xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 10b71caecbe1cddcbb65c050ca775fba575e88db)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <cmdline_parse_string.h>
23 #include <cmdline_parse_num.h>
24 #include <rte_flow.h>
25 #include <rte_hexdump.h>
26 
27 #include "testpmd.h"
28 
29 /** Parser token indices. */
30 enum index {
31 	/* Special tokens. */
32 	ZERO = 0,
33 	END,
34 	START_SET,
35 	END_SET,
36 
37 	/* Common tokens. */
38 	INTEGER,
39 	UNSIGNED,
40 	PREFIX,
41 	BOOLEAN,
42 	STRING,
43 	HEX,
44 	FILE_PATH,
45 	MAC_ADDR,
46 	IPV4_ADDR,
47 	IPV6_ADDR,
48 	RULE_ID,
49 	PORT_ID,
50 	GROUP_ID,
51 	PRIORITY_LEVEL,
52 
53 	/* Top-level command. */
54 	SET,
55 	/* Sub-leve commands. */
56 	SET_RAW_ENCAP,
57 	SET_RAW_DECAP,
58 	SET_RAW_INDEX,
59 
60 	/* Top-level command. */
61 	FLOW,
62 	/* Sub-level commands. */
63 	VALIDATE,
64 	CREATE,
65 	DESTROY,
66 	FLUSH,
67 	DUMP,
68 	QUERY,
69 	LIST,
70 	AGED,
71 	ISOLATE,
72 
73 	/* Destroy arguments. */
74 	DESTROY_RULE,
75 
76 	/* Query arguments. */
77 	QUERY_ACTION,
78 
79 	/* List arguments. */
80 	LIST_GROUP,
81 
82 	/* Destroy aged flow arguments. */
83 	AGED_DESTROY,
84 
85 	/* Validate/create arguments. */
86 	GROUP,
87 	PRIORITY,
88 	INGRESS,
89 	EGRESS,
90 	TRANSFER,
91 
92 	/* Validate/create pattern. */
93 	PATTERN,
94 	ITEM_PARAM_IS,
95 	ITEM_PARAM_SPEC,
96 	ITEM_PARAM_LAST,
97 	ITEM_PARAM_MASK,
98 	ITEM_PARAM_PREFIX,
99 	ITEM_NEXT,
100 	ITEM_END,
101 	ITEM_VOID,
102 	ITEM_INVERT,
103 	ITEM_ANY,
104 	ITEM_ANY_NUM,
105 	ITEM_PF,
106 	ITEM_VF,
107 	ITEM_VF_ID,
108 	ITEM_PHY_PORT,
109 	ITEM_PHY_PORT_INDEX,
110 	ITEM_PORT_ID,
111 	ITEM_PORT_ID_ID,
112 	ITEM_MARK,
113 	ITEM_MARK_ID,
114 	ITEM_RAW,
115 	ITEM_RAW_RELATIVE,
116 	ITEM_RAW_SEARCH,
117 	ITEM_RAW_OFFSET,
118 	ITEM_RAW_LIMIT,
119 	ITEM_RAW_PATTERN,
120 	ITEM_ETH,
121 	ITEM_ETH_DST,
122 	ITEM_ETH_SRC,
123 	ITEM_ETH_TYPE,
124 	ITEM_VLAN,
125 	ITEM_VLAN_TCI,
126 	ITEM_VLAN_PCP,
127 	ITEM_VLAN_DEI,
128 	ITEM_VLAN_VID,
129 	ITEM_VLAN_INNER_TYPE,
130 	ITEM_IPV4,
131 	ITEM_IPV4_TOS,
132 	ITEM_IPV4_TTL,
133 	ITEM_IPV4_PROTO,
134 	ITEM_IPV4_SRC,
135 	ITEM_IPV4_DST,
136 	ITEM_IPV6,
137 	ITEM_IPV6_TC,
138 	ITEM_IPV6_FLOW,
139 	ITEM_IPV6_PROTO,
140 	ITEM_IPV6_HOP,
141 	ITEM_IPV6_SRC,
142 	ITEM_IPV6_DST,
143 	ITEM_ICMP,
144 	ITEM_ICMP_TYPE,
145 	ITEM_ICMP_CODE,
146 	ITEM_UDP,
147 	ITEM_UDP_SRC,
148 	ITEM_UDP_DST,
149 	ITEM_TCP,
150 	ITEM_TCP_SRC,
151 	ITEM_TCP_DST,
152 	ITEM_TCP_FLAGS,
153 	ITEM_SCTP,
154 	ITEM_SCTP_SRC,
155 	ITEM_SCTP_DST,
156 	ITEM_SCTP_TAG,
157 	ITEM_SCTP_CKSUM,
158 	ITEM_VXLAN,
159 	ITEM_VXLAN_VNI,
160 	ITEM_E_TAG,
161 	ITEM_E_TAG_GRP_ECID_B,
162 	ITEM_NVGRE,
163 	ITEM_NVGRE_TNI,
164 	ITEM_MPLS,
165 	ITEM_MPLS_LABEL,
166 	ITEM_MPLS_TC,
167 	ITEM_MPLS_S,
168 	ITEM_GRE,
169 	ITEM_GRE_PROTO,
170 	ITEM_GRE_C_RSVD0_VER,
171 	ITEM_GRE_C_BIT,
172 	ITEM_GRE_K_BIT,
173 	ITEM_GRE_S_BIT,
174 	ITEM_FUZZY,
175 	ITEM_FUZZY_THRESH,
176 	ITEM_GTP,
177 	ITEM_GTP_FLAGS,
178 	ITEM_GTP_MSG_TYPE,
179 	ITEM_GTP_TEID,
180 	ITEM_GTPC,
181 	ITEM_GTPU,
182 	ITEM_GENEVE,
183 	ITEM_GENEVE_VNI,
184 	ITEM_GENEVE_PROTO,
185 	ITEM_VXLAN_GPE,
186 	ITEM_VXLAN_GPE_VNI,
187 	ITEM_ARP_ETH_IPV4,
188 	ITEM_ARP_ETH_IPV4_SHA,
189 	ITEM_ARP_ETH_IPV4_SPA,
190 	ITEM_ARP_ETH_IPV4_THA,
191 	ITEM_ARP_ETH_IPV4_TPA,
192 	ITEM_IPV6_EXT,
193 	ITEM_IPV6_EXT_NEXT_HDR,
194 	ITEM_ICMP6,
195 	ITEM_ICMP6_TYPE,
196 	ITEM_ICMP6_CODE,
197 	ITEM_ICMP6_ND_NS,
198 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
199 	ITEM_ICMP6_ND_NA,
200 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
201 	ITEM_ICMP6_ND_OPT,
202 	ITEM_ICMP6_ND_OPT_TYPE,
203 	ITEM_ICMP6_ND_OPT_SLA_ETH,
204 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
205 	ITEM_ICMP6_ND_OPT_TLA_ETH,
206 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
207 	ITEM_META,
208 	ITEM_META_DATA,
209 	ITEM_GRE_KEY,
210 	ITEM_GRE_KEY_VALUE,
211 	ITEM_GTP_PSC,
212 	ITEM_GTP_PSC_QFI,
213 	ITEM_GTP_PSC_PDU_T,
214 	ITEM_PPPOES,
215 	ITEM_PPPOED,
216 	ITEM_PPPOE_SEID,
217 	ITEM_PPPOE_PROTO_ID,
218 	ITEM_HIGIG2,
219 	ITEM_HIGIG2_CLASSIFICATION,
220 	ITEM_HIGIG2_VID,
221 	ITEM_TAG,
222 	ITEM_TAG_DATA,
223 	ITEM_TAG_INDEX,
224 	ITEM_L2TPV3OIP,
225 	ITEM_L2TPV3OIP_SESSION_ID,
226 	ITEM_ESP,
227 	ITEM_ESP_SPI,
228 	ITEM_AH,
229 	ITEM_AH_SPI,
230 	ITEM_PFCP,
231 	ITEM_PFCP_S_FIELD,
232 	ITEM_PFCP_SEID,
233 	ITEM_ECPRI,
234 	ITEM_ECPRI_COMMON,
235 	ITEM_ECPRI_COMMON_TYPE,
236 	ITEM_ECPRI_COMMON_TYPE_IQ_DATA,
237 	ITEM_ECPRI_COMMON_TYPE_RTC_CTRL,
238 	ITEM_ECPRI_COMMON_TYPE_DLY_MSR,
239 	ITEM_ECPRI_MSG_IQ_DATA_PCID,
240 	ITEM_ECPRI_MSG_RTC_CTRL_RTCID,
241 	ITEM_ECPRI_MSG_DLY_MSR_MSRID,
242 
243 	/* Validate/create actions. */
244 	ACTIONS,
245 	ACTION_NEXT,
246 	ACTION_END,
247 	ACTION_VOID,
248 	ACTION_PASSTHRU,
249 	ACTION_JUMP,
250 	ACTION_JUMP_GROUP,
251 	ACTION_MARK,
252 	ACTION_MARK_ID,
253 	ACTION_FLAG,
254 	ACTION_QUEUE,
255 	ACTION_QUEUE_INDEX,
256 	ACTION_DROP,
257 	ACTION_COUNT,
258 	ACTION_COUNT_SHARED,
259 	ACTION_COUNT_ID,
260 	ACTION_RSS,
261 	ACTION_RSS_FUNC,
262 	ACTION_RSS_LEVEL,
263 	ACTION_RSS_FUNC_DEFAULT,
264 	ACTION_RSS_FUNC_TOEPLITZ,
265 	ACTION_RSS_FUNC_SIMPLE_XOR,
266 	ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ,
267 	ACTION_RSS_TYPES,
268 	ACTION_RSS_TYPE,
269 	ACTION_RSS_KEY,
270 	ACTION_RSS_KEY_LEN,
271 	ACTION_RSS_QUEUES,
272 	ACTION_RSS_QUEUE,
273 	ACTION_PF,
274 	ACTION_VF,
275 	ACTION_VF_ORIGINAL,
276 	ACTION_VF_ID,
277 	ACTION_PHY_PORT,
278 	ACTION_PHY_PORT_ORIGINAL,
279 	ACTION_PHY_PORT_INDEX,
280 	ACTION_PORT_ID,
281 	ACTION_PORT_ID_ORIGINAL,
282 	ACTION_PORT_ID_ID,
283 	ACTION_METER,
284 	ACTION_METER_ID,
285 	ACTION_OF_SET_MPLS_TTL,
286 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
287 	ACTION_OF_DEC_MPLS_TTL,
288 	ACTION_OF_SET_NW_TTL,
289 	ACTION_OF_SET_NW_TTL_NW_TTL,
290 	ACTION_OF_DEC_NW_TTL,
291 	ACTION_OF_COPY_TTL_OUT,
292 	ACTION_OF_COPY_TTL_IN,
293 	ACTION_OF_POP_VLAN,
294 	ACTION_OF_PUSH_VLAN,
295 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
296 	ACTION_OF_SET_VLAN_VID,
297 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
298 	ACTION_OF_SET_VLAN_PCP,
299 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
300 	ACTION_OF_POP_MPLS,
301 	ACTION_OF_POP_MPLS_ETHERTYPE,
302 	ACTION_OF_PUSH_MPLS,
303 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
304 	ACTION_VXLAN_ENCAP,
305 	ACTION_VXLAN_DECAP,
306 	ACTION_NVGRE_ENCAP,
307 	ACTION_NVGRE_DECAP,
308 	ACTION_L2_ENCAP,
309 	ACTION_L2_DECAP,
310 	ACTION_MPLSOGRE_ENCAP,
311 	ACTION_MPLSOGRE_DECAP,
312 	ACTION_MPLSOUDP_ENCAP,
313 	ACTION_MPLSOUDP_DECAP,
314 	ACTION_SET_IPV4_SRC,
315 	ACTION_SET_IPV4_SRC_IPV4_SRC,
316 	ACTION_SET_IPV4_DST,
317 	ACTION_SET_IPV4_DST_IPV4_DST,
318 	ACTION_SET_IPV6_SRC,
319 	ACTION_SET_IPV6_SRC_IPV6_SRC,
320 	ACTION_SET_IPV6_DST,
321 	ACTION_SET_IPV6_DST_IPV6_DST,
322 	ACTION_SET_TP_SRC,
323 	ACTION_SET_TP_SRC_TP_SRC,
324 	ACTION_SET_TP_DST,
325 	ACTION_SET_TP_DST_TP_DST,
326 	ACTION_MAC_SWAP,
327 	ACTION_DEC_TTL,
328 	ACTION_SET_TTL,
329 	ACTION_SET_TTL_TTL,
330 	ACTION_SET_MAC_SRC,
331 	ACTION_SET_MAC_SRC_MAC_SRC,
332 	ACTION_SET_MAC_DST,
333 	ACTION_SET_MAC_DST_MAC_DST,
334 	ACTION_INC_TCP_SEQ,
335 	ACTION_INC_TCP_SEQ_VALUE,
336 	ACTION_DEC_TCP_SEQ,
337 	ACTION_DEC_TCP_SEQ_VALUE,
338 	ACTION_INC_TCP_ACK,
339 	ACTION_INC_TCP_ACK_VALUE,
340 	ACTION_DEC_TCP_ACK,
341 	ACTION_DEC_TCP_ACK_VALUE,
342 	ACTION_RAW_ENCAP,
343 	ACTION_RAW_DECAP,
344 	ACTION_RAW_ENCAP_INDEX,
345 	ACTION_RAW_ENCAP_INDEX_VALUE,
346 	ACTION_RAW_DECAP_INDEX,
347 	ACTION_RAW_DECAP_INDEX_VALUE,
348 	ACTION_SET_TAG,
349 	ACTION_SET_TAG_DATA,
350 	ACTION_SET_TAG_INDEX,
351 	ACTION_SET_TAG_MASK,
352 	ACTION_SET_META,
353 	ACTION_SET_META_DATA,
354 	ACTION_SET_META_MASK,
355 	ACTION_SET_IPV4_DSCP,
356 	ACTION_SET_IPV4_DSCP_VALUE,
357 	ACTION_SET_IPV6_DSCP,
358 	ACTION_SET_IPV6_DSCP_VALUE,
359 	ACTION_AGE,
360 	ACTION_AGE_TIMEOUT,
361 };
362 
363 /** Maximum size for pattern in struct rte_flow_item_raw. */
364 #define ITEM_RAW_PATTERN_SIZE 40
365 
366 /** Storage size for struct rte_flow_item_raw including pattern. */
367 #define ITEM_RAW_SIZE \
368 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
369 
370 /** Maximum number of queue indices in struct rte_flow_action_rss. */
371 #define ACTION_RSS_QUEUE_NUM 128
372 
373 /** Storage for struct rte_flow_action_rss including external data. */
374 struct action_rss_data {
375 	struct rte_flow_action_rss conf;
376 	uint8_t key[RSS_HASH_KEY_LENGTH];
377 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
378 };
379 
380 /** Maximum data size in struct rte_flow_action_raw_encap. */
381 #define ACTION_RAW_ENCAP_MAX_DATA 128
382 #define RAW_ENCAP_CONFS_MAX_NUM 8
383 
384 /** Storage for struct rte_flow_action_raw_encap. */
385 struct raw_encap_conf {
386 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
387 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
388 	size_t size;
389 };
390 
391 struct raw_encap_conf raw_encap_confs[RAW_ENCAP_CONFS_MAX_NUM];
392 
393 /** Storage for struct rte_flow_action_raw_encap including external data. */
394 struct action_raw_encap_data {
395 	struct rte_flow_action_raw_encap conf;
396 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
397 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
398 	uint16_t idx;
399 };
400 
401 /** Storage for struct rte_flow_action_raw_decap. */
402 struct raw_decap_conf {
403 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
404 	size_t size;
405 };
406 
407 struct raw_decap_conf raw_decap_confs[RAW_ENCAP_CONFS_MAX_NUM];
408 
409 /** Storage for struct rte_flow_action_raw_decap including external data. */
410 struct action_raw_decap_data {
411 	struct rte_flow_action_raw_decap conf;
412 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
413 	uint16_t idx;
414 };
415 
416 struct vxlan_encap_conf vxlan_encap_conf = {
417 	.select_ipv4 = 1,
418 	.select_vlan = 0,
419 	.select_tos_ttl = 0,
420 	.vni = "\x00\x00\x00",
421 	.udp_src = 0,
422 	.udp_dst = RTE_BE16(4789),
423 	.ipv4_src = RTE_IPV4(127, 0, 0, 1),
424 	.ipv4_dst = RTE_IPV4(255, 255, 255, 255),
425 	.ipv6_src = "\x00\x00\x00\x00\x00\x00\x00\x00"
426 		"\x00\x00\x00\x00\x00\x00\x00\x01",
427 	.ipv6_dst = "\x00\x00\x00\x00\x00\x00\x00\x00"
428 		"\x00\x00\x00\x00\x00\x00\x11\x11",
429 	.vlan_tci = 0,
430 	.ip_tos = 0,
431 	.ip_ttl = 255,
432 	.eth_src = "\x00\x00\x00\x00\x00\x00",
433 	.eth_dst = "\xff\xff\xff\xff\xff\xff",
434 };
435 
436 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
437 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
438 
439 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
440 struct action_vxlan_encap_data {
441 	struct rte_flow_action_vxlan_encap conf;
442 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
443 	struct rte_flow_item_eth item_eth;
444 	struct rte_flow_item_vlan item_vlan;
445 	union {
446 		struct rte_flow_item_ipv4 item_ipv4;
447 		struct rte_flow_item_ipv6 item_ipv6;
448 	};
449 	struct rte_flow_item_udp item_udp;
450 	struct rte_flow_item_vxlan item_vxlan;
451 };
452 
453 struct nvgre_encap_conf nvgre_encap_conf = {
454 	.select_ipv4 = 1,
455 	.select_vlan = 0,
456 	.tni = "\x00\x00\x00",
457 	.ipv4_src = RTE_IPV4(127, 0, 0, 1),
458 	.ipv4_dst = RTE_IPV4(255, 255, 255, 255),
459 	.ipv6_src = "\x00\x00\x00\x00\x00\x00\x00\x00"
460 		"\x00\x00\x00\x00\x00\x00\x00\x01",
461 	.ipv6_dst = "\x00\x00\x00\x00\x00\x00\x00\x00"
462 		"\x00\x00\x00\x00\x00\x00\x11\x11",
463 	.vlan_tci = 0,
464 	.eth_src = "\x00\x00\x00\x00\x00\x00",
465 	.eth_dst = "\xff\xff\xff\xff\xff\xff",
466 };
467 
468 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
469 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
470 
471 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
472 struct action_nvgre_encap_data {
473 	struct rte_flow_action_nvgre_encap conf;
474 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
475 	struct rte_flow_item_eth item_eth;
476 	struct rte_flow_item_vlan item_vlan;
477 	union {
478 		struct rte_flow_item_ipv4 item_ipv4;
479 		struct rte_flow_item_ipv6 item_ipv6;
480 	};
481 	struct rte_flow_item_nvgre item_nvgre;
482 };
483 
484 struct l2_encap_conf l2_encap_conf;
485 
486 struct l2_decap_conf l2_decap_conf;
487 
488 struct mplsogre_encap_conf mplsogre_encap_conf;
489 
490 struct mplsogre_decap_conf mplsogre_decap_conf;
491 
492 struct mplsoudp_encap_conf mplsoudp_encap_conf;
493 
494 struct mplsoudp_decap_conf mplsoudp_decap_conf;
495 
496 /** Maximum number of subsequent tokens and arguments on the stack. */
497 #define CTX_STACK_SIZE 16
498 
499 /** Parser context. */
500 struct context {
501 	/** Stack of subsequent token lists to process. */
502 	const enum index *next[CTX_STACK_SIZE];
503 	/** Arguments for stacked tokens. */
504 	const void *args[CTX_STACK_SIZE];
505 	enum index curr; /**< Current token index. */
506 	enum index prev; /**< Index of the last token seen. */
507 	int next_num; /**< Number of entries in next[]. */
508 	int args_num; /**< Number of entries in args[]. */
509 	uint32_t eol:1; /**< EOL has been detected. */
510 	uint32_t last:1; /**< No more arguments. */
511 	portid_t port; /**< Current port ID (for completions). */
512 	uint32_t objdata; /**< Object-specific data. */
513 	void *object; /**< Address of current object for relative offsets. */
514 	void *objmask; /**< Object a full mask must be written to. */
515 };
516 
517 /** Token argument. */
518 struct arg {
519 	uint32_t hton:1; /**< Use network byte ordering. */
520 	uint32_t sign:1; /**< Value is signed. */
521 	uint32_t bounded:1; /**< Value is bounded. */
522 	uintmax_t min; /**< Minimum value if bounded. */
523 	uintmax_t max; /**< Maximum value if bounded. */
524 	uint32_t offset; /**< Relative offset from ctx->object. */
525 	uint32_t size; /**< Field size. */
526 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
527 };
528 
529 /** Parser token definition. */
530 struct token {
531 	/** Type displayed during completion (defaults to "TOKEN"). */
532 	const char *type;
533 	/** Help displayed during completion (defaults to token name). */
534 	const char *help;
535 	/** Private data used by parser functions. */
536 	const void *priv;
537 	/**
538 	 * Lists of subsequent tokens to push on the stack. Each call to the
539 	 * parser consumes the last entry of that stack.
540 	 */
541 	const enum index *const *next;
542 	/** Arguments stack for subsequent tokens that need them. */
543 	const struct arg *const *args;
544 	/**
545 	 * Token-processing callback, returns -1 in case of error, the
546 	 * length of the matched string otherwise. If NULL, attempts to
547 	 * match the token name.
548 	 *
549 	 * If buf is not NULL, the result should be stored in it according
550 	 * to context. An error is returned if not large enough.
551 	 */
552 	int (*call)(struct context *ctx, const struct token *token,
553 		    const char *str, unsigned int len,
554 		    void *buf, unsigned int size);
555 	/**
556 	 * Callback that provides possible values for this token, used for
557 	 * completion. Returns -1 in case of error, the number of possible
558 	 * values otherwise. If NULL, the token name is used.
559 	 *
560 	 * If buf is not NULL, entry index ent is written to buf and the
561 	 * full length of the entry is returned (same behavior as
562 	 * snprintf()).
