object;
2981 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
2982 	return len;
2983 }
2984 
2985 /**
2986  * Parse queue field for RSS action.
2987  *
2988  * Valid tokens are queue indices and the "end" token.
2989  */
2990 static int
2991 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
2992 			  const char *str, unsigned int len,
2993 			  void *buf, unsigned int size)
2994 {
2995 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
2996 	struct action_rss_data *action_rss_data;
2997 	int ret;
2998 	int i;
2999 
3000 	(void)token;
3001 	(void)buf;
3002 	(void)size;
3003 	if (ctx->curr != ACTION_RSS_QUEUE)
3004 		return -1;
3005 	i = ctx->objdata >> 16;
3006 	if (!strcmp_partial("end", str, len)) {
3007 		ctx->objdata &= 0xffff;
3008 		goto end;
3009 	}
3010 	if (i >= ACTION_RSS_QUEUE_NUM)
3011 		return -1;
3012 	if (push_args(ctx,
3013 		      ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
3014 				     i * sizeof(action_rss_data->queue[i]),
3015 				     sizeof(action_rss_data->queue[i]))))
3016 		return -1;
3017 	ret = parse_int(ctx, token, str, len, NULL, 0);
3018 	if (ret < 0) {
3019 		pop_args(ctx);
3020 		return -1;
3021 	}
3022 	++i;
3023 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
3024 	/* Repeat token. */
3025 	if (ctx->next_num == RTE_DIM(ctx->next))
3026 		return -1;
3027 	ctx->next[ctx->next_num++] = next;
3028 end:
3029 	if (!ctx->object)
3030 		return len;
3031 	action_rss_data = ctx->object;
3032 	action_rss_data->conf.queue_num = i;
3033 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
3034 	return len;
3035 }
3036 
3037 /** Parse VXLAN encap action. */
3038 static int
3039 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
3040 			    const char *str, unsigned int len,
3041 			    void *buf, unsigned int size)
3042 {
3043 	struct buffer *out = buf;
3044 	struct rte_flow_action *action;
3045 	struct action_vxlan_encap_data *action_vxlan_encap_data;
3046 	int ret;
3047 
3048 	ret = parse_vc(ctx, token, str, len, buf, size);
3049 	if (ret < 0)
3050 		return ret;
3051 	/* Nothing else to do if there is no buffer. */
3052 	if (!out)
3053 		return ret;
3054 	if (!out->args.vc.actions_n)
3055 		return -1;
3056 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3057 	/* Point to selected object. */
3058 	ctx->object = out->args.vc.data;
3059 	ctx->objmask = NULL;
3060 	/* Set up default configuration. */
3061 	action_vxlan_encap_data = ctx->object;
3062 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
3063 		.conf = (struct rte_flow_action_vxlan_encap){
3064 			.definition = action_vxlan_encap_data->items,
3065 		},
3066 		.items = {
3067 			{
3068 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3069 				.spec = &action_vxlan_encap_data->item_eth,
3070 				.mask = &rte_flow_item_eth_mask,
3071 			},
3072 			{
3073 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3074 				.spec = &action_vxlan_encap_data->item_vlan,
3075 				.mask = &rte_flow_item_vlan_mask,
3076 			},
3077 			{
3078 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3079 				.spec = &action_vxlan_encap_data->item_ipv4,
3080 				.mask = &rte_flow_item_ipv4_mask,
3081 			},
3082 			{
3083 				.type = RTE_FLOW_ITEM_TYPE_UDP,
3084 				.spec = &action_vxlan_encap_data->item_udp,
3085 				.mask = &rte_flow_item_udp_mask,
3086 			},
3087 			{
3088 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
3089 				.spec = &action_vxlan_encap_data->item_vxlan,
3090 				.mask = &rte_flow_item_vxlan_mask,
3091 			},
3092 			{
3093 				.type = RTE_FLOW_ITEM_TYPE_END,
3094 			},
3095 		},
3096 		.item_eth.type = 0,
3097 		.item_vlan = {
3098 			.tci = vxlan_encap_conf.vlan_tci,
3099 			.inner_type = 0,
3100 		},
3101 		.item_ipv4.hdr = {
3102 			.src_addr = vxlan_encap_conf.ipv4_src,
3103 			.dst_addr = vxlan_encap_conf.ipv4_dst,
3104 		},
3105 		.item_udp.hdr = {
3106 			.src_port = vxlan_encap_conf.udp_src,
3107 			.dst_port = vxlan_encap_conf.udp_dst,
3108 		},
3109 		.item_vxlan.flags = 0,
3110 	};
3111 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
3112 	       vxlan_encap_conf.eth_dst, ETHER_ADDR_LEN);
3113 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
3114 	       vxlan_encap_conf.eth_src, ETHER_ADDR_LEN);
3115 	if (!vxlan_encap_conf.select_ipv4) {
3116 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
3117 		       &vxlan_encap_conf.ipv6_src,
3118 		       sizeof(vxlan_encap_conf.ipv6_src));
3119 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
3120 		       &vxlan_encap_conf.ipv6_dst,
3121 		       sizeof(vxlan_encap_conf.ipv6_dst));
3122 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
