xref: /dpdk/app/test-pmd/cmdline_flow.c (revision 0797fa6ccf9dec6e9e079d76ca2cedf7ceda0df4)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2016 6WIND S.A.
3  * Copyright 2016 Mellanox Technologies, Ltd
4  */
5 
6 #include <stddef.h>
7 #include <stdint.h>
8 #include <stdio.h>
9 #include <inttypes.h>
10 #include <errno.h>
11 #include <ctype.h>
12 #include <string.h>
13 #include <arpa/inet.h>
14 #include <sys/socket.h>
15 
16 #include <rte_string_fns.h>
17 #include <rte_common.h>
18 #include <rte_ethdev.h>
19 #include <rte_byteorder.h>
20 #include <cmdline_parse.h>
21 #include <cmdline_parse_etheraddr.h>
22 #include <cmdline_parse_string.h>
23 #include <cmdline_parse_num.h>
24 #include <rte_flow.h>
25 #include <rte_hexdump.h>
26 #include <rte_vxlan.h>
27 #include <rte_gre.h>
28 #include <rte_mpls.h>
29 #include <rte_gtp.h>
30 #include <rte_geneve.h>
31 
32 #include "testpmd.h"
33 
34 /** Parser token indices. */
35 enum index {
36 	/* Special tokens. */
37 	ZERO = 0,
38 	END,
39 	START_SET,
40 	END_SET,
41 
42 	/* Common tokens. */
43 	INTEGER,
44 	UNSIGNED,
45 	PREFIX,
46 	BOOLEAN,
47 	STRING,
48 	HEX,
49 	FILE_PATH,
50 	MAC_ADDR,
51 	IPV4_ADDR,
52 	IPV6_ADDR,
53 	RULE_ID,
54 	PORT_ID,
55 	GROUP_ID,
56 	PRIORITY_LEVEL,
57 	INDIRECT_ACTION_ID,
58 
59 	/* Top-level command. */
60 	SET,
61 	/* Sub-leve commands. */
62 	SET_RAW_ENCAP,
63 	SET_RAW_DECAP,
64 	SET_RAW_INDEX,
65 	SET_SAMPLE_ACTIONS,
66 	SET_SAMPLE_INDEX,
67 
68 	/* Top-level command. */
69 	FLOW,
70 	/* Sub-level commands. */
71 	INDIRECT_ACTION,
72 	VALIDATE,
73 	CREATE,
74 	DESTROY,
75 	FLUSH,
76 	DUMP,
77 	QUERY,
78 	LIST,
79 	AGED,
80 	ISOLATE,
81 	TUNNEL,
82 
83 	/* Tunnel arguments. */
84 	TUNNEL_CREATE,
85 	TUNNEL_CREATE_TYPE,
86 	TUNNEL_LIST,
87 	TUNNEL_DESTROY,
88 	TUNNEL_DESTROY_ID,
89 
90 	/* Destroy arguments. */
91 	DESTROY_RULE,
92 
93 	/* Query arguments. */
94 	QUERY_ACTION,
95 
96 	/* List arguments. */
97 	LIST_GROUP,
98 
99 	/* Destroy aged flow arguments. */
100 	AGED_DESTROY,
101 
102 	/* Validate/create arguments. */
103 	GROUP,
104 	PRIORITY,
105 	INGRESS,
106 	EGRESS,
107 	TRANSFER,
108 	TUNNEL_SET,
109 	TUNNEL_MATCH,
110 
111 	/* Dump arguments */
112 	DUMP_ALL,
113 	DUMP_ONE,
114 
115 	/* Indirect action arguments */
116 	INDIRECT_ACTION_CREATE,
117 	INDIRECT_ACTION_UPDATE,
118 	INDIRECT_ACTION_DESTROY,
119 	INDIRECT_ACTION_QUERY,
120 
121 	/* Indirect action create arguments */
122 	INDIRECT_ACTION_CREATE_ID,
123 	INDIRECT_ACTION_INGRESS,
124 	INDIRECT_ACTION_EGRESS,
125 	INDIRECT_ACTION_TRANSFER,
126 	INDIRECT_ACTION_SPEC,
127 
128 	/* Indirect action destroy arguments */
129 	INDIRECT_ACTION_DESTROY_ID,
130 
131 	/* Validate/create pattern. */
132 	PATTERN,
133 	ITEM_PARAM_IS,
134 	ITEM_PARAM_SPEC,
135 	ITEM_PARAM_LAST,
136 	ITEM_PARAM_MASK,
137 	ITEM_PARAM_PREFIX,
138 	ITEM_NEXT,
139 	ITEM_END,
140 	ITEM_VOID,
141 	ITEM_INVERT,
142 	ITEM_ANY,
143 	ITEM_ANY_NUM,
144 	ITEM_PF,
145 	ITEM_VF,
146 	ITEM_VF_ID,
147 	ITEM_PHY_PORT,
148 	ITEM_PHY_PORT_INDEX,
149 	ITEM_PORT_ID,
150 	ITEM_PORT_ID_ID,
151 	ITEM_MARK,
152 	ITEM_MARK_ID,
153 	ITEM_RAW,
154 	ITEM_RAW_RELATIVE,
155 	ITEM_RAW_SEARCH,
156 	ITEM_RAW_OFFSET,
157 	ITEM_RAW_LIMIT,
158 	ITEM_RAW_PATTERN,
159 	ITEM_ETH,
160 	ITEM_ETH_DST,
161 	ITEM_ETH_SRC,
162 	ITEM_ETH_TYPE,
163 	ITEM_ETH_HAS_VLAN,
164 	ITEM_VLAN,
165 	ITEM_VLAN_TCI,
166 	ITEM_VLAN_PCP,
167 	ITEM_VLAN_DEI,
168 	ITEM_VLAN_VID,
169 	ITEM_VLAN_INNER_TYPE,
170 	ITEM_VLAN_HAS_MORE_VLAN,
171 	ITEM_IPV4,
172 	ITEM_IPV4_TOS,
173 	ITEM_IPV4_FRAGMENT_OFFSET,
174 	ITEM_IPV4_TTL,
175 	ITEM_IPV4_PROTO,
176 	ITEM_IPV4_SRC,
177 	ITEM_IPV4_DST,
178 	ITEM_IPV6,
179 	ITEM_IPV6_TC,
180 	ITEM_IPV6_FLOW,
181 	ITEM_IPV6_PROTO,
182 	ITEM_IPV6_HOP,
183 	ITEM_IPV6_SRC,
184 	ITEM_IPV6_DST,
185 	ITEM_IPV6_HAS_FRAG_EXT,
186 	ITEM_ICMP,
187 	ITEM_ICMP_TYPE,
188 	ITEM_ICMP_CODE,
189 	ITEM_ICMP_IDENT,
190 	ITEM_ICMP_SEQ,
191 	ITEM_UDP,
192 	ITEM_UDP_SRC,
193 	ITEM_UDP_DST,
194 	ITEM_TCP,
195 	ITEM_TCP_SRC,
196 	ITEM_TCP_DST,
197 	ITEM_TCP_FLAGS,
198 	ITEM_SCTP,
199 	ITEM_SCTP_SRC,
200 	ITEM_SCTP_DST,
201 	ITEM_SCTP_TAG,
202 	ITEM_SCTP_CKSUM,
203 	ITEM_VXLAN,
204 	ITEM_VXLAN_VNI,
205 	ITEM_E_TAG,
206 	ITEM_E_TAG_GRP_ECID_B,
207 	ITEM_NVGRE,
208 	ITEM_NVGRE_TNI,
209 	ITEM_MPLS,
210 	ITEM_MPLS_LABEL,
211 	ITEM_MPLS_TC,
212 	ITEM_MPLS_S,
213 	ITEM_GRE,
214 	ITEM_GRE_PROTO,
215 	ITEM_GRE_C_RSVD0_VER,
216 	ITEM_GRE_C_BIT,
217 	ITEM_GRE_K_BIT,
218 	ITEM_GRE_S_BIT,
219 	ITEM_FUZZY,
220 	ITEM_FUZZY_THRESH,
221 	ITEM_GTP,
222 	ITEM_GTP_FLAGS,
223 	ITEM_GTP_MSG_TYPE,
224 	ITEM_GTP_TEID,
225 	ITEM_GTPC,
226 	ITEM_GTPU,
227 	ITEM_GENEVE,
228 	ITEM_GENEVE_VNI,
229 	ITEM_GENEVE_PROTO,
230 	ITEM_GENEVE_OPTLEN,
231 	ITEM_VXLAN_GPE,
232 	ITEM_VXLAN_GPE_VNI,
233 	ITEM_ARP_ETH_IPV4,
234 	ITEM_ARP_ETH_IPV4_SHA,
235 	ITEM_ARP_ETH_IPV4_SPA,
236 	ITEM_ARP_ETH_IPV4_THA,
237 	ITEM_ARP_ETH_IPV4_TPA,
238 	ITEM_IPV6_EXT,
239 	ITEM_IPV6_EXT_NEXT_HDR,
240 	ITEM_IPV6_FRAG_EXT,
241 	ITEM_IPV6_FRAG_EXT_NEXT_HDR,
242 	ITEM_IPV6_FRAG_EXT_FRAG_DATA,
243 	ITEM_ICMP6,
244 	ITEM_ICMP6_TYPE,
245 	ITEM_ICMP6_CODE,
246 	ITEM_ICMP6_ND_NS,
247 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
248 	ITEM_ICMP6_ND_NA,
249 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
250 	ITEM_ICMP6_ND_OPT,
251 	ITEM_ICMP6_ND_OPT_TYPE,
252 	ITEM_ICMP6_ND_OPT_SLA_ETH,
253 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
254 	ITEM_ICMP6_ND_OPT_TLA_ETH,
255 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
256 	ITEM_META,
257 	ITEM_META_DATA,
258 	ITEM_GRE_KEY,
259 	ITEM_GRE_KEY_VALUE,
260 	ITEM_GTP_PSC,
261 	ITEM_GTP_PSC_QFI,
262 	ITEM_GTP_PSC_PDU_T,
263 	ITEM_PPPOES,
264 	ITEM_PPPOED,
265 	ITEM_PPPOE_SEID,
266 	ITEM_PPPOE_PROTO_ID,
267 	ITEM_HIGIG2,
268 	ITEM_HIGIG2_CLASSIFICATION,
269 	ITEM_HIGIG2_VID,
270 	ITEM_TAG,
271 	ITEM_TAG_DATA,
272 	ITEM_TAG_INDEX,
273 	ITEM_L2TPV3OIP,
274 	ITEM_L2TPV3OIP_SESSION_ID,
275 	ITEM_ESP,
276 	ITEM_ESP_SPI,