563 	 */
564 	int (*comp)(struct context *ctx, const struct token *token,
565 		    unsigned int ent, char *buf, unsigned int size);
566 	/** Mandatory token name, no default value. */
567 	const char *name;
568 };
569 
570 /** Static initializer for the next field. */
571 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
572 
573 /** Static initializer for a NEXT() entry. */
574 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
575 
576 /** Static initializer for the args field. */
577 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
578 
579 /** Static initializer for ARGS() to target a field. */
580 #define ARGS_ENTRY(s, f) \
581 	(&(const struct arg){ \
582 		.offset = offsetof(s, f), \
583 		.size = sizeof(((s *)0)->f), \
584 	})
585 
586 /** Static initializer for ARGS() to target a bit-field. */
587 #define ARGS_ENTRY_BF(s, f, b) \
588 	(&(const struct arg){ \
589 		.size = sizeof(s), \
590 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
591 	})
592 
593 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
594 #define ARGS_ENTRY_MASK(s, f, m) \
595 	(&(const struct arg){ \
596 		.offset = offsetof(s, f), \
597 		.size = sizeof(((s *)0)->f), \
598 		.mask = (const void *)(m), \
599 	})
600 
601 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
602 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
603 	(&(const struct arg){ \
604 		.hton = 1, \
605 		.offset = offsetof(s, f), \
606 		.size = sizeof(((s *)0)->f), \
607 		.mask = (const void *)(m), \
608 	})
609 
610 /** Static initializer for ARGS() to target a pointer. */
611 #define ARGS_ENTRY_PTR(s, f) \
612 	(&(const struct arg){ \
613 		.size = sizeof(*((s *)0)->f), \
614 	})
615 
616 /** Static initializer for ARGS() with arbitrary offset and size. */
617 #define ARGS_ENTRY_ARB(o, s) \
618 	(&(const struct arg){ \
619 		.offset = (o), \
620 		.size = (s), \
621 	})
622 
623 /** Same as ARGS_ENTRY_ARB() with bounded values. */
624 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
625 	(&(const struct arg){ \
626 		.bounded = 1, \
627 		.min = (i), \
628 		.max = (a), \
629 		.offset = (o), \
630 		.size = (s), \
631 	})
632 
633 /** Same as ARGS_ENTRY() using network byte ordering. */
634 #define ARGS_ENTRY_HTON(s, f) \
635 	(&(const struct arg){ \
636 		.hton = 1, \
637 		.offset = offsetof(s, f), \
638 		.size = sizeof(((s *)0)->f), \
639 	})
640 
641 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
642 #define ARG_ENTRY_HTON(s) \
643 	(&(const struct arg){ \
644 		.hton = 1, \
645 		.offset = 0, \
646 		.size = sizeof(s), \
647 	})
648 
649 /** Parser output buffer layout expected by cmd_flow_parsed(). */
650 struct buffer {
651 	enum index command; /**< Flow command. */
652 	portid_t port; /**< Affected port ID. */
653 	union {
654 		struct {
655 			struct rte_flow_attr attr;
656 			struct rte_flow_item *pattern;
657 			struct rte_flow_action *actions;
658 			uint32_t pattern_n;
659 			uint32_t actions_n;
660 			uint8_t *data;
661 		} vc; /**< Validate/create arguments. */
662 		struct {
663 			uint32_t *rule;
664 			uint32_t rule_n;
665 		} destroy; /**< Destroy arguments. */
666 		struct {
667 			char file[128];
668 		} dump; /**< Dump arguments. */
669 		struct {
670 			uint32_t rule;
671 			struct rte_flow_action action;
672 		} query; /**< Query arguments. */
673 		struct {
674 			uint32_t *group;
675 			uint32_t group_n;
676 		} list; /**< List arguments. */
677 		struct {
678 			int set;
679 		} isolate; /**< Isolated mode arguments. */
680 		struct {
681 			int destroy;
682 		} aged; /**< Aged arguments. */
683 	} args; /**< Command arguments. */
684 };
685 
686 /** Private data for pattern items. */
687 struct parse_item_priv {
688 	enum rte_flow_item_type type; /**< Item type. */
689 	uint32_t size; /**< Size of item specification structure. */
690 };
691 
692 #define PRIV_ITEM(t, s) \
693 	(&(const struct parse_item_priv){ \
694 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
695 		.size = s, \
696 	})
697 
698 /** Private data for actions. */
699 struct parse_action_priv {
700 	enum rte_flow_action_type type; /**< Action type. */
701 	uint32_t size; /**< Size of action configuration structure. */
702 };
703 
704 #define PRIV_ACTION(t, s) \
705 	(&(const struct parse_action_priv){ \
706 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
707 		.size = s, \
708 	})
709 
710 static const enum index next_vc_attr[] = {
711 	GROUP,
712 	PRIORITY,
713 	INGRESS,
714 	EGRESS,
715 	TRANSFER,
716 	PATTERN,
717 	ZERO,
718 };
719 
720 static const enum index next_destroy_attr[] = {
721 	DESTROY_RULE,
722 	END,
723 	ZERO,
724 };
725 
726 static const enum index next_dump_attr[] = {
727 	FILE_PATH,
728 	END,
729 	ZERO,
730 };
731 
732 static const enum index next_list_attr[] = {
733 	LIST_GROUP,
734 	END,
735 	ZERO,
736 };
737 
738 static const enum index next_aged_attr[] = {
739 	AGED_DESTROY,
740 	END,
741 	ZERO,
742 };
743 
744 static const enum index item_param[] = {
745 	ITEM_PARAM_IS,
746 	ITEM_PARAM_SPEC,
747 	ITEM_PARAM_LAST,
748 	ITEM_PARAM_MASK,
749 	ITEM_PARAM_PREFIX,
750 	ZERO,
751 };
752 
753 static const enum index next_item[] = {
754 	ITEM_END,
755 	ITEM_VOID,
756 	ITEM_INVERT,
757 	ITEM_ANY,
758 	ITEM_PF,
759 	ITEM_VF,
760 	ITEM_PHY_PORT,
761 	ITEM_PORT_ID,
762 	ITEM_MARK,
763 	ITEM_RAW,
764 	ITEM_ETH,
765 	ITEM_VLAN,
766 	ITEM_IPV4,
767 	ITEM_IPV6,
768 	ITEM_ICMP,
769 	ITEM_UDP,
770 	ITEM_TCP,
771 	ITEM_SCTP,
772 	ITEM_VXLAN,
773 	ITEM_E_TAG,
774 	ITEM_NVGRE,
775 	ITEM_MPLS,
776 	ITEM_GRE,
777 	ITEM_FUZZY,
778 	ITEM_GTP,
779 	ITEM_GTPC,
780 	ITEM_GTPU,
781 	ITEM_GENEVE,
782 	ITEM_VXLAN_GPE,
783 	ITEM_ARP_ETH_IPV4,
784 	ITEM_IPV6_EXT,
785 	ITEM_ICMP6,
786 	ITEM_ICMP6_ND_NS,
787 	ITEM_ICMP6_ND_NA,
788 	ITEM_ICMP6_ND_OPT,
789 	ITEM_ICMP6_ND_OPT_SLA_ETH,
790 	ITEM_ICMP6_ND_OPT_TLA_ETH,
791 	ITEM_META,
792 	ITEM_GRE_KEY,
793 	ITEM_GTP_PSC,
794 	ITEM_PPPOES,
795 	ITEM_PPPOED,
796 	ITEM_PPPOE_PROTO_ID,
797 	ITEM_HIGIG2,
798 	ITEM_TAG,
799 	ITEM_L2TPV3OIP,
800 	ITEM_ESP,
801 	ITEM_AH,
802 	ITEM_PFCP,
803 	ITEM_ECPRI,
804 	END_SET,
805 	ZERO,
806 };
807 
808 static const enum index item_fuzzy[] = {
809 	ITEM_FUZZY_THRESH,
810 	ITEM_NEXT,
811 	ZERO,
812 };
813 
814 static const enum index item_any[] = {
815 	ITEM_ANY_NUM,
816 	ITEM_NEXT,
817 	ZERO,
818 };
819 
820 static const enum index item_vf[] = {
821 	ITEM_VF_ID,
822 	ITEM_NEXT,
823 	ZERO,
824 };
825 
826 static const enum index item_phy_port[] = {
827 	ITEM_PHY_PORT_INDEX,
828 	ITEM_NEXT,
829 	ZERO,
830 };
831 
832 static const enum index item_port_id[] = {
833 	ITEM_PORT_ID_ID,
834 	ITEM_NEXT,
835 	ZERO,
836 };
837 
838 static const enum index item_mark[] = {
839 	ITEM_MARK_ID,
840 	ITEM_NEXT,
841 	ZERO,
842 };
843 
844 static const enum index item_raw[] = {
845 	ITEM_RAW_RELATIVE,
846 	ITEM_RAW_SEARCH,
847 	ITEM_RAW_OFFSET,
848 	ITEM_RAW_LIMIT,
849 	ITEM_RAW_PATTERN,
850 	ITEM_NEXT,
851 	ZERO,
852 };
853 
854 static const enum index item_eth[] = {
855 	ITEM_ETH_DST,
856 	ITEM_ETH_SRC,
857 	ITEM_ETH_TYPE,
858 	ITEM_NEXT,
859 	ZERO,
860 };
861 
862 static const enum index item_vlan[] = {
863 	ITEM_VLAN_TCI,
864 	ITEM_VLAN_PCP,
865 	ITEM_VLAN_DEI,
866 	ITEM_VLAN_VID,
867 	ITEM_VLAN_INNER_TYPE,
868 	ITEM_NEXT,
869 	ZERO,
870 };
871 
872 static const enum index item_ipv4[] = {
873 	ITEM_IPV4_TOS,
874 	ITEM_IPV4_TTL,
875 	ITEM_IPV4_PROTO,
876 	ITEM_IPV4_SRC,
877 	ITEM_IPV4_DST,
878 	ITEM_NEXT,
879 	ZERO,
880 };
881 
882 static const enum index item_ipv6[] = {
883 	ITEM_IPV6_TC,
884 	ITEM_IPV6_FLOW,
885 	ITEM_IPV6_PROTO,
886 	ITEM_IPV6_HOP,
887 	ITEM_IPV6_SRC,
888 	ITEM_IPV6_DST,
889 	ITEM_NEXT,
890 	ZERO,
891 };
892 
893 static const enum index item_icmp[] = {
894 	ITEM_ICMP_TYPE,
895 	ITEM_ICMP_CODE,
896 	ITEM_NEXT,
897 	ZERO,
898 };
899 
900 static const enum index item_udp[] = {
901 	ITEM_UDP_SRC,
902 	ITEM_UDP_DST,
903 	ITEM_NEXT,
904 	ZERO,
905 };
906 
907 static const enum index item_tcp[] = {
908 	ITEM_TCP_SRC,
909 	ITEM_TCP_DST,
910 	ITEM_TCP_FLAGS,
911 	ITEM_NEXT,
912 	ZERO,
913 };
914 
915 static const enum index item_sctp[] = {
916 	ITEM_SCTP_SRC,
917 	ITEM_SCTP_DST,
918 	ITEM_SCTP_TAG,
919 	ITEM_SCTP_CKSUM,
920 	ITEM_NEXT,
921 	ZERO,
922 };
923 
924 static const enum index item_vxlan[] = {
925 	ITEM_VXLAN_VNI,
926 	ITEM_NEXT,
927 	ZERO,
928 };
929 
930 static const enum index item_e_tag[] = {
931 	ITEM_E_TAG_GRP_ECID_B,
932 	ITEM_NEXT,
933 	ZERO,
934 };
935 
936 static const enum index item_nvgre[] = {
937 	ITEM_NVGRE_TNI,
938 	ITEM_NEXT,
939 	ZERO,
940 };
941 
942 static const enum index item_mpls[] = {
943 	ITEM_MPLS_LABEL,
944 	ITEM_MPLS_TC,
945 	ITEM_MPLS_S,
946 	ITEM_NEXT,
947 	ZERO,
948 };
949 
950 static const enum index item_gre[] = {
951 	ITEM_GRE_PROTO,
952 	ITEM_GRE_C_RSVD0_VER,
953 	ITEM_GRE_C_BIT,
954 	ITEM_GRE_K_BIT,
955 	ITEM_GRE_S_BIT,
956 	ITEM_NEXT,
957 	ZERO,
958 };
959 
960 static const enum index item_gre_key[] = {
961 	ITEM_GRE_KEY_VALUE,
962 	ITEM_NEXT,
963 	ZERO,
964 };
965 
966 static const enum index item_gtp[] = {
967 	ITEM_GTP_FLAGS,
968 	ITEM_GTP_MSG_TYPE,
969 	ITEM_GTP_TEID,
970 	ITEM_NEXT,
971 	ZERO,
972 };
973 
974 static const enum index item_geneve[] = {
975 	ITEM_GENEVE_VNI,
976 	ITEM_GENEVE_PROTO,
977 	ITEM_NEXT,
978 	ZERO,
979 };
980 
981 static const enum index item_vxlan_gpe[] = {
982 	ITEM_VXLAN_GPE_VNI,
983 	ITEM_NEXT,
984 	ZERO,
985 };
986 
987 static const enum index item_arp_eth_ipv4[] = {
988 	ITEM_ARP_ETH_IPV4_SHA,
989 	ITEM_ARP_ETH_IPV4_SPA,
990 	ITEM_ARP_ETH_IPV4_THA,
991 	ITEM_ARP_ETH_IPV4_TPA,
992 	ITEM_NEXT,
993 	ZERO,
994 };
995 
996 static const enum index item_ipv6_ext[] = {
997 	ITEM_IPV6_EXT_NEXT_HDR,
998 	ITEM_NEXT,
999 	ZERO,
1000 };
1001 
1002 static const enum index item_icmp6[] = {
1003 	ITEM_ICMP6_TYPE,
1004 	ITEM_ICMP6_CODE,
1005 	ITEM_NEXT,
1006 	ZERO,
1007 };
1008 
1009 static const enum index item_icmp6_nd_ns[] = {
1010 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
1011 	ITEM_NEXT,
1012 	ZERO,
1013 };
1014 
1015 static const enum index item_icmp6_nd_na[] = {
1016 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
1017 	ITEM_NEXT,
1018 	ZERO,
1019 };
1020 
1021 static const enum index item_icmp6_nd_opt[] = {
1022 	ITEM_ICMP6_ND_OPT_TYPE,
1023 	ITEM_NEXT,
1024 	ZERO,
1025 };
1026 
1027 static const enum index item_icmp6_nd_opt_sla_eth[] = {
1028 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
1029 	ITEM_NEXT,
1030 	ZERO,
1031 };
1032 
1033 static const enum index item_icmp6_nd_opt_tla_eth[] = {
1034 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
1035 	ITEM_NEXT,
1036 	ZERO,
1037 };
1038 
1039 static const enum index item_meta[] = {
1040 	ITEM_META_DATA,
1041 	ITEM_NEXT,
1042 	ZERO,
1043 };
1044 
1045 static const enum index item_gtp_psc[] = {
1046 	ITEM_GTP_PSC_QFI,
1047 	ITEM_GTP_PSC_PDU_T,
1048 	ITEM_NEXT,
1049 	ZERO,
1050 };
1051 
1052 static const enum index item_pppoed[] = {
1053 	ITEM_PPPOE_SEID,
1054 	ITEM_NEXT,
1055 	ZERO,
1056 };
1057 
1058 static const enum index item_pppoes[] = {
1059 	ITEM_PPPOE_SEID,
1060 	ITEM_NEXT,
1061 	ZERO,
1062 };
1063 
1064 static const enum index item_pppoe_proto_id[] = {
1065 	ITEM_NEXT,
1066 	ZERO,
1067 };
1068 
1069 static const enum index item_higig2[] = {
1070 	ITEM_HIGIG2_CLASSIFICATION,
1071 	ITEM_HIGIG2_VID,
1072 	ITEM_NEXT,
1073 	ZERO,
1074 };
1075 
1076 static const enum index item_esp[] = {
1077 	ITEM_ESP_SPI,
1078 	ITEM_NEXT,
1079 	ZERO,
1080 };
1081 
1082 static const enum index item_ah[] = {
1083 	ITEM_AH_SPI,
1084 	ITEM_NEXT,
1085 	ZERO,
1086 };
1087 
1088 static const enum index item_pfcp[] = {
1089 	ITEM_PFCP_S_FIELD,
1090 	ITEM_PFCP_SEID,
1091 	ITEM_NEXT,
1092 	ZERO,
1093 };
1094 
1095 static const enum index next_set_raw[] = {
1096 	SET_RAW_INDEX,
1097 	ITEM_ETH,
1098 	ZERO,
1099 };
1100 
1101 static const enum index item_tag[] = {
1102 	ITEM_TAG_DATA,
1103 	ITEM_TAG_INDEX,
1104 	ITEM_NEXT,
1105 	ZERO,
1106 };
1107 
1108 static const enum index item_l2tpv3oip[] = {
1109 	ITEM_L2TPV3OIP_SESSION_ID,
1110 	ITEM_NEXT,
1111 	ZERO,
1112 };
1113 
1114 static const enum index item_ecpri[] = {
1115 	ITEM_ECPRI_COMMON,
1116 	ITEM_NEXT,
1117 	ZERO,
1118 };
1119 
1120 static const enum index item_ecpri_common[] = {
1121 	ITEM_ECPRI_COMMON_TYPE,
1122 	ZERO,
1123 };
1124 
1125 static const enum index item_ecpri_common_type[] = {
1126 	ITEM_ECPRI_COMMON_TYPE_IQ_DATA,
1127 	ITEM_ECPRI_COMMON_TYPE_RTC_CTRL,
1128 	ITEM_ECPRI_COMMON_TYPE_DLY_MSR,
1129 	ZERO,
1130 };
1131 
1132 static const enum index next_action[] = {
1133 	ACTION_END,
1134 	ACTION_VOID,
1135 	ACTION_PASSTHRU,
1136 	ACTION_JUMP,
1137 	ACTION_MARK,
1138 	ACTION_FLAG,
1139 	ACTION_QUEUE,
1140 	ACTION_DROP,
1141 	ACTION_COUNT,
1142 	ACTION_RSS,
1143 	ACTION_PF,
1144 	ACTION_VF,
1145 	ACTION_PHY_PORT,
1146 	ACTION_PORT_ID,
1147 	ACTION_METER,
1148 	ACTION_OF_SET_MPLS_TTL,
1149 	ACTION_OF_DEC_MPLS_TTL,
1150 	ACTION_OF_SET_NW_TTL,
1151 	ACTION_OF_DEC_NW_TTL,
1152 	ACTION_OF_COPY_TTL_OUT,
1153 	ACTION_OF_COPY_TTL_IN,
1154 	ACTION_OF_POP_VLAN,
1155 	ACTION_OF_PUSH_VLAN,
1156 	ACTION_OF_SET_VLAN_VID,
1157 	ACTION_OF_SET_VLAN_PCP,
1158 	ACTION_OF_POP_MPLS,
1159 	ACTION_OF_PUSH_MPLS,
1160 	ACTION_VXLAN_ENCAP,
1161 	ACTION_VXLAN_DECAP,
1162 	ACTION_NVGRE_ENCAP,
1163 	ACTION_NVGRE_DECAP,
1164 	ACTION_L2_ENCAP,
1165 	ACTION_L2_DECAP,
1166 	ACTION_MPLSOGRE_ENCAP,
1167 	ACTION_MPLSOGRE_DECAP,
1168 	ACTION_MPLSOUDP_ENCAP,
1169 	ACTION_MPLSOUDP_DECAP,
1170 	ACTION_SET_IPV4_SRC,
1171 	ACTION_SET_IPV4_DST,
1172 	ACTION_SET_IPV6_SRC,
1173 	ACTION_SET_IPV6_DST,
1174 	ACTION_SET_TP_SRC,
1175 	ACTION_SET_TP_DST,
1176 	ACTION_MAC_SWAP,
1177 	ACTION_DEC_TTL,
1178 	ACTION_SET_TTL,
1179 	ACTION_SET_MAC_SRC,
1180 	ACTION_SET_MAC_DST,
1181 	ACTION_INC_TCP_SEQ,
1182 	ACTION_DEC_TCP_SEQ,
1183 	ACTION_INC_TCP_ACK,
1184 	ACTION_DEC_TCP_ACK,
1185 	ACTION_RAW_ENCAP,
1186 	ACTION_RAW_DECAP,
1187 	ACTION_SET_TAG,
1188 	ACTION_SET_META,
1189 	ACTION_SET_IPV4_DSCP,
1190 	ACTION_SET_IPV6_DSCP,
1191 	ACTION_AGE,
1192 	ZERO,
1193 };
1194 
1195 static const enum index action_mark[] = {
1196 	ACTION_MARK_ID,
1197 	ACTION_NEXT,
1198 	ZERO,
1199 };
1200 
1201 static const enum index action_queue[] = {
1202 	ACTION_QUEUE_INDEX,
1203 	ACTION_NEXT,
1204 	ZERO,
1205 };
1206 
1207 static const enum index action_count[] = {
1208 	ACTION_COUNT_ID,
1209 	ACTION_COUNT_SHARED,
1210 	ACTION_NEXT,
1211 	ZERO,
1212 };
1213 
1214 static const enum index action_rss[] = {
1215 	ACTION_RSS_FUNC,
1216 	ACTION_RSS_LEVEL,
1217 	ACTION_RSS_TYPES,
1218 	ACTION_RSS_KEY,
1219 	ACTION_RSS_KEY_LEN,
1220 	ACTION_RSS_QUEUES,
1221 	ACTION_NEXT,
1222 	ZERO,
1223 };
1224 
1225 static const enum index action_vf[] = {
1226 	ACTION_VF_ORIGINAL,
1227 	ACTION_VF_ID,
1228 	ACTION_NEXT,
1229 	ZERO,
1230 };
1231 
1232 static const enum index action_phy_port[] = {
1233 	ACTION_PHY_PORT_ORIGINAL,
1234 	ACTION_PHY_PORT_INDEX,
1235 	ACTION_NEXT,
1236 	ZERO,
1237 };
1238 
1239 static const enum index action_port_id[] = {
1240 	ACTION_PORT_ID_ORIGINAL,
1241 	ACTION_PORT_ID_ID,
1242 	ACTION_NEXT,
1243 	ZERO,
1244 };
1245 
1246 static const enum index action_meter[] = {
1247 	ACTION_METER_ID,
1248 	ACTION_NEXT,
1249 	ZERO,
1250 };
1251 
1252 static const enum index action_of_set_mpls_ttl[] = {
1253 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
1254 	ACTION_NEXT,
1255 	ZERO,
1256 };
1257 
1258 static const enum index action_of_set_nw_ttl[] = {
1259 	ACTION_OF_SET_NW_TTL_NW_TTL,
1260 	ACTION_NEXT,
1261 	ZERO,
1262 };
1263 
1264 static const enum index action_of_push_vlan[] = {
1265 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
1266 	ACTION_NEXT,
1267 	ZERO,
1268 };
1269 
1270 static const enum index action_of_set_vlan_vid[] = {
1271 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
1272 	ACTION_NEXT,
1273 	ZERO,
1274 };
1275 
1276 static const enum index action_of_set_vlan_pcp[] = {
1277 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
1278 	ACTION_NEXT,
1279 	ZERO,
1280 };
1281 
1282 static const enum index action_of_pop_mpls[] = {
1283 	ACTION_OF_POP_MPLS_ETHERTYPE,
1284 	ACTION_NEXT,
1285 	ZERO,
1286 };
1287 
1288 static const enum index action_of_push_mpls[] = {
1289 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
1290 	ACTION_NEXT,
1291 	ZERO,
1292 };
1293 
1294 static const enum index action_set_ipv4_src[] = {
1295 	ACTION_SET_IPV4_SRC_IPV4_SRC,
1296 	ACTION_NEXT,
1297 	ZERO,
1298 };
1299 
1300 static const enum index action_set_mac_src[] = {
1301 	ACTION_SET_MAC_SRC_MAC_SRC,
1302 	ACTION_NEXT,
1303 	ZERO,
1304 };
1305 
1306 static const enum index action_set_ipv4_dst[] = {
1307 	ACTION_SET_IPV4_DST_IPV4_DST,
1308 	ACTION_NEXT,
1309 	ZERO,
1310 };
1311 
1312 static const enum index action_set_ipv6_src[] = {
1313 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1314 	ACTION_NEXT,
1315 	ZERO,
1316 };
1317 
1318 static const enum index action_set_ipv6_dst[] = {
1319 	ACTION_SET_IPV6_DST_IPV6_DST,
1320 	ACTION_NEXT,
1321 	ZERO,
1322 };
1323 
1324 static const enum index action_set_tp_src[] = {
1325 	ACTION_SET_TP_SRC_TP_SRC,
1326 	ACTION_NEXT,
1327 	ZERO,
1328 };
1329 
1330 static const enum index action_set_tp_dst[] = {
1331 	ACTION_SET_TP_DST_TP_DST,
1332 	ACTION_NEXT,
1333 	ZERO,
1334 };
1335 
1336 static const enum index action_set_ttl[] = {
1337 	ACTION_SET_TTL_TTL,
1338 	ACTION_NEXT,
1339 	ZERO,
1340 };
1341 
1342 static const enum index action_jump[] = {
1343 	ACTION_JUMP_GROUP,
1344 	ACTION_NEXT,
1345 	ZERO,
1346 };
1347 
1348 static const enum index action_set_mac_dst[] = {
1349 	ACTION_SET_MAC_DST_MAC_DST,
1350 	ACTION_NEXT,
1351 	ZERO,
1352 };
1353 
1354 static const enum index action_inc_tcp_seq[] = {
1355 	ACTION_INC_TCP_SEQ_VALUE,
1356 	ACTION_NEXT,
1357 	ZERO,
1358 };
1359 
1360 static const enum index action_dec_tcp_seq[] = {
1361 	ACTION_DEC_TCP_SEQ_VALUE,
1362 	ACTION_NEXT,
1363 	ZERO,
1364 };
1365 
1366 static const enum index action_inc_tcp_ack[] = {
1367 	ACTION_INC_TCP_ACK_VALUE,
1368 	ACTION_NEXT,
1369 	ZERO,
1370 };
1371 
1372 static const enum index action_dec_tcp_ack[] = {
1373 	ACTION_DEC_TCP_ACK_VALUE,
1374 	ACTION_NEXT,
1375 	ZERO,
1376 };
1377 
1378 static const enum index action_raw_encap[] = {
1379 	ACTION_RAW_ENCAP_INDEX,
1380 	ACTION_NEXT,
1381 	ZERO,
1382 };
1383 
1384 static const enum index action_raw_decap[] = {
1385 	ACTION_RAW_DECAP_INDEX,
1386 	ACTION_NEXT,
1387 	ZERO,
1388 };
1389 
1390 static const enum index action_set_tag[] = {
1391 	ACTION_SET_TAG_DATA,
1392 	ACTION_SET_TAG_INDEX,
1393 	ACTION_SET_TAG_MASK,
1394 	ACTION_NEXT,
1395 	ZERO,
1396 };
1397 
1398 static const enum index action_set_meta[] = {
1399 	ACTION_SET_META_DATA,
1400 	ACTION_SET_META_MASK,
1401 	ACTION_NEXT,
1402 	ZERO,
1403 };
1404 
1405 static const enum index action_set_ipv4_dscp[] = {
1406 	ACTION_SET_IPV4_DSCP_VALUE,
1407 	ACTION_NEXT,
1408 	ZERO,
1409 };
1410 
1411 static const enum index action_set_ipv6_dscp[] = {
1412 	ACTION_SET_IPV6_DSCP_VALUE,
1413 	ACTION_NEXT,
1414 	ZERO,
1415 };
1416 
1417 static const enum index action_age[] = {
1418 	ACTION_AGE,
1419 	ACTION_AGE_TIMEOUT,
1420 	ACTION_NEXT,
1421 	ZERO,
1422 };
1423 
1424 static int parse_set_raw_encap_decap(struct context *, const struct token *,
1425 				     const char *, unsigned int,
1426 				     void *, unsigned int);
1427 static int parse_set_init(struct context *, const struct token *,
1428 			  const char *, unsigned int,
1429 			  void *, unsigned int);
1430 static int parse_init(struct context *, const struct token *,
1431 		      const char *, unsigned int,
1432 		      void *, unsigned int);
1433 static int parse_vc(struct context *, const struct token *,
1434 		    const char *, unsigned int,
1435 		    void *, unsigned int);
1436 static int parse_vc_spec(struct context *, const struct token *,
1437 			 const char *, unsigned int, void *, unsigned int);
1438 static int parse_vc_conf(struct context *, const struct token *,
1439 			 const char *, unsigned int, void *, unsigned int);
1440 static int parse_vc_item_ecpri_type(struct context *, const struct token *,
1441 				    const char *, unsigned int,
1442 				    void *, unsigned int);
1443 static int parse_vc_action_rss(struct context *, const struct token *,
1444 			       const char *, unsigned int, void *,
1445 			       unsigned int);
1446 static int parse_vc_action_rss_func(struct context *, const struct token *,
1447 				    const char *, unsigned int, void *,
1448 				    unsigned int);
1449 static int parse_vc_action_rss_type(struct context *, const struct token *,
1450 				    const char *, unsigned int, void *,
1451 				    unsigned int);
1452 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1453 				     const char *, unsigned int, void *,
1454 				     unsigned int);
1455 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1456 				       const char *, unsigned int, void *,
1457 				       unsigned int);
1458 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1459 				       const char *, unsigned int, void *,
1460 				       unsigned int);
1461 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1462 				    const char *, unsigned int, void *,
1463 				    unsigned int);
1464 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1465 				    const char *, unsigned int, void *,
1466 				    unsigned int);
1467 static int parse_vc_action_mplsogre_encap(struct context *,
1468 					  const struct token *, const char *,
1469 					  unsigned int, void *, unsigned int);
1470 static int parse_vc_action_mplsogre_decap(struct context *,
1471 					  const struct token *, const char *,
1472 					  unsigned int, void *, unsigned int);
1473 static int parse_vc_action_mplsoudp_encap(struct context *,
1474 					  const struct token *, const char *,
1475 					  unsigned int, void *, unsigned int);
1476 static int parse_vc_action_mplsoudp_decap(struct context *,
1477 					  const struct token *, const char *,
1478 					  unsigned int, void *, unsigned int);
1479 static int parse_vc_action_raw_encap(struct context *,
1480 				     const struct token *, const char *,
1481 				     unsigned int, void *, unsigned int);
1482 static int parse_vc_action_raw_decap(struct context *,
1483 				     const struct token *, const char *,
1484 				     unsigned int, void *, unsigned int);
1485 static int parse_vc_action_raw_encap_index(struct context *,
1486 					   const struct token *, const char *,
1487 					   unsigned int, void *, unsigned int);
1488 static int parse_vc_action_raw_decap_index(struct context *,
1489 					   const struct token *, const char *,
1490 					   unsigned int, void *, unsigned int);
1491 static int parse_vc_action_set_meta(struct context *ctx,
1492 				    const struct token *token, const char *str,
1493 				    unsigned int len, void *buf,
1494 				    unsigned int size);
1495 static int parse_destroy(struct context *, const struct token *,
1496 			 const char *, unsigned int,
1497 			 void *, unsigned int);
1498 static int parse_flush(struct context *, const struct token *,
1499 		       const char *, unsigned int,
1500 		       void *, unsigned int);
1501 static int parse_dump(struct context *, const struct token *,
1502 		      const char *, unsigned int,
1503 		      void *, unsigned int);
1504 static int parse_query(struct context *, const struct token *,
1505 		       const char *, unsigned int,
1506 		       void *, unsigned int);
1507 static int parse_action(struct context *, const struct token *,
1508 			const char *, unsigned int,
1509 			void *, unsigned int);
1510 static int parse_list(struct context *, const struct token *,
1511 		      const char *, unsigned int,
1512 		      void *, unsigned int);
1513 static int parse_aged(struct context *, const struct token *,
1514 		      const char *, unsigned int,
1515 		      void *, unsigned int);
1516 static int parse_isolate(struct context *, const struct token *,
1517 			 const char *, unsigned int,
1518 			 void *, unsigned int);
1519 static int parse_int(struct context *, const struct token *,
1520 		     const char *, unsigned int,
1521 		     void *, unsigned int);
1522 static int parse_prefix(struct context *, const struct token *,
1523 			const char *, unsigned int,
1524 			void *, unsigned int);
1525 static int parse_boolean(struct context *, const struct token *,
1526 			 const char *, unsigned int,
1527 			 void *, unsigned int);
1528 static int parse_string(struct context *, const struct token *,
1529 			const char *, unsigned int,
1530 			void *, unsigned int);
1531 static int parse_hex(struct context *ctx, const struct token *token,
1532 			const char *str, unsigned int len,
1533 			void *buf, unsigned int size);
1534 static int parse_string0(struct context *, const struct token *,
1535 			const char *, unsigned int,
1536 			void *, unsigned int);
1537 static int parse_mac_addr(struct context *, const struct token *,
1538 			  const char *, unsigned int,
1539 			  void *, unsigned int);
1540 static int parse_ipv4_addr(struct context *, const struct token *,
1541 			   const char *, unsigned int,
1542 			   void *, unsigned int);
1543 static int parse_ipv6_addr(struct context *, const struct token *,
1544 			   const char *, unsigned int,
1545 			   void *, unsigned int);
1546 static int parse_port(struct context *, const struct token *,
1547 		      const char *, unsigned int,
1548 		      void *, unsigned int);
1549 static int comp_none(struct context *, const struct token *,
1550 		     unsigned int, char *, unsigned int);
1551 static int comp_boolean(struct context *, const struct token *,
1552 			unsigned int, char *, unsigned int);
1553 static int comp_action(struct context *, const struct token *,
1554 		       unsigned int, char *, unsigned int);
1555 static int comp_port(struct context *, const struct token *,
1556 		     unsigned int, char *, unsigned int);
1557 static int comp_rule_id(struct context *, const struct token *,
1558 			unsigned int, char *, unsigned int);
1559 static int comp_vc_action_rss_type(struct context *, const struct token *,
1560 				   unsigned int, char *, unsigned int);
1561 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1562 				    unsigned int, char *, unsigned int);
1563 static int comp_set_raw_index(struct context *, const struct token *,
1564 			      unsigned int, char *, unsigned int);
1565 
1566 /** Token definitions. */
1567 static const struct token token_list[] = {
1568 	/* Special tokens. */
1569 	[ZERO] = {
1570 		.name = "ZERO",
1571 		.help = "null entry, abused as the entry point",
1572 		.next = NEXT(NEXT_ENTRY(FLOW)),
1573 	},
1574 	[END] = {
1575 		.name = "",
1576 		.type = "RETURN",
1577 		.help = "command may end here",
1578 	},
1579 	[START_SET] = {
1580 		.name = "START_SET",
1581 		.help = "null entry, abused as the entry point for set",
1582 		.next = NEXT(NEXT_ENTRY(SET)),
1583 	},
1584 	[END_SET] = {
1585 		.name = "end_set",
1586 		.type = "RETURN",
1587 		.help = "set command may end here",
1588 	},
1589 	/* Common tokens. */
1590 	[INTEGER] = {
1591 		.name = "{int}",
1592 		.type = "INTEGER",
1593 		.help = "integer value",
1594 		.call = parse_int,
1595 		.comp = comp_none,
1596 	},
1597 	[UNSIGNED] = {
1598 		.name = "{unsigned}",
1599 		.type = "UNSIGNED",
1600 		.help = "unsigned integer value",
1601 		.call = parse_int,
1602 		.comp = comp_none,
1603 	},
1604 	[PREFIX] = {
1605 		.name = "{prefix}",
1606 		.type = "PREFIX",
1607 		.help = "prefix length for bit-mask",
1608 		.call = parse_prefix,
1609 		.comp = comp_none,
1610 	},
1611 	[BOOLEAN] = {
1612 		.name = "{boolean}",
1613 		.type = "BOOLEAN",
1614 		.help = "any boolean value",
1615 		.call = parse_boolean,
1616 		.comp = comp_boolean,
1617 	},
1618 	[STRING] = {
1619 		.name = "{string}",
1620 		.type = "STRING",
1621 		.help = "fixed string",
1622 		.call = parse_string,
1623 		.comp = comp_none,
1624 	},
1625 	[HEX] = {
1626 		.name = "{hex}",
1627 		.type = "HEX",
1628 		.help = "fixed string",
1629 		.call = parse_hex,
1630 	},
1631 	[FILE_PATH] = {
1632 		.name = "{file path}",
1633 		.type = "STRING",
1634 		.help = "file path",
1635 		.call = parse_string0,
1636 		.comp = comp_none,
1637 	},
1638 	[MAC_ADDR] = {
1639 		.name = "{MAC address}",
1640 		.type = "MAC-48",
1641 		.help = "standard MAC address notation",
1642 		.call = parse_mac_addr,
1643 		.comp = comp_none,
1644 	},
1645 	[IPV4_ADDR] = {
1646 		.name = "{IPv4 address}",
1647 		.type = "IPV4 ADDRESS",
1648 		.help = "standard IPv4 address notation",
1649 		.call = parse_ipv4_addr,
1650 		.comp = comp_none,
1651 	},
1652 	[IPV6_ADDR] = {
1653 		.name = "{IPv6 address}",
1654 		.type = "IPV6 ADDRESS",
1655 		.help = "standard IPv6 address notation",
1656 		.call = parse_ipv6_addr,
1657 		.comp = comp_none,
1658 	},
1659 	[RULE_ID] = {
1660 		.name = "{rule id}",
1661 		.type = "RULE ID",
1662 		.help = "rule identifier",
1663 		.call = parse_int,
1664 		.comp = comp_rule_id,
1665 	},
1666 	[PORT_ID] = {
1667 		.name = "{port_id}",
1668 		.type = "PORT ID",
1669 		.help = "port identifier",
1670 		.call = parse_port,
1671 		.comp = comp_port,
1672 	},
1673 	[GROUP_ID] = {
1674 		.name = "{group_id}",
1675 		.type = "GROUP ID",
1676 		.help = "group identifier",
1677 		.call = parse_int,
1678 		.comp = comp_none,
1679 	},
1680 	[PRIORITY_LEVEL] = {
1681 		.name = "{level}",
1682 		.type = "PRIORITY",
1683 		.help = "priority level",
1684 		.call = parse_int,
1685 		.comp = comp_none,
1686 	},
1687 	/* Top-level command. */
1688 	[FLOW] = {
1689 		.name = "flow",
1690 		.type = "{command} {port_id} [{arg} [...]]",
1691 		.help = "manage ingress/egress flow rules",
1692 		.next = NEXT(NEXT_ENTRY
1693 			     (VALIDATE,
1694 			      CREATE,
1695 			      DESTROY,
1696 			      FLUSH,
1697 			      DUMP,
1698 			      LIST,
1699 			      AGED,
1700 			      QUERY,
1701 			      ISOLATE)),
1702 		.call = parse_init,
1703 	},
1704 	/* Sub-level commands. */
1705 	[VALIDATE] = {
1706 		.name = "validate",
1707 		.help = "check whether a flow rule can be created",
1708 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1709 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1710 		.call = parse_vc,
1711 	},
1712 	[CREATE] = {
1713 		.name = "create",
1714 		.help = "create a flow rule",
1715 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
1716 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1717 		.call = parse_vc,
1718 	},
1719 	[DESTROY] = {
1720 		.name = "destroy",
1721 		.help = "destroy specific flow rules",