3123 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3124 			.spec = &action_vxlan_encap_data->item_ipv6,
3125 			.mask = &rte_flow_item_ipv6_mask,
3126 		};
3127 	}
3128 	if (!vxlan_encap_conf.select_vlan)
3129 		action_vxlan_encap_data->items[1].type =
3130 			RTE_FLOW_ITEM_TYPE_VOID;
3131 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
3132 	       RTE_DIM(vxlan_encap_conf.vni));
3133 	action->conf = &action_vxlan_encap_data->conf;
3134 	return ret;
3135 }
3136 
3137 /** Parse NVGRE encap action. */
3138 static int
3139 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
3140 			    const char *str, unsigned int len,
3141 			    void *buf, unsigned int size)
3142 {
3143 	struct buffer *out = buf;
3144 	struct rte_flow_action *action;
3145 	struct action_nvgre_encap_data *action_nvgre_encap_data;
3146 	int ret;
3147 
3148 	ret = parse_vc(ctx, token, str, len, buf, size);
3149 	if (ret < 0)
3150 		return ret;
3151 	/* Nothing else to do if there is no buffer. */
3152 	if (!out)
3153 		return ret;
3154 	if (!out->args.vc.actions_n)
3155 		return -1;
3156 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
3157 	/* Point to selected object. */
3158 	ctx->object = out->args.vc.data;
3159 	ctx->objmask = NULL;
3160 	/* Set up default configuration. */
3161 	action_nvgre_encap_data = ctx->object;
3162 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
3163 		.conf = (struct rte_flow_action_nvgre_encap){
3164 			.definition = action_nvgre_encap_data->items,
3165 		},
3166 		.items = {
3167 			{
3168 				.type = RTE_FLOW_ITEM_TYPE_ETH,
3169 				.spec = &action_nvgre_encap_data->item_eth,
3170 				.mask = &rte_flow_item_eth_mask,
3171 			},
3172 			{
3173 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
3174 				.spec = &action_nvgre_encap_data->item_vlan,
3175 				.mask = &rte_flow_item_vlan_mask,
3176 			},
3177 			{
3178 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
3179 				.spec = &action_nvgre_encap_data->item_ipv4,
3180 				.mask = &rte_flow_item_ipv4_mask,
3181 			},
3182 			{
3183 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
3184 				.spec = &action_nvgre_encap_data->item_nvgre,
3185 				.mask = &rte_flow_item_nvgre_mask,
3186 			},
3187 			{
3188 				.type = RTE_FLOW_ITEM_TYPE_END,
3189 			},
3190 		},
3191 		.item_eth.type = 0,
3192 		.item_vlan = {
3193 			.tci = nvgre_encap_conf.vlan_tci,
3194 			.inner_type = 0,
3195 		},
3196 		.item_ipv4.hdr = {
3197 		       .src_addr = nvgre_encap_conf.ipv4_src,
3198 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
3199 		},
3200 		.item_nvgre.flow_id = 0,
3201 	};
3202 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
3203 	       nvgre_encap_conf.eth_dst, ETHER_ADDR_LEN);
3204 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
3205 	       nvgre_encap_conf.eth_src, ETHER_ADDR_LEN);
3206 	if (!nvgre_encap_conf.select_ipv4) {
3207 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
3208 		       &nvgre_encap_conf.ipv6_src,
3209 		       sizeof(nvgre_encap_conf.ipv6_src));
3210 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
3211 		       &nvgre_encap_conf.ipv6_dst,
3212 		       sizeof(nvgre_encap_conf.ipv6_dst));
3213 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
3214 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
3215 			.spec = &action_nvgre_encap_data->item_ipv6,
3216 			.mask = &rte_flow_item_ipv6_mask,
3217 		};
3218 	}
3219 	if (!nvgre_encap_conf.select_vlan)
3220 		action_nvgre_encap_data->items[1].type =
3221 			RTE_FLOW_ITEM_TYPE_VOID;
3222 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
3223 	       RTE_DIM(nvgre_encap_conf.tni));
3224 	action->conf = &action_nvgre_encap_data->conf;
3225 	return ret;
3226 }
3227 
3228 /** Parse tokens for destroy command. */
3229 static int
3230 parse_destroy(struct context *ctx, const struct token *token,
3231 	      const char *str, unsigned int len,
3232 	      void *buf, unsigned int size)
3233 {
3234 	struct buffer *out = buf;
3235 
3236 	/* Token name must match. */
3237 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3238 		return -1;
3239 	/* Nothing else to do if there is no buffer. */
3240 	if (!out)
3241 		return len;
3242 	if (!out->command) {
3243 		if (ctx->curr != DESTROY)
3244 			return -1;
3245 		if (sizeof(*out) > size)
3246 			return -1;
3247 		out->command = ctx->curr;
3248 		ctx->objdata = 0;
3249 		ctx->object = out;
3250 		ctx->objmask = NULL;
3251 		out->args.destroy.rule =
3252 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3253 					       sizeof(double));
3254 		return len;
3255 	}