277 	ITEM_AH,
278 	ITEM_AH_SPI,
279 	ITEM_PFCP,
280 	ITEM_PFCP_S_FIELD,
281 	ITEM_PFCP_SEID,
282 	ITEM_ECPRI,
283 	ITEM_ECPRI_COMMON,
284 	ITEM_ECPRI_COMMON_TYPE,
285 	ITEM_ECPRI_COMMON_TYPE_IQ_DATA,
286 	ITEM_ECPRI_COMMON_TYPE_RTC_CTRL,
287 	ITEM_ECPRI_COMMON_TYPE_DLY_MSR,
288 	ITEM_ECPRI_MSG_IQ_DATA_PCID,
289 	ITEM_ECPRI_MSG_RTC_CTRL_RTCID,
290 	ITEM_ECPRI_MSG_DLY_MSR_MSRID,
291 	ITEM_GENEVE_OPT,
292 	ITEM_GENEVE_OPT_CLASS,
293 	ITEM_GENEVE_OPT_TYPE,
294 	ITEM_GENEVE_OPT_LENGTH,
295 	ITEM_GENEVE_OPT_DATA,
296 	ITEM_INTEGRITY,
297 	ITEM_INTEGRITY_LEVEL,
298 	ITEM_INTEGRITY_VALUE,
299 
300 	/* Validate/create actions. */
301 	ACTIONS,
302 	ACTION_NEXT,
303 	ACTION_END,
304 	ACTION_VOID,
305 	ACTION_PASSTHRU,
306 	ACTION_JUMP,
307 	ACTION_JUMP_GROUP,
308 	ACTION_MARK,
309 	ACTION_MARK_ID,
310 	ACTION_FLAG,
311 	ACTION_QUEUE,
312 	ACTION_QUEUE_INDEX,
313 	ACTION_DROP,
314 	ACTION_COUNT,
315 	ACTION_COUNT_SHARED,
316 	ACTION_COUNT_ID,
317 	ACTION_RSS,
318 	ACTION_RSS_FUNC,
319 	ACTION_RSS_LEVEL,
320 	ACTION_RSS_FUNC_DEFAULT,
321 	ACTION_RSS_FUNC_TOEPLITZ,
322 	ACTION_RSS_FUNC_SIMPLE_XOR,
323 	ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ,
324 	ACTION_RSS_TYPES,
325 	ACTION_RSS_TYPE,
326 	ACTION_RSS_KEY,
327 	ACTION_RSS_KEY_LEN,
328 	ACTION_RSS_QUEUES,
329 	ACTION_RSS_QUEUE,
330 	ACTION_PF,
331 	ACTION_VF,
332 	ACTION_VF_ORIGINAL,
333 	ACTION_VF_ID,
334 	ACTION_PHY_PORT,
335 	ACTION_PHY_PORT_ORIGINAL,
336 	ACTION_PHY_PORT_INDEX,
337 	ACTION_PORT_ID,
338 	ACTION_PORT_ID_ORIGINAL,
339 	ACTION_PORT_ID_ID,
340 	ACTION_METER,
341 	ACTION_METER_ID,
342 	ACTION_OF_SET_MPLS_TTL,
343 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
344 	ACTION_OF_DEC_MPLS_TTL,
345 	ACTION_OF_SET_NW_TTL,
346 	ACTION_OF_SET_NW_TTL_NW_TTL,
347 	ACTION_OF_DEC_NW_TTL,
348 	ACTION_OF_COPY_TTL_OUT,
349 	ACTION_OF_COPY_TTL_IN,
350 	ACTION_OF_POP_VLAN,
351 	ACTION_OF_PUSH_VLAN,
352 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
353 	ACTION_OF_SET_VLAN_VID,
354 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
355 	ACTION_OF_SET_VLAN_PCP,
356 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
357 	ACTION_OF_POP_MPLS,
358 	ACTION_OF_POP_MPLS_ETHERTYPE,
359 	ACTION_OF_PUSH_MPLS,
360 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
361 	ACTION_VXLAN_ENCAP,
362 	ACTION_VXLAN_DECAP,
363 	ACTION_NVGRE_ENCAP,
364 	ACTION_NVGRE_DECAP,
365 	ACTION_L2_ENCAP,
366 	ACTION_L2_DECAP,
367 	ACTION_MPLSOGRE_ENCAP,
368 	ACTION_MPLSOGRE_DECAP,
369 	ACTION_MPLSOUDP_ENCAP,
370 	ACTION_MPLSOUDP_DECAP,
371 	ACTION_SET_IPV4_SRC,
372 	ACTION_SET_IPV4_SRC_IPV4_SRC,
373 	ACTION_SET_IPV4_DST,
374 	ACTION_SET_IPV4_DST_IPV4_DST,
375 	ACTION_SET_IPV6_SRC,
376 	ACTION_SET_IPV6_SRC_IPV6_SRC,
377 	ACTION_SET_IPV6_DST,
378 	ACTION_SET_IPV6_DST_IPV6_DST,
379 	ACTION_SET_TP_SRC,
380 	ACTION_SET_TP_SRC_TP_SRC,
381 	ACTION_SET_TP_DST,
382 	ACTION_SET_TP_DST_TP_DST,
383 	ACTION_MAC_SWAP,
384 	ACTION_DEC_TTL,
385 	ACTION_SET_TTL,
386 	ACTION_SET_TTL_TTL,
387 	ACTION_SET_MAC_SRC,
388 	ACTION_SET_MAC_SRC_MAC_SRC,
389 	ACTION_SET_MAC_DST,
390 	ACTION_SET_MAC_DST_MAC_DST,
391 	ACTION_INC_TCP_SEQ,
392 	ACTION_INC_TCP_SEQ_VALUE,
393 	ACTION_DEC_TCP_SEQ,
394 	ACTION_DEC_TCP_SEQ_VALUE,
395 	ACTION_INC_TCP_ACK,
396 	ACTION_INC_TCP_ACK_VALUE,
397 	ACTION_DEC_TCP_ACK,
398 	ACTION_DEC_TCP_ACK_VALUE,
399 	ACTION_RAW_ENCAP,
400 	ACTION_RAW_DECAP,
401 	ACTION_RAW_ENCAP_INDEX,
402 	ACTION_RAW_ENCAP_INDEX_VALUE,
403 	ACTION_RAW_DECAP_INDEX,
404 	ACTION_RAW_DECAP_INDEX_VALUE,
405 	ACTION_SET_TAG,
406 	ACTION_SET_TAG_DATA,
407 	ACTION_SET_TAG_INDEX,
408 	ACTION_SET_TAG_MASK,
409 	ACTION_SET_META,
410 	ACTION_SET_META_DATA,
411 	ACTION_SET_META_MASK,
412 	ACTION_SET_IPV4_DSCP,
413 	ACTION_SET_IPV4_DSCP_VALUE,
414 	ACTION_SET_IPV6_DSCP,
415 	ACTION_SET_IPV6_DSCP_VALUE,
416 	ACTION_AGE,
417 	ACTION_AGE_TIMEOUT,
418 	ACTION_SAMPLE,
419 	ACTION_SAMPLE_RATIO,
420 	ACTION_SAMPLE_INDEX,
421 	ACTION_SAMPLE_INDEX_VALUE,
422 	ACTION_INDIRECT,
423 	INDIRECT_ACTION_ID2PTR,
424 	ACTION_MODIFY_FIELD,
425 	ACTION_MODIFY_FIELD_OP,
426 	ACTION_MODIFY_FIELD_OP_VALUE,
427 	ACTION_MODIFY_FIELD_DST_TYPE,
428 	ACTION_MODIFY_FIELD_DST_TYPE_VALUE,
429 	ACTION_MODIFY_FIELD_DST_LEVEL,
430 	ACTION_MODIFY_FIELD_DST_OFFSET,
431 	ACTION_MODIFY_FIELD_SRC_TYPE,
432 	ACTION_MODIFY_FIELD_SRC_TYPE_VALUE,
433 	ACTION_MODIFY_FIELD_SRC_LEVEL,
434 	ACTION_MODIFY_FIELD_SRC_OFFSET,
435 	ACTION_MODIFY_FIELD_SRC_VALUE,
436 	ACTION_MODIFY_FIELD_WIDTH,
437 };
438 
439 /** Maximum size for pattern in struct rte_flow_item_raw. */
440 #define ITEM_RAW_PATTERN_SIZE 40
441 
442 /** Maximum size for GENEVE option data pattern in bytes. */
443 #define ITEM_GENEVE_OPT_DATA_SIZE 124
444 
445 /** Storage size for struct rte_flow_item_raw including pattern. */
446 #define ITEM_RAW_SIZE \
447 	(sizeof(struct rte_flow_item_raw) + ITEM_RAW_PATTERN_SIZE)
448 
449 /** Maximum number of queue indices in struct rte_flow_action_rss. */
450 #define ACTION_RSS_QUEUE_NUM 128
451 
452 /** Storage for struct rte_flow_action_rss including external data. */
453 struct action_rss_data {
454 	struct rte_flow_action_rss conf;
455 	uint8_t key[RSS_HASH_KEY_LENGTH];
456 	uint16_t queue[ACTION_RSS_QUEUE_NUM];
457 };
458 
459 /** Maximum data size in struct rte_flow_action_raw_encap. */
460 #define ACTION_RAW_ENCAP_MAX_DATA 512
461 #define RAW_ENCAP_CONFS_MAX_NUM 8
462 
463 /** Storage for struct rte_flow_action_raw_encap. */
464 struct raw_encap_conf {
465 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
466 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
467 	size_t size;
468 };
469 
470 struct raw_encap_conf raw_encap_confs[RAW_ENCAP_CONFS_MAX_NUM];
471 
472 /** Storage for struct rte_flow_action_raw_encap including external data. */
473 struct action_raw_encap_data {
474 	struct rte_flow_action_raw_encap conf;
475 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
476 	uint8_t preserve[ACTION_RAW_ENCAP_MAX_DATA];