1722 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
1723 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1724 		.call = parse_destroy,
1725 	},
1726 	[FLUSH] = {
1727 		.name = "flush",
1728 		.help = "destroy all flow rules",
1729 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
1730 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1731 		.call = parse_flush,
1732 	},
1733 	[DUMP] = {
1734 		.name = "dump",
1735 		.help = "dump all flow rules to file",
1736 		.next = NEXT(next_dump_attr, NEXT_ENTRY(PORT_ID)),
1737 		.args = ARGS(ARGS_ENTRY(struct buffer, args.dump.file),
1738 			     ARGS_ENTRY(struct buffer, port)),
1739 		.call = parse_dump,
1740 	},
1741 	[QUERY] = {
1742 		.name = "query",
1743 		.help = "query an existing flow rule",
1744 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
1745 			     NEXT_ENTRY(RULE_ID),
1746 			     NEXT_ENTRY(PORT_ID)),
1747 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
1748 			     ARGS_ENTRY(struct buffer, args.query.rule),
1749 			     ARGS_ENTRY(struct buffer, port)),
1750 		.call = parse_query,
1751 	},
1752 	[LIST] = {
1753 		.name = "list",
1754 		.help = "list existing flow rules",
1755 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
1756 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1757 		.call = parse_list,
1758 	},
1759 	[AGED] = {
1760 		.name = "aged",
1761 		.help = "list and destroy aged flows",
1762 		.next = NEXT(next_aged_attr, NEXT_ENTRY(PORT_ID)),
1763 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
1764 		.call = parse_aged,
1765 	},
1766 	[ISOLATE] = {
1767 		.name = "isolate",
1768 		.help = "restrict ingress traffic to the defined flow rules",
1769 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
1770 			     NEXT_ENTRY(PORT_ID)),
1771 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
1772 			     ARGS_ENTRY(struct buffer, port)),
1773 		.call = parse_isolate,
1774 	},
1775 	/* Destroy arguments. */
1776 	[DESTROY_RULE] = {
1777 		.name = "rule",
1778 		.help = "specify a rule identifier",
1779 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
1780 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
1781 		.call = parse_destroy,
1782 	},
1783 	/* Query arguments. */
1784 	[QUERY_ACTION] = {
1785 		.name = "{action}",
1786 		.type = "ACTION",
1787 		.help = "action to query, must be part of the rule",
1788 		.call = parse_action,
1789 		.comp = comp_action,
1790 	},
1791 	/* List arguments. */
1792 	[LIST_GROUP] = {
1793 		.name = "group",
1794 		.help = "specify a group",
1795 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
1796 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
1797 		.call = parse_list,
1798 	},
1799 	[AGED_DESTROY] = {
1800 		.name = "destroy",
1801 		.help = "specify aged flows need be destroyed",
1802 		.call = parse_aged,
1803 		.comp = comp_none,
1804 	},
1805 	/* Validate/create attributes. */
1806 	[GROUP] = {
1807 		.name = "group",
1808 		.help = "specify a group",
1809 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
1810 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
1811 		.call = parse_vc,
1812 	},
1813 	[PRIORITY] = {
1814 		.name = "priority",
1815 		.help = "specify a priority level",
1816 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
1817 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
1818 		.call = parse_vc,
1819 	},
1820 	[INGRESS] = {
1821 		.name = "ingress",
1822 		.help = "affect rule to ingress",
1823 		.next = NEXT(next_vc_attr),
1824 		.call = parse_vc,
1825 	},
1826 	[EGRESS] = {
1827 		.name = "egress",
1828 		.help = "affect rule to egress",
1829 		.next = NEXT(next_vc_attr),
1830 		.call = parse_vc,
1831 	},
1832 	[TRANSFER] = {
1833 		.name = "transfer",
1834 		.help = "apply rule directly to endpoints found in pattern",
1835 		.next = NEXT(next_vc_attr),
1836 		.call = parse_vc,
1837 	},
1838 	/* Validate/create pattern. */
1839 	[PATTERN] = {
1840 		.name = "pattern",
1841 		.help = "submit a list of pattern items",
1842 		.next = NEXT(next_item),
1843 		.call = parse_vc,
1844 	},
1845 	[ITEM_PARAM_IS] = {
1846 		.name = "is",
1847 		.help = "match value perfectly (with full bit-mask)",
1848 		.call = parse_vc_spec,
1849 	},
1850 	[ITEM_PARAM_SPEC] = {
1851 		.name = "spec",
1852 		.help = "match value according to configured bit-mask",
1853 		.call = parse_vc_spec,
1854 	},
1855 	[ITEM_PARAM_LAST] = {
1856 		.name = "last",
1857 		.help = "specify upper bound to establish a range",
1858 		.call = parse_vc_spec,
1859 	},
1860 	[ITEM_PARAM_MASK] = {
1861 		.name = "mask",
1862 		.help = "specify bit-mask with relevant bits set to one",
1863 		.call = parse_vc_spec,
1864 	},
1865 	[ITEM_PARAM_PREFIX] = {
1866 		.name = "prefix",
1867 		.help = "generate bit-mask from a prefix length",
1868 		.call = parse_vc_spec,
1869 	},
1870 	[ITEM_NEXT] = {
1871 		.name = "/",
1872 		.help = "specify next pattern item",
1873 		.next = NEXT(next_item),
1874 	},
1875 	[ITEM_END] = {
1876 		.name = "end",
1877 		.help = "end list of pattern items",
1878 		.priv = PRIV_ITEM(END, 0),
1879 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
1880 		.call = parse_vc,
1881 	},
1882 	[ITEM_VOID] = {
1883 		.name = "void",
1884 		.help = "no-op pattern item",
1885 		.priv = PRIV_ITEM(VOID, 0),
1886 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1887 		.call = parse_vc,
1888 	},
1889 	[ITEM_INVERT] = {
1890 		.name = "invert",
1891 		.help = "perform actions when pattern does not match",
1892 		.priv = PRIV_ITEM(INVERT, 0),
1893 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1894 		.call = parse_vc,
1895 	},
1896 	[ITEM_ANY] = {
1897 		.name = "any",
1898 		.help = "match any protocol for the current layer",
1899 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
1900 		.next = NEXT(item_any),
1901 		.call = parse_vc,
1902 	},
1903 	[ITEM_ANY_NUM] = {
1904 		.name = "num",
1905 		.help = "number of layers covered",
1906 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
1907 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
1908 	},
1909 	[ITEM_PF] = {
1910 		.name = "pf",
1911 		.help = "match traffic from/to the physical function",
1912 		.priv = PRIV_ITEM(PF, 0),
1913 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
1914 		.call = parse_vc,
1915 	},
1916 	[ITEM_VF] = {
1917 		.name = "vf",
1918 		.help = "match traffic from/to a virtual function ID",
1919 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
1920 		.next = NEXT(item_vf),
1921 		.call = parse_vc,
1922 	},
1923 	[ITEM_VF_ID] = {
1924 		.name = "id",
1925 		.help = "VF ID",
1926 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
1927 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
1928 	},
1929 	[ITEM_PHY_PORT] = {
1930 		.name = "phy_port",
1931 		.help = "match traffic from/to a specific physical port",
1932 		.priv = PRIV_ITEM(PHY_PORT,
1933 				  sizeof(struct rte_flow_item_phy_port)),
1934 		.next = NEXT(item_phy_port),
1935 		.call = parse_vc,
1936 	},
1937 	[ITEM_PHY_PORT_INDEX] = {
1938 		.name = "index",
1939 		.help = "physical port index",
1940 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
1941 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
1942 	},
1943 	[ITEM_PORT_ID] = {
1944 		.name = "port_id",
1945 		.help = "match traffic from/to a given DPDK port ID",
1946 		.priv = PRIV_ITEM(PORT_ID,
1947 				  sizeof(struct rte_flow_item_port_id)),
1948 		.next = NEXT(item_port_id),
1949 		.call = parse_vc,
1950 	},
1951 	[ITEM_PORT_ID_ID] = {
1952 		.name = "id",
1953 		.help = "DPDK port ID",
1954 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
1955 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
1956 	},
1957 	[ITEM_MARK] = {
1958 		.name = "mark",
1959 		.help = "match traffic against value set in previously matched rule",
1960 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
1961 		.next = NEXT(item_mark),
1962 		.call = parse_vc,
1963 	},
1964 	[ITEM_MARK_ID] = {
1965 		.name = "id",
1966 		.help = "Integer value to match against",
1967 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
1968 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
1969 	},
1970 	[ITEM_RAW] = {
1971 		.name = "raw",
1972 		.help = "match an arbitrary byte string",
1973 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
1974 		.next = NEXT(item_raw),
1975 		.call = parse_vc,
1976 	},
1977 	[ITEM_RAW_RELATIVE] = {
1978 		.name = "relative",
1979 		.help = "look for pattern after the previous item",
1980 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1981 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1982 					   relative, 1)),
1983 	},
1984 	[ITEM_RAW_SEARCH] = {
1985 		.name = "search",
1986 		.help = "search pattern from offset (see also limit)",
1987 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
1988 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
1989 					   search, 1)),
1990 	},
1991 	[ITEM_RAW_OFFSET] = {
1992 		.name = "offset",
1993 		.help = "absolute or relative offset for pattern",
1994 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
1995 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
1996 	},
1997 	[ITEM_RAW_LIMIT] = {
1998 		.name = "limit",
1999 		.help = "search area limit for start of pattern",
2000 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
2001 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
2002 	},
2003 	[ITEM_RAW_PATTERN] = {
2004 		.name = "pattern",
2005 		.help = "byte string to look for",
2006 		.next = NEXT(item_raw,
2007 			     NEXT_ENTRY(STRING),
2008 			     NEXT_ENTRY(ITEM_PARAM_IS,
2009 					ITEM_PARAM_SPEC,
2010 					ITEM_PARAM_MASK)),
2011 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
2012 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
2013 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
2014 					    ITEM_RAW_PATTERN_SIZE)),
2015 	},
2016 	[ITEM_ETH] = {
2017 		.name = "eth",
2018 		.help = "match Ethernet header",
2019 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
2020 		.next = NEXT(item_eth),
2021 		.call = parse_vc,
2022 	},
2023 	[ITEM_ETH_DST] = {
2024 		.name = "dst",
2025 		.help = "destination MAC",
2026 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
2027 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
2028 	},
2029 	[ITEM_ETH_SRC] = {
2030 		.name = "src",
2031 		.help = "source MAC",
2032 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
2033 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
2034 	},
2035 	[ITEM_ETH_TYPE] = {
2036 		.name = "type",
2037 		.help = "EtherType",
2038 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
2039 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
2040 	},
2041 	[ITEM_VLAN] = {
2042 		.name = "vlan",
2043 		.help = "match 802.1Q/ad VLAN tag",
2044 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
2045 		.next = NEXT(item_vlan),
2046 		.call = parse_vc,
2047 	},
2048 	[ITEM_VLAN_TCI] = {
2049 		.name = "tci",
2050 		.help = "tag control information",
2051 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2052 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
2053 	},
2054 	[ITEM_VLAN_PCP] = {
2055 		.name = "pcp",
2056 		.help = "priority code point",
2057 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2058 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2059 						  tci, "\xe0\x00")),
2060 	},
2061 	[ITEM_VLAN_DEI] = {
2062 		.name = "dei",
2063 		.help = "drop eligible indicator",
2064 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2065 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2066 						  tci, "\x10\x00")),
2067 	},
2068 	[ITEM_VLAN_VID] = {
2069 		.name = "vid",
2070 		.help = "VLAN identifier",
2071 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2072 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2073 						  tci, "\x0f\xff")),
2074 	},
2075 	[ITEM_VLAN_INNER_TYPE] = {
2076 		.name = "inner_type",
2077 		.help = "inner EtherType",
2078 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2079 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
2080 					     inner_type)),
2081 	},
2082 	[ITEM_IPV4] = {
2083 		.name = "ipv4",
2084 		.help = "match IPv4 header",
2085 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
2086 		.next = NEXT(item_ipv4),
2087 		.call = parse_vc,
2088 	},
2089 	[ITEM_IPV4_TOS] = {
2090 		.name = "tos",
2091 		.help = "type of service",
2092 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2093 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2094 					     hdr.type_of_service)),
2095 	},
2096 	[ITEM_IPV4_TTL] = {
2097 		.name = "ttl",
2098 		.help = "time to live",
2099 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2100 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2101 					     hdr.time_to_live)),
2102 	},
2103 	[ITEM_IPV4_PROTO] = {
2104 		.name = "proto",
2105 		.help = "next protocol ID",
2106 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2107 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2108 					     hdr.next_proto_id)),
2109 	},
2110 	[ITEM_IPV4_SRC] = {
2111 		.name = "src",
2112 		.help = "source address",
2113 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
2114 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2115 					     hdr.src_addr)),
2116 	},
2117 	[ITEM_IPV4_DST] = {
2118 		.name = "dst",
2119 		.help = "destination address",
2120 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
2121 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2122 					     hdr.dst_addr)),
2123 	},
2124 	[ITEM_IPV6] = {
2125 		.name = "ipv6",
2126 		.help = "match IPv6 header",
2127 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
2128 		.next = NEXT(item_ipv6),
2129 		.call = parse_vc,
2130 	},
2131 	[ITEM_IPV6_TC] = {
2132 		.name = "tc",
2133 		.help = "traffic class",
2134 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2135 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
2136 						  hdr.vtc_flow,
2137 						  "\x0f\xf0\x00\x00")),
2138 	},
2139 	[ITEM_IPV6_FLOW] = {
2140 		.name = "flow",
2141 		.help = "flow label",
2142 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2143 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
2144 						  hdr.vtc_flow,
2145 						  "\x00\x0f\xff\xff")),
2146 	},
2147 	[ITEM_IPV6_PROTO] = {
2148 		.name = "proto",
2149 		.help = "protocol (next header)",
2150 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2151 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2152 					     hdr.proto)),
2153 	},
2154 	[ITEM_IPV6_HOP] = {
2155 		.name = "hop",
2156 		.help = "hop limit",
2157 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2158 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2159 					     hdr.hop_limits)),
2160 	},
2161 	[ITEM_IPV6_SRC] = {
2162 		.name = "src",
2163 		.help = "source address",
2164 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
2165 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2166 					     hdr.src_addr)),
2167 	},
2168 	[ITEM_IPV6_DST] = {
2169 		.name = "dst",
2170 		.help = "destination address",
2171 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
2172 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2173 					     hdr.dst_addr)),
2174 	},
2175 	[ITEM_ICMP] = {
2176 		.name = "icmp",
2177 		.help = "match ICMP header",
2178 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
2179 		.next = NEXT(item_icmp),
2180 		.call = parse_vc,
2181 	},
2182 	[ITEM_ICMP_TYPE] = {
2183 		.name = "type",
2184 		.help = "ICMP packet type",
2185 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2186 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2187 					     hdr.icmp_type)),
2188 	},
2189 	[ITEM_ICMP_CODE] = {
2190 		.name = "code",
2191 		.help = "ICMP packet code",
2192 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2193 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2194 					     hdr.icmp_code)),
2195 	},
2196 	[ITEM_UDP] = {
2197 		.name = "udp",
2198 		.help = "match UDP header",
2199 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
2200 		.next = NEXT(item_udp),
2201 		.call = parse_vc,
2202 	},
2203 	[ITEM_UDP_SRC] = {
2204 		.name = "src",
2205 		.help = "UDP source port",
2206 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
2207 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
2208 					     hdr.src_port)),
2209 	},
2210 	[ITEM_UDP_DST] = {
2211 		.name = "dst",
2212 		.help = "UDP destination port",
2213 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
2214 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
2215 					     hdr.dst_port)),
2216 	},
2217 	[ITEM_TCP] = {
2218 		.name = "tcp",
2219 		.help = "match TCP header",
2220 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
2221 		.next = NEXT(item_tcp),
2222 		.call = parse_vc,
2223 	},
2224 	[ITEM_TCP_SRC] = {
2225 		.name = "src",
2226 		.help = "TCP source port",
2227 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2228 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2229 					     hdr.src_port)),
2230 	},
2231 	[ITEM_TCP_DST] = {
2232 		.name = "dst",
2233 		.help = "TCP destination port",
2234 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2235 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2236 					     hdr.dst_port)),
2237 	},
2238 	[ITEM_TCP_FLAGS] = {
2239 		.name = "flags",
2240 		.help = "TCP flags",
2241 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2242 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2243 					     hdr.tcp_flags)),
2244 	},
2245 	[ITEM_SCTP] = {
2246 		.name = "sctp",
2247 		.help = "match SCTP header",
2248 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
2249 		.next = NEXT(item_sctp),
2250 		.call = parse_vc,
2251 	},
2252 	[ITEM_SCTP_SRC] = {
2253 		.name = "src",
2254 		.help = "SCTP source port",
2255 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2256 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2257 					     hdr.src_port)),
2258 	},
2259 	[ITEM_SCTP_DST] = {
2260 		.name = "dst",
2261 		.help = "SCTP destination port",
2262 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2263 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2264 					     hdr.dst_port)),
2265 	},
2266 	[ITEM_SCTP_TAG] = {
2267 		.name = "tag",
2268 		.help = "validation tag",
2269 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2270 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2271 					     hdr.tag)),
2272 	},
2273 	[ITEM_SCTP_CKSUM] = {
2274 		.name = "cksum",
2275 		.help = "checksum",
2276 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2277 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2278 					     hdr.cksum)),
2279 	},
2280 	[ITEM_VXLAN] = {
2281 		.name = "vxlan",
2282 		.help = "match VXLAN header",
2283 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
2284 		.next = NEXT(item_vxlan),
2285 		.call = parse_vc,
2286 	},
2287 	[ITEM_VXLAN_VNI] = {
2288 		.name = "vni",
2289 		.help = "VXLAN identifier",
2290 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
2291 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
2292 	},
2293 	[ITEM_E_TAG] = {
2294 		.name = "e_tag",
2295 		.help = "match E-Tag header",
2296 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
2297 		.next = NEXT(item_e_tag),
2298 		.call = parse_vc,
2299 	},
2300 	[ITEM_E_TAG_GRP_ECID_B] = {
2301 		.name = "grp_ecid_b",
2302 		.help = "GRP and E-CID base",
2303 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
2304 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
2305 						  rsvd_grp_ecid_b,
2306 						  "\x3f\xff")),
2307 	},
2308 	[ITEM_NVGRE] = {
2309 		.name = "nvgre",
2310 		.help = "match NVGRE header",
2311 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
2312 		.next = NEXT(item_nvgre),
2313 		.call = parse_vc,
2314 	},
2315 	[ITEM_NVGRE_TNI] = {
2316 		.name = "tni",
2317 		.help = "virtual subnet ID",
2318 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
2319 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
2320 	},
2321 	[ITEM_MPLS] = {
2322 		.name = "mpls",
2323 		.help = "match MPLS header",
2324 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
2325 		.next = NEXT(item_mpls),
2326 		.call = parse_vc,
2327 	},
2328 	[ITEM_MPLS_LABEL] = {
2329 		.name = "label",
2330 		.help = "MPLS label",
2331 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2332 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2333 						  label_tc_s,
2334 						  "\xff\xff\xf0")),
2335 	},
2336 	[ITEM_MPLS_TC] = {
2337 		.name = "tc",
2338 		.help = "MPLS Traffic Class",
2339 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2340 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2341 						  label_tc_s,
2342 						  "\x00\x00\x0e")),
2343 	},
2344 	[ITEM_MPLS_S] = {
2345 		.name = "s",
2346 		.help = "MPLS Bottom-of-Stack",
2347 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2348 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2349 						  label_tc_s,
2350 						  "\x00\x00\x01")),
2351 	},
2352 	[ITEM_GRE] = {
2353 		.name = "gre",
2354 		.help = "match GRE header",
2355 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
2356 		.next = NEXT(item_gre),
2357 		.call = parse_vc,
2358 	},
2359 	[ITEM_GRE_PROTO] = {
2360 		.name = "protocol",
2361 		.help = "GRE protocol type",
2362 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2363 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2364 					     protocol)),
2365 	},
2366 	[ITEM_GRE_C_RSVD0_VER] = {
2367 		.name = "c_rsvd0_ver",
2368 		.help =
2369 			"checksum (1b), undefined (1b), key bit (1b),"
2370 			" sequence number (1b), reserved 0 (9b),"
2371 			" version (3b)",
2372 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2373 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2374 					     c_rsvd0_ver)),
2375 	},
2376 	[ITEM_GRE_C_BIT] = {
2377 		.name = "c_bit",
2378 		.help = "checksum bit (C)",
2379 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2380 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2381 						  c_rsvd0_ver,
2382 						  "\x80\x00\x00\x00")),
2383 	},
2384 	[ITEM_GRE_S_BIT] = {
2385 		.name = "s_bit",
2386 		.help = "sequence number bit (S)",
2387 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2388 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2389 						  c_rsvd0_ver,
2390 						  "\x10\x00\x00\x00")),
2391 	},
2392 	[ITEM_GRE_K_BIT] = {
2393 		.name = "k_bit",
2394 		.help = "key bit (K)",
2395 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2396 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2397 						  c_rsvd0_ver,
2398 						  "\x20\x00\x00\x00")),
2399 	},
2400 	[ITEM_FUZZY] = {
2401 		.name = "fuzzy",
2402 		.help = "fuzzy pattern match, expect faster than default",
2403 		.priv = PRIV_ITEM(FUZZY,
2404 				sizeof(struct rte_flow_item_fuzzy)),
2405 		.next = NEXT(item_fuzzy),
2406 		.call = parse_vc,
2407 	},
2408 	[ITEM_FUZZY_THRESH] = {
2409 		.name = "thresh",
2410 		.help = "match accuracy threshold",
2411 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
2412 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
2413 					thresh)),
2414 	},
2415 	[ITEM_GTP] = {
2416 		.name = "gtp",
2417 		.help = "match GTP header",
2418 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
2419 		.next = NEXT(item_gtp),
2420 		.call = parse_vc,
2421 	},
2422 	[ITEM_GTP_FLAGS] = {
2423 		.name = "v_pt_rsv_flags",
2424 		.help = "GTP flags",
2425 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2426 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_gtp,
2427 					v_pt_rsv_flags)),
2428 	},
2429 	[ITEM_GTP_MSG_TYPE] = {
2430 		.name = "msg_type",
2431 		.help = "GTP message type",
2432 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2433 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_gtp, msg_type)),
2434 	},
2435 	[ITEM_GTP_TEID] = {
2436 		.name = "teid",
2437 		.help = "tunnel endpoint identifier",
2438 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2439 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
2440 	},
2441 	[ITEM_GTPC] = {
2442 		.name = "gtpc",
2443 		.help = "match GTP header",
2444 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
2445 		.next = NEXT(item_gtp),
2446 		.call = parse_vc,
2447 	},
2448 	[ITEM_GTPU] = {
2449 		.name = "gtpu",
2450 		.help = "match GTP header",
2451 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
2452 		.next = NEXT(item_gtp),
2453 		.call = parse_vc,
2454 	},
2455 	[ITEM_GENEVE] = {
2456 		.name = "geneve",
2457 		.help = "match GENEVE header",
2458 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
2459 		.next = NEXT(item_geneve),
2460 		.call = parse_vc,
2461 	},
2462 	[ITEM_GENEVE_VNI] = {
2463 		.name = "vni",
2464 		.help = "virtual network identifier",
2465 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2466 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
2467 	},
2468 	[ITEM_GENEVE_PROTO] = {
2469 		.name = "protocol",
2470 		.help = "GENEVE protocol type",
2471 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2472 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2473 					     protocol)),
2474 	},
2475 	[ITEM_VXLAN_GPE] = {
2476 		.name = "vxlan-gpe",
2477 		.help = "match VXLAN-GPE header",
2478 		.priv = PRIV_ITEM(VXLAN_GPE,
2479 				  sizeof(struct rte_flow_item_vxlan_gpe)),
2480 		.next = NEXT(item_vxlan_gpe),
2481 		.call = parse_vc,
2482 	},
2483 	[ITEM_VXLAN_GPE_VNI] = {
2484 		.name = "vni",
2485 		.help = "VXLAN-GPE identifier",
2486 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
2487 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
2488 					     vni)),
2489 	},
2490 	[ITEM_ARP_ETH_IPV4] = {
2491 		.name = "arp_eth_ipv4",
2492 		.help = "match ARP header for Ethernet/IPv4",
2493 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
2494 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
2495 		.next = NEXT(item_arp_eth_ipv4),
2496 		.call = parse_vc,
2497 	},
2498 	[ITEM_ARP_ETH_IPV4_SHA] = {
2499 		.name = "sha",
2500 		.help = "sender hardware address",
2501 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2502 			     item_param),
2503 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2504 					     sha)),
2505 	},
2506 	[ITEM_ARP_ETH_IPV4_SPA] = {
2507 		.name = "spa",
2508 		.help = "sender IPv4 address",
2509 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2510 			     item_param),
2511 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2512 					     spa)),
2513 	},
2514 	[ITEM_ARP_ETH_IPV4_THA] = {
2515 		.name = "tha",
2516 		.help = "target hardware address",
2517 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2518 			     item_param),
2519 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2520 					     tha)),
2521 	},
2522 	[ITEM_ARP_ETH_IPV4_TPA] = {
2523 		.name = "tpa",
2524 		.help = "target IPv4 address",
2525 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2526 			     item_param),
2527 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2528 					     tpa)),
2529 	},
2530 	[ITEM_IPV6_EXT] = {
2531 		.name = "ipv6_ext",
2532 		.help = "match presence of any IPv6 extension header",
2533 		.priv = PRIV_ITEM(IPV6_EXT,
2534 				  sizeof(struct rte_flow_item_ipv6_ext)),
2535 		.next = NEXT(item_ipv6_ext),
2536 		.call = parse_vc,
2537 	},
2538 	[ITEM_IPV6_EXT_NEXT_HDR] = {
2539 		.name = "next_hdr",
2540 		.help = "next header",
2541 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2542 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2543 					     next_hdr)),
2544 	},
2545 	[ITEM_ICMP6] = {
2546 		.name = "icmp6",
2547 		.help = "match any ICMPv6 header",
2548 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
2549 		.next = NEXT(item_icmp6),
2550 		.call = parse_vc,
2551 	},
2552 	[ITEM_ICMP6_TYPE] = {
2553 		.name = "type",
2554 		.help = "ICMPv6 type",
2555 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2556 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2557 					     type)),
2558 	},
2559 	[ITEM_ICMP6_CODE] = {
2560 		.name = "code",
2561 		.help = "ICMPv6 code",
2562 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
2563 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
2564 					     code)),
2565 	},
2566 	[ITEM_ICMP6_ND_NS] = {
2567 		.name = "icmp6_nd_ns",
2568 		.help = "match ICMPv6 neighbor discovery solicitation",
2569 		.priv = PRIV_ITEM(ICMP6_ND_NS,
2570 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
2571 		.next = NEXT(item_icmp6_nd_ns),
2572 		.call = parse_vc,
2573 	},
2574 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
2575 		.name = "target_addr",
2576 		.help = "target address",
2577 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
2578 			     item_param),
2579 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
2580 					     target_addr)),
2581 	},
2582 	[ITEM_ICMP6_ND_NA] = {
2583 		.name = "icmp6_nd_na",
2584 		.help = "match ICMPv6 neighbor discovery advertisement",
2585 		.priv = PRIV_ITEM(ICMP6_ND_NA,
2586 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
2587 		.next = NEXT(item_icmp6_nd_na),
2588 		.call = parse_vc,
2589 	},
2590 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
2591 		.name = "target_addr",
2592 		.help = "target address",
2593 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
2594 			     item_param),
2595 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
2596 					     target_addr)),
2597 	},
2598 	[ITEM_ICMP6_ND_OPT] = {
2599 		.name = "icmp6_nd_opt",
2600 		.help = "match presence of any ICMPv6 neighbor discovery"
2601 			" option",
2602 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
2603 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
2604 		.next = NEXT(item_icmp6_nd_opt),
2605 		.call = parse_vc,
2606 	},
2607 	[ITEM_ICMP6_ND_OPT_TYPE] = {
2608 		.name = "type",
2609 		.help = "ND option type",
2610 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
2611 			     item_param),
2612 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
2613 					     type)),
2614 	},
2615 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
2616 		.name = "icmp6_nd_opt_sla_eth",
2617 		.help = "match ICMPv6 neighbor discovery source Ethernet"
2618 			" link-layer address option",
2619 		.priv = PRIV_ITEM
2620 			(ICMP6_ND_OPT_SLA_ETH,
2621 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
2622 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
2623 		.call = parse_vc,
2624 	},