3256 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
3257 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
3258 		return -1;
3259 	ctx->objdata = 0;
3260 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
3261 	ctx->objmask = NULL;
3262 	return len;
3263 }
3264 
3265 /** Parse tokens for flush command. */
3266 static int
3267 parse_flush(struct context *ctx, const struct token *token,
3268 	    const char *str, unsigned int len,
3269 	    void *buf, unsigned int size)
3270 {
3271 	struct buffer *out = buf;
3272 
3273 	/* Token name must match. */
3274 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3275 		return -1;
3276 	/* Nothing else to do if there is no buffer. */
3277 	if (!out)
3278 		return len;
3279 	if (!out->command) {
3280 		if (ctx->curr != FLUSH)
3281 			return -1;
3282 		if (sizeof(*out) > size)
3283 			return -1;
3284 		out->command = ctx->curr;
3285 		ctx->objdata = 0;
3286 		ctx->object = out;
3287 		ctx->objmask = NULL;
3288 	}
3289 	return len;
3290 }
3291 
3292 /** Parse tokens for query command. */
3293 static int
3294 parse_query(struct context *ctx, const struct token *token,
3295 	    const char *str, unsigned int len,
3296 	    void *buf, unsigned int size)
3297 {
3298 	struct buffer *out = buf;
3299 
3300 	/* Token name must match. */
3301 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3302 		return -1;
3303 	/* Nothing else to do if there is no buffer. */
3304 	if (!out)
3305 		return len;
3306 	if (!out->command) {
3307 		if (ctx->curr != QUERY)
3308 			return -1;
3309 		if (sizeof(*out) > size)
3310 			return -1;
3311 		out->command = ctx->curr;
3312 		ctx->objdata = 0;
3313 		ctx->object = out;
3314 		ctx->objmask = NULL;
3315 	}
3316 	return len;
3317 }
3318 
3319 /** Parse action names. */
3320 static int
3321 parse_action(struct context *ctx, const struct token *token,
3322 	     const char *str, unsigned int len,
3323 	     void *buf, unsigned int size)
3324 {
3325 	struct buffer *out = buf;
3326 	const struct arg *arg = pop_args(ctx);
3327 	unsigned int i;
3328 
3329 	(void)size;
3330 	/* Argument is expected. */
3331 	if (!arg)
3332 		return -1;
3333 	/* Parse action name. */
3334 	for (i = 0; next_action[i]; ++i) {
3335 		const struct parse_action_priv *priv;
3336 
3337 		token = &token_list[next_action[i]];
3338 		if (strcmp_partial(token->name, str, len))
3339 			continue;
3340 		priv = token->priv;
3341 		if (!priv)
3342 			goto error;
3343 		if (out)
3344 			memcpy((uint8_t *)ctx->object + arg->offset,
3345 			       &priv->type,
3346 			       arg->size);
3347 		return len;
3348 	}
3349 error:
3350 	push_args(ctx, arg);
3351 	return -1;
3352 }
3353 
3354 /** Parse tokens for list command. */
3355 static int
3356 parse_list(struct context *ctx, const struct token *token,
3357 	   const char *str, unsigned int len,
3358 	   void *buf, unsigned int size)
3359 {
3360 	struct buffer *out = buf;
3361 
3362 	/* Token name must match. */
3363 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3364 		return -1;
3365 	/* Nothing else to do if there is no buffer. */
3366 	if (!out)
3367 		return len;
3368 	if (!out->command) {
3369 		if (ctx->curr != LIST)
3370 			return -1;
3371 		if (sizeof(*out) > size)
3372 			return -1;
3373 		out->command = ctx->curr;
3374 		ctx->objdata = 0;
3375 		ctx->object = out;
3376 		ctx->objmask = NULL;
3377 		out->args.list.group =
3378 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
3379 					       sizeof(double));
3380 		return len;
3381 	}
3382 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
3383 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
3384 		return -1;
3385 	ctx->objdata = 0;
3386 	ctx->object = out->args.list.group + out->args.list.group_n++;
3387 	ctx->objmask = NULL;
3388 	return len;
3389 }
3390 
3391 /** Parse tokens for isolate command. */
3392 static int
3393 parse_isolate(struct context *ctx, const struct token *token,
3394 	      const char *str, unsigned int len,
3395 	      void *buf, unsigned int size)
3396 {
3397 	struct buffer *out = buf;
3398 
3399 	/* Token name must match. */
3400 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
3401 		return -1;
3402 	/* Nothing else to do if there is no buffer. */
3403 	if (!out)
3404 		return len;
3405 	if (!out->command) {
3406 		if (ctx->curr != ISOLATE)
3407 			return -1;
3408 		if (sizeof(*out) > size)
3409 			return -1;
3410 		out->command = ctx->curr;
3411 		ctx->objdata = 0;
3412 		ctx->object = out;
3413 		ctx->objmask = NULL;
3414 	}
3415 	return len;
3416 }
3417 
3418 /**
3419  * Parse signed/unsigned integers 8 to 64-bit long.