477 	uint16_t idx;
478 };
479 
480 /** Storage for struct rte_flow_action_raw_decap. */
481 struct raw_decap_conf {
482 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
483 	size_t size;
484 };
485 
486 struct raw_decap_conf raw_decap_confs[RAW_ENCAP_CONFS_MAX_NUM];
487 
488 /** Storage for struct rte_flow_action_raw_decap including external data. */
489 struct action_raw_decap_data {
490 	struct rte_flow_action_raw_decap conf;
491 	uint8_t data[ACTION_RAW_ENCAP_MAX_DATA];
492 	uint16_t idx;
493 };
494 
495 struct vxlan_encap_conf vxlan_encap_conf = {
496 	.select_ipv4 = 1,
497 	.select_vlan = 0,
498 	.select_tos_ttl = 0,
499 	.vni = "\x00\x00\x00",
500 	.udp_src = 0,
501 	.udp_dst = RTE_BE16(RTE_VXLAN_DEFAULT_PORT),
502 	.ipv4_src = RTE_IPV4(127, 0, 0, 1),
503 	.ipv4_dst = RTE_IPV4(255, 255, 255, 255),
504 	.ipv6_src = "\x00\x00\x00\x00\x00\x00\x00\x00"
505 		"\x00\x00\x00\x00\x00\x00\x00\x01",
506 	.ipv6_dst = "\x00\x00\x00\x00\x00\x00\x00\x00"
507 		"\x00\x00\x00\x00\x00\x00\x11\x11",
508 	.vlan_tci = 0,
509 	.ip_tos = 0,
510 	.ip_ttl = 255,
511 	.eth_src = "\x00\x00\x00\x00\x00\x00",
512 	.eth_dst = "\xff\xff\xff\xff\xff\xff",
513 };
514 
515 /** Maximum number of items in struct rte_flow_action_vxlan_encap. */
516 #define ACTION_VXLAN_ENCAP_ITEMS_NUM 6
517 
518 /** Storage for struct rte_flow_action_vxlan_encap including external data. */
519 struct action_vxlan_encap_data {
520 	struct rte_flow_action_vxlan_encap conf;
521 	struct rte_flow_item items[ACTION_VXLAN_ENCAP_ITEMS_NUM];
522 	struct rte_flow_item_eth item_eth;
523 	struct rte_flow_item_vlan item_vlan;
524 	union {
525 		struct rte_flow_item_ipv4 item_ipv4;
526 		struct rte_flow_item_ipv6 item_ipv6;
527 	};
528 	struct rte_flow_item_udp item_udp;
529 	struct rte_flow_item_vxlan item_vxlan;
530 };
531 
532 struct nvgre_encap_conf nvgre_encap_conf = {
533 	.select_ipv4 = 1,
534 	.select_vlan = 0,
535 	.tni = "\x00\x00\x00",
536 	.ipv4_src = RTE_IPV4(127, 0, 0, 1),
537 	.ipv4_dst = RTE_IPV4(255, 255, 255, 255),
538 	.ipv6_src = "\x00\x00\x00\x00\x00\x00\x00\x00"
539 		"\x00\x00\x00\x00\x00\x00\x00\x01",
540 	.ipv6_dst = "\x00\x00\x00\x00\x00\x00\x00\x00"
541 		"\x00\x00\x00\x00\x00\x00\x11\x11",
542 	.vlan_tci = 0,
543 	.eth_src = "\x00\x00\x00\x00\x00\x00",
544 	.eth_dst = "\xff\xff\xff\xff\xff\xff",
545 };
546 
547 /** Maximum number of items in struct rte_flow_action_nvgre_encap. */
548 #define ACTION_NVGRE_ENCAP_ITEMS_NUM 5
549 
550 /** Storage for struct rte_flow_action_nvgre_encap including external data. */
551 struct action_nvgre_encap_data {
552 	struct rte_flow_action_nvgre_encap conf;
553 	struct rte_flow_item items[ACTION_NVGRE_ENCAP_ITEMS_NUM];
554 	struct rte_flow_item_eth item_eth;
555 	struct rte_flow_item_vlan item_vlan;
556 	union {
557 		struct rte_flow_item_ipv4 item_ipv4;
558 		struct rte_flow_item_ipv6 item_ipv6;
559 	};
560 	struct rte_flow_item_nvgre item_nvgre;
561 };
562 
563 struct l2_encap_conf l2_encap_conf;
564 
565 struct l2_decap_conf l2_decap_conf;
566 
567 struct mplsogre_encap_conf mplsogre_encap_conf;
568 
569 struct mplsogre_decap_conf mplsogre_decap_conf;
570 
571 struct mplsoudp_encap_conf mplsoudp_encap_conf;
572 
573 struct mplsoudp_decap_conf mplsoudp_decap_conf;
574 
575 #define ACTION_SAMPLE_ACTIONS_NUM 10
576 #define RAW_SAMPLE_CONFS_MAX_NUM 8
577 /** Storage for struct rte_flow_action_sample including external data. */
578 struct action_sample_data {
579 	struct rte_flow_action_sample conf;
580 	uint32_t idx;
581 };
582 /** Storage for struct rte_flow_action_sample. */
583 struct raw_sample_conf {
584 	struct rte_flow_action data[ACTION_SAMPLE_ACTIONS_NUM];
585 };
586 struct raw_sample_conf raw_sample_confs[RAW_SAMPLE_CONFS_MAX_NUM];
587 struct rte_flow_action_mark sample_mark[RAW_SAMPLE_CONFS_MAX_NUM];
588 struct rte_flow_action_queue sample_queue[RAW_SAMPLE_CONFS_MAX_NUM];
589 struct rte_flow_action_count sample_count[RAW_SAMPLE_CONFS_MAX_NUM];
590 struct rte_flow_action_port_id sample_port_id[RAW_SAMPLE_CONFS_MAX_NUM];
591 struct rte_flow_action_raw_encap sample_encap[RAW_SAMPLE_CONFS_MAX_NUM];
592 struct action_vxlan_encap_data sample_vxlan_encap[RAW_SAMPLE_CONFS_MAX_NUM];
593 struct action_nvgre_encap_data sample_nvgre_encap[RAW_SAMPLE_CONFS_MAX_NUM];
594 struct action_rss_data sample_rss_data[RAW_SAMPLE_CONFS_MAX_NUM];
595 struct rte_flow_action_vf sample_vf[RAW_SAMPLE_CONFS_MAX_NUM];
596 
597 static const char *const modify_field_ops[] = {
598 	"set", "add", "sub", NULL
599 };
600 
601 static const char *const modify_field_ids[] = {
602 	"start", "mac_dst", "mac_src",
603 	"vlan_type", "vlan_id", "mac_type",
604 	"ipv4_dscp", "ipv4_ttl", "ipv4_src", "ipv4_dst",
605 	"ipv6_dscp", "ipv6_hoplimit", "ipv6_src", "ipv6_dst",
606 	"tcp_port_src", "tcp_port_dst",
607 	"tcp_seq_num", "tcp_ack_num", "tcp_flags",
608 	"udp_port_src", "udp_port_dst",
609 	"vxlan_vni", "geneve_vni", "gtp_teid",
610 	"tag", "mark", "meta", "pointer", "value", NULL
611 };
612 
613 /** Maximum number of subsequent tokens and arguments on the stack. */
614 #define CTX_STACK_SIZE 16
615 
616 /** Parser context. */
617 struct context {
618 	/** Stack of subsequent token lists to process. */
619 	const enum index *next[CTX_STACK_SIZE];
620 	/** Arguments for stacked tokens. */
621 	const void *args[CTX_STACK_SIZE];
622 	enum index curr; /**< Current token index. */
623 	enum index prev; /**< Index of the last token seen. */
624 	int next_num; /**< Number of entries in next[]. */
625 	int args_num; /**< Number of entries in args[]. */
626 	uint32_t eol:1; /**< EOL has been detected. */
627 	uint32_t last:1; /**< No more arguments. */
628 	portid_t port; /**< Current port ID (for completions). */
629 	uint32_t objdata; /**< Object-specific data. */
630 	void *object; /**< Address of current object for relative offsets. */
631 	void *objmask; /**< Object a full mask must be written to. */