2625 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
2626 		.name = "sla",
2627 		.help = "source Ethernet LLA",
2628 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
2629 			     item_param),
2630 		.args = ARGS(ARGS_ENTRY_HTON
2631 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
2632 	},
2633 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
2634 		.name = "icmp6_nd_opt_tla_eth",
2635 		.help = "match ICMPv6 neighbor discovery target Ethernet"
2636 			" link-layer address option",
2637 		.priv = PRIV_ITEM
2638 			(ICMP6_ND_OPT_TLA_ETH,
2639 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
2640 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
2641 		.call = parse_vc,
2642 	},
2643 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
2644 		.name = "tla",
2645 		.help = "target Ethernet LLA",
2646 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
2647 			     item_param),
2648 		.args = ARGS(ARGS_ENTRY_HTON
2649 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
2650 	},
2651 	[ITEM_META] = {
2652 		.name = "meta",
2653 		.help = "match metadata header",
2654 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
2655 		.next = NEXT(item_meta),
2656 		.call = parse_vc,
2657 	},
2658 	[ITEM_META_DATA] = {
2659 		.name = "data",
2660 		.help = "metadata value",
2661 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
2662 		.args = ARGS(ARGS_ENTRY_MASK(struct rte_flow_item_meta,
2663 					     data, "\xff\xff\xff\xff")),
2664 	},
2665 	[ITEM_GRE_KEY] = {
2666 		.name = "gre_key",
2667 		.help = "match GRE key",
2668 		.priv = PRIV_ITEM(GRE_KEY, sizeof(rte_be32_t)),
2669 		.next = NEXT(item_gre_key),
2670 		.call = parse_vc,
2671 	},
2672 	[ITEM_GRE_KEY_VALUE] = {
2673 		.name = "value",
2674 		.help = "key value",
2675 		.next = NEXT(item_gre_key, NEXT_ENTRY(UNSIGNED), item_param),
2676 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
2677 	},
2678 	[ITEM_GTP_PSC] = {
2679 		.name = "gtp_psc",
2680 		.help = "match GTP extension header with type 0x85",
2681 		.priv = PRIV_ITEM(GTP_PSC,
2682 				sizeof(struct rte_flow_item_gtp_psc)),
2683 		.next = NEXT(item_gtp_psc),
2684 		.call = parse_vc,
2685 	},
2686 	[ITEM_GTP_PSC_QFI] = {
2687 		.name = "qfi",
2688 		.help = "QoS flow identifier",
2689 		.next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
2690 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
2691 					qfi)),
2692 	},
2693 	[ITEM_GTP_PSC_PDU_T] = {
2694 		.name = "pdu_t",
2695 		.help = "PDU type",
2696 		.next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
2697 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
2698 					pdu_type)),
2699 	},
2700 	[ITEM_PPPOES] = {
2701 		.name = "pppoes",
2702 		.help = "match PPPoE session header",
2703 		.priv = PRIV_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)),
2704 		.next = NEXT(item_pppoes),
2705 		.call = parse_vc,
2706 	},
2707 	[ITEM_PPPOED] = {
2708 		.name = "pppoed",
2709 		.help = "match PPPoE discovery header",
2710 		.priv = PRIV_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)),
2711 		.next = NEXT(item_pppoed),
2712 		.call = parse_vc,
2713 	},
2714 	[ITEM_PPPOE_SEID] = {
2715 		.name = "seid",
2716 		.help = "session identifier",
2717 		.next = NEXT(item_pppoes, NEXT_ENTRY(UNSIGNED), item_param),
2718 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pppoe,
2719 					session_id)),
2720 	},
2721 	[ITEM_PPPOE_PROTO_ID] = {
2722 		.name = "pppoe_proto_id",
2723 		.help = "match PPPoE session protocol identifier",
2724 		.priv = PRIV_ITEM(PPPOE_PROTO_ID,
2725 				sizeof(struct rte_flow_item_pppoe_proto_id)),
2726 		.next = NEXT(item_pppoe_proto_id, NEXT_ENTRY(UNSIGNED),
2727 			     item_param),
2728 		.args = ARGS(ARGS_ENTRY_HTON
2729 			     (struct rte_flow_item_pppoe_proto_id, proto_id)),
2730 		.call = parse_vc,
2731 	},
2732 	[ITEM_HIGIG2] = {
2733 		.name = "higig2",
2734 		.help = "matches higig2 header",
2735 		.priv = PRIV_ITEM(HIGIG2,
2736 				sizeof(struct rte_flow_item_higig2_hdr)),
2737 		.next = NEXT(item_higig2),
2738 		.call = parse_vc,
2739 	},
2740 	[ITEM_HIGIG2_CLASSIFICATION] = {
2741 		.name = "classification",
2742 		.help = "matches classification of higig2 header",
2743 		.next = NEXT(item_higig2, NEXT_ENTRY(UNSIGNED), item_param),
2744 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_higig2_hdr,
2745 					hdr.ppt1.classification)),
2746 	},
2747 	[ITEM_HIGIG2_VID] = {
2748 		.name = "vid",
2749 		.help = "matches vid of higig2 header",
2750 		.next = NEXT(item_higig2, NEXT_ENTRY(UNSIGNED), item_param),
2751 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_higig2_hdr,
2752 					hdr.ppt1.vid)),
2753 	},
2754 	[ITEM_TAG] = {
2755 		.name = "tag",
2756 		.help = "match tag value",
2757 		.priv = PRIV_ITEM(TAG, sizeof(struct rte_flow_item_tag)),
2758 		.next = NEXT(item_tag),
2759 		.call = parse_vc,
2760 	},
2761 	[ITEM_TAG_DATA] = {
2762 		.name = "data",
2763 		.help = "tag value to match",
2764 		.next = NEXT(item_tag, NEXT_ENTRY(UNSIGNED), item_param),
2765 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_tag, data)),
2766 	},
2767 	[ITEM_TAG_INDEX] = {
2768 		.name = "index",
2769 		.help = "index of tag array to match",
2770 		.next = NEXT(item_tag, NEXT_ENTRY(UNSIGNED),
2771 			     NEXT_ENTRY(ITEM_PARAM_IS)),
2772 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_tag, index)),
2773 	},
2774 	[ITEM_L2TPV3OIP] = {
2775 		.name = "l2tpv3oip",
2776 		.help = "match L2TPv3 over IP header",
2777 		.priv = PRIV_ITEM(L2TPV3OIP,
2778 				  sizeof(struct rte_flow_item_l2tpv3oip)),
2779 		.next = NEXT(item_l2tpv3oip),
2780 		.call = parse_vc,
2781 	},
2782 	[ITEM_L2TPV3OIP_SESSION_ID] = {
2783 		.name = "session_id",
2784 		.help = "session identifier",
2785 		.next = NEXT(item_l2tpv3oip, NEXT_ENTRY(UNSIGNED), item_param),
2786 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_l2tpv3oip,
2787 					     session_id)),
2788 	},
2789 	[ITEM_ESP] = {
2790 		.name = "esp",
2791 		.help = "match ESP header",
2792 		.priv = PRIV_ITEM(ESP, sizeof(struct rte_flow_item_esp)),
2793 		.next = NEXT(item_esp),
2794 		.call = parse_vc,
2795 	},
2796 	[ITEM_ESP_SPI] = {
2797 		.name = "spi",
2798 		.help = "security policy index",
2799 		.next = NEXT(item_esp, NEXT_ENTRY(UNSIGNED), item_param),
2800 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_esp,
2801 				hdr.spi)),
2802 	},
2803 	[ITEM_AH] = {
2804 		.name = "ah",
2805 		.help = "match AH header",
2806 		.priv = PRIV_ITEM(AH, sizeof(struct rte_flow_item_ah)),
2807 		.next = NEXT(item_ah),
2808 		.call = parse_vc,
2809 	},
2810 	[ITEM_AH_SPI] = {
2811 		.name = "spi",
2812 		.help = "security parameters index",
2813 		.next = NEXT(item_ah, NEXT_ENTRY(UNSIGNED), item_param),
2814 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ah, spi)),
2815 	},
2816 	[ITEM_PFCP] = {
2817 		.name = "pfcp",
2818 		.help = "match pfcp header",
2819 		.priv = PRIV_ITEM(PFCP, sizeof(struct rte_flow_item_pfcp)),
2820 		.next = NEXT(item_pfcp),
2821 		.call = parse_vc,
2822 	},
2823 	[ITEM_PFCP_S_FIELD] = {
2824 		.name = "s_field",
2825 		.help = "S field",
2826 		.next = NEXT(item_pfcp, NEXT_ENTRY(UNSIGNED), item_param),
2827 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pfcp,
2828 				s_field)),
2829 	},
2830 	[ITEM_PFCP_SEID] = {
2831 		.name = "seid",
2832 		.help = "session endpoint identifier",
2833 		.next = NEXT(item_pfcp, NEXT_ENTRY(UNSIGNED), item_param),
2834 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pfcp, seid)),
2835 	},
2836 	[ITEM_ECPRI] = {
2837 		.name = "ecpri",
2838 		.help = "match eCPRI header",
2839 		.priv = PRIV_ITEM(ECPRI, sizeof(struct rte_flow_item_ecpri)),
2840 		.next = NEXT(item_ecpri),
2841 		.call = parse_vc,
2842 	},
2843 	[ITEM_ECPRI_COMMON] = {
2844 		.name = "common",
2845 		.help = "eCPRI common header",
2846 		.next = NEXT(item_ecpri_common),
2847 	},
2848 	[ITEM_ECPRI_COMMON_TYPE] = {
2849 		.name = "type",
2850 		.help = "type of common header",
2851 		.next = NEXT(item_ecpri_common_type),
2852 		.args = ARGS(ARG_ENTRY_HTON(struct rte_flow_item_ecpri)),
2853 	},
2854 	[ITEM_ECPRI_COMMON_TYPE_IQ_DATA] = {
2855 		.name = "iq_data",
2856 		.help = "Type #0: IQ Data",
2857 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_IQ_DATA_PCID,
2858 					ITEM_NEXT)),
2859 		.call = parse_vc_item_ecpri_type,
2860 	},
2861 	[ITEM_ECPRI_MSG_IQ_DATA_PCID] = {
2862 		.name = "pc_id",
2863 		.help = "Physical Channel ID",
2864 		.next = NEXT(item_ecpri, NEXT_ENTRY(UNSIGNED), item_param),
2865 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ecpri,
2866 				hdr.type0.pc_id)),
2867 	},
2868 	[ITEM_ECPRI_COMMON_TYPE_RTC_CTRL] = {
2869 		.name = "rtc_ctrl",
2870 		.help = "Type #2: Real-Time Control Data",
2871 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_RTC_CTRL_RTCID,
2872 					ITEM_NEXT)),
2873 		.call = parse_vc_item_ecpri_type,
2874 	},
2875 	[ITEM_ECPRI_MSG_RTC_CTRL_RTCID] = {
2876 		.name = "rtc_id",
2877 		.help = "Real-Time Control Data ID",
2878 		.next = NEXT(item_ecpri, NEXT_ENTRY(UNSIGNED), item_param),
2879 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ecpri,
2880 				hdr.type2.rtc_id)),
2881 	},
2882 	[ITEM_ECPRI_COMMON_TYPE_DLY_MSR] = {
2883 		.name = "delay_measure",
2884 		.help = "Type #5: One-Way Delay Measurement",
2885 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_DLY_MSR_MSRID,
2886 					ITEM_NEXT)),
2887 		.call = parse_vc_item_ecpri_type,
2888 	},
2889 	[ITEM_ECPRI_MSG_DLY_MSR_MSRID] = {
2890 		.name = "msr_id",
2891 		.help = "Measurement ID",
2892 		.next = NEXT(item_ecpri, NEXT_ENTRY(UNSIGNED), item_param),
2893 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ecpri,
2894 				hdr.type5.msr_id)),
2895 	},
2896 	/* Validate/create actions. */
2897 	[ACTIONS] = {
2898 		.name = "actions",
2899 		.help = "submit a list of associated actions",
2900 		.next = NEXT(next_action),
2901 		.call = parse_vc,
2902 	},
2903 	[ACTION_NEXT] = {
2904 		.name = "/",
2905 		.help = "specify next action",
2906 		.next = NEXT(next_action),
2907 	},
2908 	[ACTION_END] = {
2909 		.name = "end",
2910 		.help = "end list of actions",
2911 		.priv = PRIV_ACTION(END, 0),
2912 		.call = parse_vc,
2913 	},
2914 	[ACTION_VOID] = {
2915 		.name = "void",
2916 		.help = "no-op action",
2917 		.priv = PRIV_ACTION(VOID, 0),
2918 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2919 		.call = parse_vc,
2920 	},
2921 	[ACTION_PASSTHRU] = {
2922 		.name = "passthru",
2923 		.help = "let subsequent rule process matched packets",
2924 		.priv = PRIV_ACTION(PASSTHRU, 0),
2925 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2926 		.call = parse_vc,
2927 	},
2928 	[ACTION_JUMP] = {
2929 		.name = "jump",
2930 		.help = "redirect traffic to a given group",
2931 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
2932 		.next = NEXT(action_jump),
2933 		.call = parse_vc,
2934 	},
2935 	[ACTION_JUMP_GROUP] = {
2936 		.name = "group",
2937 		.help = "group to redirect traffic to",
2938 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
2939 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
2940 		.call = parse_vc_conf,
2941 	},
2942 	[ACTION_MARK] = {
2943 		.name = "mark",
2944 		.help = "attach 32 bit value to packets",
2945 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
2946 		.next = NEXT(action_mark),
2947 		.call = parse_vc,
2948 	},
2949 	[ACTION_MARK_ID] = {
2950 		.name = "id",
2951 		.help = "32 bit value to return with packets",
2952 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
2953 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
2954 		.call = parse_vc_conf,
2955 	},
2956 	[ACTION_FLAG] = {
2957 		.name = "flag",
2958 		.help = "flag packets",
2959 		.priv = PRIV_ACTION(FLAG, 0),
2960 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2961 		.call = parse_vc,
2962 	},
2963 	[ACTION_QUEUE] = {
2964 		.name = "queue",
2965 		.help = "assign packets to a given queue index",
2966 		.priv = PRIV_ACTION(QUEUE,
2967 				    sizeof(struct rte_flow_action_queue)),
2968 		.next = NEXT(action_queue),
2969 		.call = parse_vc,
2970 	},
2971 	[ACTION_QUEUE_INDEX] = {
2972 		.name = "index",
2973 		.help = "queue index to use",
2974 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
2975 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
2976 		.call = parse_vc_conf,
2977 	},
2978 	[ACTION_DROP] = {
2979 		.name = "drop",
2980 		.help = "drop packets (note: passthru has priority)",
2981 		.priv = PRIV_ACTION(DROP, 0),
2982 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
2983 		.call = parse_vc,
2984 	},
2985 	[ACTION_COUNT] = {
2986 		.name = "count",
2987 		.help = "enable counters for this rule",
2988 		.priv = PRIV_ACTION(COUNT,
2989 				    sizeof(struct rte_flow_action_count)),
2990 		.next = NEXT(action_count),
2991 		.call = parse_vc,
2992 	},
2993 	[ACTION_COUNT_ID] = {
2994 		.name = "identifier",
2995 		.help = "counter identifier to use",
2996 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
2997 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
2998 		.call = parse_vc_conf,
2999 	},
3000 	[ACTION_COUNT_SHARED] = {
3001 		.name = "shared",
3002 		.help = "shared counter",
3003 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
3004 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
3005 					   shared, 1)),
3006 		.call = parse_vc_conf,
3007 	},
3008 	[ACTION_RSS] = {
3009 		.name = "rss",
3010 		.help = "spread packets among several queues",
3011 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
3012 		.next = NEXT(action_rss),
3013 		.call = parse_vc_action_rss,
3014 	},
3015 	[ACTION_RSS_FUNC] = {
3016 		.name = "func",
3017 		.help = "RSS hash function to apply",
3018 		.next = NEXT(action_rss,
3019 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
3020 					ACTION_RSS_FUNC_TOEPLITZ,
3021 					ACTION_RSS_FUNC_SIMPLE_XOR,
3022 					ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ)),
3023 	},
3024 	[ACTION_RSS_FUNC_DEFAULT] = {
3025 		.name = "default",
3026 		.help = "default hash function",
3027 		.call = parse_vc_action_rss_func,
3028 	},
3029 	[ACTION_RSS_FUNC_TOEPLITZ] = {
3030 		.name = "toeplitz",
3031 		.help = "Toeplitz hash function",
3032 		.call = parse_vc_action_rss_func,
3033 	},
3034 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
3035 		.name = "simple_xor",
3036 		.help = "simple XOR hash function",
3037 		.call = parse_vc_action_rss_func,
3038 	},
3039 	[ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ] = {
3040 		.name = "symmetric_toeplitz",
3041 		.help = "Symmetric Toeplitz hash function",
3042 		.call = parse_vc_action_rss_func,
3043 	},
3044 	[ACTION_RSS_LEVEL] = {
3045 		.name = "level",
3046 		.help = "encapsulation level for \"types\"",
3047 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
3048 		.args = ARGS(ARGS_ENTRY_ARB
3049 			     (offsetof(struct action_rss_data, conf) +
3050 			      offsetof(struct rte_flow_action_rss, level),
3051 			      sizeof(((struct rte_flow_action_rss *)0)->
3052 				     level))),
3053 	},
3054 	[ACTION_RSS_TYPES] = {
3055 		.name = "types",
3056 		.help = "specific RSS hash types",
3057 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
3058 	},
3059 	[ACTION_RSS_TYPE] = {
3060 		.name = "{type}",
3061 		.help = "RSS hash type",
3062 		.call = parse_vc_action_rss_type,
3063 		.comp = comp_vc_action_rss_type,
3064 	},
3065 	[ACTION_RSS_KEY] = {
3066 		.name = "key",
3067 		.help = "RSS hash key",
3068 		.next = NEXT(action_rss, NEXT_ENTRY(HEX)),
3069 		.args = ARGS(ARGS_ENTRY_ARB(0, 0),
3070 			     ARGS_ENTRY_ARB
3071 			     (offsetof(struct action_rss_data, conf) +
3072 			      offsetof(struct rte_flow_action_rss, key_len),
3073 			      sizeof(((struct rte_flow_action_rss *)0)->
3074 				     key_len)),
3075 			     ARGS_ENTRY(struct action_rss_data, key)),
3076 	},
3077 	[ACTION_RSS_KEY_LEN] = {
3078 		.name = "key_len",
3079 		.help = "RSS hash key length in bytes",
3080 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
3081 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
3082 			     (offsetof(struct action_rss_data, conf) +
3083 			      offsetof(struct rte_flow_action_rss, key_len),
3084 			      sizeof(((struct rte_flow_action_rss *)0)->
3085 				     key_len),
3086 			      0,
3087 			      RSS_HASH_KEY_LENGTH)),
3088 	},
3089 	[ACTION_RSS_QUEUES] = {
3090 		.name = "queues",
3091 		.help = "queue indices to use",
3092 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
3093 		.call = parse_vc_conf,
3094 	},
3095 	[ACTION_RSS_QUEUE] = {
3096 		.name = "{queue}",
3097 		.help = "queue index",
3098 		.call = parse_vc_action_rss_queue,
3099 		.comp = comp_vc_action_rss_queue,
3100 	},
3101 	[ACTION_PF] = {
3102 		.name = "pf",
3103 		.help = "direct traffic to physical function",
3104 		.priv = PRIV_ACTION(PF, 0),
3105 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3106 		.call = parse_vc,
3107 	},
3108 	[ACTION_VF] = {
3109 		.name = "vf",
3110 		.help = "direct traffic to a virtual function ID",
3111 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
3112 		.next = NEXT(action_vf),
3113 		.call = parse_vc,
3114 	},
3115 	[ACTION_VF_ORIGINAL] = {
3116 		.name = "original",
3117 		.help = "use original VF ID if possible",
3118 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
3119 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
3120 					   original, 1)),
3121 		.call = parse_vc_conf,
3122 	},
3123 	[ACTION_VF_ID] = {
3124 		.name = "id",
3125 		.help = "VF ID",
3126 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
3127 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
3128 		.call = parse_vc_conf,
3129 	},
3130 	[ACTION_PHY_PORT] = {
3131 		.name = "phy_port",
3132 		.help = "direct packets to physical port index",
3133 		.priv = PRIV_ACTION(PHY_PORT,
3134 				    sizeof(struct rte_flow_action_phy_port)),
3135 		.next = NEXT(action_phy_port),
3136 		.call = parse_vc,
3137 	},
3138 	[ACTION_PHY_PORT_ORIGINAL] = {
3139 		.name = "original",
3140 		.help = "use original port index if possible",
3141 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
3142 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
3143 					   original, 1)),
3144 		.call = parse_vc_conf,
3145 	},
3146 	[ACTION_PHY_PORT_INDEX] = {
3147 		.name = "index",
3148 		.help = "physical port index",
3149 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
3150 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
3151 					index)),
3152 		.call = parse_vc_conf,
3153 	},
3154 	[ACTION_PORT_ID] = {
3155 		.name = "port_id",
3156 		.help = "direct matching traffic to a given DPDK port ID",
3157 		.priv = PRIV_ACTION(PORT_ID,
3158 				    sizeof(struct rte_flow_action_port_id)),
3159 		.next = NEXT(action_port_id),
3160 		.call = parse_vc,
3161 	},
3162 	[ACTION_PORT_ID_ORIGINAL] = {
3163 		.name = "original",
3164 		.help = "use original DPDK port ID if possible",
3165 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
3166 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
3167 					   original, 1)),
3168 		.call = parse_vc_conf,
3169 	},
3170 	[ACTION_PORT_ID_ID] = {
3171 		.name = "id",
3172 		.help = "DPDK port ID",
3173 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
3174 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
3175 		.call = parse_vc_conf,
3176 	},
3177 	[ACTION_METER] = {
3178 		.name = "meter",
3179 		.help = "meter the directed packets at given id",
3180 		.priv = PRIV_ACTION(METER,
3181 				    sizeof(struct rte_flow_action_meter)),
3182 		.next = NEXT(action_meter),
3183 		.call = parse_vc,
3184 	},
3185 	[ACTION_METER_ID] = {
3186 		.name = "mtr_id",
3187 		.help = "meter id to use",
3188 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
3189 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
3190 		.call = parse_vc_conf,
3191 	},
3192 	[ACTION_OF_SET_MPLS_TTL] = {
3193 		.name = "of_set_mpls_ttl",
3194 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
3195 		.priv = PRIV_ACTION
3196 			(OF_SET_MPLS_TTL,
3197 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
3198 		.next = NEXT(action_of_set_mpls_ttl),
3199 		.call = parse_vc,
3200 	},
3201 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
3202 		.name = "mpls_ttl",
3203 		.help = "MPLS TTL",
3204 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
3205 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
3206 					mpls_ttl)),
3207 		.call = parse_vc_conf,
3208 	},
3209 	[ACTION_OF_DEC_MPLS_TTL] = {
3210 		.name = "of_dec_mpls_ttl",
3211 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
3212 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
3213 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3214 		.call = parse_vc,
3215 	},
3216 	[ACTION_OF_SET_NW_TTL] = {
3217 		.name = "of_set_nw_ttl",
3218 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
3219 		.priv = PRIV_ACTION
3220 			(OF_SET_NW_TTL,
3221 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
3222 		.next = NEXT(action_of_set_nw_ttl),
3223 		.call = parse_vc,
3224 	},
3225 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
3226 		.name = "nw_ttl",
3227 		.help = "IP TTL",
3228 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
3229 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
3230 					nw_ttl)),
3231 		.call = parse_vc_conf,
3232 	},
3233 	[ACTION_OF_DEC_NW_TTL] = {
3234 		.name = "of_dec_nw_ttl",
3235 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
3236 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
3237 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3238 		.call = parse_vc,
3239 	},
3240 	[ACTION_OF_COPY_TTL_OUT] = {
3241 		.name = "of_copy_ttl_out",
3242 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
3243 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
3244 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3245 		.call = parse_vc,
3246 	},
3247 	[ACTION_OF_COPY_TTL_IN] = {
3248 		.name = "of_copy_ttl_in",
3249 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
3250 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
3251 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3252 		.call = parse_vc,
3253 	},
3254 	[ACTION_OF_POP_VLAN] = {
3255 		.name = "of_pop_vlan",
3256 		.help = "OpenFlow's OFPAT_POP_VLAN",
3257 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
3258 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3259 		.call = parse_vc,
3260 	},
3261 	[ACTION_OF_PUSH_VLAN] = {
3262 		.name = "of_push_vlan",
3263 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
3264 		.priv = PRIV_ACTION
3265 			(OF_PUSH_VLAN,
3266 			 sizeof(struct rte_flow_action_of_push_vlan)),
3267 		.next = NEXT(action_of_push_vlan),
3268 		.call = parse_vc,
3269 	},
3270 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
3271 		.name = "ethertype",
3272 		.help = "EtherType",
3273 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
3274 		.args = ARGS(ARGS_ENTRY_HTON
3275 			     (struct rte_flow_action_of_push_vlan,
3276 			      ethertype)),
3277 		.call = parse_vc_conf,
3278 	},
3279 	[ACTION_OF_SET_VLAN_VID] = {
3280 		.name = "of_set_vlan_vid",
3281 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
3282 		.priv = PRIV_ACTION
3283 			(OF_SET_VLAN_VID,
3284 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
3285 		.next = NEXT(action_of_set_vlan_vid),
3286 		.call = parse_vc,
3287 	},
3288 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
3289 		.name = "vlan_vid",
3290 		.help = "VLAN id",
3291 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
3292 		.args = ARGS(ARGS_ENTRY_HTON
3293 			     (struct rte_flow_action_of_set_vlan_vid,
3294 			      vlan_vid)),
3295 		.call = parse_vc_conf,
3296 	},
3297 	[ACTION_OF_SET_VLAN_PCP] = {
3298 		.name = "of_set_vlan_pcp",
3299 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
3300 		.priv = PRIV_ACTION
3301 			(OF_SET_VLAN_PCP,
3302 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
3303 		.next = NEXT(action_of_set_vlan_pcp),
3304 		.call = parse_vc,
3305 	},
3306 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
3307 		.name = "vlan_pcp",
3308 		.help = "VLAN priority",
3309 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
3310 		.args = ARGS(ARGS_ENTRY_HTON
3311 			     (struct rte_flow_action_of_set_vlan_pcp,
3312 			      vlan_pcp)),
3313 		.call = parse_vc_conf,
3314 	},
3315 	[ACTION_OF_POP_MPLS] = {
3316 		.name = "of_pop_mpls",
3317 		.help = "OpenFlow's OFPAT_POP_MPLS",
3318 		.priv = PRIV_ACTION(OF_POP_MPLS,
3319 				    sizeof(struct rte_flow_action_of_pop_mpls)),
3320 		.next = NEXT(action_of_pop_mpls),
3321 		.call = parse_vc,
3322 	},
3323 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
3324 		.name = "ethertype",
3325 		.help = "EtherType",
3326 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
3327 		.args = ARGS(ARGS_ENTRY_HTON
3328 			     (struct rte_flow_action_of_pop_mpls,
3329 			      ethertype)),
3330 		.call = parse_vc_conf,
3331 	},
3332 	[ACTION_OF_PUSH_MPLS] = {
3333 		.name = "of_push_mpls",
3334 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
3335 		.priv = PRIV_ACTION
3336 			(OF_PUSH_MPLS,
3337 			 sizeof(struct rte_flow_action_of_push_mpls)),
3338 		.next = NEXT(action_of_push_mpls),
3339 		.call = parse_vc,
3340 	},
3341 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
3342 		.name = "ethertype",
3343 		.help = "EtherType",
3344 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
3345 		.args = ARGS(ARGS_ENTRY_HTON
3346 			     (struct rte_flow_action_of_push_mpls,
3347 			      ethertype)),
3348 		.call = parse_vc_conf,
3349 	},
3350 	[ACTION_VXLAN_ENCAP] = {
3351 		.name = "vxlan_encap",
3352 		.help = "VXLAN encapsulation, uses configuration set by \"set"
3353 			" vxlan\"",
3354 		.priv = PRIV_ACTION(VXLAN_ENCAP,
3355 				    sizeof(struct action_vxlan_encap_data)),
3356 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3357 		.call = parse_vc_action_vxlan_encap,
3358 	},
3359 	[ACTION_VXLAN_DECAP] = {
3360 		.name = "vxlan_decap",
3361 		.help = "Performs a decapsulation action by stripping all"
3362 			" headers of the VXLAN tunnel network overlay from the"
3363 			" matched flow.",
3364 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
3365 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3366 		.call = parse_vc,
3367 	},
3368 	[ACTION_NVGRE_ENCAP] = {
3369 		.name = "nvgre_encap",
3370 		.help = "NVGRE encapsulation, uses configuration set by \"set"
3371 			" nvgre\"",
3372 		.priv = PRIV_ACTION(NVGRE_ENCAP,
3373 				    sizeof(struct action_nvgre_encap_data)),
3374 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3375 		.call = parse_vc_action_nvgre_encap,
3376 	},
3377 	[ACTION_NVGRE_DECAP] = {
3378 		.name = "nvgre_decap",
3379 		.help = "Performs a decapsulation action by stripping all"
3380 			" headers of the NVGRE tunnel network overlay from the"
3381 			" matched flow.",
3382 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
3383 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3384 		.call = parse_vc,
3385 	},
3386 	[ACTION_L2_ENCAP] = {
3387 		.name = "l2_encap",
3388 		.help = "l2 encap, uses configuration set by"
3389 			" \"set l2_encap\"",
3390 		.priv = PRIV_ACTION(RAW_ENCAP,
3391 				    sizeof(struct action_raw_encap_data)),
3392 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3393 		.call = parse_vc_action_l2_encap,
3394 	},
3395 	[ACTION_L2_DECAP] = {
3396 		.name = "l2_decap",
3397 		.help = "l2 decap, uses configuration set by"
3398 			" \"set l2_decap\"",
3399 		.priv = PRIV_ACTION(RAW_DECAP,
3400 				    sizeof(struct action_raw_decap_data)),
3401 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3402 		.call = parse_vc_action_l2_decap,
3403 	},
3404 	[ACTION_MPLSOGRE_ENCAP] = {
3405 		.name = "mplsogre_encap",
3406 		.help = "mplsogre encapsulation, uses configuration set by"
3407 			" \"set mplsogre_encap\"",
3408 		.priv = PRIV_ACTION(RAW_ENCAP,
3409 				    sizeof(struct action_raw_encap_data)),
3410 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3411 		.call = parse_vc_action_mplsogre_encap,
3412 	},
3413 	[ACTION_MPLSOGRE_DECAP] = {
3414 		.name = "mplsogre_decap",
3415 		.help = "mplsogre decapsulation, uses configuration set by"
3416 			" \"set mplsogre_decap\"",
3417 		.priv = PRIV_ACTION(RAW_DECAP,
3418 				    sizeof(struct action_raw_decap_data)),
3419 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3420 		.call = parse_vc_action_mplsogre_decap,
3421 	},
3422 	[ACTION_MPLSOUDP_ENCAP] = {
3423 		.name = "mplsoudp_encap",
3424 		.help = "mplsoudp encapsulation, uses configuration set by"
3425 			" \"set mplsoudp_encap\"",
3426 		.priv = PRIV_ACTION(RAW_ENCAP,
3427 				    sizeof(struct action_raw_encap_data)),
3428 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3429 		.call = parse_vc_action_mplsoudp_encap,
3430 	},
3431 	[ACTION_MPLSOUDP_DECAP] = {
3432 		.name = "mplsoudp_decap",
3433 		.help = "mplsoudp decapsulation, uses configuration set by"
3434 			" \"set mplsoudp_decap\"",
3435 		.priv = PRIV_ACTION(RAW_DECAP,
3436 				    sizeof(struct action_raw_decap_data)),
3437 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3438 		.call = parse_vc_action_mplsoudp_decap,
3439 	},
3440 	[ACTION_SET_IPV4_SRC] = {
3441 		.name = "set_ipv4_src",
3442 		.help = "Set a new IPv4 source address in the outermost"
3443 			" IPv4 header",
3444 		.priv = PRIV_ACTION(SET_IPV4_SRC,
3445 			sizeof(struct rte_flow_action_set_ipv4)),
3446 		.next = NEXT(action_set_ipv4_src),
3447 		.call = parse_vc,
3448 	},
3449 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
3450 		.name = "ipv4_addr",
3451 		.help = "new IPv4 source address to set",
3452 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
3453 		.args = ARGS(ARGS_ENTRY_HTON
3454 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
3455 		.call = parse_vc_conf,
3456 	},
3457 	[ACTION_SET_IPV4_DST] = {
3458 		.name = "set_ipv4_dst",
3459 		.help = "Set a new IPv4 destination address in the outermost"
3460 			" IPv4 header",
3461 		.priv = PRIV_ACTION(SET_IPV4_DST,
3462 			sizeof(struct rte_flow_action_set_ipv4)),
3463 		.next = NEXT(action_set_ipv4_dst),
3464 		.call = parse_vc,
3465 	},
3466 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
3467 		.name = "ipv4_addr",
3468 		.help = "new IPv4 destination address to set",
3469 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
3470 		.args = ARGS(ARGS_ENTRY_HTON
3471 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