3420  *
3421  * Last argument (ctx->args) is retrieved to determine integer type and
3422  * storage location.
3423  */
3424 static int
3425 parse_int(struct context *ctx, const struct token *token,
3426 	  const char *str, unsigned int len,
3427 	  void *buf, unsigned int size)
3428 {
3429 	const struct arg *arg = pop_args(ctx);
3430 	uintmax_t u;
3431 	char *end;
3432 
3433 	(void)token;
3434 	/* Argument is expected. */
3435 	if (!arg)
3436 		return -1;
3437 	errno = 0;
3438 	u = arg->sign ?
3439 		(uintmax_t)strtoimax(str, &end, 0) :
3440 		strtoumax(str, &end, 0);
3441 	if (errno || (size_t)(end - str) != len)
3442 		goto error;
3443 	if (arg->bounded &&
3444 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
3445 			    (intmax_t)u > (intmax_t)arg->max)) ||
3446 	     (!arg->sign && (u < arg->min || u > arg->max))))
3447 		goto error;
3448 	if (!ctx->object)
3449 		return len;
3450 	if (arg->mask) {
3451 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
3452 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
3453 			goto error;
3454 		return len;
3455 	}
3456 	buf = (uint8_t *)ctx->object + arg->offset;
3457 	size = arg->size;
3458 objmask:
3459 	switch (size) {
3460 	case sizeof(uint8_t):
3461 		*(uint8_t *)buf = u;
3462 		break;
3463 	case sizeof(uint16_t):
3464 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
3465 		break;
3466 	case sizeof(uint8_t [3]):
3467 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3468 		if (!arg->hton) {
3469 			((uint8_t *)buf)[0] = u;
3470 			((uint8_t *)buf)[1] = u >> 8;
3471 			((uint8_t *)buf)[2] = u >> 16;
3472 			break;
3473 		}
3474 #endif
3475 		((uint8_t *)buf)[0] = u >> 16;
3476 		((uint8_t *)buf)[1] = u >> 8;
3477 		((uint8_t *)buf)[2] = u;
3478 		break;
3479 	case sizeof(uint32_t):
3480 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
3481 		break;
3482 	case sizeof(uint64_t):
3483 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
3484 		break;
3485 	default:
3486 		goto error;
3487 	}
3488 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
3489 		u = -1;
3490 		buf = (uint8_t *)ctx->objmask + arg->offset;
3491 		goto objmask;
3492 	}
3493 	return len;
3494 error:
3495 	push_args(ctx, arg);
3496 	return -1;
3497 }
3498 
3499 /**
3500  * Parse a string.
3501  *
3502  * Three arguments (ctx->args) are retrieved from the stack to store data,
3503  * its actual length and address (in that order).
3504  */
3505 static int
3506 parse_string(struct context *ctx, const struct token *token,
3507 	     const char *str, unsigned int len,
3508 	     void *buf, unsigned int size)
3509 {
3510 	const struct arg *arg_data = pop_args(ctx);
3511 	const struct arg *arg_len = pop_args(ctx);
3512 	const struct arg *arg_addr = pop_args(ctx);
3513 	char tmp[16]; /* Ought to be enough. */
3514 	int ret;
3515 
3516 	/* Arguments are expected. */
3517 	if (!arg_data)
3518 		return -1;
3519 	if (!arg_len) {
3520 		push_args(ctx, arg_data);
3521 		return -1;
3522 	}
3523 	if (!arg_addr) {
3524 		push_args(ctx, arg_len);
3525 		push_args(ctx, arg_data);
3526 		return -1;
3527 	}
3528 	size = arg_data->size;
3529 	/* Bit-mask fill is not supported. */
3530 	if (arg_data->mask || size < len)
3531 		goto error;
3532 	if (!ctx->object)
3533 		return len;
3534 	/* Let parse_int() fill length information first. */
3535 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
3536 	if (ret < 0)
3537 		goto error;
3538 	push_args(ctx, arg_len);
3539 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
3540 	if (ret < 0) {
3541 		pop_args(ctx);
3542 		goto error;
3543 	}
3544 	buf = (uint8_t *)ctx->object + arg_data->offset;
3545 	/* Output buffer is not necessarily NUL-terminated. */
3546 	memcpy(buf, str, len);
3547 	memset((uint8_t *)buf + len, 0x00, size - len);
3548 	if (ctx->objmask)
3549 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
3550 	/* Save address if requested. */
3551 	if (arg_addr->size) {
3552 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
3553 		       (void *[]){
3554 			(uint8_t *)ctx->object + arg_data->offset
3555 		       },
3556 		       arg_addr->size);
3557 		if (ctx->objmask)
3558 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
3559 			       (void *[]){
3560 				(uint8_t *)ctx->objmask + arg_data->offset
3561 			       },
3562 			       arg_addr->size);
3563 	}
3564 	return len;
3565 error:
3566 	push_args(ctx, arg_addr);
3567 	push_args(ctx, arg_len);
3568 	push_args(ctx, arg_data);
3569 	return -1;
3570 }
3571 
3572 /**
3573  * Parse a MAC address.