632 };
633 
634 /** Token argument. */
635 struct arg {
636 	uint32_t hton:1; /**< Use network byte ordering. */
637 	uint32_t sign:1; /**< Value is signed. */
638 	uint32_t bounded:1; /**< Value is bounded. */
639 	uintmax_t min; /**< Minimum value if bounded. */
640 	uintmax_t max; /**< Maximum value if bounded. */
641 	uint32_t offset; /**< Relative offset from ctx->object. */
642 	uint32_t size; /**< Field size. */
643 	const uint8_t *mask; /**< Bit-mask to use instead of offset/size. */
644 };
645 
646 /** Parser token definition. */
647 struct token {
648 	/** Type displayed during completion (defaults to "TOKEN"). */
649 	const char *type;
650 	/** Help displayed during completion (defaults to token name). */
651 	const char *help;
652 	/** Private data used by parser functions. */
653 	const void *priv;
654 	/**
655 	 * Lists of subsequent tokens to push on the stack. Each call to the
656 	 * parser consumes the last entry of that stack.
657 	 */
658 	const enum index *const *next;
659 	/** Arguments stack for subsequent tokens that need them. */
660 	const struct arg *const *args;
661 	/**
662 	 * Token-processing callback, returns -1 in case of error, the
663 	 * length of the matched string otherwise. If NULL, attempts to
664 	 * match the token name.
665 	 *
666 	 * If buf is not NULL, the result should be stored in it according
667 	 * to context. An error is returned if not large enough.
668 	 */
669 	int (*call)(struct context *ctx, const struct token *token,
670 		    const char *str, unsigned int len,
671 		    void *buf, unsigned int size);
672 	/**
673 	 * Callback that provides possible values for this token, used for
674 	 * completion. Returns -1 in case of error, the number of possible
675 	 * values otherwise. If NULL, the token name is used.
676 	 *
677 	 * If buf is not NULL, entry index ent is written to buf and the
678 	 * full length of the entry is returned (same behavior as
679 	 * snprintf()).
680 	 */
681 	int (*comp)(struct context *ctx, const struct token *token,
682 		    unsigned int ent, char *buf, unsigned int size);
683 	/** Mandatory token name, no default value. */
684 	const char *name;
685 };
686 
687 /** Static initializer for the next field. */
688 #define NEXT(...) (const enum index *const []){ __VA_ARGS__, NULL, }
689 
690 /** Static initializer for a NEXT() entry. */
691 #define NEXT_ENTRY(...) (const enum index []){ __VA_ARGS__, ZERO, }
692 
693 /** Static initializer for the args field. */
694 #define ARGS(...) (const struct arg *const []){ __VA_ARGS__, NULL, }
695 
696 /** Static initializer for ARGS() to target a field. */
697 #define ARGS_ENTRY(s, f) \
698 	(&(const struct arg){ \
699 		.offset = offsetof(s, f), \
700 		.size = sizeof(((s *)0)->f), \
701 	})
702 
703 /** Static initializer for ARGS() to target a bit-field. */
704 #define ARGS_ENTRY_BF(s, f, b) \
705 	(&(const struct arg){ \
706 		.size = sizeof(s), \
707 		.mask = (const void *)&(const s){ .f = (1 << (b)) - 1 }, \
708 	})
709 
710 /** Static initializer for ARGS() to target a field with limits. */
711 #define ARGS_ENTRY_BOUNDED(s, f, i, a) \
712 	(&(const struct arg){ \
713 		.bounded = 1, \
714 		.min = (i), \
715 		.max = (a), \
716 		.offset = offsetof(s, f), \
717 		.size = sizeof(((s *)0)->f), \
718 	})
719 
720 /** Static initializer for ARGS() to target an arbitrary bit-mask. */
721 #define ARGS_ENTRY_MASK(s, f, m) \
722 	(&(const struct arg){ \
723 		.offset = offsetof(s, f), \
724 		.size = sizeof(((s *)0)->f), \
725 		.mask = (const void *)(m), \
726 	})
727 
728 /** Same as ARGS_ENTRY_MASK() using network byte ordering for the value. */
729 #define ARGS_ENTRY_MASK_HTON(s, f, m) \
730 	(&(const struct arg){ \
731 		.hton = 1, \
732 		.offset = offsetof(s, f), \
733 		.size = sizeof(((s *)0)->f), \
734 		.mask = (const void *)(m), \
735 	})
736 
737 /** Static initializer for ARGS() to target a pointer. */
738 #define ARGS_ENTRY_PTR(s, f) \
739 	(&(const struct arg){ \
740 		.size = sizeof(*((s *)0)->f), \
741 	})
742 
743 /** Static initializer for ARGS() with arbitrary offset and size. */
744 #define ARGS_ENTRY_ARB(o, s) \
745 	(&(const struct arg){ \
746 		.offset = (o), \
747 		.size = (s), \
748 	})
749 
750 /** Same as ARGS_ENTRY_ARB() with bounded values. */
751 #define ARGS_ENTRY_ARB_BOUNDED(o, s, i, a) \
752 	(&(const struct arg){ \
753 		.bounded = 1, \
754 		.min = (i), \
755 		.max = (a), \
756 		.offset = (o), \
757 		.size = (s), \
758 	})
759 
760 /** Same as ARGS_ENTRY() using network byte ordering. */
761 #define ARGS_ENTRY_HTON(s, f) \
762 	(&(const struct arg){ \
763 		.hton = 1, \
764 		.offset = offsetof(s, f), \
765 		.size = sizeof(((s *)0)->f), \
766 	})
767 
768 /** Same as ARGS_ENTRY_HTON() for a single argument, without structure. */
769 #define ARG_ENTRY_HTON(s) \
770 	(&(const struct arg){ \
771 		.hton = 1, \
772 		.offset = 0, \
773 		.size = sizeof(s), \
774 	})
775 
776 /** Parser output buffer layout expected by cmd_flow_parsed(). */
777 struct buffer {
778 	enum index command; /**< Flow command. */
779 	portid_t port; /**< Affected port ID. */
780 	union {
781 		struct {
782 			uint32_t *action_id;
783 			uint32_t action_id_n;
784 		} ia_destroy; /**< Indirect action destroy arguments. */
785 		struct {
786 			uint32_t action_id;
787 		} ia; /* Indirect action query arguments */
788 		struct {
789 			struct rte_flow_attr attr;
790 			struct tunnel_ops tunnel_ops;
791 			struct rte_flow_item *pattern;
792 			struct rte_flow_action *actions;
793 			uint32_t pattern_n;
794 			uint32_t actions_n;
795 			uint8_t *data;
796 		} vc; /**< Validate/create arguments. */
797 		struct {
798 			uint32_t *rule;
799 			uint32_t rule_n;
800 		} destroy; /**< Destroy arguments. */
801 		struct {
802 			char file[128];
803 			bool mode;
804 			uint32_t rule;
805 		} dump; /**< Dump arguments. */
806 		struct {
807 			uint32_t rule;