3472 		.call = parse_vc_conf,
3473 	},
3474 	[ACTION_SET_IPV6_SRC] = {
3475 		.name = "set_ipv6_src",
3476 		.help = "Set a new IPv6 source address in the outermost"
3477 			" IPv6 header",
3478 		.priv = PRIV_ACTION(SET_IPV6_SRC,
3479 			sizeof(struct rte_flow_action_set_ipv6)),
3480 		.next = NEXT(action_set_ipv6_src),
3481 		.call = parse_vc,
3482 	},
3483 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
3484 		.name = "ipv6_addr",
3485 		.help = "new IPv6 source address to set",
3486 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
3487 		.args = ARGS(ARGS_ENTRY_HTON
3488 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
3489 		.call = parse_vc_conf,
3490 	},
3491 	[ACTION_SET_IPV6_DST] = {
3492 		.name = "set_ipv6_dst",
3493 		.help = "Set a new IPv6 destination address in the outermost"
3494 			" IPv6 header",
3495 		.priv = PRIV_ACTION(SET_IPV6_DST,
3496 			sizeof(struct rte_flow_action_set_ipv6)),
3497 		.next = NEXT(action_set_ipv6_dst),
3498 		.call = parse_vc,
3499 	},
3500 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
3501 		.name = "ipv6_addr",
3502 		.help = "new IPv6 destination address to set",
3503 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
3504 		.args = ARGS(ARGS_ENTRY_HTON
3505 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
3506 		.call = parse_vc_conf,
3507 	},
3508 	[ACTION_SET_TP_SRC] = {
3509 		.name = "set_tp_src",
3510 		.help = "set a new source port number in the outermost"
3511 			" TCP/UDP header",
3512 		.priv = PRIV_ACTION(SET_TP_SRC,
3513 			sizeof(struct rte_flow_action_set_tp)),
3514 		.next = NEXT(action_set_tp_src),
3515 		.call = parse_vc,
3516 	},
3517 	[ACTION_SET_TP_SRC_TP_SRC] = {
3518 		.name = "port",
3519 		.help = "new source port number to set",
3520 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
3521 		.args = ARGS(ARGS_ENTRY_HTON
3522 			     (struct rte_flow_action_set_tp, port)),
3523 		.call = parse_vc_conf,
3524 	},
3525 	[ACTION_SET_TP_DST] = {
3526 		.name = "set_tp_dst",
3527 		.help = "set a new destination port number in the outermost"
3528 			" TCP/UDP header",
3529 		.priv = PRIV_ACTION(SET_TP_DST,
3530 			sizeof(struct rte_flow_action_set_tp)),
3531 		.next = NEXT(action_set_tp_dst),
3532 		.call = parse_vc,
3533 	},
3534 	[ACTION_SET_TP_DST_TP_DST] = {
3535 		.name = "port",
3536 		.help = "new destination port number to set",
3537 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
3538 		.args = ARGS(ARGS_ENTRY_HTON
3539 			     (struct rte_flow_action_set_tp, port)),
3540 		.call = parse_vc_conf,
3541 	},
3542 	[ACTION_MAC_SWAP] = {
3543 		.name = "mac_swap",
3544 		.help = "Swap the source and destination MAC addresses"
3545 			" in the outermost Ethernet header",
3546 		.priv = PRIV_ACTION(MAC_SWAP, 0),
3547 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3548 		.call = parse_vc,
3549 	},
3550 	[ACTION_DEC_TTL] = {
3551 		.name = "dec_ttl",
3552 		.help = "decrease network TTL if available",
3553 		.priv = PRIV_ACTION(DEC_TTL, 0),
3554 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3555 		.call = parse_vc,
3556 	},
3557 	[ACTION_SET_TTL] = {
3558 		.name = "set_ttl",
3559 		.help = "set ttl value",
3560 		.priv = PRIV_ACTION(SET_TTL,
3561 			sizeof(struct rte_flow_action_set_ttl)),
3562 		.next = NEXT(action_set_ttl),
3563 		.call = parse_vc,
3564 	},
3565 	[ACTION_SET_TTL_TTL] = {
3566 		.name = "ttl_value",
3567 		.help = "new ttl value to set",
3568 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
3569 		.args = ARGS(ARGS_ENTRY_HTON
3570 			     (struct rte_flow_action_set_ttl, ttl_value)),
3571 		.call = parse_vc_conf,
3572 	},
3573 	[ACTION_SET_MAC_SRC] = {
3574 		.name = "set_mac_src",
3575 		.help = "set source mac address",
3576 		.priv = PRIV_ACTION(SET_MAC_SRC,
3577 			sizeof(struct rte_flow_action_set_mac)),
3578 		.next = NEXT(action_set_mac_src),
3579 		.call = parse_vc,
3580 	},
3581 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
3582 		.name = "mac_addr",
3583 		.help = "new source mac address",
3584 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
3585 		.args = ARGS(ARGS_ENTRY_HTON
3586 			     (struct rte_flow_action_set_mac, mac_addr)),
3587 		.call = parse_vc_conf,
3588 	},
3589 	[ACTION_SET_MAC_DST] = {
3590 		.name = "set_mac_dst",
3591 		.help = "set destination mac address",
3592 		.priv = PRIV_ACTION(SET_MAC_DST,
3593 			sizeof(struct rte_flow_action_set_mac)),
3594 		.next = NEXT(action_set_mac_dst),
3595 		.call = parse_vc,
3596 	},
3597 	[ACTION_SET_MAC_DST_MAC_DST] = {
3598 		.name = "mac_addr",
3599 		.help = "new destination mac address to set",
3600 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
3601 		.args = ARGS(ARGS_ENTRY_HTON
3602 			     (struct rte_flow_action_set_mac, mac_addr)),
3603 		.call = parse_vc_conf,
3604 	},
3605 	[ACTION_INC_TCP_SEQ] = {
3606 		.name = "inc_tcp_seq",
3607 		.help = "increase TCP sequence number",
3608 		.priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
3609 		.next = NEXT(action_inc_tcp_seq),
3610 		.call = parse_vc,
3611 	},
3612 	[ACTION_INC_TCP_SEQ_VALUE] = {
3613 		.name = "value",
3614 		.help = "the value to increase TCP sequence number by",
3615 		.next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3616 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3617 		.call = parse_vc_conf,
3618 	},
3619 	[ACTION_DEC_TCP_SEQ] = {
3620 		.name = "dec_tcp_seq",
3621 		.help = "decrease TCP sequence number",
3622 		.priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
3623 		.next = NEXT(action_dec_tcp_seq),
3624 		.call = parse_vc,
3625 	},
3626 	[ACTION_DEC_TCP_SEQ_VALUE] = {
3627 		.name = "value",
3628 		.help = "the value to decrease TCP sequence number by",
3629 		.next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
3630 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3631 		.call = parse_vc_conf,
3632 	},
3633 	[ACTION_INC_TCP_ACK] = {
3634 		.name = "inc_tcp_ack",
3635 		.help = "increase TCP acknowledgment number",
3636 		.priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
3637 		.next = NEXT(action_inc_tcp_ack),
3638 		.call = parse_vc,
3639 	},
3640 	[ACTION_INC_TCP_ACK_VALUE] = {
3641 		.name = "value",
3642 		.help = "the value to increase TCP acknowledgment number by",
3643 		.next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3644 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3645 		.call = parse_vc_conf,
3646 	},
3647 	[ACTION_DEC_TCP_ACK] = {
3648 		.name = "dec_tcp_ack",
3649 		.help = "decrease TCP acknowledgment number",
3650 		.priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
3651 		.next = NEXT(action_dec_tcp_ack),
3652 		.call = parse_vc,
3653 	},
3654 	[ACTION_DEC_TCP_ACK_VALUE] = {
3655 		.name = "value",
3656 		.help = "the value to decrease TCP acknowledgment number by",
3657 		.next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
3658 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3659 		.call = parse_vc_conf,
3660 	},
3661 	[ACTION_RAW_ENCAP] = {
3662 		.name = "raw_encap",
3663 		.help = "encapsulation data, defined by set raw_encap",
3664 		.priv = PRIV_ACTION(RAW_ENCAP,
3665 			sizeof(struct action_raw_encap_data)),
3666 		.next = NEXT(action_raw_encap),
3667 		.call = parse_vc_action_raw_encap,
3668 	},
3669 	[ACTION_RAW_ENCAP_INDEX] = {
3670 		.name = "index",
3671 		.help = "the index of raw_encap_confs",
3672 		.next = NEXT(NEXT_ENTRY(ACTION_RAW_ENCAP_INDEX_VALUE)),
3673 	},
3674 	[ACTION_RAW_ENCAP_INDEX_VALUE] = {
3675 		.name = "{index}",
3676 		.type = "UNSIGNED",
3677 		.help = "unsigned integer value",
3678 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3679 		.call = parse_vc_action_raw_encap_index,
3680 		.comp = comp_set_raw_index,
3681 	},
3682 	[ACTION_RAW_DECAP] = {
3683 		.name = "raw_decap",
3684 		.help = "decapsulation data, defined by set raw_encap",
3685 		.priv = PRIV_ACTION(RAW_DECAP,
3686 			sizeof(struct action_raw_decap_data)),
3687 		.next = NEXT(action_raw_decap),
3688 		.call = parse_vc_action_raw_decap,
3689 	},
3690 	[ACTION_RAW_DECAP_INDEX] = {
3691 		.name = "index",
3692 		.help = "the index of raw_encap_confs",
3693 		.next = NEXT(NEXT_ENTRY(ACTION_RAW_DECAP_INDEX_VALUE)),
3694 	},
3695 	[ACTION_RAW_DECAP_INDEX_VALUE] = {
3696 		.name = "{index}",
3697 		.type = "UNSIGNED",
3698 		.help = "unsigned integer value",
3699 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3700 		.call = parse_vc_action_raw_decap_index,
3701 		.comp = comp_set_raw_index,
3702 	},
3703 	/* Top level command. */
3704 	[SET] = {
3705 		.name = "set",
3706 		.help = "set raw encap/decap data",
3707 		.type = "set raw_encap|raw_decap <index> <pattern>",
3708 		.next = NEXT(NEXT_ENTRY
3709 			     (SET_RAW_ENCAP,
3710 			      SET_RAW_DECAP)),
3711 		.call = parse_set_init,
3712 	},
3713 	/* Sub-level commands. */
3714 	[SET_RAW_ENCAP] = {
3715 		.name = "raw_encap",
3716 		.help = "set raw encap data",
3717 		.next = NEXT(next_set_raw),
3718 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
3719 				(offsetof(struct buffer, port),
3720 				 sizeof(((struct buffer *)0)->port),
3721 				 0, RAW_ENCAP_CONFS_MAX_NUM - 1)),
3722 		.call = parse_set_raw_encap_decap,
3723 	},
3724 	[SET_RAW_DECAP] = {
3725 		.name = "raw_decap",
3726 		.help = "set raw decap data",
3727 		.next = NEXT(next_set_raw),
3728 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
3729 				(offsetof(struct buffer, port),
3730 				 sizeof(((struct buffer *)0)->port),
3731 				 0, RAW_ENCAP_CONFS_MAX_NUM - 1)),
3732 		.call = parse_set_raw_encap_decap,
3733 	},
3734 	[SET_RAW_INDEX] = {
3735 		.name = "{index}",
3736 		.type = "UNSIGNED",
3737 		.help = "index of raw_encap/raw_decap data",
3738 		.next = NEXT(next_item),
3739 		.call = parse_port,
3740 	},
3741 	[ACTION_SET_TAG] = {
3742 		.name = "set_tag",
3743 		.help = "set tag",
3744 		.priv = PRIV_ACTION(SET_TAG,
3745 			sizeof(struct rte_flow_action_set_tag)),
3746 		.next = NEXT(action_set_tag),
3747 		.call = parse_vc,
3748 	},
3749 	[ACTION_SET_TAG_INDEX] = {
3750 		.name = "index",
3751 		.help = "index of tag array",
3752 		.next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
3753 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_set_tag, index)),
3754 		.call = parse_vc_conf,
3755 	},
3756 	[ACTION_SET_TAG_DATA] = {
3757 		.name = "data",
3758 		.help = "tag value",
3759 		.next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
3760 		.args = ARGS(ARGS_ENTRY
3761 			     (struct rte_flow_action_set_tag, data)),
3762 		.call = parse_vc_conf,
3763 	},
3764 	[ACTION_SET_TAG_MASK] = {
3765 		.name = "mask",
3766 		.help = "mask for tag value",
3767 		.next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
3768 		.args = ARGS(ARGS_ENTRY
3769 			     (struct rte_flow_action_set_tag, mask)),
3770 		.call = parse_vc_conf,
3771 	},
3772 	[ACTION_SET_META] = {
3773 		.name = "set_meta",
3774 		.help = "set metadata",
3775 		.priv = PRIV_ACTION(SET_META,
3776 			sizeof(struct rte_flow_action_set_meta)),
3777 		.next = NEXT(action_set_meta),
3778 		.call = parse_vc_action_set_meta,
3779 	},
3780 	[ACTION_SET_META_DATA] = {
3781 		.name = "data",
3782 		.help = "metadata value",
3783 		.next = NEXT(action_set_meta, NEXT_ENTRY(UNSIGNED)),
3784 		.args = ARGS(ARGS_ENTRY
3785 			     (struct rte_flow_action_set_meta, data)),
3786 		.call = parse_vc_conf,
3787 	},
3788 	[ACTION_SET_META_MASK] = {
3789 		.name = "mask",
3790 		.help = "mask for metadata value",
3791 		.next = NEXT(action_set_meta, NEXT_ENTRY(UNSIGNED)),
3792 		.args = ARGS(ARGS_ENTRY
3793 			     (struct rte_flow_action_set_meta, mask)),
3794 		.call = parse_vc_conf,
3795 	},
3796 	[ACTION_SET_IPV4_DSCP] = {
3797 		.name = "set_ipv4_dscp",
3798 		.help = "set DSCP value",
3799 		.priv = PRIV_ACTION(SET_IPV4_DSCP,
3800 			sizeof(struct rte_flow_action_set_dscp)),
3801 		.next = NEXT(action_set_ipv4_dscp),
3802 		.call = parse_vc,
3803 	},
3804 	[ACTION_SET_IPV4_DSCP_VALUE] = {
3805 		.name = "dscp_value",
3806 		.help = "new IPv4 DSCP value to set",
3807 		.next = NEXT(action_set_ipv4_dscp, NEXT_ENTRY(UNSIGNED)),
3808 		.args = ARGS(ARGS_ENTRY
3809 			     (struct rte_flow_action_set_dscp, dscp)),
3810 		.call = parse_vc_conf,
3811 	},
3812 	[ACTION_SET_IPV6_DSCP] = {
3813 		.name = "set_ipv6_dscp",
3814 		.help = "set DSCP value",
3815 		.priv = PRIV_ACTION(SET_IPV6_DSCP,
3816 			sizeof(struct rte_flow_action_set_dscp)),
3817 		.next = NEXT(action_set_ipv6_dscp),
3818 		.call = parse_vc,
3819 	},
3820 	[ACTION_SET_IPV6_DSCP_VALUE] = {
3821 		.name = "dscp_value",
3822 		.help = "new IPv6 DSCP value to set",
3823 		.next = NEXT(action_set_ipv6_dscp, NEXT_ENTRY(UNSIGNED)),
3824 		.args = ARGS(ARGS_ENTRY
3825 			     (struct rte_flow_action_set_dscp, dscp)),
3826 		.call = parse_vc_conf,
3827 	},
3828 	[ACTION_AGE] = {
3829 		.name = "age",
3830 		.help = "set a specific metadata header",
3831 		.next = NEXT(action_age),
3832 		.priv = PRIV_ACTION(AGE,
3833 			sizeof(struct rte_flow_action_age)),
3834 		.call = parse_vc,
3835 	},
3836 	[ACTION_AGE_TIMEOUT] = {
3837 		.name = "timeout",
3838 		.help = "flow age timeout value",
3839 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_age,
3840 					   timeout, 24)),
3841 		.next = NEXT(action_age, NEXT_ENTRY(UNSIGNED)),
3842 		.call = parse_vc_conf,
3843 	},
3844 };
3845 
3846 /** Remove and return last entry from argument stack. */
3847 static const struct arg *
3848 pop_args(struct context *ctx)
3849 {
3850 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
3851 }
3852 
3853 /** Add entry on top of the argument stack. */
3854 static int
3855 push_args(struct context *ctx, const struct arg *arg)
3856 {
3857 	if (ctx->args_num == CTX_STACK_SIZE)
3858 		return -1;
3859 	ctx->args[ctx->args_num++] = arg;
3860 	return 0;
3861 }
3862 
3863 /** Spread value into buffer according to bit-mask. */
3864 static size_t
3865 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
3866 {
3867 	uint32_t i = arg->size;
3868 	uint32_t end = 0;
3869 	int sub = 1;
3870 	int add = 0;
3871 	size_t len = 0;
3872 
3873 	if (!arg->mask)
3874 		return 0;
3875 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3876 	if (!arg->hton) {
3877 		i = 0;
3878 		end = arg->size;
3879 		sub = 0;
3880 		add = 1;
3881 	}
3882 #endif
3883 	while (i != end) {
3884 		unsigned int shift = 0;
3885 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
3886 
3887 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
3888 			if (!(arg->mask[i] & (1 << shift)))
3889 				continue;
3890 			++len;
3891 			if (!dst)
3892 				continue;
3893 			*buf &= ~(1 << shift);
3894 			*buf |= (val & 1) << shift;
3895 			val >>= 1;
3896 		}
3897 		i += add;
3898 	}
3899 	return len;
3900 }
3901 
3902 /** Compare a string with a partial one of a given length. */
3903 static int
3904 strcmp_partial(const char *full, const char *partial, size_t partial_len)
3905 {
3906 	int r = strncmp(full, partial, partial_len);
3907 
3908 	if (r)
3909 		return r;
3910 	if (strlen(full) <= partial_len)
3911 		return 0;
3912 	return full[partial_len];
3913 }
3914 
3915 /**
3916  * Parse a prefix length and generate a bit-mask.
3917  *
3918  * Last argument (ctx->args) is retrieved to determine mask size, storage
3919  * location and whether the result must use network byte ordering.
3920  */
3921 static int
3922 parse_prefix(struct context *ctx, const struct token *token,
3923 	     const char *str, unsigned int len,
3924 	     void *buf, unsigned int size)
3925 {
3926 	const struct arg *arg = pop_args(ctx);
3927 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
3928 	char *end;
3929 	uintmax_t u;
3930 	unsigned int bytes;
3931 	unsigned int extra;
3932 
3933 	(void)token;
3934 	/* Argument is expected. */
3935 	if (!arg)
3936 		return -1;
3937 	errno = 0;
3938 	u = strtoumax(str, &end, 0);
3939 	if (errno || (size_t)(end - str) != len)
3940 		goto error;
3941 	if (arg->mask) {
3942 		uintmax_t v = 0;
3943 
3944 		extra = arg_entry_bf_fill(NULL, 0, arg);
3945 		if (u > extra)
3946 			goto error;
3947 		if (!ctx->object)
3948 			return len;
3949 		extra -= u;
3950 		while (u--)
3951 			(v <<= 1, v |= 1);
3952 		v <<= extra;
3953 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
3954 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
3955 			goto error;
3956 		return len;
3957 	}
3958 	bytes = u / 8;
3959 	extra = u % 8;
3960 	size = arg->size;
3961 	if (bytes > size || bytes + !!extra > size)
3962 		goto error;
3963 	if (!ctx->object)
3964 		return len;
3965 	buf = (uint8_t *)ctx->object + arg->offset;
3966 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
3967 	if (!arg->hton) {
3968 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
3969 		memset(buf, 0x00, size - bytes);
3970 		if (extra)
3971 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
3972 	} else
3973 #endif
3974 	{
3975 		memset(buf, 0xff, bytes);
3976 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
3977 		if (extra)
3978 			((uint8_t *)buf)[bytes] = conv[extra];
3979 	}
3980 	if (ctx->objmask)
3981 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
3982 	return len;
3983 error:
3984 	push_args(ctx, arg);
3985 	return -1;
3986 }
3987 
3988 /** Default parsing function for token name matching. */
3989 static int
3990 parse_default(struct context *ctx, const struct token *token,
3991 	      const char *str, unsigned int len,
3992 	      void *buf, unsigned int size)
3993 {
3994 	(void)ctx;
3995 	(void)buf;
3996 	(void)size;
3997 	if (strcmp_partial(token->name, str, len))
3998 		return -1;
3999 	return len;
4000 }
4001 
4002 /** Parse flow command, initialize output buffer for subsequent tokens. */
4003 static int
4004 parse_init(struct context *ctx, const struct token *token,
4005 	   const char *str, unsigned int len,
4006 	   void *buf, unsigned int size)
4007 {
4008 	struct buffer *out = buf;
4009 
4010 	/* Token name must match. */
4011 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4012 		return -1;
4013 	/* Nothing else to do if there is no buffer. */
4014 	if (!out)
4015 		return len;
4016 	/* Make sure buffer is large enough. */
4017 	if (size < sizeof(*out))
4018 		return -1;
4019 	/* Initialize buffer. */
4020 	memset(out, 0x00, sizeof(*out));
4021 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
4022 	ctx->objdata = 0;
4023 	ctx->object = out;
4024 	ctx->objmask = NULL;
4025 	return len;
4026 }
4027 
4028 /** Parse tokens for validate/create commands. */
4029 static int
4030 parse_vc(struct context *ctx, const struct token *token,
4031 	 const char *str, unsigned int len,
4032 	 void *buf, unsigned int size)
4033 {
4034 	struct buffer *out = buf;
4035 	uint8_t *data;
4036 	uint32_t data_size;
4037 
4038 	/* Token name must match. */
4039 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4040 		return -1;
4041 	/* Nothing else to do if there is no buffer. */
4042 	if (!out)
4043 		return len;
4044 	if (!out->command) {
4045 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
4046 			return -1;
4047 		if (sizeof(*out) > size)
4048 			return -1;
4049 		out->command = ctx->curr;
4050 		ctx->objdata = 0;
4051 		ctx->object = out;
4052 		ctx->objmask = NULL;
4053 		out->args.vc.data = (uint8_t *)out + size;
4054 		return len;
4055 	}
4056 	ctx->objdata = 0;
4057 	ctx->object = &out->args.vc.attr;
4058 	ctx->objmask = NULL;
4059 	switch (ctx->curr) {
4060 	case GROUP:
4061 	case PRIORITY:
4062 		return len;
4063 	case INGRESS:
4064 		out->args.vc.attr.ingress = 1;
4065 		return len;
4066 	case EGRESS:
4067 		out->args.vc.attr.egress = 1;
4068 		return len;
4069 	case TRANSFER:
4070 		out->args.vc.attr.transfer = 1;
4071 		return len;
4072 	case PATTERN:
4073 		out->args.vc.pattern =
4074 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4075 					       sizeof(double));
4076 		ctx->object = out->args.vc.pattern;
4077 		ctx->objmask = NULL;
4078 		return len;
4079 	case ACTIONS:
4080 		out->args.vc.actions =
4081 			(void *)RTE_ALIGN_CEIL((uintptr_t)
4082 					       (out->args.vc.pattern +
4083 						out->args.vc.pattern_n),
4084 					       sizeof(double));
4085 		ctx->object = out->args.vc.actions;
4086 		ctx->objmask = NULL;
4087 		return len;
4088 	default:
4089 		if (!token->priv)
4090 			return -1;
4091 		break;
4092 	}
4093 	if (!out->args.vc.actions) {
4094 		const struct parse_item_priv *priv = token->priv;
4095 		struct rte_flow_item *item =
4096 			out->args.vc.pattern + out->args.vc.pattern_n;
4097 
4098 		data_size = priv->size * 3; /* spec, last, mask */
4099 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
4100 					       (out->args.vc.data - data_size),
4101 					       sizeof(double));
4102 		if ((uint8_t *)item + sizeof(*item) > data)
4103 			return -1;
4104 		*item = (struct rte_flow_item){
4105 			.type = priv->type,
4106 		};
4107 		++out->args.vc.pattern_n;
4108 		ctx->object = item;
4109 		ctx->objmask = NULL;
4110 	} else {
4111 		const struct parse_action_priv *priv = token->priv;
4112 		struct rte_flow_action *action =
4113 			out->args.vc.actions + out->args.vc.actions_n;
4114 
4115 		data_size = priv->size; /* configuration */
4116 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
4117 					       (out->args.vc.data - data_size),
4118 					       sizeof(double));
4119 		if ((uint8_t *)action + sizeof(*action) > data)
4120 			return -1;
4121 		*action = (struct rte_flow_action){
4122 			.type = priv->type,
4123 			.conf = data_size ? data : NULL,
4124 		};
4125 		++out->args.vc.actions_n;
4126 		ctx->object = action;
4127 		ctx->objmask = NULL;
4128 	}
4129 	memset(data, 0, data_size);
4130 	out->args.vc.data = data;
4131 	ctx->objdata = data_size;
4132 	return len;
4133 }
4134 
4135 /** Parse pattern item parameter type. */
4136 static int
4137 parse_vc_spec(struct context *ctx, const struct token *token,
4138 	      const char *str, unsigned int len,
4139 	      void *buf, unsigned int size)
4140 {
4141 	struct buffer *out = buf;
4142 	struct rte_flow_item *item;
4143 	uint32_t data_size;
4144 	int index;
4145 	int objmask = 0;
4146 
4147 	(void)size;
4148 	/* Token name must match. */
4149 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4150 		return -1;
4151 	/* Parse parameter types. */
4152 	switch (ctx->curr) {
4153 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
4154 
4155 	case ITEM_PARAM_IS:
4156 		index = 0;
4157 		objmask = 1;
4158 		break;
4159 	case ITEM_PARAM_SPEC:
4160 		index = 0;
4161 		break;
4162 	case ITEM_PARAM_LAST:
4163 		index = 1;
4164 		break;
4165 	case ITEM_PARAM_PREFIX:
4166 		/* Modify next token to expect a prefix. */
4167 		if (ctx->next_num < 2)
4168 			return -1;
4169 		ctx->next[ctx->next_num - 2] = prefix;
4170 		/* Fall through. */
4171 	case ITEM_PARAM_MASK:
4172 		index = 2;
4173 		break;
4174 	default:
4175 		return -1;
4176 	}
4177 	/* Nothing else to do if there is no buffer. */
4178 	if (!out)
4179 		return len;
4180 	if (!out->args.vc.pattern_n)
4181 		return -1;
4182 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
4183 	data_size = ctx->objdata / 3; /* spec, last, mask */
4184 	/* Point to selected object. */
4185 	ctx->object = out->args.vc.data + (data_size * index);
4186 	if (objmask) {
4187 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
4188 		item->mask = ctx->objmask;
4189 	} else
4190 		ctx->objmask = NULL;
4191 	/* Update relevant item pointer. */
4192 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
4193 		ctx->object;
4194 	return len;
4195 }
4196 
4197 /** Parse action configuration field. */
4198 static int
4199 parse_vc_conf(struct context *ctx, const struct token *token,
4200 	      const char *str, unsigned int len,
4201 	      void *buf, unsigned int size)
4202 {
4203 	struct buffer *out = buf;
4204 
4205 	(void)size;
4206 	/* Token name must match. */
4207 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4208 		return -1;
4209 	/* Nothing else to do if there is no buffer. */
4210 	if (!out)
4211 		return len;
4212 	/* Point to selected object. */
4213 	ctx->object = out->args.vc.data;
4214 	ctx->objmask = NULL;
4215 	return len;
4216 }
4217 
4218 /** Parse eCPRI common header type field. */
4219 static int
4220 parse_vc_item_ecpri_type(struct context *ctx, const struct token *token,
4221 			 const char *str, unsigned int len,
4222 			 void *buf, unsigned int size)
4223 {
4224 	struct rte_flow_item_ecpri *ecpri;
4225 	struct rte_flow_item_ecpri *ecpri_mask;
4226 	struct rte_flow_item *item;
4227 	uint32_t data_size;
4228 	uint8_t msg_type;
4229 	struct buffer *out = buf;
4230 	const struct arg *arg;
4231 
4232 	(void)size;
4233 	/* Token name must match. */
4234 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4235 		return -1;
4236 	switch (ctx->curr) {
4237 	case ITEM_ECPRI_COMMON_TYPE_IQ_DATA:
4238 		msg_type = RTE_ECPRI_MSG_TYPE_IQ_DATA;
4239 		break;
4240 	case ITEM_ECPRI_COMMON_TYPE_RTC_CTRL:
4241 		msg_type = RTE_ECPRI_MSG_TYPE_RTC_CTRL;
4242 		break;
4243 	case ITEM_ECPRI_COMMON_TYPE_DLY_MSR:
4244 		msg_type = RTE_ECPRI_MSG_TYPE_DLY_MSR;
4245 		break;
4246 	default:
4247 		return -1;
4248 	}
4249 	if (!ctx->object)
4250 		return len;
4251 	arg = pop_args(ctx);
4252 	if (!arg)
4253 		return -1;
4254 	ecpri = (struct rte_flow_item_ecpri *)out->args.vc.data;
4255 	ecpri->hdr.common.type = msg_type;
4256 	data_size = ctx->objdata / 3; /* spec, last, mask */
4257 	ecpri_mask = (struct rte_flow_item_ecpri *)(out->args.vc.data +
4258 						    (data_size * 2));
4259 	ecpri_mask->hdr.common.type = 0xFF;
4260 	if (arg->hton) {
4261 		ecpri->hdr.common.u32 = rte_cpu_to_be_32(ecpri->hdr.common.u32);
4262 		ecpri_mask->hdr.common.u32 =
4263 				rte_cpu_to_be_32(ecpri_mask->hdr.common.u32);
4264 	}
4265 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
4266 	item->spec = ecpri;
4267 	item->mask = ecpri_mask;
4268 	return len;
4269 }
4270 
4271 /** Parse RSS action. */
4272 static int
4273 parse_vc_action_rss(struct context *ctx, const struct token *token,
4274 		    const char *str, unsigned int len,
4275 		    void *buf, unsigned int size)
4276 {
4277 	struct buffer *out = buf;
4278 	struct rte_flow_action *action;
4279 	struct action_rss_data *action_rss_data;
4280 	unsigned int i;
4281 	int ret;
4282 
4283 	ret = parse_vc(ctx, token, str, len, buf, size);
4284 	if (ret < 0)
4285 		return ret;
4286 	/* Nothing else to do if there is no buffer. */
4287 	if (!out)
4288 		return ret;
4289 	if (!out->args.vc.actions_n)
4290 		return -1;
4291 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4292 	/* Point to selected object. */
4293 	ctx->object = out->args.vc.data;
4294 	ctx->objmask = NULL;
4295 	/* Set up default configuration. */
4296 	action_rss_data = ctx->object;
4297 	*action_rss_data = (struct action_rss_data){
4298 		.conf = (struct rte_flow_action_rss){
4299 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
4300 			.level = 0,
4301 			.types = rss_hf,
4302 			.key_len = sizeof(action_rss_data->key),
4303 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
4304 			.key = action_rss_data->key,
4305 			.queue = action_rss_data->queue,
4306 		},
4307 		.key = "testpmd's default RSS hash key, "
4308 			"override it for better balancing",
4309 		.queue = { 0 },
4310 	};
4311 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
4312 		action_rss_data->queue[i] = i;
4313 	if (!port_id_is_invalid(ctx->port, DISABLED_WARN) &&
4314 	    ctx->port != (portid_t)RTE_PORT_ALL) {
4315 		struct rte_eth_dev_info info;
4316 		int ret2;
4317 
4318 		ret2 = rte_eth_dev_info_get(ctx->port, &info);
4319 		if (ret2 != 0)
4320 			return ret2;
4321 
4322 		action_rss_data->conf.key_len =
4323 			RTE_MIN(sizeof(action_rss_data->key),
4324 				info.hash_key_size);
4325 	}
4326 	action->conf = &action_rss_data->conf;
4327 	return ret;
4328 }
4329 
4330 /**
4331  * Parse func field for RSS action.
4332  *
4333  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
4334  * ACTION_RSS_FUNC_* index that called this function.
4335  */
4336 static int
4337 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
4338 			 const char *str, unsigned int len,
4339 			 void *buf, unsigned int size)
4340 {
4341 	struct action_rss_data *action_rss_data;
4342 	enum rte_eth_hash_function func;
4343 
4344 	(void)buf;
4345 	(void)size;
4346 	/* Token name must match. */
4347 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4348 		return -1;
4349 	switch (ctx->curr) {
4350 	case ACTION_RSS_FUNC_DEFAULT:
4351 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
4352 		break;
4353 	case ACTION_RSS_FUNC_TOEPLITZ:
4354 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
4355 		break;
4356 	case ACTION_RSS_FUNC_SIMPLE_XOR:
4357 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
4358 		break;
4359 	case ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ:
4360 		func = RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ;
4361 		break;
4362 	default:
4363 		return -1;
4364 	}
4365 	if (!ctx->object)
4366 		return len;
4367 	action_rss_data = ctx->object;
4368 	action_rss_data->conf.func = func;
4369 	return len;
4370 }
4371 
4372 /**
4373  * Parse type field for RSS action.
4374  *
4375  * Valid tokens are type field names and the "end" token.
4376  */
4377 static int
4378 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
4379 			  const char *str, unsigned int len,
4380 			  void *buf, unsigned int size)
4381 {
4382 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
4383 	struct action_rss_data *action_rss_data;
4384 	unsigned int i;
4385 
4386 	(void)token;
4387 	(void)buf;
4388 	(void)size;
4389 	if (ctx->curr != ACTION_RSS_TYPE)
4390 		return -1;
4391 	if (!(ctx->objdata >> 16) && ctx->object) {
4392 		action_rss_data = ctx->object;
4393 		action_rss_data->conf.types = 0;
4394 	}
4395 	if (!strcmp_partial("end", str, len)) {
4396 		ctx->objdata &= 0xffff;
4397 		return len;
4398 	}
4399 	for (i = 0; rss_type_table[i].str; ++i)
4400 		if (!strcmp_partial(rss_type_table[i].str, str, len))
4401 			break;
4402 	if (!rss_type_table[i].str)
4403 		return -1;
4404 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
4405 	/* Repeat token. */
4406 	if (ctx->next_num == RTE_DIM(ctx->next))
4407 		return -1;
4408 	ctx->next[ctx->next_num++] = next;
4409 	if (!ctx->object)
4410 		return len;
4411 	action_rss_data = ctx->object;
4412 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
4413 	return len;
4414 }
4415 
4416 /**
4417  * Parse queue field for RSS action.