3574  *
3575  * Last argument (ctx->args) is retrieved to determine storage size and
3576  * location.
3577  */
3578 static int
3579 parse_mac_addr(struct context *ctx, const struct token *token,
3580 	       const char *str, unsigned int len,
3581 	       void *buf, unsigned int size)
3582 {
3583 	const struct arg *arg = pop_args(ctx);
3584 	struct ether_addr tmp;
3585 	int ret;
3586 
3587 	(void)token;
3588 	/* Argument is expected. */
3589 	if (!arg)
3590 		return -1;
3591 	size = arg->size;
3592 	/* Bit-mask fill is not supported. */
3593 	if (arg->mask || size != sizeof(tmp))
3594 		goto error;
3595 	/* Only network endian is supported. */
3596 	if (!arg->hton)
3597 		goto error;
3598 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
3599 	if (ret < 0 || (unsigned int)ret != len)
3600 		goto error;
3601 	if (!ctx->object)
3602 		return len;
3603 	buf = (uint8_t *)ctx->object + arg->offset;
3604 	memcpy(buf, &tmp, size);
3605 	if (ctx->objmask)
3606 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3607 	return len;
3608 error:
3609 	push_args(ctx, arg);
3610 	return -1;
3611 }
3612 
3613 /**
3614  * Parse an IPv4 address.
3615  *
3616  * Last argument (ctx->args) is retrieved to determine storage size and
3617  * location.
3618  */
3619 static int
3620 parse_ipv4_addr(struct context *ctx, const struct token *token,
3621 		const char *str, unsigned int len,
3622 		void *buf, unsigned int size)
3623 {
3624 	const struct arg *arg = pop_args(ctx);
3625 	char str2[len + 1];
3626 	struct in_addr tmp;
3627 	int ret;
3628 
3629 	/* Argument is expected. */
3630 	if (!arg)
3631 		return -1;
3632 	size = arg->size;
3633 	/* Bit-mask fill is not supported. */
3634 	if (arg->mask || size != sizeof(tmp))
3635 		goto error;
3636 	/* Only network endian is supported. */
3637 	if (!arg->hton)
3638 		goto error;
3639 	memcpy(str2, str, len);
3640 	str2[len] = '\0';
3641 	ret = inet_pton(AF_INET, str2, &tmp);
3642 	if (ret != 1) {
3643 		/* Attempt integer parsing. */
3644 		push_args(ctx, arg);
3645 		return parse_int(ctx, token, str, len, buf, size);
3646 	}
3647 	if (!ctx->object)
3648 		return len;
3649 	buf = (uint8_t *)ctx->object + arg->offset;
3650 	memcpy(buf, &tmp, size);
3651 	if (ctx->objmask)
3652 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3653 	return len;
3654 error:
3655 	push_args(ctx, arg);
3656 	return -1;
3657 }
3658 
3659 /**
3660  * Parse an IPv6 address.
3661  *
3662  * Last argument (ctx->args) is retrieved to determine storage size and
3663  * location.
3664  */
3665 static int
3666 parse_ipv6_addr(struct context *ctx, const struct token *token,
3667 		const char *str, unsigned int len,
3668 		void *buf, unsigned int size)
3669 {
3670 	const struct arg *arg = pop_args(ctx);
3671 	char str2[len + 1];
3672 	struct in6_addr tmp;
3673 	int ret;
3674 
3675 	(void)token;
3676 	/* Argument is expected. */
3677 	if (!arg)
3678 		return -1;
3679 	size = arg->size;
3680 	/* Bit-mask fill is not supported. */
3681 	if (arg->mask || size != sizeof(tmp))
3682 		goto error;
3683 	/* Only network endian is supported. */
3684 	if (!arg->hton)
3685 		goto error;
3686 	memcpy(str2, str, len);
3687 	str2[len] = '\0';
3688 	ret = inet_pton(AF_INET6, str2, &tmp);
3689 	if (ret != 1)
3690 		goto error;
3691 	if (!ctx->object)
3692 		return len;
3693 	buf = (uint8_t *)ctx->object + arg->offset;
3694 	memcpy(buf, &tmp, size);
3695 	if (ctx->objmask)
3696 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3697 	return len;
3698 error:
3699 	push_args(ctx, arg);
3700 	return -1;
3701 }
3702 
3703 /** Boolean values (even indices stand for false). */
3704 static const char *const boolean_name[] = {
3705 	"0", "1",
3706 	"false", "true",
3707 	"no", "yes",
3708 	"N", "Y",
3709 	"off", "on",
3710 	NULL,
3711 };
3712 
3713 /**
3714  * Parse a boolean value.
3715  *
3716  * Last argument (ctx->args) is retrieved to determine storage size and
3717  * location.