808 			struct rte_flow_action action;
809 		} query; /**< Query arguments. */
810 		struct {
811 			uint32_t *group;
812 			uint32_t group_n;
813 		} list; /**< List arguments. */
814 		struct {
815 			int set;
816 		} isolate; /**< Isolated mode arguments. */
817 		struct {
818 			int destroy;
819 		} aged; /**< Aged arguments. */
820 	} args; /**< Command arguments. */
821 };
822 
823 /** Private data for pattern items. */
824 struct parse_item_priv {
825 	enum rte_flow_item_type type; /**< Item type. */
826 	uint32_t size; /**< Size of item specification structure. */
827 };
828 
829 #define PRIV_ITEM(t, s) \
830 	(&(const struct parse_item_priv){ \
831 		.type = RTE_FLOW_ITEM_TYPE_ ## t, \
832 		.size = s, \
833 	})
834 
835 /** Private data for actions. */
836 struct parse_action_priv {
837 	enum rte_flow_action_type type; /**< Action type. */
838 	uint32_t size; /**< Size of action configuration structure. */
839 };
840 
841 #define PRIV_ACTION(t, s) \
842 	(&(const struct parse_action_priv){ \
843 		.type = RTE_FLOW_ACTION_TYPE_ ## t, \
844 		.size = s, \
845 	})
846 
847 static const enum index next_ia_create_attr[] = {
848 	INDIRECT_ACTION_CREATE_ID,
849 	INDIRECT_ACTION_INGRESS,
850 	INDIRECT_ACTION_EGRESS,
851 	INDIRECT_ACTION_TRANSFER,
852 	INDIRECT_ACTION_SPEC,
853 	ZERO,
854 };
855 
856 static const enum index next_dump_subcmd[] = {
857 	DUMP_ALL,
858 	DUMP_ONE,
859 	ZERO,
860 };
861 
862 static const enum index next_ia_subcmd[] = {
863 	INDIRECT_ACTION_CREATE,
864 	INDIRECT_ACTION_UPDATE,
865 	INDIRECT_ACTION_DESTROY,
866 	INDIRECT_ACTION_QUERY,
867 	ZERO,
868 };
869 
870 static const enum index next_vc_attr[] = {
871 	GROUP,
872 	PRIORITY,
873 	INGRESS,
874 	EGRESS,
875 	TRANSFER,
876 	TUNNEL_SET,
877 	TUNNEL_MATCH,
878 	PATTERN,
879 	ZERO,
880 };
881 
882 static const enum index next_destroy_attr[] = {
883 	DESTROY_RULE,
884 	END,
885 	ZERO,
886 };
887 
888 static const enum index next_dump_attr[] = {
889 	FILE_PATH,
890 	END,
891 	ZERO,
892 };
893 
894 static const enum index next_list_attr[] = {
895 	LIST_GROUP,
896 	END,
897 	ZERO,
898 };
899 
900 static const enum index next_aged_attr[] = {
901 	AGED_DESTROY,
902 	END,
903 	ZERO,
904 };
905 
906 static const enum index next_ia_destroy_attr[] = {
907 	INDIRECT_ACTION_DESTROY_ID,
908 	END,
909 	ZERO,
910 };
911 
912 static const enum index item_param[] = {
913 	ITEM_PARAM_IS,
914 	ITEM_PARAM_SPEC,
915 	ITEM_PARAM_LAST,
916 	ITEM_PARAM_MASK,
917 	ITEM_PARAM_PREFIX,
918 	ZERO,
919 };
920 
921 static const enum index next_item[] = {
922 	ITEM_END,
923 	ITEM_VOID,
924 	ITEM_INVERT,
925 	ITEM_ANY,
926 	ITEM_PF,
927 	ITEM_VF,
928 	ITEM_PHY_PORT,
929 	ITEM_PORT_ID,
930 	ITEM_MARK,
931 	ITEM_RAW,
932 	ITEM_ETH,
933 	ITEM_VLAN,
934 	ITEM_IPV4,
935 	ITEM_IPV6,
936 	ITEM_ICMP,
937 	ITEM_UDP,
938 	ITEM_TCP,
939 	ITEM_SCTP,
940 	ITEM_VXLAN,
941 	ITEM_E_TAG,
942 	ITEM_NVGRE,
943 	ITEM_MPLS,
944 	ITEM_GRE,
945 	ITEM_FUZZY,
946 	ITEM_GTP,
947 	ITEM_GTPC,
948 	ITEM_GTPU,
949 	ITEM_GENEVE,
950 	ITEM_VXLAN_GPE,
951 	ITEM_ARP_ETH_IPV4,
952 	ITEM_IPV6_EXT,
953 	ITEM_IPV6_FRAG_EXT,
954 	ITEM_ICMP6,
955 	ITEM_ICMP6_ND_NS,
956 	ITEM_ICMP6_ND_NA,
957 	ITEM_ICMP6_ND_OPT,
958 	ITEM_ICMP6_ND_OPT_SLA_ETH,
959 	ITEM_ICMP6_ND_OPT_TLA_ETH,
960 	ITEM_META,
961 	ITEM_GRE_KEY,
962 	ITEM_GTP_PSC,
963 	ITEM_PPPOES,
964 	ITEM_PPPOED,
965 	ITEM_PPPOE_PROTO_ID,
966 	ITEM_HIGIG2,
967 	ITEM_TAG,
968 	ITEM_L2TPV3OIP,
969 	ITEM_ESP,
970 	ITEM_AH,
971 	ITEM_PFCP,
972 	ITEM_ECPRI,
973 	ITEM_GENEVE_OPT,
974 	ITEM_INTEGRITY,
975 	END_SET,
976 	ZERO,
977 };
978 
979 static const enum index item_fuzzy[] = {
980 	ITEM_FUZZY_THRESH,
981 	ITEM_NEXT,
982 	ZERO,
983 };
984 
985 static const enum index item_any[] = {
986 	ITEM_ANY_NUM,
987 	ITEM_NEXT,
988 	ZERO,
989 };
990 
991 static const enum index item_vf[] = {
992 	ITEM_VF_ID,
993 	ITEM_NEXT,
994 	ZERO,
995 };
996 
997 static const enum index item_phy_port[] = {
998 	ITEM_PHY_PORT_INDEX,
999 	ITEM_NEXT,
1000 	ZERO,
1001 };
1002 
1003 static const enum index item_port_id[] = {
1004 	ITEM_PORT_ID_ID,
1005 	ITEM_NEXT,
1006 	ZERO,
1007 };
1008 
1009 static const enum index item_mark[] = {
1010 	ITEM_MARK_ID,
1011 	ITEM_NEXT,
1012 	ZERO,
1013 };
1014 
1015 static const enum index item_raw[] = {
1016 	ITEM_RAW_RELATIVE,
1017 	ITEM_RAW_SEARCH,
1018 	ITEM_RAW_OFFSET,
1019 	ITEM_RAW_LIMIT,
1020 	ITEM_RAW_PATTERN,
1021 	ITEM_NEXT,
1022 	ZERO,
1023 };
1024 
1025 static const enum index item_eth[] = {
1026 	ITEM_ETH_DST,
1027 	ITEM_ETH_SRC,
1028 	ITEM_ETH_TYPE,
1029 	ITEM_ETH_HAS_VLAN,
1030 	ITEM_NEXT,
1031 	ZERO,
1032 };
1033 
1034 static const enum index item_vlan[] = {
1035 	ITEM_VLAN_TCI,
1036 	ITEM_VLAN_PCP,
1037 	ITEM_VLAN_DEI,
1038 	ITEM_VLAN_VID,
1039 	ITEM_VLAN_INNER_TYPE,
1040 	ITEM_VLAN_HAS_MORE_VLAN,
1041 	ITEM_NEXT,
1042 	ZERO,
1043 };
1044 
1045 static const enum index item_ipv4[] = {
1046 	ITEM_IPV4_TOS,
1047 	ITEM_IPV4_FRAGMENT_OFFSET,
1048 	ITEM_IPV4_TTL,
1049 	ITEM_IPV4_PROTO,
1050 	ITEM_IPV4_SRC,
1051 	ITEM_IPV4_DST,
1052 	ITEM_NEXT,
1053 	ZERO,
1054 };
1055 
1056 static const enum index item_ipv6[] = {
1057 	ITEM_IPV6_TC,
1058 	ITEM_IPV6_FLOW,
1059 	ITEM_IPV6_PROTO,
1060 	ITEM_IPV6_HOP,
1061 	ITEM_IPV6_SRC,
1062 	ITEM_IPV6_DST,
1063 	ITEM_IPV6_HAS_FRAG_EXT,
1064 	ITEM_NEXT,
1065 	ZERO,
1066 };
1067 
1068 static const enum index item_icmp[] = {
1069 	ITEM_ICMP_TYPE,
1070 	ITEM_ICMP_CODE,
1071 	ITEM_ICMP_IDENT,
1072 	ITEM_ICMP_SEQ,
1073 	ITEM_NEXT,
1074 	ZERO,
1075 };
1076 
1077 static const enum index item_udp[] = {
1078 	ITEM_UDP_SRC,
1079 	ITEM_UDP_DST,
1080 	ITEM_NEXT,
1081 	ZERO,
1082 };
1083 
1084 static const enum index item_tcp[] = {
1085 	ITEM_TCP_SRC,
1086 	ITEM_TCP_DST,
1087 	ITEM_TCP_FLAGS,
1088 	ITEM_NEXT,
1089 	ZERO,
1090 };
1091 
1092 static const enum index item_sctp[] = {
1093 	ITEM_SCTP_SRC,
1094 	ITEM_SCTP_DST,
1095 	ITEM_SCTP_TAG,
1096 	ITEM_SCTP_CKSUM,
1097 	ITEM_NEXT,