4418  *
4419  * Valid tokens are queue indices and the "end" token.
4420  */
4421 static int
4422 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
4423 			  const char *str, unsigned int len,
4424 			  void *buf, unsigned int size)
4425 {
4426 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
4427 	struct action_rss_data *action_rss_data;
4428 	const struct arg *arg;
4429 	int ret;
4430 	int i;
4431 
4432 	(void)token;
4433 	(void)buf;
4434 	(void)size;
4435 	if (ctx->curr != ACTION_RSS_QUEUE)
4436 		return -1;
4437 	i = ctx->objdata >> 16;
4438 	if (!strcmp_partial("end", str, len)) {
4439 		ctx->objdata &= 0xffff;
4440 		goto end;
4441 	}
4442 	if (i >= ACTION_RSS_QUEUE_NUM)
4443 		return -1;
4444 	arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
4445 			     i * sizeof(action_rss_data->queue[i]),
4446 			     sizeof(action_rss_data->queue[i]));
4447 	if (push_args(ctx, arg))
4448 		return -1;
4449 	ret = parse_int(ctx, token, str, len, NULL, 0);
4450 	if (ret < 0) {
4451 		pop_args(ctx);
4452 		return -1;
4453 	}
4454 	++i;
4455 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
4456 	/* Repeat token. */
4457 	if (ctx->next_num == RTE_DIM(ctx->next))
4458 		return -1;
4459 	ctx->next[ctx->next_num++] = next;
4460 end:
4461 	if (!ctx->object)
4462 		return len;
4463 	action_rss_data = ctx->object;
4464 	action_rss_data->conf.queue_num = i;
4465 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
4466 	return len;
4467 }
4468 
4469 /** Parse VXLAN encap action. */
4470 static int
4471 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
4472 			    const char *str, unsigned int len,
4473 			    void *buf, unsigned int size)
4474 {
4475 	struct buffer *out = buf;
4476 	struct rte_flow_action *action;
4477 	struct action_vxlan_encap_data *action_vxlan_encap_data;
4478 	int ret;
4479 
4480 	ret = parse_vc(ctx, token, str, len, buf, size);
4481 	if (ret < 0)
4482 		return ret;
4483 	/* Nothing else to do if there is no buffer. */
4484 	if (!out)
4485 		return ret;
4486 	if (!out->args.vc.actions_n)
4487 		return -1;
4488 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4489 	/* Point to selected object. */
4490 	ctx->object = out->args.vc.data;
4491 	ctx->objmask = NULL;
4492 	/* Set up default configuration. */
4493 	action_vxlan_encap_data = ctx->object;
4494 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
4495 		.conf = (struct rte_flow_action_vxlan_encap){
4496 			.definition = action_vxlan_encap_data->items,
4497 		},
4498 		.items = {
4499 			{
4500 				.type = RTE_FLOW_ITEM_TYPE_ETH,
4501 				.spec = &action_vxlan_encap_data->item_eth,
4502 				.mask = &rte_flow_item_eth_mask,
4503 			},
4504 			{
4505 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
4506 				.spec = &action_vxlan_encap_data->item_vlan,
4507 				.mask = &rte_flow_item_vlan_mask,
4508 			},
4509 			{
4510 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
4511 				.spec = &action_vxlan_encap_data->item_ipv4,
4512 				.mask = &rte_flow_item_ipv4_mask,
4513 			},
4514 			{
4515 				.type = RTE_FLOW_ITEM_TYPE_UDP,
4516 				.spec = &action_vxlan_encap_data->item_udp,
4517 				.mask = &rte_flow_item_udp_mask,
4518 			},
4519 			{
4520 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
4521 				.spec = &action_vxlan_encap_data->item_vxlan,
4522 				.mask = &rte_flow_item_vxlan_mask,
4523 			},
4524 			{
4525 				.type = RTE_FLOW_ITEM_TYPE_END,
4526 			},
4527 		},
4528 		.item_eth.type = 0,
4529 		.item_vlan = {
4530 			.tci = vxlan_encap_conf.vlan_tci,
4531 			.inner_type = 0,
4532 		},
4533 		.item_ipv4.hdr = {
4534 			.src_addr = vxlan_encap_conf.ipv4_src,
4535 			.dst_addr = vxlan_encap_conf.ipv4_dst,
4536 		},
4537 		.item_udp.hdr = {
4538 			.src_port = vxlan_encap_conf.udp_src,
4539 			.dst_port = vxlan_encap_conf.udp_dst,
4540 		},
4541 		.item_vxlan.flags = 0,
4542 	};
4543 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
4544 	       vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4545 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
4546 	       vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4547 	if (!vxlan_encap_conf.select_ipv4) {
4548 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
4549 		       &vxlan_encap_conf.ipv6_src,
4550 		       sizeof(vxlan_encap_conf.ipv6_src));
4551 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
4552 		       &vxlan_encap_conf.ipv6_dst,
4553 		       sizeof(vxlan_encap_conf.ipv6_dst));
4554 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
4555 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
4556 			.spec = &action_vxlan_encap_data->item_ipv6,
4557 			.mask = &rte_flow_item_ipv6_mask,
4558 		};
4559 	}
4560 	if (!vxlan_encap_conf.select_vlan)
4561 		action_vxlan_encap_data->items[1].type =
4562 			RTE_FLOW_ITEM_TYPE_VOID;
4563 	if (vxlan_encap_conf.select_tos_ttl) {
4564 		if (vxlan_encap_conf.select_ipv4) {
4565 			static struct rte_flow_item_ipv4 ipv4_mask_tos;
4566 
4567 			memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
4568 			       sizeof(ipv4_mask_tos));
4569 			ipv4_mask_tos.hdr.type_of_service = 0xff;
4570 			ipv4_mask_tos.hdr.time_to_live = 0xff;
4571 			action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
4572 					vxlan_encap_conf.ip_tos;
4573 			action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
4574 					vxlan_encap_conf.ip_ttl;
4575 			action_vxlan_encap_data->items[2].mask =
4576 							&ipv4_mask_tos;
4577 		} else {
4578 			static struct rte_flow_item_ipv6 ipv6_mask_tos;
4579 
4580 			memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
4581 			       sizeof(ipv6_mask_tos));
4582 			ipv6_mask_tos.hdr.vtc_flow |=
4583 				RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
4584 			ipv6_mask_tos.hdr.hop_limits = 0xff;
4585 			action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
4586 				rte_cpu_to_be_32
4587 					((uint32_t)vxlan_encap_conf.ip_tos <<
4588 					 RTE_IPV6_HDR_TC_SHIFT);
4589 			action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
4590 					vxlan_encap_conf.ip_ttl;
4591 			action_vxlan_encap_data->items[2].mask =
4592 							&ipv6_mask_tos;
4593 		}
4594 	}
4595 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
4596 	       RTE_DIM(vxlan_encap_conf.vni));
4597 	action->conf = &action_vxlan_encap_data->conf;
4598 	return ret;
4599 }
4600 
4601 /** Parse NVGRE encap action. */
4602 static int
4603 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
4604 			    const char *str, unsigned int len,
4605 			    void *buf, unsigned int size)
4606 {
4607 	struct buffer *out = buf;
4608 	struct rte_flow_action *action;
4609 	struct action_nvgre_encap_data *action_nvgre_encap_data;
4610 	int ret;
4611 
4612 	ret = parse_vc(ctx, token, str, len, buf, size);
4613 	if (ret < 0)
4614 		return ret;
4615 	/* Nothing else to do if there is no buffer. */
4616 	if (!out)
4617 		return ret;
4618 	if (!out->args.vc.actions_n)
4619 		return -1;
4620 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4621 	/* Point to selected object. */
4622 	ctx->object = out->args.vc.data;
4623 	ctx->objmask = NULL;
4624 	/* Set up default configuration. */
4625 	action_nvgre_encap_data = ctx->object;
4626 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
4627 		.conf = (struct rte_flow_action_nvgre_encap){
4628 			.definition = action_nvgre_encap_data->items,
4629 		},
4630 		.items = {
4631 			{
4632 				.type = RTE_FLOW_ITEM_TYPE_ETH,
4633 				.spec = &action_nvgre_encap_data->item_eth,
4634 				.mask = &rte_flow_item_eth_mask,
4635 			},
4636 			{
4637 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
4638 				.spec = &action_nvgre_encap_data->item_vlan,
4639 				.mask = &rte_flow_item_vlan_mask,
4640 			},
4641 			{
4642 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
4643 				.spec = &action_nvgre_encap_data->item_ipv4,
4644 				.mask = &rte_flow_item_ipv4_mask,
4645 			},
4646 			{
4647 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
4648 				.spec = &action_nvgre_encap_data->item_nvgre,
4649 				.mask = &rte_flow_item_nvgre_mask,
4650 			},
4651 			{
4652 				.type = RTE_FLOW_ITEM_TYPE_END,
4653 			},
4654 		},
4655 		.item_eth.type = 0,
4656 		.item_vlan = {
4657 			.tci = nvgre_encap_conf.vlan_tci,
4658 			.inner_type = 0,
4659 		},
4660 		.item_ipv4.hdr = {
4661 		       .src_addr = nvgre_encap_conf.ipv4_src,
4662 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
4663 		},
4664 		.item_nvgre.flow_id = 0,
4665 	};
4666 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
4667 	       nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4668 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
4669 	       nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4670 	if (!nvgre_encap_conf.select_ipv4) {
4671 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
4672 		       &nvgre_encap_conf.ipv6_src,
4673 		       sizeof(nvgre_encap_conf.ipv6_src));
4674 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
4675 		       &nvgre_encap_conf.ipv6_dst,
4676 		       sizeof(nvgre_encap_conf.ipv6_dst));
4677 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
4678 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
4679 			.spec = &action_nvgre_encap_data->item_ipv6,
4680 			.mask = &rte_flow_item_ipv6_mask,
4681 		};
4682 	}
4683 	if (!nvgre_encap_conf.select_vlan)
4684 		action_nvgre_encap_data->items[1].type =
4685 			RTE_FLOW_ITEM_TYPE_VOID;
4686 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
4687 	       RTE_DIM(nvgre_encap_conf.tni));
4688 	action->conf = &action_nvgre_encap_data->conf;
4689 	return ret;
4690 }
4691 
4692 /** Parse l2 encap action. */
4693 static int
4694 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
4695 			 const char *str, unsigned int len,
4696 			 void *buf, unsigned int size)
4697 {
4698 	struct buffer *out = buf;
4699 	struct rte_flow_action *action;
4700 	struct action_raw_encap_data *action_encap_data;
4701 	struct rte_flow_item_eth eth = { .type = 0, };
4702 	struct rte_flow_item_vlan vlan = {
4703 		.tci = mplsoudp_encap_conf.vlan_tci,
4704 		.inner_type = 0,
4705 	};
4706 	uint8_t *header;
4707 	int ret;
4708 
4709 	ret = parse_vc(ctx, token, str, len, buf, size);
4710 	if (ret < 0)
4711 		return ret;
4712 	/* Nothing else to do if there is no buffer. */
4713 	if (!out)
4714 		return ret;
4715 	if (!out->args.vc.actions_n)
4716 		return -1;
4717 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4718 	/* Point to selected object. */
4719 	ctx->object = out->args.vc.data;
4720 	ctx->objmask = NULL;
4721 	/* Copy the headers to the buffer. */
4722 	action_encap_data = ctx->object;
4723 	*action_encap_data = (struct action_raw_encap_data) {
4724 		.conf = (struct rte_flow_action_raw_encap){
4725 			.data = action_encap_data->data,
4726 		},
4727 		.data = {},
4728 	};
4729 	header = action_encap_data->data;
4730 	if (l2_encap_conf.select_vlan)
4731 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4732 	else if (l2_encap_conf.select_ipv4)
4733 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4734 	else
4735 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4736 	memcpy(eth.dst.addr_bytes,
4737 	       l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4738 	memcpy(eth.src.addr_bytes,
4739 	       l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4740 	memcpy(header, &eth, sizeof(eth));
4741 	header += sizeof(eth);
4742 	if (l2_encap_conf.select_vlan) {
4743 		if (l2_encap_conf.select_ipv4)
4744 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4745 		else
4746 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4747 		memcpy(header, &vlan, sizeof(vlan));
4748 		header += sizeof(vlan);
4749 	}
4750 	action_encap_data->conf.size = header -
4751 		action_encap_data->data;
4752 	action->conf = &action_encap_data->conf;
4753 	return ret;
4754 }
4755 
4756 /** Parse l2 decap action. */
4757 static int
4758 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
4759 			 const char *str, unsigned int len,
4760 			 void *buf, unsigned int size)
4761 {
4762 	struct buffer *out = buf;
4763 	struct rte_flow_action *action;
4764 	struct action_raw_decap_data *action_decap_data;
4765 	struct rte_flow_item_eth eth = { .type = 0, };
4766 	struct rte_flow_item_vlan vlan = {
4767 		.tci = mplsoudp_encap_conf.vlan_tci,
4768 		.inner_type = 0,
4769 	};
4770 	uint8_t *header;
4771 	int ret;
4772 
4773 	ret = parse_vc(ctx, token, str, len, buf, size);
4774 	if (ret < 0)
4775 		return ret;
4776 	/* Nothing else to do if there is no buffer. */
4777 	if (!out)
4778 		return ret;
4779 	if (!out->args.vc.actions_n)
4780 		return -1;
4781 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4782 	/* Point to selected object. */
4783 	ctx->object = out->args.vc.data;
4784 	ctx->objmask = NULL;
4785 	/* Copy the headers to the buffer. */
4786 	action_decap_data = ctx->object;
4787 	*action_decap_data = (struct action_raw_decap_data) {
4788 		.conf = (struct rte_flow_action_raw_decap){
4789 			.data = action_decap_data->data,
4790 		},
4791 		.data = {},
4792 	};
4793 	header = action_decap_data->data;
4794 	if (l2_decap_conf.select_vlan)
4795 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4796 	memcpy(header, &eth, sizeof(eth));
4797 	header += sizeof(eth);
4798 	if (l2_decap_conf.select_vlan) {
4799 		memcpy(header, &vlan, sizeof(vlan));
4800 		header += sizeof(vlan);
4801 	}
4802 	action_decap_data->conf.size = header -
4803 		action_decap_data->data;
4804 	action->conf = &action_decap_data->conf;
4805 	return ret;
4806 }
4807 
4808 #define ETHER_TYPE_MPLS_UNICAST 0x8847
4809 
4810 /** Parse MPLSOGRE encap action. */
4811 static int
4812 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
4813 			       const char *str, unsigned int len,
4814 			       void *buf, unsigned int size)
4815 {
4816 	struct buffer *out = buf;
4817 	struct rte_flow_action *action;
4818 	struct action_raw_encap_data *action_encap_data;
4819 	struct rte_flow_item_eth eth = { .type = 0, };
4820 	struct rte_flow_item_vlan vlan = {
4821 		.tci = mplsogre_encap_conf.vlan_tci,
4822 		.inner_type = 0,
4823 	};
4824 	struct rte_flow_item_ipv4 ipv4 = {
4825 		.hdr =  {
4826 			.src_addr = mplsogre_encap_conf.ipv4_src,
4827 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
4828 			.next_proto_id = IPPROTO_GRE,
4829 			.version_ihl = RTE_IPV4_VHL_DEF,
4830 			.time_to_live = IPDEFTTL,
4831 		},
4832 	};
4833 	struct rte_flow_item_ipv6 ipv6 = {
4834 		.hdr =  {
4835 			.proto = IPPROTO_GRE,
4836 			.hop_limits = IPDEFTTL,
4837 		},
4838 	};
4839 	struct rte_flow_item_gre gre = {
4840 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4841 	};
4842 	struct rte_flow_item_mpls mpls = {
4843 		.ttl = 0,
4844 	};
4845 	uint8_t *header;
4846 	int ret;
4847 
4848 	ret = parse_vc(ctx, token, str, len, buf, size);
4849 	if (ret < 0)
4850 		return ret;
4851 	/* Nothing else to do if there is no buffer. */
4852 	if (!out)
4853 		return ret;
4854 	if (!out->args.vc.actions_n)
4855 		return -1;
4856 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4857 	/* Point to selected object. */
4858 	ctx->object = out->args.vc.data;
4859 	ctx->objmask = NULL;
4860 	/* Copy the headers to the buffer. */
4861 	action_encap_data = ctx->object;
4862 	*action_encap_data = (struct action_raw_encap_data) {
4863 		.conf = (struct rte_flow_action_raw_encap){
4864 			.data = action_encap_data->data,
4865 		},
4866 		.data = {},
4867 		.preserve = {},
4868 	};
4869 	header = action_encap_data->data;
4870 	if (mplsogre_encap_conf.select_vlan)
4871 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4872 	else if (mplsogre_encap_conf.select_ipv4)
4873 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4874 	else
4875 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4876 	memcpy(eth.dst.addr_bytes,
4877 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4878 	memcpy(eth.src.addr_bytes,
4879 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4880 	memcpy(header, &eth, sizeof(eth));
4881 	header += sizeof(eth);
4882 	if (mplsogre_encap_conf.select_vlan) {
4883 		if (mplsogre_encap_conf.select_ipv4)
4884 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4885 		else
4886 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4887 		memcpy(header, &vlan, sizeof(vlan));
4888 		header += sizeof(vlan);
4889 	}
4890 	if (mplsogre_encap_conf.select_ipv4) {
4891 		memcpy(header, &ipv4, sizeof(ipv4));
4892 		header += sizeof(ipv4);
4893 	} else {
4894 		memcpy(&ipv6.hdr.src_addr,
4895 		       &mplsogre_encap_conf.ipv6_src,
4896 		       sizeof(mplsogre_encap_conf.ipv6_src));
4897 		memcpy(&ipv6.hdr.dst_addr,
4898 		       &mplsogre_encap_conf.ipv6_dst,
4899 		       sizeof(mplsogre_encap_conf.ipv6_dst));
4900 		memcpy(header, &ipv6, sizeof(ipv6));
4901 		header += sizeof(ipv6);
4902 	}
4903 	memcpy(header, &gre, sizeof(gre));
4904 	header += sizeof(gre);
4905 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
4906 	       RTE_DIM(mplsogre_encap_conf.label));
4907 	mpls.label_tc_s[2] |= 0x1;
4908 	memcpy(header, &mpls, sizeof(mpls));
4909 	header += sizeof(mpls);
4910 	action_encap_data->conf.size = header -
4911 		action_encap_data->data;
4912 	action->conf = &action_encap_data->conf;
4913 	return ret;
4914 }
4915 
4916 /** Parse MPLSOGRE decap action. */
4917 static int
4918 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
4919 			       const char *str, unsigned int len,
4920 			       void *buf, unsigned int size)
4921 {
4922 	struct buffer *out = buf;
4923 	struct rte_flow_action *action;
4924 	struct action_raw_decap_data *action_decap_data;
4925 	struct rte_flow_item_eth eth = { .type = 0, };
4926 	struct rte_flow_item_vlan vlan = {.tci = 0};
4927 	struct rte_flow_item_ipv4 ipv4 = {
4928 		.hdr =  {
4929 			.next_proto_id = IPPROTO_GRE,
4930 		},
4931 	};
4932 	struct rte_flow_item_ipv6 ipv6 = {
4933 		.hdr =  {
4934 			.proto = IPPROTO_GRE,
4935 		},
4936 	};
4937 	struct rte_flow_item_gre gre = {
4938 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
4939 	};
4940 	struct rte_flow_item_mpls mpls;
4941 	uint8_t *header;
4942 	int ret;
4943 
4944 	ret = parse_vc(ctx, token, str, len, buf, size);
4945 	if (ret < 0)
4946 		return ret;
4947 	/* Nothing else to do if there is no buffer. */
4948 	if (!out)
4949 		return ret;
4950 	if (!out->args.vc.actions_n)
4951 		return -1;
4952 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
4953 	/* Point to selected object. */
4954 	ctx->object = out->args.vc.data;
4955 	ctx->objmask = NULL;
4956 	/* Copy the headers to the buffer. */
4957 	action_decap_data = ctx->object;
4958 	*action_decap_data = (struct action_raw_decap_data) {
4959 		.conf = (struct rte_flow_action_raw_decap){
4960 			.data = action_decap_data->data,
4961 		},
4962 		.data = {},
4963 	};
4964 	header = action_decap_data->data;
4965 	if (mplsogre_decap_conf.select_vlan)
4966 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
4967 	else if (mplsogre_encap_conf.select_ipv4)
4968 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4969 	else
4970 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4971 	memcpy(eth.dst.addr_bytes,
4972 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
4973 	memcpy(eth.src.addr_bytes,
4974 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
4975 	memcpy(header, &eth, sizeof(eth));
4976 	header += sizeof(eth);
4977 	if (mplsogre_encap_conf.select_vlan) {
4978 		if (mplsogre_encap_conf.select_ipv4)
4979 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
4980 		else
4981 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
4982 		memcpy(header, &vlan, sizeof(vlan));
4983 		header += sizeof(vlan);
4984 	}
4985 	if (mplsogre_encap_conf.select_ipv4) {
4986 		memcpy(header, &ipv4, sizeof(ipv4));
4987 		header += sizeof(ipv4);
4988 	} else {
4989 		memcpy(header, &ipv6, sizeof(ipv6));
4990 		header += sizeof(ipv6);
4991 	}
4992 	memcpy(header, &gre, sizeof(gre));
4993 	header += sizeof(gre);
4994 	memset(&mpls, 0, sizeof(mpls));
4995 	memcpy(header, &mpls, sizeof(mpls));
4996 	header += sizeof(mpls);
4997 	action_decap_data->conf.size = header -
4998 		action_decap_data->data;
4999 	action->conf = &action_decap_data->conf;
5000 	return ret;
5001 }
5002 
5003 /** Parse MPLSOUDP encap action. */
5004 static int
5005 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
5006 			       const char *str, unsigned int len,
5007 			       void *buf, unsigned int size)
5008 {
5009 	struct buffer *out = buf;
5010 	struct rte_flow_action *action;
5011 	struct action_raw_encap_data *action_encap_data;
5012 	struct rte_flow_item_eth eth = { .type = 0, };
5013 	struct rte_flow_item_vlan vlan = {
5014 		.tci = mplsoudp_encap_conf.vlan_tci,
5015 		.inner_type = 0,
5016 	};
5017 	struct rte_flow_item_ipv4 ipv4 = {
5018 		.hdr =  {
5019 			.src_addr = mplsoudp_encap_conf.ipv4_src,
5020 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
5021 			.next_proto_id = IPPROTO_UDP,
5022 			.version_ihl = RTE_IPV4_VHL_DEF,
5023 			.time_to_live = IPDEFTTL,
5024 		},
5025 	};
5026 	struct rte_flow_item_ipv6 ipv6 = {
5027 		.hdr =  {
5028 			.proto = IPPROTO_UDP,
5029 			.hop_limits = IPDEFTTL,
5030 		},
5031 	};
5032 	struct rte_flow_item_udp udp = {
5033 		.hdr = {
5034 			.src_port = mplsoudp_encap_conf.udp_src,
5035 			.dst_port = mplsoudp_encap_conf.udp_dst,
5036 		},
5037 	};
5038 	struct rte_flow_item_mpls mpls;
5039 	uint8_t *header;
5040 	int ret;
5041 
5042 	ret = parse_vc(ctx, token, str, len, buf, size);
5043 	if (ret < 0)
5044 		return ret;
5045 	/* Nothing else to do if there is no buffer. */
5046 	if (!out)
5047 		return ret;
5048 	if (!out->args.vc.actions_n)
5049 		return -1;
5050 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5051 	/* Point to selected object. */
5052 	ctx->object = out->args.vc.data;
5053 	ctx->objmask = NULL;
5054 	/* Copy the headers to the buffer. */
5055 	action_encap_data = ctx->object;
5056 	*action_encap_data = (struct action_raw_encap_data) {
5057 		.conf = (struct rte_flow_action_raw_encap){
5058 			.data = action_encap_data->data,
5059 		},
5060 		.data = {},
5061 		.preserve = {},
5062 	};
5063 	header = action_encap_data->data;
5064 	if (mplsoudp_encap_conf.select_vlan)
5065 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5066 	else if (mplsoudp_encap_conf.select_ipv4)
5067 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5068 	else
5069 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5070 	memcpy(eth.dst.addr_bytes,
5071 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5072 	memcpy(eth.src.addr_bytes,
5073 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5074 	memcpy(header, &eth, sizeof(eth));
5075 	header += sizeof(eth);
5076 	if (mplsoudp_encap_conf.select_vlan) {
5077 		if (mplsoudp_encap_conf.select_ipv4)
5078 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5079 		else
5080 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5081 		memcpy(header, &vlan, sizeof(vlan));
5082 		header += sizeof(vlan);
5083 	}
5084 	if (mplsoudp_encap_conf.select_ipv4) {
5085 		memcpy(header, &ipv4, sizeof(ipv4));
5086 		header += sizeof(ipv4);
5087 	} else {
5088 		memcpy(&ipv6.hdr.src_addr,
5089 		       &mplsoudp_encap_conf.ipv6_src,
5090 		       sizeof(mplsoudp_encap_conf.ipv6_src));
5091 		memcpy(&ipv6.hdr.dst_addr,
5092 		       &mplsoudp_encap_conf.ipv6_dst,
5093 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
5094 		memcpy(header, &ipv6, sizeof(ipv6));
5095 		header += sizeof(ipv6);
5096 	}
5097 	memcpy(header, &udp, sizeof(udp));
5098 	header += sizeof(udp);
5099 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
5100 	       RTE_DIM(mplsoudp_encap_conf.label));
5101 	mpls.label_tc_s[2] |= 0x1;
5102 	memcpy(header, &mpls, sizeof(mpls));
5103 	header += sizeof(mpls);
5104 	action_encap_data->conf.size = header -
5105 		action_encap_data->data;
5106 	action->conf = &action_encap_data->conf;
5107 	return ret;
5108 }
5109 
5110 /** Parse MPLSOUDP decap action. */
5111 static int
5112 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
5113 			       const char *str, unsigned int len,
5114 			       void *buf, unsigned int size)
5115 {
5116 	struct buffer *out = buf;
5117 	struct rte_flow_action *action;
5118 	struct action_raw_decap_data *action_decap_data;
5119 	struct rte_flow_item_eth eth = { .type = 0, };
5120 	struct rte_flow_item_vlan vlan = {.tci = 0};
5121 	struct rte_flow_item_ipv4 ipv4 = {
5122 		.hdr =  {
5123 			.next_proto_id = IPPROTO_UDP,
5124 		},
5125 	};
5126 	struct rte_flow_item_ipv6 ipv6 = {
5127 		.hdr =  {
5128 			.proto = IPPROTO_UDP,
5129 		},
5130 	};
5131 	struct rte_flow_item_udp udp = {
5132 		.hdr = {
5133 			.dst_port = rte_cpu_to_be_16(6635),
5134 		},
5135 	};
5136 	struct rte_flow_item_mpls mpls;
5137 	uint8_t *header;
5138 	int ret;
5139 
5140 	ret = parse_vc(ctx, token, str, len, buf, size);
5141 	if (ret < 0)
5142 		return ret;
5143 	/* Nothing else to do if there is no buffer. */
5144 	if (!out)
5145 		return ret;
5146 	if (!out->args.vc.actions_n)
5147 		return -1;
5148 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5149 	/* Point to selected object. */
5150 	ctx->object = out->args.vc.data;
5151 	ctx->objmask = NULL;
5152 	/* Copy the headers to the buffer. */
5153 	action_decap_data = ctx->object;
5154 	*action_decap_data = (struct action_raw_decap_data) {
5155 		.conf = (struct rte_flow_action_raw_decap){
5156 			.data = action_decap_data->data,
5157 		},
5158 		.data = {},
5159 	};
5160 	header = action_decap_data->data;
5161 	if (mplsoudp_decap_conf.select_vlan)
5162 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5163 	else if (mplsoudp_encap_conf.select_ipv4)
5164 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5165 	else
5166 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5167 	memcpy(eth.dst.addr_bytes,
5168 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5169 	memcpy(eth.src.addr_bytes,
5170 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5171 	memcpy(header, &eth, sizeof(eth));
5172 	header += sizeof(eth);
5173 	if (mplsoudp_encap_conf.select_vlan) {
5174 		if (mplsoudp_encap_conf.select_ipv4)
5175 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5176 		else
5177 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5178 		memcpy(header, &vlan, sizeof(vlan));
5179 		header += sizeof(vlan);
5180 	}
5181 	if (mplsoudp_encap_conf.select_ipv4) {
5182 		memcpy(header, &ipv4, sizeof(ipv4));
5183 		header += sizeof(ipv4);
5184 	} else {
5185 		memcpy(header, &ipv6, sizeof(ipv6));
5186 		header += sizeof(ipv6);
5187 	}
5188 	memcpy(header, &udp, sizeof(udp));
5189 	header += sizeof(udp);
5190 	memset(&mpls, 0, sizeof(mpls));
5191 	memcpy(header, &mpls, sizeof(mpls));
5192 	header += sizeof(mpls);
5193 	action_decap_data->conf.size = header -
5194 		action_decap_data->data;
5195 	action->conf = &action_decap_data->conf;
5196 	return ret;
5197 }
5198 
5199 static int