3718  */
3719 static int
3720 parse_boolean(struct context *ctx, const struct token *token,
3721 	      const char *str, unsigned int len,
3722 	      void *buf, unsigned int size)
3723 {
3724 	const struct arg *arg = pop_args(ctx);
3725 	unsigned int i;
3726 	int ret;
3727 
3728 	/* Argument is expected. */
3729 	if (!arg)
3730 		return -1;
3731 	for (i = 0; boolean_name[i]; ++i)
3732 		if (!strcmp_partial(boolean_name[i], str, len))
3733 			break;
3734 	/* Process token as integer. */
3735 	if (boolean_name[i])
3736 		str = i & 1 ? "1" : "0";
3737 	push_args(ctx, arg);
3738 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
3739 	return ret > 0 ? (int)len : ret;
3740 }
3741 
3742 /** Parse port and update context. */
3743 static int
3744 parse_port(struct context *ctx, const struct token *token,
3745 	   const char *str, unsigned int len,
3746 	   void *buf, unsigned int size)
3747 {
3748 	struct buffer *out = &(struct buffer){ .port = 0 };
3749 	int ret;
3750 
3751 	if (buf)
3752 		out = buf;
3753 	else {
3754 		ctx->objdata = 0;
3755 		ctx->object = out;
3756 		ctx->objmask = NULL;
3757 		size = sizeof(*out);
3758 	}
3759 	ret = parse_int(ctx, token, str, len, out, size);
3760 	if (ret >= 0)
3761 		ctx->port = out->port;
3762 	if (!buf)
3763 		ctx->object = NULL;
3764 	return ret;
3765 }
3766 
3767 /** No completion. */
3768 static int
3769 comp_none(struct context *ctx, const struct token *token,
3770 	  unsigned int ent, char *buf, unsigned int size)
3771 {
3772 	(void)ctx;
3773 	(void)token;
3774 	(void)ent;
3775 	(void)buf;
3776 	(void)size;
3777 	return 0;
3778 }
3779 
3780 /** Complete boolean values. */
3781 static int
3782 comp_boolean(struct context *ctx, const struct token *token,
3783 	     unsigned int ent, char *buf, unsigned int size)
3784 {
3785 	unsigned int i;
3786 
3787 	(void)ctx;
3788 	(void)token;
3789 	for (i = 0; boolean_name[i]; ++i)
3790 		if (buf && i == ent)
3791 			return snprintf(buf, size, "%s", boolean_name[i]);
3792 	if (buf)
3793 		return -1;
3794 	return i;
3795 }
3796 
3797 /** Complete action names. */
3798 static int
3799 comp_action(struct context *ctx, const struct token *token,
3800 	    unsigned int ent, char *buf, unsigned int size)
3801 {
3802 	unsigned int i;
3803 
3804 	(void)ctx;
3805 	(void)token;
3806 	for (i = 0; next_action[i]; ++i)
3807 		if (buf && i == ent)
3808 			return snprintf(buf, size, "%s",
3809 					token_list[next_action[i]].name);
3810 	if (buf)
3811 		return -1;
3812 	return i;
3813 }
3814 
3815 /** Complete available ports. */
3816 static int
3817 comp_port(struct context *ctx, const struct token *token,
3818 	  unsigned int ent, char *buf, unsigned int size)
3819 {
3820 	unsigned int i = 0;
3821 	portid_t p;
3822 
3823 	(void)ctx;
3824 	(void)token;
3825 	RTE_ETH_FOREACH_DEV(p) {
3826 		if (buf && i == ent)
3827 			return snprintf(buf, size, "%u", p);
3828 		++i;
3829 	}
3830 	if (buf)
3831 		return -1;
3832 	return i;
3833 }
3834 
3835 /** Complete available rule IDs. */
3836 static int
3837 comp_rule_id(struct context *ctx, const struct token *token,
3838 	     unsigned int ent, char *buf, unsigned int size)
3839 {
3840 	unsigned int i = 0;
3841 	struct rte_port *port;
3842 	struct port_flow *pf;
3843 
3844 	(void)token;
3845 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
3846 	    ctx->port == (portid_t)RTE_PORT_ALL)
3847 		return -1;
3848 	port = &ports[ctx->port];
3849 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
3850 		if (buf && i == ent)
3851 			return snprintf(buf, size, "%u", pf->id);
3852 		++i;
3853 	}
3854 	if (buf)
3855 		return -1;
3856 	return i;
3857 }
3858 
3859 /** Complete type field for RSS action. */
3860 static int
3861 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
3862 			unsigned int ent, char *buf, unsigned int size)
3863 {
3864 	unsigned int i;
3865 
3866 	(void)ctx;
3867 	(void)token;
3868 	for (i = 0; rss_type_table[i].str; ++i)
3869 		;
3870 	if (!buf)
3871 		return i + 1;
3872 	if (ent < i)