1098 	ZERO,
1099 };
1100 
1101 static const enum index item_vxlan[] = {
1102 	ITEM_VXLAN_VNI,
1103 	ITEM_NEXT,
1104 	ZERO,
1105 };
1106 
1107 static const enum index item_e_tag[] = {
1108 	ITEM_E_TAG_GRP_ECID_B,
1109 	ITEM_NEXT,
1110 	ZERO,
1111 };
1112 
1113 static const enum index item_nvgre[] = {
1114 	ITEM_NVGRE_TNI,
1115 	ITEM_NEXT,
1116 	ZERO,
1117 };
1118 
1119 static const enum index item_mpls[] = {
1120 	ITEM_MPLS_LABEL,
1121 	ITEM_MPLS_TC,
1122 	ITEM_MPLS_S,
1123 	ITEM_NEXT,
1124 	ZERO,
1125 };
1126 
1127 static const enum index item_gre[] = {
1128 	ITEM_GRE_PROTO,
1129 	ITEM_GRE_C_RSVD0_VER,
1130 	ITEM_GRE_C_BIT,
1131 	ITEM_GRE_K_BIT,
1132 	ITEM_GRE_S_BIT,
1133 	ITEM_NEXT,
1134 	ZERO,
1135 };
1136 
1137 static const enum index item_gre_key[] = {
1138 	ITEM_GRE_KEY_VALUE,
1139 	ITEM_NEXT,
1140 	ZERO,
1141 };
1142 
1143 static const enum index item_gtp[] = {
1144 	ITEM_GTP_FLAGS,
1145 	ITEM_GTP_MSG_TYPE,
1146 	ITEM_GTP_TEID,
1147 	ITEM_NEXT,
1148 	ZERO,
1149 };
1150 
1151 static const enum index item_geneve[] = {
1152 	ITEM_GENEVE_VNI,
1153 	ITEM_GENEVE_PROTO,
1154 	ITEM_GENEVE_OPTLEN,
1155 	ITEM_NEXT,
1156 	ZERO,
1157 };
1158 
1159 static const enum index item_vxlan_gpe[] = {
1160 	ITEM_VXLAN_GPE_VNI,
1161 	ITEM_NEXT,
1162 	ZERO,
1163 };
1164 
1165 static const enum index item_arp_eth_ipv4[] = {
1166 	ITEM_ARP_ETH_IPV4_SHA,
1167 	ITEM_ARP_ETH_IPV4_SPA,
1168 	ITEM_ARP_ETH_IPV4_THA,
1169 	ITEM_ARP_ETH_IPV4_TPA,
1170 	ITEM_NEXT,
1171 	ZERO,
1172 };
1173 
1174 static const enum index item_ipv6_ext[] = {
1175 	ITEM_IPV6_EXT_NEXT_HDR,
1176 	ITEM_NEXT,
1177 	ZERO,
1178 };
1179 
1180 static const enum index item_ipv6_frag_ext[] = {
1181 	ITEM_IPV6_FRAG_EXT_NEXT_HDR,
1182 	ITEM_IPV6_FRAG_EXT_FRAG_DATA,
1183 	ITEM_NEXT,
1184 	ZERO,
1185 };
1186 
1187 static const enum index item_icmp6[] = {
1188 	ITEM_ICMP6_TYPE,
1189 	ITEM_ICMP6_CODE,
1190 	ITEM_NEXT,
1191 	ZERO,
1192 };
1193 
1194 static const enum index item_icmp6_nd_ns[] = {
1195 	ITEM_ICMP6_ND_NS_TARGET_ADDR,
1196 	ITEM_NEXT,
1197 	ZERO,
1198 };
1199 
1200 static const enum index item_icmp6_nd_na[] = {
1201 	ITEM_ICMP6_ND_NA_TARGET_ADDR,
1202 	ITEM_NEXT,
1203 	ZERO,
1204 };
1205 
1206 static const enum index item_icmp6_nd_opt[] = {
1207 	ITEM_ICMP6_ND_OPT_TYPE,
1208 	ITEM_NEXT,
1209 	ZERO,
1210 };
1211 
1212 static const enum index item_icmp6_nd_opt_sla_eth[] = {
1213 	ITEM_ICMP6_ND_OPT_SLA_ETH_SLA,
1214 	ITEM_NEXT,
1215 	ZERO,
1216 };
1217 
1218 static const enum index item_icmp6_nd_opt_tla_eth[] = {
1219 	ITEM_ICMP6_ND_OPT_TLA_ETH_TLA,
1220 	ITEM_NEXT,
1221 	ZERO,
1222 };
1223 
1224 static const enum index item_meta[] = {
1225 	ITEM_META_DATA,
1226 	ITEM_NEXT,
1227 	ZERO,
1228 };
1229 
1230 static const enum index item_gtp_psc[] = {
1231 	ITEM_GTP_PSC_QFI,
1232 	ITEM_GTP_PSC_PDU_T,
1233 	ITEM_NEXT,
1234 	ZERO,
1235 };
1236 
1237 static const enum index item_pppoed[] = {
1238 	ITEM_PPPOE_SEID,
1239 	ITEM_NEXT,
1240 	ZERO,
1241 };
1242 
1243 static const enum index item_pppoes[] = {
1244 	ITEM_PPPOE_SEID,
1245 	ITEM_NEXT,
1246 	ZERO,
1247 };
1248 
1249 static const enum index item_pppoe_proto_id[] = {
1250 	ITEM_NEXT,
1251 	ZERO,
1252 };
1253 
1254 static const enum index item_higig2[] = {
1255 	ITEM_HIGIG2_CLASSIFICATION,
1256 	ITEM_HIGIG2_VID,
1257 	ITEM_NEXT,
1258 	ZERO,
1259 };
1260 
1261 static const enum index item_esp[] = {
1262 	ITEM_ESP_SPI,
1263 	ITEM_NEXT,
1264 	ZERO,
1265 };
1266 
1267 static const enum index item_ah[] = {
1268 	ITEM_AH_SPI,
1269 	ITEM_NEXT,
1270 	ZERO,
1271 };
1272 
1273 static const enum index item_pfcp[] = {
1274 	ITEM_PFCP_S_FIELD,
1275 	ITEM_PFCP_SEID,
1276 	ITEM_NEXT,
1277 	ZERO,
1278 };
1279 
1280 static const enum index next_set_raw[] = {
1281 	SET_RAW_INDEX,
1282 	ITEM_ETH,
1283 	ZERO,
1284 };
1285 
1286 static const enum index item_tag[] = {
1287 	ITEM_TAG_DATA,
1288 	ITEM_TAG_INDEX,
1289 	ITEM_NEXT,
1290 	ZERO,
1291 };
1292 
1293 static const enum index item_l2tpv3oip[] = {
1294 	ITEM_L2TPV3OIP_SESSION_ID,
1295 	ITEM_NEXT,
1296 	ZERO,
1297 };
1298 
1299 static const enum index item_ecpri[] = {
1300 	ITEM_ECPRI_COMMON,
1301 	ITEM_NEXT,
1302 	ZERO,
1303 };
1304 
1305 static const enum index item_ecpri_common[] = {
1306 	ITEM_ECPRI_COMMON_TYPE,
1307 	ZERO,
1308 };
1309 
1310 static const enum index item_ecpri_common_type[] = {
1311 	ITEM_ECPRI_COMMON_TYPE_IQ_DATA,
1312 	ITEM_ECPRI_COMMON_TYPE_RTC_CTRL,
1313 	ITEM_ECPRI_COMMON_TYPE_DLY_MSR,
1314 	ZERO,
1315 };
1316 
1317 static const enum index item_geneve_opt[] = {
1318 	ITEM_GENEVE_OPT_CLASS,
1319 	ITEM_GENEVE_OPT_TYPE,
1320 	ITEM_GENEVE_OPT_LENGTH,
1321 	ITEM_GENEVE_OPT_DATA,
1322 	ITEM_NEXT,
1323 	ZERO,
1324 };
1325 
1326 static const enum index item_integrity[] = {
1327 	ITEM_INTEGRITY_LEVEL,
1328 	ITEM_INTEGRITY_VALUE,
1329 	ZERO,
1330 };
1331 
1332 static const enum index item_integrity_lv[] = {
1333 	ITEM_INTEGRITY_LEVEL,
1334 	ITEM_INTEGRITY_VALUE,
1335 	ITEM_NEXT,
1336 	ZERO,
1337 };
1338 
1339 static const enum index next_action[] = {
1340 	ACTION_END,
1341 	ACTION_VOID,
1342 	ACTION_PASSTHRU,
1343 	ACTION_JUMP,
1344 	ACTION_MARK,
1345 	ACTION_FLAG,
1346 	ACTION_QUEUE,
1347 	ACTION_DROP,
1348 	ACTION_COUNT,
1349 	ACTION_RSS,
1350 	ACTION_PF,
1351 	ACTION_VF,
1352 	ACTION_PHY_PORT,
1353 	ACTION_PORT_ID,
1354 	ACTION_METER,
1355 	ACTION_OF_SET_MPLS_TTL,
1356 	ACTION_OF_DEC_MPLS_TTL,
1357 	ACTION_OF_SET_NW_TTL,
1358 	ACTION_OF_DEC_NW_TTL,
1359 	ACTION_OF_COPY_TTL_OUT,
1360 	ACTION_OF_COPY_TTL_IN,
1361 	ACTION_OF_POP_VLAN,
1362 	ACTION_OF_PUSH_VLAN,
1363 	ACTION_OF_SET_VLAN_VID,
1364 	ACTION_OF_SET_VLAN_PCP,
1365 	ACTION_OF_POP_MPLS,
1366 	ACTION_OF_PUSH_MPLS,
1367 	ACTION_VXLAN_ENCAP,
1368 	ACTION_VXLAN_DECAP,
1369 	ACTION_NVGRE_ENCAP,
1370 	ACTION_NVGRE_DECAP,
1371 	ACTION_L2_ENCAP,
1372 	ACTION_L2_DECAP,
1373 	ACTION_MPLSOGRE_ENCAP,
1374 	ACTION_MPLSOGRE_DECAP,
1375 	ACTION_MPLSOUDP_ENCAP,
1376 	ACTION_MPLSOUDP_DECAP,