5200 parse_vc_action_raw_decap_index(struct context *ctx, const struct token *token,
5201 				const char *str, unsigned int len, void *buf,
5202 				unsigned int size)
5203 {
5204 	struct action_raw_decap_data *action_raw_decap_data;
5205 	struct rte_flow_action *action;
5206 	const struct arg *arg;
5207 	struct buffer *out = buf;
5208 	int ret;
5209 	uint16_t idx;
5210 
5211 	RTE_SET_USED(token);
5212 	RTE_SET_USED(buf);
5213 	RTE_SET_USED(size);
5214 	arg = ARGS_ENTRY_ARB_BOUNDED
5215 		(offsetof(struct action_raw_decap_data, idx),
5216 		 sizeof(((struct action_raw_decap_data *)0)->idx),
5217 		 0, RAW_ENCAP_CONFS_MAX_NUM - 1);
5218 	if (push_args(ctx, arg))
5219 		return -1;
5220 	ret = parse_int(ctx, token, str, len, NULL, 0);
5221 	if (ret < 0) {
5222 		pop_args(ctx);
5223 		return -1;
5224 	}
5225 	if (!ctx->object)
5226 		return len;
5227 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5228 	action_raw_decap_data = ctx->object;
5229 	idx = action_raw_decap_data->idx;
5230 	action_raw_decap_data->conf.data = raw_decap_confs[idx].data;
5231 	action_raw_decap_data->conf.size = raw_decap_confs[idx].size;
5232 	action->conf = &action_raw_decap_data->conf;
5233 	return len;
5234 }
5235 
5236 
5237 static int
5238 parse_vc_action_raw_encap_index(struct context *ctx, const struct token *token,
5239 				const char *str, unsigned int len, void *buf,
5240 				unsigned int size)
5241 {
5242 	struct action_raw_encap_data *action_raw_encap_data;
5243 	struct rte_flow_action *action;
5244 	const struct arg *arg;
5245 	struct buffer *out = buf;
5246 	int ret;
5247 	uint16_t idx;
5248 
5249 	RTE_SET_USED(token);
5250 	RTE_SET_USED(buf);
5251 	RTE_SET_USED(size);
5252 	if (ctx->curr != ACTION_RAW_ENCAP_INDEX_VALUE)
5253 		return -1;
5254 	arg = ARGS_ENTRY_ARB_BOUNDED
5255 		(offsetof(struct action_raw_encap_data, idx),
5256 		 sizeof(((struct action_raw_encap_data *)0)->idx),
5257 		 0, RAW_ENCAP_CONFS_MAX_NUM - 1);
5258 	if (push_args(ctx, arg))
5259 		return -1;
5260 	ret = parse_int(ctx, token, str, len, NULL, 0);
5261 	if (ret < 0) {
5262 		pop_args(ctx);
5263 		return -1;
5264 	}
5265 	if (!ctx->object)
5266 		return len;
5267 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5268 	action_raw_encap_data = ctx->object;
5269 	idx = action_raw_encap_data->idx;
5270 	action_raw_encap_data->conf.data = raw_encap_confs[idx].data;
5271 	action_raw_encap_data->conf.size = raw_encap_confs[idx].size;
5272 	action_raw_encap_data->conf.preserve = NULL;
5273 	action->conf = &action_raw_encap_data->conf;
5274 	return len;
5275 }
5276 
5277 static int
5278 parse_vc_action_raw_encap(struct context *ctx, const struct token *token,
5279 			  const char *str, unsigned int len, void *buf,
5280 			  unsigned int size)
5281 {
5282 	struct buffer *out = buf;
5283 	struct rte_flow_action *action;
5284 	struct action_raw_encap_data *action_raw_encap_data = NULL;
5285 	int ret;
5286 
5287 	ret = parse_vc(ctx, token, str, len, buf, size);
5288 	if (ret < 0)
5289 		return ret;
5290 	/* Nothing else to do if there is no buffer. */
5291 	if (!out)
5292 		return ret;
5293 	if (!out->args.vc.actions_n)
5294 		return -1;
5295 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5296 	/* Point to selected object. */
5297 	ctx->object = out->args.vc.data;
5298 	ctx->objmask = NULL;
5299 	/* Copy the headers to the buffer. */
5300 	action_raw_encap_data = ctx->object;
5301 	action_raw_encap_data->conf.data = raw_encap_confs[0].data;
5302 	action_raw_encap_data->conf.preserve = NULL;
5303 	action_raw_encap_data->conf.size = raw_encap_confs[0].size;
5304 	action->conf = &action_raw_encap_data->conf;
5305 	return ret;
5306 }
5307 
5308 static int
5309 parse_vc_action_raw_decap(struct context *ctx, const struct token *token,
5310 			  const char *str, unsigned int len, void *buf,
5311 			  unsigned int size)
5312 {
5313 	struct buffer *out = buf;
5314 	struct rte_flow_action *action;
5315 	struct action_raw_decap_data *action_raw_decap_data = NULL;
5316 	int ret;
5317 
5318 	ret = parse_vc(ctx, token, str, len, buf, size);
5319 	if (ret < 0)
5320 		return ret;
5321 	/* Nothing else to do if there is no buffer. */
5322 	if (!out)
5323 		return ret;
5324 	if (!out->args.vc.actions_n)
5325 		return -1;
5326 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5327 	/* Point to selected object. */
5328 	ctx->object = out->args.vc.data;
5329 	ctx->objmask = NULL;
5330 	/* Copy the headers to the buffer. */
5331 	action_raw_decap_data = ctx->object;
5332 	action_raw_decap_data->conf.data = raw_decap_confs[0].data;
5333 	action_raw_decap_data->conf.size = raw_decap_confs[0].size;
5334 	action->conf = &action_raw_decap_data->conf;
5335 	return ret;
5336 }
5337 
5338 static int
5339 parse_vc_action_set_meta(struct context *ctx, const struct token *token,
5340 			 const char *str, unsigned int len, void *buf,
5341 			 unsigned int size)
5342 {
5343 	int ret;
5344 
5345 	ret = parse_vc(ctx, token, str, len, buf, size);
5346 	if (ret < 0)
5347 		return ret;
5348 	ret = rte_flow_dynf_metadata_register();
5349 	if (ret < 0)
5350 		return -1;
5351 	return len;
5352 }
5353 
5354 /** Parse tokens for destroy command. */
5355 static int
5356 parse_destroy(struct context *ctx, const struct token *token,
5357 	      const char *str, unsigned int len,
5358 	      void *buf, unsigned int size)
5359 {
5360 	struct buffer *out = buf;
5361 
5362 	/* Token name must match. */
5363 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5364 		return -1;
5365 	/* Nothing else to do if there is no buffer. */
5366 	if (!out)
5367 		return len;
5368 	if (!out->command) {
5369 		if (ctx->curr != DESTROY)
5370 			return -1;
5371 		if (sizeof(*out) > size)
5372 			return -1;
5373 		out->command = ctx->curr;
5374 		ctx->objdata = 0;
5375 		ctx->object = out;
5376 		ctx->objmask = NULL;
5377 		out->args.destroy.rule =
5378 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5379 					       sizeof(double));
5380 		return len;
5381 	}
5382 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
5383 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
5384 		return -1;
5385 	ctx->objdata = 0;
5386 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
5387 	ctx->objmask = NULL;
5388 	return len;
5389 }
5390 
5391 /** Parse tokens for flush command. */
5392 static int
5393 parse_flush(struct context *ctx, const struct token *token,
5394 	    const char *str, unsigned int len,
5395 	    void *buf, unsigned int size)
5396 {
5397 	struct buffer *out = buf;
5398 
5399 	/* Token name must match. */
5400 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5401 		return -1;
5402 	/* Nothing else to do if there is no buffer. */
5403 	if (!out)
5404 		return len;
5405 	if (!out->command) {
5406 		if (ctx->curr != FLUSH)
5407 			return -1;
5408 		if (sizeof(*out) > size)
5409 			return -1;
5410 		out->command = ctx->curr;
5411 		ctx->objdata = 0;
5412 		ctx->object = out;
5413 		ctx->objmask = NULL;
5414 	}
5415 	return len;
5416 }
5417 
5418 /** Parse tokens for dump command. */
5419 static int
5420 parse_dump(struct context *ctx, const struct token *token,
5421 	    const char *str, unsigned int len,
5422 	    void *buf, unsigned int size)
5423 {
5424 	struct buffer *out = buf;
5425 
5426 	/* Token name must match. */
5427 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5428 		return -1;
5429 	/* Nothing else to do if there is no buffer. */
5430 	if (!out)
5431 		return len;
5432 	if (!out->command) {
5433 		if (ctx->curr != DUMP)
5434 			return -1;
5435 		if (sizeof(*out) > size)
5436 			return -1;
5437 		out->command = ctx->curr;
5438 		ctx->objdata = 0;
5439 		ctx->object = out;
5440 		ctx->objmask = NULL;
5441 	}
5442 	return len;
5443 }
5444 
5445 /** Parse tokens for query command. */
5446 static int
5447 parse_query(struct context *ctx, const struct token *token,
5448 	    const char *str, unsigned int len,
5449 	    void *buf, unsigned int size)
5450 {
5451 	struct buffer *out = buf;
5452 
5453 	/* Token name must match. */
5454 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5455 		return -1;
5456 	/* Nothing else to do if there is no buffer. */
5457 	if (!out)
5458 		return len;
5459 	if (!out->command) {
5460 		if (ctx->curr != QUERY)
5461 			return -1;
5462 		if (sizeof(*out) > size)
5463 			return -1;
5464 		out->command = ctx->curr;
5465 		ctx->objdata = 0;
5466 		ctx->object = out;
5467 		ctx->objmask = NULL;
5468 	}
5469 	return len;
5470 }
5471 
5472 /** Parse action names. */
5473 static int
5474 parse_action(struct context *ctx, const struct token *token,
5475 	     const char *str, unsigned int len,
5476 	     void *buf, unsigned int size)
5477 {
5478 	struct buffer *out = buf;
5479 	const struct arg *arg = pop_args(ctx);
5480 	unsigned int i;
5481 
5482 	(void)size;
5483 	/* Argument is expected. */
5484 	if (!arg)
5485 		return -1;
5486 	/* Parse action name. */
5487 	for (i = 0; next_action[i]; ++i) {
5488 		const struct parse_action_priv *priv;
5489 
5490 		token = &token_list[next_action[i]];
5491 		if (strcmp_partial(token->name, str, len))
5492 			continue;
5493 		priv = token->priv;
5494 		if (!priv)
5495 			goto error;
5496 		if (out)
5497 			memcpy((uint8_t *)ctx->object + arg->offset,
5498 			       &priv->type,
5499 			       arg->size);
5500 		return len;
5501 	}
5502 error:
5503 	push_args(ctx, arg);
5504 	return -1;
5505 }
5506 
5507 /** Parse tokens for list command. */
5508 static int
5509 parse_list(struct context *ctx, const struct token *token,
5510 	   const char *str, unsigned int len,
5511 	   void *buf, unsigned int size)
5512 {
5513 	struct buffer *out = buf;
5514 
5515 	/* Token name must match. */
5516 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5517 		return -1;
5518 	/* Nothing else to do if there is no buffer. */
5519 	if (!out)
5520 		return len;
5521 	if (!out->command) {
5522 		if (ctx->curr != LIST)
5523 			return -1;
5524 		if (sizeof(*out) > size)
5525 			return -1;
5526 		out->command = ctx->curr;
5527 		ctx->objdata = 0;
5528 		ctx->object = out;
5529 		ctx->objmask = NULL;
5530 		out->args.list.group =
5531 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
5532 					       sizeof(double));
5533 		return len;
5534 	}
5535 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
5536 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
5537 		return -1;
5538 	ctx->objdata = 0;
5539 	ctx->object = out->args.list.group + out->args.list.group_n++;
5540 	ctx->objmask = NULL;
5541 	return len;
5542 }
5543 
5544 /** Parse tokens for list all aged flows command. */
5545 static int
5546 parse_aged(struct context *ctx, const struct token *token,
5547 	   const char *str, unsigned int len,
5548 	   void *buf, unsigned int size)
5549 {
5550 	struct buffer *out = buf;
5551 
5552 	/* Token name must match. */
5553 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5554 		return -1;
5555 	/* Nothing else to do if there is no buffer. */
5556 	if (!out)
5557 		return len;
5558 	if (!out->command) {
5559 		if (ctx->curr != AGED)
5560 			return -1;
5561 		if (sizeof(*out) > size)
5562 			return -1;
5563 		out->command = ctx->curr;
5564 		ctx->objdata = 0;
5565 		ctx->object = out;
5566 		ctx->objmask = NULL;
5567 	}
5568 	if (ctx->curr == AGED_DESTROY)
5569 		out->args.aged.destroy = 1;
5570 	return len;
5571 }
5572 
5573 /** Parse tokens for isolate command. */
5574 static int
5575 parse_isolate(struct context *ctx, const struct token *token,
5576 	      const char *str, unsigned int len,
5577 	      void *buf, unsigned int size)
5578 {
5579 	struct buffer *out = buf;
5580 
5581 	/* Token name must match. */
5582 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5583 		return -1;
5584 	/* Nothing else to do if there is no buffer. */
5585 	if (!out)
5586 		return len;
5587 	if (!out->command) {
5588 		if (ctx->curr != ISOLATE)
5589 			return -1;
5590 		if (sizeof(*out) > size)
5591 			return -1;
5592 		out->command = ctx->curr;
5593 		ctx->objdata = 0;
5594 		ctx->object = out;
5595 		ctx->objmask = NULL;
5596 	}
5597 	return len;
5598 }
5599 
5600 /**
5601  * Parse signed/unsigned integers 8 to 64-bit long.
5602  *
5603  * Last argument (ctx->args) is retrieved to determine integer type and
5604  * storage location.
5605  */
5606 static int
5607 parse_int(struct context *ctx, const struct token *token,
5608 	  const char *str, unsigned int len,
5609 	  void *buf, unsigned int size)
5610 {
5611 	const struct arg *arg = pop_args(ctx);
5612 	uintmax_t u;
5613 	char *end;
5614 
5615 	(void)token;
5616 	/* Argument is expected. */
5617 	if (!arg)
5618 		return -1;
5619 	errno = 0;
5620 	u = arg->sign ?
5621 		(uintmax_t)strtoimax(str, &end, 0) :
5622 		strtoumax(str, &end, 0);
5623 	if (errno || (size_t)(end - str) != len)
5624 		goto error;
5625 	if (arg->bounded &&
5626 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
5627 			    (intmax_t)u > (intmax_t)arg->max)) ||
5628 	     (!arg->sign && (u < arg->min || u > arg->max))))
5629 		goto error;
5630 	if (!ctx->object)
5631 		return len;
5632 	if (arg->mask) {
5633 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
5634 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
5635 			goto error;
5636 		return len;
5637 	}
5638 	buf = (uint8_t *)ctx->object + arg->offset;
5639 	size = arg->size;
5640 	if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
5641 		return -1;
5642 objmask:
5643 	switch (size) {
5644 	case sizeof(uint8_t):
5645 		*(uint8_t *)buf = u;
5646 		break;
5647 	case sizeof(uint16_t):
5648 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
5649 		break;
5650 	case sizeof(uint8_t [3]):
5651 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
5652 		if (!arg->hton) {
5653 			((uint8_t *)buf)[0] = u;
5654 			((uint8_t *)buf)[1] = u >> 8;
5655 			((uint8_t *)buf)[2] = u >> 16;
5656 			break;
5657 		}
5658 #endif
5659 		((uint8_t *)buf)[0] = u >> 16;
5660 		((uint8_t *)buf)[1] = u >> 8;
5661 		((uint8_t *)buf)[2] = u;
5662 		break;
5663 	case sizeof(uint32_t):
5664 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
5665 		break;
5666 	case sizeof(uint64_t):
5667 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
5668 		break;
5669 	default:
5670 		goto error;
5671 	}
5672 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
5673 		u = -1;
5674 		buf = (uint8_t *)ctx->objmask + arg->offset;
5675 		goto objmask;
5676 	}
5677 	return len;
5678 error:
5679 	push_args(ctx, arg);
5680 	return -1;
5681 }
5682 
5683 /**
5684  * Parse a string.
5685  *
5686  * Three arguments (ctx->args) are retrieved from the stack to store data,
5687  * its actual length and address (in that order).
5688  */
5689 static int
5690 parse_string(struct context *ctx, const struct token *token,
5691 	     const char *str, unsigned int len,
5692 	     void *buf, unsigned int size)
5693 {
5694 	const struct arg *arg_data = pop_args(ctx);
5695 	const struct arg *arg_len = pop_args(ctx);
5696 	const struct arg *arg_addr = pop_args(ctx);
5697 	char tmp[16]; /* Ought to be enough. */
5698 	int ret;
5699 
5700 	/* Arguments are expected. */
5701 	if (!arg_data)
5702 		return -1;
5703 	if (!arg_len) {
5704 		push_args(ctx, arg_data);
5705 		return -1;
5706 	}
5707 	if (!arg_addr) {
5708 		push_args(ctx, arg_len);
5709 		push_args(ctx, arg_data);
5710 		return -1;
5711 	}
5712 	size = arg_data->size;
5713 	/* Bit-mask fill is not supported. */
5714 	if (arg_data->mask || size < len)
5715 		goto error;
5716 	if (!ctx->object)
5717 		return len;
5718 	/* Let parse_int() fill length information first. */
5719 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
5720 	if (ret < 0)
5721 		goto error;
5722 	push_args(ctx, arg_len);
5723 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
5724 	if (ret < 0) {
5725 		pop_args(ctx);
5726 		goto error;
5727 	}
5728 	buf = (uint8_t *)ctx->object + arg_data->offset;
5729 	/* Output buffer is not necessarily NUL-terminated. */
5730 	memcpy(buf, str, len);
5731 	memset((uint8_t *)buf + len, 0x00, size - len);
5732 	if (ctx->objmask)
5733 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
5734 	/* Save address if requested. */
5735 	if (arg_addr->size) {
5736 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
5737 		       (void *[]){
5738 			(uint8_t *)ctx->object + arg_data->offset
5739 		       },
5740 		       arg_addr->size);
5741 		if (ctx->objmask)
5742 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
5743 			       (void *[]){
5744 				(uint8_t *)ctx->objmask + arg_data->offset
5745 			       },
5746 			       arg_addr->size);
5747 	}
5748 	return len;
5749 error:
5750 	push_args(ctx, arg_addr);
5751 	push_args(ctx, arg_len);
5752 	push_args(ctx, arg_data);
5753 	return -1;
5754 }
5755 
5756 static int
5757 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
5758 {
5759 	char *c = NULL;
5760 	uint32_t i, len;
5761 	char tmp[3];
5762 
5763 	/* Check input parameters */
5764 	if ((src == NULL) ||
5765 		(dst == NULL) ||
5766 		(size == NULL) ||
5767 		(*size == 0))
5768 		return -1;
5769 
5770 	/* Convert chars to bytes */
5771 	for (i = 0, len = 0; i < *size; i += 2) {
5772 		snprintf(tmp, 3, "%s", src + i);
5773 		dst[len++] = strtoul(tmp, &c, 16);
5774 		if (*c != 0) {
5775 			len--;
5776 			dst[len] = 0;
5777 			*size = len;
5778 			return -1;
5779 		}
5780 	}
5781 	dst[len] = 0;
5782 	*size = len;
5783 
5784 	return 0;
5785 }
5786 
5787 static int
5788 parse_hex(struct context *ctx, const struct token *token,
5789 		const char *str, unsigned int len,
5790 		void *buf, unsigned int size)
5791 {
5792 	const struct arg *arg_data = pop_args(ctx);
5793 	const struct arg *arg_len = pop_args(ctx);
5794 	const struct arg *arg_addr = pop_args(ctx);
5795 	char tmp[16]; /* Ought to be enough. */
5796 	int ret;
5797 	unsigned int hexlen = len;
5798 	unsigned int length = 256;
5799 	uint8_t hex_tmp[length];
5800 
5801 	/* Arguments are expected. */
5802 	if (!arg_data)
5803 		return -1;
5804 	if (!arg_len) {
5805 		push_args(ctx, arg_data);
5806 		return -1;
5807 	}
5808 	if (!arg_addr) {
5809 		push_args(ctx, arg_len);
5810 		push_args(ctx, arg_data);
5811 		return -1;
5812 	}
5813 	size = arg_data->size;
5814 	/* Bit-mask fill is not supported. */
5815 	if (arg_data->mask)
5816 		goto error;
5817 	if (!ctx->object)
5818 		return len;
5819 
5820 	/* translate bytes string to array. */
5821 	if (str[0] == '0' && ((str[1] == 'x') ||
5822 			(str[1] == 'X'))) {
5823 		str += 2;
5824 		hexlen -= 2;
5825 	}
5826 	if (hexlen > length)
5827 		return -1;
5828 	ret = parse_hex_string(str, hex_tmp, &hexlen);
5829 	if (ret < 0)
5830 		goto error;
5831 	/* Let parse_int() fill length information first. */
5832 	ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
5833 	if (ret < 0)
5834 		goto error;
5835 	push_args(ctx, arg_len);
5836 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
5837 	if (ret < 0) {
5838 		pop_args(ctx);
5839 		goto error;
5840 	}
5841 	buf = (uint8_t *)ctx->object + arg_data->offset;
5842 	/* Output buffer is not necessarily NUL-terminated. */
5843 	memcpy(buf, hex_tmp, hexlen);
5844 	memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
5845 	if (ctx->objmask)
5846 		memset((uint8_t *)ctx->objmask + arg_data->offset,
5847 					0xff, hexlen);
5848 	/* Save address if requested. */
5849 	if (arg_addr->size) {
5850 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
5851 		       (void *[]){
5852 			(uint8_t *)ctx->object + arg_data->offset
5853 		       },
5854 		       arg_addr->size);
5855 		if (ctx->objmask)
5856 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
5857 			       (void *[]){
5858 				(uint8_t *)ctx->objmask + arg_data->offset
5859 			       },
5860 			       arg_addr->size);
5861 	}
5862 	return len;
5863 error:
5864 	push_args(ctx, arg_addr);
5865 	push_args(ctx, arg_len);
5866 	push_args(ctx, arg_data);
5867 	return -1;
5868 
5869 }
5870 
5871 /**
5872  * Parse a zero-ended string.
5873  */
5874 static int
5875 parse_string0(struct context *ctx, const struct token *token __rte_unused,
5876 	     const char *str, unsigned int len,
5877 	     void *buf, unsigned int size)
5878 {
5879 	const struct arg *arg_data = pop_args(ctx);
5880 
5881 	/* Arguments are expected. */
5882 	if (!arg_data)
5883 		return -1;
5884 	size = arg_data->size;
5885 	/* Bit-mask fill is not supported. */
5886 	if (arg_data->mask || size < len + 1)
5887 		goto error;
5888 	if (!ctx->object)
5889 		return len;
5890 	buf = (uint8_t *)ctx->object + arg_data->offset;
5891 	strncpy(buf, str, len);
5892 	if (ctx->objmask)
5893 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
5894 	return len;
5895 error:
5896 	push_args(ctx, arg_data);
5897 	return -1;
5898 }
5899 
5900 /**
5901  * Parse a MAC address.
5902  *
5903  * Last argument (ctx->args) is retrieved to determine storage size and
5904  * location.
5905  */
5906 static int
5907 parse_mac_addr(struct context *ctx, const struct token *token,
5908 	       const char *str, unsigned int len,
5909 	       void *buf, unsigned int size)
5910 {
5911 	const struct arg *arg = pop_args(ctx);
5912 	struct rte_ether_addr tmp;
5913 	int ret;
5914 
5915 	(void)token;
5916 	/* Argument is expected. */
5917 	if (!arg)
5918 		return -1;
5919 	size = arg->size;
5920 	/* Bit-mask fill is not supported. */
5921 	if (arg->mask || size != sizeof(tmp))
5922 		goto error;
5923 	/* Only network endian is supported. */
5924 	if (!arg->hton)
5925 		goto error;
5926 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
5927 	if (ret < 0 || (unsigned int)ret != len)
5928 		goto error;
5929 	if (!ctx->object)
5930 		return len;
5931 	buf = (uint8_t *)ctx->object + arg->offset;
5932 	memcpy(buf, &tmp, size);
5933 	if (ctx->objmask)
5934 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5935 	return len;
5936 error:
5937 	push_args(ctx, arg);
5938 	return -1;
5939 }
5940 
5941 /**
5942  * Parse an IPv4 address.
5943  *
5944  * Last argument (ctx->args) is retrieved to determine storage size and
5945  * location.
5946  */
5947 static int
5948 parse_ipv4_addr(struct context *ctx, const struct token *token,
5949 		const char *str, unsigned int len,
5950 		void *buf, unsigned int size)
5951 {
5952 	const struct arg *arg = pop_args(ctx);
5953 	char str2[len + 1];
5954 	struct in_addr tmp;
5955 	int ret;
5956 
5957 	/* Argument is expected. */
5958 	if (!arg)
5959 		return -1;
5960 	size = arg->size;
5961 	/* Bit-mask fill is not supported. */
5962 	if (arg->mask || size != sizeof(tmp))
5963 		goto error;
5964 	/* Only network endian is supported. */
5965 	if (!arg->hton)
5966 		goto error;
5967 	memcpy(str2, str, len);
5968 	str2[len] = '\0';
5969 	ret = inet_pton(AF_INET, str2, &tmp);
5970 	if (ret != 1) {
5971 		/* Attempt integer parsing. */
5972 		push_args(ctx, arg);
5973 		return parse_int(ctx, token, str, len, buf, size);
5974 	}
5975 	if (!ctx->object)
5976 		return len;
5977 	buf = (uint8_t *)ctx->object + arg->offset;
5978 	memcpy(buf, &tmp, size);
5979 	if (ctx->objmask)
5980 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
5981 	return len;
5982 error:
5983 	push_args(ctx, arg);
5984 	return -1;
5985 }
5986 
5987 /**
5988  * Parse an IPv6 address.
5989  *
5990  * Last argument (ctx->args) is retrieved to determine storage size and
5991  * location.
5992  */
5993 static int
5994 parse_ipv6_addr(struct context *ctx, const struct token *token,
5995 		const char *str, unsigned int len,
5996 		void *buf, unsigned int size)
5997 {
5998 	const struct arg *arg = pop_args(ctx);
5999 	char str2[len + 1];
6000 	struct in6_addr tmp;
6001 	int ret;
6002 
6003 	(void)token;
6004 	/* Argument is expected. */
6005 	if (!arg)
6006 		return -1;
6007 	size = arg->size;
6008 	/* Bit-mask fill is not supported. */
6009 	if (arg->mask || size != sizeof(tmp))
6010 		goto error;
6011 	/* Only network endian is supported. */
6012 	if (!arg->hton)
6013 		goto error;
6014 	memcpy(str2, str, len);
6015 	str2[len] = '\0';
6016 	ret = inet_pton(AF_INET6, str2, &tmp);
6017 	if (ret != 1)
6018 		goto error;
6019 	if (!ctx->object)
6020 		return len;
6021 	buf = (uint8_t *)ctx->object + arg->offset;
6022 	memcpy(buf, &tmp, size);
6023 	if (ctx->objmask)
6024 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
6025 	return len;
6026 error:
6027 	push_args(ctx, arg);
6028 	return -1;
6029 }
6030 
6031 /** Boolean values (even indices stand for false). */
6032 static const char *const boolean_name[] = {
6033 	"0", "1",
6034 	"false", "true",
6035 	"no", "yes",
6036 	"N", "Y",
6037 	"off", "on",
6038 	NULL,
6039 };
6040 
6041 /**
6042  * Parse a boolean value.
6043  *
6044  * Last argument (ctx->args) is retrieved to determine storage size and
6045  * location.
6046  */
6047 static int
6048 parse_boolean(struct context *ctx, const struct token *token,
6049 	      const char *str, unsigned int len,
6050 	      void *buf, unsigned int size)
6051 {
6052 	const struct arg *arg = pop_args(ctx);
6053 	unsigned int i;
6054 	int ret;
6055 
6056 	/* Argument is expected. */
6057 	if (!arg)
6058 		return -1;
6059 	for (i = 0; boolean_name[i]; ++i)
6060 		if (!strcmp_partial(boolean_name[i], str, len))
6061 			break;
6062 	/* Process token as integer. */
6063 	if (boolean_name[i])
6064 		str = i & 1 ? "1" : "0";
6065 	push_args(ctx, arg);
6066 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
6067 	return ret > 0 ? (int)len : ret;
6068 }
6069 
6070 /** Parse port and update context. */
6071 static int
6072 parse_port(struct context *ctx, const struct token *token,
6073 	   const char *str, unsigned int len,
6074 	   void *buf, unsigned int size)
6075 {
6076 	struct buffer *out = &(struct buffer){ .port = 0 };
6077 	int ret;
6078 
6079 	if (buf)
6080 		out = buf;
6081 	else {
6082 		ctx->objdata = 0;
6083 		ctx->object = out;
6084 		ctx->objmask = NULL;
6085 		size = sizeof(*out);
6086 	}
6087 	ret = parse_int(ctx, token, str, len, out, size);
6088 	if (ret >= 0)
6089 		ctx->port = out->port;
6090 	if (!buf)
6091 		ctx->object = NULL;
6092 	return ret;
6093 }
6094 
6095 /** Parse set command, initialize output buffer for subsequent tokens. */
6096 static int
6097 parse_set_raw_encap_decap(struct context *ctx, const struct token *token,
6098 			  const char *str, unsigned int len,
6099 			  void *buf, unsigned int size)
6100 {
6101 	struct buffer *out = buf;
6102 
6103 	/* Token name must match. */
6104 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6105 		return -1;
6106 	/* Nothing else to do if there is no buffer. */
6107 	if (!out)
6108 		return len;
6109 	/* Make sure buffer is large enough. */
6110 	if (size < sizeof(*out))
6111 		return -1;
6112 	ctx->objdata = 0;
6113 	ctx->objmask = NULL;
6114 	ctx->object = out;
6115 	if (!out->command)
6116 		return -1;
6117 	out->command = ctx->curr;
6118 	return len;
6119 }
6120 
6121 /**
6122  * Parse set raw_encap/raw_decap command,
6123  * initialize output buffer for subsequent tokens.