3873 		return snprintf(buf, size, "%s", rss_type_table[ent].str);
3874 	if (ent == i)
3875 		return snprintf(buf, size, "end");
3876 	return -1;
3877 }
3878 
3879 /** Complete queue field for RSS action. */
3880 static int
3881 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
3882 			 unsigned int ent, char *buf, unsigned int size)
3883 {
3884 	(void)ctx;
3885 	(void)token;
3886 	if (!buf)
3887 		return nb_rxq + 1;
3888 	if (ent < nb_rxq)
3889 		return snprintf(buf, size, "%u", ent);
3890 	if (ent == nb_rxq)
3891 		return snprintf(buf, size, "end");
3892 	return -1;
3893 }
3894 
3895 /** Internal context. */
3896 static struct context cmd_flow_context;
3897 
3898 /** Global parser instance (cmdline API). */
3899 cmdline_parse_inst_t cmd_flow;
3900 
3901 /** Initialize context. */
3902 static void
3903 cmd_flow_context_init(struct context *ctx)
3904 {
3905 	/* A full memset() is not necessary. */
3906 	ctx->curr = ZERO;
3907 	ctx->prev = ZERO;
3908 	ctx->next_num = 0;
3909 	ctx->args_num = 0;
3910 	ctx->eol = 0;
3911 	ctx->last = 0;
3912 	ctx->port = 0;
3913 	ctx->objdata = 0;
3914 	ctx->object = NULL;
3915 	ctx->objmask = NULL;
3916 }
3917 
3918 /** Parse a token (cmdline API). */
3919 static int
3920 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
3921 	       unsigned int size)
3922 {
3923 	struct context *ctx = &cmd_flow_context;
3924 	const struct token *token;
3925 	const enum index *list;
3926 	int len;
3927 	int i;
3928 
3929 	(void)hdr;
3930 	token = &token_list[ctx->curr];
3931 	/* Check argument length. */
3932 	ctx->eol = 0;
3933 	ctx->last = 1;
3934 	for (len = 0; src[len]; ++len)
3935 		if (src[len] == '#' || isspace(src[len]))
3936 			break;
3937 	if (!len)
3938 		return -1;
3939 	/* Last argument and EOL detection. */
3940 	for (i = len; src[i]; ++i)
3941 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
3942 			break;
3943 		else if (!isspace(src[i])) {
3944 			ctx->last = 0;
3945 			break;
3946 		}
3947 	for (; src[i]; ++i)
3948 		if (src[i] == '\r' || src[i] == '\n') {
3949 			ctx->eol = 1;
3950 			break;
3951 		}
3952 	/* Initialize context if necessary. */
3953 	if (!ctx->next_num) {
3954 		if (!token->next)
3955 			return 0;
3956 		ctx->next[ctx->next_num++] = token->next[0];
3957 	}
3958 	/* Process argument through candidates. */
3959 	ctx->prev = ctx->curr;
3960 	list = ctx->next[ctx->next_num - 1];
3961 	for (i = 0; list[i]; ++i) {
3962 		const struct token *next = &token_list[list[i]];
3963 		int tmp;
3964 
3965 		ctx->curr = list[i];
3966 		if (next->call)
3967 			tmp = next->call(ctx, next, src, len, result, size);
3968 		else
3969 			tmp = parse_default(ctx, next, src, len, result, size);
3970 		if (tmp == -1 || tmp != len)
3971 			continue;
3972 		token = next;
3973 		break;
3974 	}
3975 	if (!list[i])
3976 		return -1;
3977 	--ctx->next_num;
3978 	/* Push subsequent tokens if any. */
3979 	if (token->next)
3980 		for (i = 0; token->next[i]; ++i) {
3981 			if (ctx->next_num == RTE_DIM(ctx->next))
3982 				return -1;
3983 			ctx->next[ctx->next_num++] = token->next[i];
3984 		}
3985 	/* Push arguments if any. */
3986 	if (token->args)
3987 		for (i = 0; token->args[i]; ++i) {
3988 			if (ctx->args_num == RTE_DIM(ctx->args))
3989 				return -1;
3990 			ctx->args[ctx->args_num++] = token->args[i];
3991 		}
3992 	return len;
3993 }
3994 
3995 /** Return number of completion entries (cmdline API). */
3996 static int
3997 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
3998 {
3999 	struct context *ctx = &cmd_flow_context;
4000 	const struct token *token = &token_list[ctx->curr];
4001 	const enum index *list;
4002 	int i;
4003 
4004 	(void)hdr;
4005 	/* Count number of tokens in current list. */
4006 	if (ctx->next_num)
4007 		list = ctx->next[ctx->next_num - 1];
4008 	else
4009 		list = token->next[0];
4010 	for (i = 0; list[i]; ++i)
4011 		;
4012 	if (!i)
4013 		return 0;
4014 	/*
4015 	 * If there is a single token, use its completion callback, otherwise
4016 	 * return the number of entries.