1377 	ACTION_SET_IPV4_SRC,
1378 	ACTION_SET_IPV4_DST,
1379 	ACTION_SET_IPV6_SRC,
1380 	ACTION_SET_IPV6_DST,
1381 	ACTION_SET_TP_SRC,
1382 	ACTION_SET_TP_DST,
1383 	ACTION_MAC_SWAP,
1384 	ACTION_DEC_TTL,
1385 	ACTION_SET_TTL,
1386 	ACTION_SET_MAC_SRC,
1387 	ACTION_SET_MAC_DST,
1388 	ACTION_INC_TCP_SEQ,
1389 	ACTION_DEC_TCP_SEQ,
1390 	ACTION_INC_TCP_ACK,
1391 	ACTION_DEC_TCP_ACK,
1392 	ACTION_RAW_ENCAP,
1393 	ACTION_RAW_DECAP,
1394 	ACTION_SET_TAG,
1395 	ACTION_SET_META,
1396 	ACTION_SET_IPV4_DSCP,
1397 	ACTION_SET_IPV6_DSCP,
1398 	ACTION_AGE,
1399 	ACTION_SAMPLE,
1400 	ACTION_INDIRECT,
1401 	ACTION_MODIFY_FIELD,
1402 	ZERO,
1403 };
1404 
1405 static const enum index action_mark[] = {
1406 	ACTION_MARK_ID,
1407 	ACTION_NEXT,
1408 	ZERO,
1409 };
1410 
1411 static const enum index action_queue[] = {
1412 	ACTION_QUEUE_INDEX,
1413 	ACTION_NEXT,
1414 	ZERO,
1415 };
1416 
1417 static const enum index action_count[] = {
1418 	ACTION_COUNT_ID,
1419 	ACTION_COUNT_SHARED,
1420 	ACTION_NEXT,
1421 	ZERO,
1422 };
1423 
1424 static const enum index action_rss[] = {
1425 	ACTION_RSS_FUNC,
1426 	ACTION_RSS_LEVEL,
1427 	ACTION_RSS_TYPES,
1428 	ACTION_RSS_KEY,
1429 	ACTION_RSS_KEY_LEN,
1430 	ACTION_RSS_QUEUES,
1431 	ACTION_NEXT,
1432 	ZERO,
1433 };
1434 
1435 static const enum index action_vf[] = {
1436 	ACTION_VF_ORIGINAL,
1437 	ACTION_VF_ID,
1438 	ACTION_NEXT,
1439 	ZERO,
1440 };
1441 
1442 static const enum index action_phy_port[] = {
1443 	ACTION_PHY_PORT_ORIGINAL,
1444 	ACTION_PHY_PORT_INDEX,
1445 	ACTION_NEXT,
1446 	ZERO,
1447 };
1448 
1449 static const enum index action_port_id[] = {
1450 	ACTION_PORT_ID_ORIGINAL,
1451 	ACTION_PORT_ID_ID,
1452 	ACTION_NEXT,
1453 	ZERO,
1454 };
1455 
1456 static const enum index action_meter[] = {
1457 	ACTION_METER_ID,
1458 	ACTION_NEXT,
1459 	ZERO,
1460 };
1461 
1462 static const enum index action_of_set_mpls_ttl[] = {
1463 	ACTION_OF_SET_MPLS_TTL_MPLS_TTL,
1464 	ACTION_NEXT,
1465 	ZERO,
1466 };
1467 
1468 static const enum index action_of_set_nw_ttl[] = {
1469 	ACTION_OF_SET_NW_TTL_NW_TTL,
1470 	ACTION_NEXT,
1471 	ZERO,
1472 };
1473 
1474 static const enum index action_of_push_vlan[] = {
1475 	ACTION_OF_PUSH_VLAN_ETHERTYPE,
1476 	ACTION_NEXT,
1477 	ZERO,
1478 };
1479 
1480 static const enum index action_of_set_vlan_vid[] = {
1481 	ACTION_OF_SET_VLAN_VID_VLAN_VID,
1482 	ACTION_NEXT,
1483 	ZERO,
1484 };
1485 
1486 static const enum index action_of_set_vlan_pcp[] = {
1487 	ACTION_OF_SET_VLAN_PCP_VLAN_PCP,
1488 	ACTION_NEXT,
1489 	ZERO,
1490 };
1491 
1492 static const enum index action_of_pop_mpls[] = {
1493 	ACTION_OF_POP_MPLS_ETHERTYPE,
1494 	ACTION_NEXT,
1495 	ZERO,
1496 };
1497 
1498 static const enum index action_of_push_mpls[] = {
1499 	ACTION_OF_PUSH_MPLS_ETHERTYPE,
1500 	ACTION_NEXT,
1501 	ZERO,
1502 };
1503 
1504 static const enum index action_set_ipv4_src[] = {
1505 	ACTION_SET_IPV4_SRC_IPV4_SRC,
1506 	ACTION_NEXT,
1507 	ZERO,
1508 };
1509 
1510 static const enum index action_set_mac_src[] = {
1511 	ACTION_SET_MAC_SRC_MAC_SRC,
1512 	ACTION_NEXT,
1513 	ZERO,
1514 };
1515 
1516 static const enum index action_set_ipv4_dst[] = {
1517 	ACTION_SET_IPV4_DST_IPV4_DST,
1518 	ACTION_NEXT,
1519 	ZERO,
1520 };
1521 
1522 static const enum index action_set_ipv6_src[] = {
1523 	ACTION_SET_IPV6_SRC_IPV6_SRC,
1524 	ACTION_NEXT,
1525 	ZERO,
1526 };
1527 
1528 static const enum index action_set_ipv6_dst[] = {
1529 	ACTION_SET_IPV6_DST_IPV6_DST,
1530 	ACTION_NEXT,
1531 	ZERO,
1532 };
1533 
1534 static const enum index action_set_tp_src[] = {
1535 	ACTION_SET_TP_SRC_TP_SRC,
1536 	ACTION_NEXT,
1537 	ZERO,
1538 };
1539 
1540 static const enum index action_set_tp_dst[] = {
1541 	ACTION_SET_TP_DST_TP_DST,
1542 	ACTION_NEXT,
1543 	ZERO,
1544 };
1545 
1546 static const enum index action_set_ttl[] = {
1547 	ACTION_SET_TTL_TTL,
1548 	ACTION_NEXT,
1549 	ZERO,
1550 };
1551 
1552 static const enum index action_jump[] = {
1553 	ACTION_JUMP_GROUP,
1554 	ACTION_NEXT,
1555 	ZERO,
1556 };
1557 
1558 static const enum index action_set_mac_dst[] = {
1559 	ACTION_SET_MAC_DST_MAC_DST,
1560 	ACTION_NEXT,
1561 	ZERO,
1562 };
1563 
1564 static const enum index action_inc_tcp_seq[] = {
1565 	ACTION_INC_TCP_SEQ_VALUE,
1566 	ACTION_NEXT,
1567 	ZERO,
1568 };
1569 
1570 static const enum index action_dec_tcp_seq[] = {
1571 	ACTION_DEC_TCP_SEQ_VALUE,
1572 	ACTION_NEXT,
1573 	ZERO,
1574 };
1575 
1576 static const enum index action_inc_tcp_ack[] = {
1577 	ACTION_INC_TCP_ACK_VALUE,
1578 	ACTION_NEXT,
1579 	ZERO,
1580 };
1581 
1582 static const enum index action_dec_tcp_ack[] = {
1583 	ACTION_DEC_TCP_ACK_VALUE,
1584 	ACTION_NEXT,
1585 	ZERO,
1586 };
1587 
1588 static const enum index action_raw_encap[] = {
1589 	ACTION_RAW_ENCAP_INDEX,
1590 	ACTION_NEXT,
1591 	ZERO,
1592 };
1593 
1594 static const enum index action_raw_decap[] = {
1595 	ACTION_RAW_DECAP_INDEX,
1596 	ACTION_NEXT,
1597 	ZERO,
1598 };
1599 
1600 static const enum index action_set_tag[] = {
1601 	ACTION_SET_TAG_DATA,
1602 	ACTION_SET_TAG_INDEX,
1603 	ACTION_SET_TAG_MASK,
1604 	ACTION_NEXT,
1605 	ZERO,
1606 };
1607 
1608 static const enum index action_set_meta[] = {
1609 	ACTION_SET_META_DATA,
1610 	ACTION_SET_META_MASK,
1611 	ACTION_NEXT,
1612 	ZERO,
1613 };
1614 
1615 static const enum index action_set_ipv4_dscp[] = {
1616 	ACTION_SET_IPV4_DSCP_VALUE,
1617 	ACTION_NEXT,
1618 	ZERO,
1619 };
1620 
1621 static const enum index action_set_ipv6_dscp[] = {
1622 	ACTION_SET_IPV6_DSCP_VALUE,
1623 	ACTION_NEXT,
1624 	ZERO,
1625 };
1626 
1627 static const enum index action_age[] = {
1628 	ACTION_AGE,
1629 	ACTION_AGE_TIMEOUT,
1630 	ACTION_NEXT,
1631 	ZERO,
1632 };
1633 
1634 static const enum index action_sample[] = {
1635 	ACTION_SAMPLE,
1636 	ACTION_SAMPLE_RATIO,
1637 	ACTION_SAMPLE_INDEX,
1638 	ACTION_NEXT,
1639 	ZERO,
1640 };
1641 
1642 static const enum index next_action_sample[] = {
1643 	ACTION_QUEUE,
1644 	ACTION_RSS,
1645 	ACTION_MARK,