6124  */
6125 static int
6126 parse_set_init(struct context *ctx, const struct token *token,
6127 	       const char *str, unsigned int len,
6128 	       void *buf, unsigned int size)
6129 {
6130 	struct buffer *out = buf;
6131 
6132 	/* Token name must match. */
6133 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6134 		return -1;
6135 	/* Nothing else to do if there is no buffer. */
6136 	if (!out)
6137 		return len;
6138 	/* Make sure buffer is large enough. */
6139 	if (size < sizeof(*out))
6140 		return -1;
6141 	/* Initialize buffer. */
6142 	memset(out, 0x00, sizeof(*out));
6143 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
6144 	ctx->objdata = 0;
6145 	ctx->object = out;
6146 	ctx->objmask = NULL;
6147 	if (!out->command) {
6148 		if (ctx->curr != SET)
6149 			return -1;
6150 		if (sizeof(*out) > size)
6151 			return -1;
6152 		out->command = ctx->curr;
6153 		out->args.vc.data = (uint8_t *)out + size;
6154 		/* All we need is pattern */
6155 		out->args.vc.pattern =
6156 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
6157 					       sizeof(double));
6158 		ctx->object = out->args.vc.pattern;
6159 	}
6160 	return len;
6161 }
6162 
6163 /** No completion. */
6164 static int
6165 comp_none(struct context *ctx, const struct token *token,
6166 	  unsigned int ent, char *buf, unsigned int size)
6167 {
6168 	(void)ctx;
6169 	(void)token;
6170 	(void)ent;
6171 	(void)buf;
6172 	(void)size;
6173 	return 0;
6174 }
6175 
6176 /** Complete boolean values. */
6177 static int
6178 comp_boolean(struct context *ctx, const struct token *token,
6179 	     unsigned int ent, char *buf, unsigned int size)
6180 {
6181 	unsigned int i;
6182 
6183 	(void)ctx;
6184 	(void)token;
6185 	for (i = 0; boolean_name[i]; ++i)
6186 		if (buf && i == ent)
6187 			return strlcpy(buf, boolean_name[i], size);
6188 	if (buf)
6189 		return -1;
6190 	return i;
6191 }
6192 
6193 /** Complete action names. */
6194 static int
6195 comp_action(struct context *ctx, const struct token *token,
6196 	    unsigned int ent, char *buf, unsigned int size)
6197 {
6198 	unsigned int i;
6199 
6200 	(void)ctx;
6201 	(void)token;
6202 	for (i = 0; next_action[i]; ++i)
6203 		if (buf && i == ent)
6204 			return strlcpy(buf, token_list[next_action[i]].name,
6205 				       size);
6206 	if (buf)
6207 		return -1;
6208 	return i;
6209 }
6210 
6211 /** Complete available ports. */
6212 static int
6213 comp_port(struct context *ctx, const struct token *token,
6214 	  unsigned int ent, char *buf, unsigned int size)
6215 {
6216 	unsigned int i = 0;
6217 	portid_t p;
6218 
6219 	(void)ctx;
6220 	(void)token;
6221 	RTE_ETH_FOREACH_DEV(p) {
6222 		if (buf && i == ent)
6223 			return snprintf(buf, size, "%u", p);
6224 		++i;
6225 	}
6226 	if (buf)
6227 		return -1;
6228 	return i;
6229 }
6230 
6231 /** Complete available rule IDs. */
6232 static int
6233 comp_rule_id(struct context *ctx, const struct token *token,
6234 	     unsigned int ent, char *buf, unsigned int size)
6235 {
6236 	unsigned int i = 0;
6237 	struct rte_port *port;
6238 	struct port_flow *pf;
6239 
6240 	(void)token;
6241 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
6242 	    ctx->port == (portid_t)RTE_PORT_ALL)
6243 		return -1;
6244 	port = &ports[ctx->port];
6245 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
6246 		if (buf && i == ent)
6247 			return snprintf(buf, size, "%u", pf->id);
6248 		++i;
6249 	}
6250 	if (buf)
6251 		return -1;
6252 	return i;
6253 }
6254 
6255 /** Complete type field for RSS action. */
6256 static int
6257 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
6258 			unsigned int ent, char *buf, unsigned int size)
6259 {
6260 	unsigned int i;
6261 
6262 	(void)ctx;
6263 	(void)token;
6264 	for (i = 0; rss_type_table[i].str; ++i)
6265 		;
6266 	if (!buf)
6267 		return i + 1;
6268 	if (ent < i)
6269 		return strlcpy(buf, rss_type_table[ent].str, size);
6270 	if (ent == i)
6271 		return snprintf(buf, size, "end");
6272 	return -1;
6273 }
6274 
6275 /** Complete queue field for RSS action. */
6276 static int
6277 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
6278 			 unsigned int ent, char *buf, unsigned int size)
6279 {
6280 	(void)ctx;
6281 	(void)token;
6282 	if (!buf)
6283 		return nb_rxq + 1;
6284 	if (ent < nb_rxq)
6285 		return snprintf(buf, size, "%u", ent);
6286 	if (ent == nb_rxq)
6287 		return snprintf(buf, size, "end");
6288 	return -1;
6289 }
6290 
6291 /** Complete index number for set raw_encap/raw_decap commands. */
6292 static int
6293 comp_set_raw_index(struct context *ctx, const struct token *token,
6294 		   unsigned int ent, char *buf, unsigned int size)
6295 {
6296 	uint16_t idx = 0;
6297 	uint16_t nb = 0;
6298 
6299 	RTE_SET_USED(ctx);
6300 	RTE_SET_USED(token);
6301 	for (idx = 0; idx < RAW_ENCAP_CONFS_MAX_NUM; ++idx) {
6302 		if (buf && idx == ent)
6303 			return snprintf(buf, size, "%u", idx);
6304 		++nb;
6305 	}
6306 	return nb;
6307 }
6308 
6309 /** Internal context. */
6310 static struct context cmd_flow_context;
6311 
6312 /** Global parser instance (cmdline API). */
6313 cmdline_parse_inst_t cmd_flow;
6314 cmdline_parse_inst_t cmd_set_raw;
6315 
6316 /** Initialize context. */
6317 static void
6318 cmd_flow_context_init(struct context *ctx)
6319 {
6320 	/* A full memset() is not necessary. */
6321 	ctx->curr = ZERO;
6322 	ctx->prev = ZERO;
6323 	ctx->next_num = 0;
6324 	ctx->args_num = 0;
6325 	ctx->eol = 0;
6326 	ctx->last = 0;
6327 	ctx->port = 0;
6328 	ctx->objdata = 0;
6329 	ctx->object = NULL;
6330 	ctx->objmask = NULL;
6331 }
6332 
6333 /** Parse a token (cmdline API). */
6334 static int
6335 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
6336 	       unsigned int size)
6337 {
6338 	struct context *ctx = &cmd_flow_context;
6339 	const struct token *token;
6340 	const enum index *list;
6341 	int len;
6342 	int i;
6343 
6344 	(void)hdr;
6345 	token = &token_list[ctx->curr];
6346 	/* Check argument length. */
6347 	ctx->eol = 0;
6348 	ctx->last = 1;
6349 	for (len = 0; src[len]; ++len)
6350 		if (src[len] == '#' || isspace(src[len]))
6351 			break;
6352 	if (!len)
6353 		return -1;
6354 	/* Last argument and EOL detection. */
6355 	for (i = len; src[i]; ++i)
6356 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
6357 			break;
6358 		else if (!isspace(src[i])) {
6359 			ctx->last = 0;
6360 			break;
6361 		}
6362 	for (; src[i]; ++i)
6363 		if (src[i] == '\r' || src[i] == '\n') {
6364 			ctx->eol = 1;
6365 			break;
6366 		}
6367 	/* Initialize context if necessary. */
6368 	if (!ctx->next_num) {
6369 		if (!token->next)
6370 			return 0;
6371 		ctx->next[ctx->next_num++] = token->next[0];
6372 	}
6373 	/* Process argument through candidates. */
6374 	ctx->prev = ctx->curr;
6375 	list = ctx->next[ctx->next_num - 1];
6376 	for (i = 0; list[i]; ++i) {
6377 		const struct token *next = &token_list[list[i]];
6378 		int tmp;
6379 
6380 		ctx->curr = list[i];
6381 		if (next->call)
6382 			tmp = next->call(ctx, next, src, len, result, size);
6383 		else
6384 			tmp = parse_default(ctx, next, src, len, result, size);
6385 		if (tmp == -1 || tmp != len)
6386 			continue;
6387 		token = next;
6388 		break;
6389 	}
6390 	if (!list[i])
6391 		return -1;
6392 	--ctx->next_num;
6393 	/* Push subsequent tokens if any. */
6394 	if (token->next)
6395 		for (i = 0; token->next[i]; ++i) {
6396 			if (ctx->next_num == RTE_DIM(ctx->next))
6397 				return -1;
6398 			ctx->next[ctx->next_num++] = token->next[i];
6399 		}
6400 	/* Push arguments if any. */
6401 	if (token->args)
6402 		for (i = 0; token->args[i]; ++i) {
6403 			if (ctx->args_num == RTE_DIM(ctx->args))
6404 				return -1;
6405 			ctx->args[ctx->args_num++] = token->args[i];
6406 		}
6407 	return len;
6408 }
6409 
6410 /** Return number of completion entries (cmdline API). */
6411 static int
6412 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
6413 {
6414 	struct context *ctx = &cmd_flow_context;
6415 	const struct token *token = &token_list[ctx->curr];
6416 	const enum index *list;
6417 	int i;
6418 
6419 	(void)hdr;
6420 	/* Count number of tokens in current list. */
6421 	if (ctx->next_num)
6422 		list = ctx->next[ctx->next_num - 1];
6423 	else
6424 		list = token->next[0];
6425 	for (i = 0; list[i]; ++i)
6426 		;
6427 	if (!i)
6428 		return 0;
6429 	/*
6430 	 * If there is a single token, use its completion callback, otherwise
6431 	 * return the number of entries.
6432 	 */
6433 	token = &token_list[list[0]];
6434 	if (i == 1 && token->comp) {
6435 		/* Save index for cmd_flow_get_help(). */
6436 		ctx->prev = list[0];
6437 		return token->comp(ctx, token, 0, NULL, 0);
6438 	}
6439 	return i;
6440 }
6441 
6442 /** Return a completion entry (cmdline API). */
6443 static int
6444 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
6445 			  char *dst, unsigned int size)
6446 {
6447 	struct context *ctx = &cmd_flow_context;
6448 	const struct token *token = &token_list[ctx->curr];
6449 	const enum index *list;
6450 	int i;
6451 
6452 	(void)hdr;
6453 	/* Count number of tokens in current list. */
6454 	if (ctx->next_num)
6455 		list = ctx->next[ctx->next_num - 1];
6456 	else
6457 		list = token->next[0];
6458 	for (i = 0; list[i]; ++i)
6459 		;
6460 	if (!i)
6461 		return -1;
6462 	/* If there is a single token, use its completion callback. */
6463 	token = &token_list[list[0]];
6464 	if (i == 1 && token->comp) {
6465 		/* Save index for cmd_flow_get_help(). */
6466 		ctx->prev = list[0];
6467 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
6468 	}
6469 	/* Otherwise make sure the index is valid and use defaults. */
6470 	if (index >= i)
6471 		return -1;
6472 	token = &token_list[list[index]];
6473 	strlcpy(dst, token->name, size);
6474 	/* Save index for cmd_flow_get_help(). */
6475 	ctx->prev = list[index];
6476 	return 0;
6477 }
6478 
6479 /** Populate help strings for current token (cmdline API). */
6480 static int
6481 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
6482 {
6483 	struct context *ctx = &cmd_flow_context;
6484 	const struct token *token = &token_list[ctx->prev];
6485 
6486 	(void)hdr;
6487 	if (!size)
6488 		return -1;
6489 	/* Set token type and update global help with details. */
6490 	strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
6491 	if (token->help)
6492 		cmd_flow.help_str = token->help;
6493 	else
6494 		cmd_flow.help_str = token->name;
6495 	return 0;
6496 }
6497 
6498 /** Token definition template (cmdline API). */
6499 static struct cmdline_token_hdr cmd_flow_token_hdr = {
6500 	.ops = &(struct cmdline_token_ops){
6501 		.parse = cmd_flow_parse,
6502 		.complete_get_nb = cmd_flow_complete_get_nb,
6503 		.complete_get_elt = cmd_flow_complete_get_elt,
6504 		.get_help = cmd_flow_get_help,
6505 	},
6506 	.offset = 0,
6507 };
6508 
6509 /** Populate the next dynamic token. */
6510 static void
6511 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
6512 	     cmdline_parse_token_hdr_t **hdr_inst)
6513 {
6514 	struct context *ctx = &cmd_flow_context;
6515 
6516 	/* Always reinitialize context before requesting the first token. */
6517 	if (!(hdr_inst - cmd_flow.tokens))
6518 		cmd_flow_context_init(ctx);
6519 	/* Return NULL when no more tokens are expected. */
6520 	if (!ctx->next_num && ctx->curr) {
6521 		*hdr = NULL;
6522 		return;
6523 	}
6524 	/* Determine if command should end here. */
6525 	if (ctx->eol && ctx->last && ctx->next_num) {
6526 		const enum index *list = ctx->next[ctx->next_num - 1];
6527 		int i;
6528 
6529 		for (i = 0; list[i]; ++i) {
6530 			if (list[i] != END)
6531 				continue;
6532 			*hdr = NULL;
6533 			return;
6534 		}
6535 	}
6536 	*hdr = &cmd_flow_token_hdr;
6537 }
6538 
6539 /** Dispatch parsed buffer to function calls. */
6540 static void
6541 cmd_flow_parsed(const struct buffer *in)
6542 {
6543 	switch (in->command) {
6544 	case VALIDATE:
6545 		port_flow_validate(in->port, &in->args.vc.attr,
6546 				   in->args.vc.pattern, in->args.vc.actions);
6547 		break;
6548 	case CREATE:
6549 		port_flow_create(in->port, &in->args.vc.attr,
6550 				 in->args.vc.pattern, in->args.vc.actions);
6551 		break;
6552 	case DESTROY:
6553 		port_flow_destroy(in->port, in->args.destroy.rule_n,
6554 				  in->args.destroy.rule);
6555 		break;
6556 	case FLUSH:
6557 		port_flow_flush(in->port);
6558 		break;
6559 	case DUMP:
6560 		port_flow_dump(in->port, in->args.dump.file);
6561 		break;
6562 	case QUERY:
6563 		port_flow_query(in->port, in->args.query.rule,
6564 				&in->args.query.action);
6565 		break;
6566 	case LIST:
6567 		port_flow_list(in->port, in->args.list.group_n,
6568 			       in->args.list.group);
6569 		break;
6570 	case ISOLATE:
6571 		port_flow_isolate(in->port, in->args.isolate.set);
6572 		break;
6573 	case AGED:
6574 		port_flow_aged(in->port, in->args.aged.destroy);
6575 		break;
6576 	default:
6577 		break;
6578 	}
6579 }
6580 
6581 /** Token generator and output processing callback (cmdline API). */
6582 static void
6583 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
6584 {
6585 	if (cl == NULL)
6586 		cmd_flow_tok(arg0, arg2);
6587 	else
6588 		cmd_flow_parsed(arg0);
6589 }
6590 
6591 /** Global parser instance (cmdline API). */
6592 cmdline_parse_inst_t cmd_flow = {
6593 	.f = cmd_flow_cb,
6594 	.data = NULL, /**< Unused. */
6595 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
6596 	.tokens = {
6597 		NULL,
6598 	}, /**< Tokens are returned by cmd_flow_tok(). */
6599 };
6600 
6601 /** set cmd facility. Reuse cmd flow's infrastructure as much as possible. */
6602 
6603 static void
6604 update_fields(uint8_t *buf, struct rte_flow_item *item, uint16_t next_proto)
6605 {
6606 	struct rte_flow_item_ipv4 *ipv4;
6607 	struct rte_flow_item_eth *eth;
6608 	struct rte_flow_item_ipv6 *ipv6;
6609 	struct rte_flow_item_vxlan *vxlan;
6610 	struct rte_flow_item_vxlan_gpe *gpe;
6611 	struct rte_flow_item_nvgre *nvgre;
6612 	uint32_t ipv6_vtc_flow;
6613 
6614 	switch (item->type) {
6615 	case RTE_FLOW_ITEM_TYPE_ETH:
6616 		eth = (struct rte_flow_item_eth *)buf;
6617 		if (next_proto)
6618 			eth->type = rte_cpu_to_be_16(next_proto);
6619 		break;
6620 	case RTE_FLOW_ITEM_TYPE_IPV4:
6621 		ipv4 = (struct rte_flow_item_ipv4 *)buf;
6622 		ipv4->hdr.version_ihl = 0x45;
6623 		if (next_proto && ipv4->hdr.next_proto_id == 0)
6624 			ipv4->hdr.next_proto_id = (uint8_t)next_proto;
6625 		break;
6626 	case RTE_FLOW_ITEM_TYPE_IPV6:
6627 		ipv6 = (struct rte_flow_item_ipv6 *)buf;
6628 		if (next_proto && ipv6->hdr.proto == 0)
6629 			ipv6->hdr.proto = (uint8_t)next_proto;
6630 		ipv6_vtc_flow = rte_be_to_cpu_32(ipv6->hdr.vtc_flow);
6631 		ipv6_vtc_flow &= 0x0FFFFFFF; /*< reset version bits. */
6632 		ipv6_vtc_flow |= 0x60000000; /*< set ipv6 version. */
6633 		ipv6->hdr.vtc_flow = rte_cpu_to_be_32(ipv6_vtc_flow);
6634 		break;
6635 	case RTE_FLOW_ITEM_TYPE_VXLAN:
6636 		vxlan = (struct rte_flow_item_vxlan *)buf;
6637 		vxlan->flags = 0x08;
6638 		break;
6639 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
6640 		gpe = (struct rte_flow_item_vxlan_gpe *)buf;
6641 		gpe->flags = 0x0C;
6642 		break;
6643 	case RTE_FLOW_ITEM_TYPE_NVGRE:
6644 		nvgre = (struct rte_flow_item_nvgre *)buf;
6645 		nvgre->protocol = rte_cpu_to_be_16(0x6558);
6646 		nvgre->c_k_s_rsvd0_ver = rte_cpu_to_be_16(0x2000);
6647 		break;
6648 	default:
6649 		break;
6650 	}
6651 }
6652 
6653 /** Helper of get item's default mask. */
6654 static const void *
6655 flow_item_default_mask(const struct rte_flow_item *item)
6656 {
6657 	const void *mask = NULL;
6658 	static rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
6659 
6660 	switch (item->type) {
6661 	case RTE_FLOW_ITEM_TYPE_ANY:
6662 		mask = &rte_flow_item_any_mask;
6663 		break;
6664 	case RTE_FLOW_ITEM_TYPE_VF:
6665 		mask = &rte_flow_item_vf_mask;
6666 		break;
6667 	case RTE_FLOW_ITEM_TYPE_PORT_ID:
6668 		mask = &rte_flow_item_port_id_mask;
6669 		break;
6670 	case RTE_FLOW_ITEM_TYPE_RAW:
6671 		mask = &rte_flow_item_raw_mask;
6672 		break;
6673 	case RTE_FLOW_ITEM_TYPE_ETH:
6674 		mask = &rte_flow_item_eth_mask;
6675 		break;
6676 	case RTE_FLOW_ITEM_TYPE_VLAN:
6677 		mask = &rte_flow_item_vlan_mask;
6678 		break;
6679 	case RTE_FLOW_ITEM_TYPE_IPV4:
6680 		mask = &rte_flow_item_ipv4_mask;
6681 		break;
6682 	case RTE_FLOW_ITEM_TYPE_IPV6:
6683 		mask = &rte_flow_item_ipv6_mask;
6684 		break;
6685 	case RTE_FLOW_ITEM_TYPE_ICMP:
6686 		mask = &rte_flow_item_icmp_mask;
6687 		break;
6688 	case RTE_FLOW_ITEM_TYPE_UDP:
6689 		mask = &rte_flow_item_udp_mask;
6690 		break;
6691 	case RTE_FLOW_ITEM_TYPE_TCP:
6692 		mask = &rte_flow_item_tcp_mask;
6693 		break;
6694 	case RTE_FLOW_ITEM_TYPE_SCTP:
6695 		mask = &rte_flow_item_sctp_mask;
6696 		break;
6697 	case RTE_FLOW_ITEM_TYPE_VXLAN:
6698 		mask = &rte_flow_item_vxlan_mask;
6699 		break;
6700 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
6701 		mask = &rte_flow_item_vxlan_gpe_mask;
6702 		break;
6703 	case RTE_FLOW_ITEM_TYPE_E_TAG:
6704 		mask = &rte_flow_item_e_tag_mask;
6705 		break;
6706 	case RTE_FLOW_ITEM_TYPE_NVGRE:
6707 		mask = &rte_flow_item_nvgre_mask;
6708 		break;
6709 	case RTE_FLOW_ITEM_TYPE_MPLS:
6710 		mask = &rte_flow_item_mpls_mask;
6711 		break;
6712 	case RTE_FLOW_ITEM_TYPE_GRE:
6713 		mask = &rte_flow_item_gre_mask;
6714 		break;
6715 	case RTE_FLOW_ITEM_TYPE_GRE_KEY:
6716 		mask = &gre_key_default_mask;
6717 		break;
6718 	case RTE_FLOW_ITEM_TYPE_META:
6719 		mask = &rte_flow_item_meta_mask;
6720 		break;
6721 	case RTE_FLOW_ITEM_TYPE_FUZZY:
6722 		mask = &rte_flow_item_fuzzy_mask;
6723 		break;
6724 	case RTE_FLOW_ITEM_TYPE_GTP:
6725 		mask = &rte_flow_item_gtp_mask;
6726 		break;
6727 	case RTE_FLOW_ITEM_TYPE_GTP_PSC:
6728 		mask = &rte_flow_item_gtp_psc_mask;
6729 		break;
6730 	case RTE_FLOW_ITEM_TYPE_GENEVE:
6731 		mask = &rte_flow_item_geneve_mask;
6732 		break;
6733 	case RTE_FLOW_ITEM_TYPE_PPPOE_PROTO_ID:
6734 		mask = &rte_flow_item_pppoe_proto_id_mask;
6735 		break;
6736 	case RTE_FLOW_ITEM_TYPE_L2TPV3OIP:
6737 		mask = &rte_flow_item_l2tpv3oip_mask;
6738 		break;
6739 	case RTE_FLOW_ITEM_TYPE_ESP:
6740 		mask = &rte_flow_item_esp_mask;
6741 		break;
6742 	case RTE_FLOW_ITEM_TYPE_AH:
6743 		mask = &rte_flow_item_ah_mask;
6744 		break;
6745 	case RTE_FLOW_ITEM_TYPE_PFCP:
6746 		mask = &rte_flow_item_pfcp_mask;
6747 		break;
6748 	default:
6749 		break;
6750 	}
6751 	return mask;
6752 }
6753 
6754 
6755 
6756 /** Dispatch parsed buffer to function calls. */
6757 static void
6758 cmd_set_raw_parsed(const struct buffer *in)
6759 {
6760 	uint32_t n = in->args.vc.pattern_n;
6761 	int i = 0;
6762 	struct rte_flow_item *item = NULL;
6763 	size_t size = 0;
6764 	uint8_t *data = NULL;
6765 	uint8_t *data_tail = NULL;
6766 	size_t *total_size = NULL;
6767 	uint16_t upper_layer = 0;
6768 	uint16_t proto = 0;
6769 	uint16_t idx = in->port; /* We borrow port field as index */
6770 
6771 	RTE_ASSERT(in->command == SET_RAW_ENCAP ||
6772 		   in->command == SET_RAW_DECAP);
6773 	if (in->command == SET_RAW_ENCAP) {
6774 		total_size = &raw_encap_confs[idx].size;
6775 		data = (uint8_t *)&raw_encap_confs[idx].data;
6776 	} else {
6777 		total_size = &raw_decap_confs[idx].size;
6778 		data = (uint8_t *)&raw_decap_confs[idx].data;
6779 	}
6780 	*total_size = 0;
6781 	memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
6782 	/* process hdr from upper layer to low layer (L3/L4 -> L2). */
6783 	data_tail = data + ACTION_RAW_ENCAP_MAX_DATA;
6784 	for (i = n - 1 ; i >= 0; --i) {
6785 		item = in->args.vc.pattern + i;
6786 		if (item->spec == NULL)
6787 			item->spec = flow_item_default_mask(item);
6788 		switch (item->type) {
6789 		case RTE_FLOW_ITEM_TYPE_ETH:
6790 			size = sizeof(struct rte_flow_item_eth);
6791 			break;
6792 		case RTE_FLOW_ITEM_TYPE_VLAN:
6793 			size = sizeof(struct rte_flow_item_vlan);
6794 			proto = RTE_ETHER_TYPE_VLAN;
6795 			break;
6796 		case RTE_FLOW_ITEM_TYPE_IPV4:
6797 			size = sizeof(struct rte_flow_item_ipv4);
6798 			proto = RTE_ETHER_TYPE_IPV4;
6799 			break;
6800 		case RTE_FLOW_ITEM_TYPE_IPV6:
6801 			size = sizeof(struct rte_flow_item_ipv6);
6802 			proto = RTE_ETHER_TYPE_IPV6;
6803 			break;
6804 		case RTE_FLOW_ITEM_TYPE_UDP:
6805 			size = sizeof(struct rte_flow_item_udp);
6806 			proto = 0x11;
6807 			break;
6808 		case RTE_FLOW_ITEM_TYPE_TCP:
6809 			size = sizeof(struct rte_flow_item_tcp);
6810 			proto = 0x06;
6811 			break;
6812 		case RTE_FLOW_ITEM_TYPE_VXLAN:
6813 			size = sizeof(struct rte_flow_item_vxlan);
6814 			break;
6815 		case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
6816 			size = sizeof(struct rte_flow_item_vxlan_gpe);
6817 			break;
6818 		case RTE_FLOW_ITEM_TYPE_GRE:
6819 			size = sizeof(struct rte_flow_item_gre);
6820 			proto = 0x2F;
6821 			break;
6822 		case RTE_FLOW_ITEM_TYPE_GRE_KEY:
6823 			size = sizeof(rte_be32_t);
6824 			proto = 0x0;
6825 			break;
6826 		case RTE_FLOW_ITEM_TYPE_MPLS:
6827 			size = sizeof(struct rte_flow_item_mpls);
6828 			proto = 0x0;
6829 			break;
6830 		case RTE_FLOW_ITEM_TYPE_NVGRE:
6831 			size = sizeof(struct rte_flow_item_nvgre);
6832 			proto = 0x2F;
6833 			break;
6834 		case RTE_FLOW_ITEM_TYPE_GENEVE:
6835 			size = sizeof(struct rte_flow_item_geneve);
6836 			break;
6837 		case RTE_FLOW_ITEM_TYPE_L2TPV3OIP:
6838 			size = sizeof(struct rte_flow_item_l2tpv3oip);
6839 			proto = 0x73;
6840 			break;
6841 		case RTE_FLOW_ITEM_TYPE_ESP:
6842 			size = sizeof(struct rte_flow_item_esp);
6843 			proto = 0x32;
6844 			break;
6845 		case RTE_FLOW_ITEM_TYPE_AH:
6846 			size = sizeof(struct rte_flow_item_ah);
6847 			proto = 0x33;
6848 			break;
6849 		case RTE_FLOW_ITEM_TYPE_GTP:
6850 			size = sizeof(struct rte_flow_item_gtp);
6851 			break;
6852 		case RTE_FLOW_ITEM_TYPE_PFCP:
6853 			size = sizeof(struct rte_flow_item_pfcp);
6854 			break;
6855 		default:
6856 			printf("Error - Not supported item\n");
6857 			*total_size = 0;
6858 			memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
6859 			return;
6860 		}
6861 		*total_size += size;
6862 		rte_memcpy(data_tail - (*total_size), item->spec, size);
6863 		/* update some fields which cannot be set by cmdline */
6864 		update_fields((data_tail - (*total_size)), item,
6865 			      upper_layer);
6866 		upper_layer = proto;
6867 	}
6868 	if (verbose_level & 0x1)
6869 		printf("total data size is %zu\n", (*total_size));
6870 	RTE_ASSERT((*total_size) <= ACTION_RAW_ENCAP_MAX_DATA);
6871 	memmove(data, (data_tail - (*total_size)), *total_size);
6872 }
6873 
6874 /** Populate help strings for current token (cmdline API). */
6875 static int
6876 cmd_set_raw_get_help(cmdline_parse_token_hdr_t *hdr, char *dst,
6877 		     unsigned int size)
6878 {
6879 	struct context *ctx = &cmd_flow_context;
6880 	const struct token *token = &token_list[ctx->prev];
6881 
6882 	(void)hdr;
6883 	if (!size)
6884 		return -1;
6885 	/* Set token type and update global help with details. */
6886 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
6887 	if (token->help)
6888 		cmd_set_raw.help_str = token->help;
6889 	else
6890 		cmd_set_raw.help_str = token->name;
6891 	return 0;
6892 }
6893 
6894 /** Token definition template (cmdline API). */
6895 static struct cmdline_token_hdr cmd_set_raw_token_hdr = {
6896 	.ops = &(struct cmdline_token_ops){
6897 		.parse = cmd_flow_parse,
6898 		.complete_get_nb = cmd_flow_complete_get_nb,
6899 		.complete_get_elt = cmd_flow_complete_get_elt,
6900 		.get_help = cmd_set_raw_get_help,
6901 	},
6902 	.offset = 0,
6903 };
6904 
6905 /** Populate the next dynamic token. */
6906 static void
6907 cmd_set_raw_tok(cmdline_parse_token_hdr_t **hdr,
6908 	     cmdline_parse_token_hdr_t **hdr_inst)
6909 {
6910 	struct context *ctx = &cmd_flow_context;
6911 
6912 	/* Always reinitialize context before requesting the first token. */
6913 	if (!(hdr_inst - cmd_set_raw.tokens)) {
6914 		cmd_flow_context_init(ctx);
6915 		ctx->curr = START_SET;
6916 	}
6917 	/* Return NULL when no more tokens are expected. */
6918 	if (!ctx->next_num && (ctx->curr != START_SET)) {
6919 		*hdr = NULL;
6920 		return;
6921 	}
6922 	/* Determine if command should end here. */
6923 	if (ctx->eol && ctx->last && ctx->next_num) {
6924 		const enum index *list = ctx->next[ctx->next_num - 1];
6925 		int i;
6926 
6927 		for (i = 0; list[i]; ++i) {
6928 			if (list[i] != END)
6929 				continue;
6930 			*hdr = NULL;
6931 			return;
6932 		}
6933 	}
6934 	*hdr = &cmd_set_raw_token_hdr;
6935 }
6936 
6937 /** Token generator and output processing callback (cmdline API). */
6938 static void
6939 cmd_set_raw_cb(void *arg0, struct cmdline *cl, void *arg2)
6940 {
6941 	if (cl == NULL)
6942 		cmd_set_raw_tok(arg0, arg2);
6943 	else
6944 		cmd_set_raw_parsed(arg0);
6945 }
6946 
6947 /** Global parser instance (cmdline API). */
6948 cmdline_parse_inst_t cmd_set_raw = {
6949 	.f = cmd_set_raw_cb,
6950 	.data = NULL, /**< Unused. */
6951 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
6952 	.tokens = {
6953 		NULL,
6954 	}, /**< Tokens are returned by cmd_flow_tok(). */
6955 };
6956 
6957 /* *** display raw_encap/raw_decap buf */
6958 struct cmd_show_set_raw_result {
6959 	cmdline_fixed_string_t cmd_show;
6960 	cmdline_fixed_string_t cmd_what;
6961 	cmdline_fixed_string_t cmd_all;
6962 	uint16_t cmd_index;
6963 };
6964 
6965 static void
6966 cmd_show_set_raw_parsed(void *parsed_result, struct cmdline *cl, void *data)
6967 {
6968 	struct cmd_show_set_raw_result *res = parsed_result;
6969 	uint16_t index = res->cmd_index;
6970 	uint8_t all = 0;
6971 	uint8_t *raw_data = NULL;
6972 	size_t raw_size = 0;
6973 	char title[16] = {0};
6974 
6975 	RTE_SET_USED(cl);
6976 	RTE_SET_USED(data);
6977 	if (!strcmp(res->cmd_all, "all")) {
6978 		all = 1;
6979 		index = 0;
6980 	} else if (index >= RAW_ENCAP_CONFS_MAX_NUM) {
6981 		printf("index should be 0-%u\n", RAW_ENCAP_CONFS_MAX_NUM - 1);
6982 		return;
6983 	}
6984 	do {
6985 		if (!strcmp(res->cmd_what, "raw_encap")) {
6986 			raw_data = (uint8_t *)&raw_encap_confs[index].data;
6987 			raw_size = raw_encap_confs[index].size;
6988 			snprintf(title, 16, "\nindex: %u", index);
6989 			rte_hexdump(stdout, title, raw_data, raw_size);
6990 		} else {
6991 			raw_data = (uint8_t *)&raw_decap_confs[index].data;
6992 			raw_size = raw_decap_confs[index].size;
6993 			snprintf(title, 16, "\nindex: %u", index);
6994 			rte_hexdump(stdout, title, raw_data, raw_size);
6995 		}
6996 	} while (all && ++index < RAW_ENCAP_CONFS_MAX_NUM);
6997 }
6998 
6999 cmdline_parse_token_string_t cmd_show_set_raw_cmd_show =
7000 	TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
7001 			cmd_show, "show");
7002 cmdline_parse_token_string_t cmd_show_set_raw_cmd_what =
7003 	TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
7004 			cmd_what, "raw_encap#raw_decap");
7005 cmdline_parse_token_num_t cmd_show_set_raw_cmd_index =
7006 	TOKEN_NUM_INITIALIZER(struct cmd_show_set_raw_result,
7007 			cmd_index, UINT16);
7008 cmdline_parse_token_string_t cmd_show_set_raw_cmd_all =
7009 	TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
7010 			cmd_all, "all");
7011 cmdline_parse_inst_t cmd_show_set_raw = {
7012 	.f = cmd_show_set_raw_parsed,
7013 	.data = NULL,
7014 	.help_str = "show <raw_encap|raw_decap> <index>",
7015 	.tokens = {
7016 		(void *)&cmd_show_set_raw_cmd_show,
7017 		(void *)&cmd_show_set_raw_cmd_what,
7018 		(void *)&cmd_show_set_raw_cmd_index,
7019 		NULL,
7020 	},
7021 };
7022 cmdline_parse_inst_t cmd_show_set_raw_all = {
7023 	.f = cmd_show_set_raw_parsed,
7024 	.data = NULL,
7025 	.help_str = "show <raw_encap|raw_decap> all",
7026 	.tokens = {
7027 		(void *)&cmd_show_set_raw_cmd_show,
7028 		(void *)&cmd_show_set_raw_cmd_what,
7029 		(void *)&cmd_show_set_raw_cmd_all,
7030 		NULL,
7031 	},
7032 };
7033