4017 	 */
4018 	token = &token_list[list[0]];
4019 	if (i == 1 && token->comp) {
4020 		/* Save index for cmd_flow_get_help(). */
4021 		ctx->prev = list[0];
4022 		return token->comp(ctx, token, 0, NULL, 0);
4023 	}
4024 	return i;
4025 }
4026 
4027 /** Return a completion entry (cmdline API). */
4028 static int
4029 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
4030 			  char *dst, unsigned int size)
4031 {
4032 	struct context *ctx = &cmd_flow_context;
4033 	const struct token *token = &token_list[ctx->curr];
4034 	const enum index *list;
4035 	int i;
4036 
4037 	(void)hdr;
4038 	/* Count number of tokens in current list. */
4039 	if (ctx->next_num)
4040 		list = ctx->next[ctx->next_num - 1];
4041 	else
4042 		list = token->next[0];
4043 	for (i = 0; list[i]; ++i)
4044 		;
4045 	if (!i)
4046 		return -1;
4047 	/* If there is a single token, use its completion callback. */
4048 	token = &token_list[list[0]];
4049 	if (i == 1 && token->comp) {
4050 		/* Save index for cmd_flow_get_help(). */
4051 		ctx->prev = list[0];
4052 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
4053 	}
4054 	/* Otherwise make sure the index is valid and use defaults. */
4055 	if (index >= i)
4056 		return -1;
4057 	token = &token_list[list[index]];
4058 	snprintf(dst, size, "%s", token->name);
4059 	/* Save index for cmd_flow_get_help(). */
4060 	ctx->prev = list[index];
4061 	return 0;
4062 }
4063 
4064 /** Populate help strings for current token (cmdline API). */
4065 static int
4066 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
4067 {
4068 	struct context *ctx = &cmd_flow_context;
4069 	const struct token *token = &token_list[ctx->prev];
4070 
4071 	(void)hdr;
4072 	if (!size)
4073 		return -1;
4074 	/* Set token type and update global help with details. */
4075 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
4076 	if (token->help)
4077 		cmd_flow.help_str = token->help;
4078 	else
4079 		cmd_flow.help_str = token->name;
4080 	return 0;
4081 }
4082 
4083 /** Token definition template (cmdline API). */
4084 static struct cmdline_token_hdr cmd_flow_token_hdr = {
4085 	.ops = &(struct cmdline_token_ops){
4086 		.parse = cmd_flow_parse,
4087 		.complete_get_nb = cmd_flow_complete_get_nb,
4088 		.complete_get_elt = cmd_flow_complete_get_elt,
4089 		.get_help = cmd_flow_get_help,
4090 	},
4091 	.offset = 0,
4092 };
4093 
4094 /** Populate the next dynamic token. */
4095 static void
4096 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
4097 	     cmdline_parse_token_hdr_t **hdr_inst)
4098 {
4099 	struct context *ctx = &cmd_flow_context;
4100 
4101 	/* Always reinitialize context before requesting the first token. */
4102 	if (!(hdr_inst - cmd_flow.tokens))
4103 		cmd_flow_context_init(ctx);
4104 	/* Return NULL when no more tokens are expected. */
4105 	if (!ctx->next_num && ctx->curr) {
4106 		*hdr = NULL;
4107 		return;
4108 	}
4109 	/* Determine if command should end here. */
4110 	if (ctx->eol && ctx->last && ctx->next_num) {
4111 		const enum index *list = ctx->next[ctx->next_num - 1];
4112 		int i;
4113 
4114 		for (i = 0; list[i]; ++i) {
4115 			if (list[i] != END)
4116 				continue;
4117 			*hdr = NULL;
4118 			return;
4119 		}
4120 	}
4121 	*hdr = &cmd_flow_token_hdr;
4122 }
4123 
4124 /** Dispatch parsed buffer to function calls. */
4125 static void
4126 cmd_flow_parsed(const struct buffer *in)
4127 {
4128 	switch (in->command) {
4129 	case VALIDATE:
4130 		port_flow_validate(in->port, &in->args.vc.attr,
4131 				   in->args.vc.pattern, in->args.vc.actions);
4132 		break;
4133 	case CREATE:
4134 		port_flow_create(in->port, &in->args.vc.attr,
4135 				 in->args.vc.pattern, in->args.vc.actions);
4136 		break;
4137 	case DESTROY:
4138 		port_flow_destroy(in->port, in->args.destroy.rule_n,
4139 				  in->args.destroy.rule);
4140 		break;
4141 	case FLUSH:
4142 		port_flow_flush(in->port);
4143 		break;
4144 	case QUERY:
4145 		port_flow_query(in->port, in->args.query.rule,
4146 				&in->args.query.action);
4147 		break;
4148 	case LIST:
4149 		port_flow_list(in->port, in->args.list.group_n,
4150 			       in->args.list.group);
4151 		break;
4152 	case ISOLATE:
4153 		port_flow_isolate(in->port, in->args.isolate.set);
4154 		break;
4155 	default:
4156 		break;
4157 	}
4158 }
4159 
4160 /** Token generator and output processing callback (cmdline API). */
4161 static void
4162 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
4163 {
4164 	if (cl == NULL)
4165 		cmd_flow_tok(arg0, arg2);
4166 	else
4167 		cmd_flow_parsed(arg0);
4168 }
4169 
4170 /** Global parser instance (cmdline API). */
4171 cmdline_parse_inst_t cmd_flow = {
4172 	.f = cmd_flow_cb,
4173 	.data = NULL, /**< Unused. */
4174 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
4175 	.tokens = {
4176 		NULL,
4177 	}, /**< Tokens are returned by cmd_flow_tok(). */
4178 };
4179