1646 	ACTION_COUNT,
1647 	ACTION_PORT_ID,
1648 	ACTION_RAW_ENCAP,
1649 	ACTION_VXLAN_ENCAP,
1650 	ACTION_NVGRE_ENCAP,
1651 	ACTION_NEXT,
1652 	ZERO,
1653 };
1654 
1655 static const enum index action_modify_field_dst[] = {
1656 	ACTION_MODIFY_FIELD_DST_LEVEL,
1657 	ACTION_MODIFY_FIELD_DST_OFFSET,
1658 	ACTION_MODIFY_FIELD_SRC_TYPE,
1659 	ZERO,
1660 };
1661 
1662 static const enum index action_modify_field_src[] = {
1663 	ACTION_MODIFY_FIELD_SRC_LEVEL,
1664 	ACTION_MODIFY_FIELD_SRC_OFFSET,
1665 	ACTION_MODIFY_FIELD_SRC_VALUE,
1666 	ACTION_MODIFY_FIELD_WIDTH,
1667 	ZERO,
1668 };
1669 
1670 static int parse_set_raw_encap_decap(struct context *, const struct token *,
1671 				     const char *, unsigned int,
1672 				     void *, unsigned int);
1673 static int parse_set_sample_action(struct context *, const struct token *,
1674 				   const char *, unsigned int,
1675 				   void *, unsigned int);
1676 static int parse_set_init(struct context *, const struct token *,
1677 			  const char *, unsigned int,
1678 			  void *, unsigned int);
1679 static int parse_init(struct context *, const struct token *,
1680 		      const char *, unsigned int,
1681 		      void *, unsigned int);
1682 static int parse_vc(struct context *, const struct token *,
1683 		    const char *, unsigned int,
1684 		    void *, unsigned int);
1685 static int parse_vc_spec(struct context *, const struct token *,
1686 			 const char *, unsigned int, void *, unsigned int);
1687 static int parse_vc_conf(struct context *, const struct token *,
1688 			 const char *, unsigned int, void *, unsigned int);
1689 static int parse_vc_item_ecpri_type(struct context *, const struct token *,
1690 				    const char *, unsigned int,
1691 				    void *, unsigned int);
1692 static int parse_vc_action_rss(struct context *, const struct token *,
1693 			       const char *, unsigned int, void *,
1694 			       unsigned int);
1695 static int parse_vc_action_rss_func(struct context *, const struct token *,
1696 				    const char *, unsigned int, void *,
1697 				    unsigned int);
1698 static int parse_vc_action_rss_type(struct context *, const struct token *,
1699 				    const char *, unsigned int, void *,
1700 				    unsigned int);
1701 static int parse_vc_action_rss_queue(struct context *, const struct token *,
1702 				     const char *, unsigned int, void *,
1703 				     unsigned int);
1704 static int parse_vc_action_vxlan_encap(struct context *, const struct token *,
1705 				       const char *, unsigned int, void *,
1706 				       unsigned int);
1707 static int parse_vc_action_nvgre_encap(struct context *, const struct token *,
1708 				       const char *, unsigned int, void *,
1709 				       unsigned int);
1710 static int parse_vc_action_l2_encap(struct context *, const struct token *,
1711 				    const char *, unsigned int, void *,
1712 				    unsigned int);
1713 static int parse_vc_action_l2_decap(struct context *, const struct token *,
1714 				    const char *, unsigned int, void *,
1715 				    unsigned int);
1716 static int parse_vc_action_mplsogre_encap(struct context *,
1717 					  const struct token *, const char *,
1718 					  unsigned int, void *, unsigned int);
1719 static int parse_vc_action_mplsogre_decap(struct context *,
1720 					  const struct token *, const char *,
1721 					  unsigned int, void *, unsigned int);
1722 static int parse_vc_action_mplsoudp_encap(struct context *,
1723 					  const struct token *, const char *,
1724 					  unsigned int, void *, unsigned int);
1725 static int parse_vc_action_mplsoudp_decap(struct context *,
1726 					  const struct token *, const char *,
1727 					  unsigned int, void *, unsigned int);
1728 static int parse_vc_action_raw_encap(struct context *,
1729 				     const struct token *, const char *,
1730 				     unsigned int, void *, unsigned int);
1731 static int parse_vc_action_raw_decap(struct context *,
1732 				     const struct token *, const char *,
1733 				     unsigned int, void *, unsigned int);
1734 static int parse_vc_action_raw_encap_index(struct context *,
1735 					   const struct token *, const char *,
1736 					   unsigned int, void *, unsigned int);
1737 static int parse_vc_action_raw_decap_index(struct context *,
1738 					   const struct token *, const char *,
1739 					   unsigned int, void *, unsigned int);
1740 static int parse_vc_action_set_meta(struct context *ctx,
1741 				    const struct token *token, const char *str,
1742 				    unsigned int len, void *buf,
1743 					unsigned int size);
1744 static int parse_vc_action_sample(struct context *ctx,
1745 				    const struct token *token, const char *str,
1746 				    unsigned int len, void *buf,
1747 				    unsigned int size);
1748 static int
1749 parse_vc_action_sample_index(struct context *ctx, const struct token *token,
1750 				const char *str, unsigned int len, void *buf,
1751 				unsigned int size);
1752 static int
1753 parse_vc_modify_field_op(struct context *ctx, const struct token *token,
1754 				const char *str, unsigned int len, void *buf,
1755 				unsigned int size);
1756 static int
1757 parse_vc_modify_field_id(struct context *ctx, const struct token *token,
1758 				const char *str, unsigned int len, void *buf,
1759 				unsigned int size);
1760 static int parse_destroy(struct context *, const struct token *,
1761 			 const char *, unsigned int,
1762 			 void *, unsigned int);
1763 static int parse_flush(struct context *, const struct token *,
1764 		       const char *, unsigned int,
1765 		       void *, unsigned int);
1766 static int parse_dump(struct context *, const struct token *,
1767 		      const char *, unsigned int,
1768 		      void *, unsigned int);
1769 static int parse_query(struct context *, const struct token *,
1770 		       const char *, unsigned int,
1771 		       void *, unsigned int);
1772 static int parse_action(struct context *, const struct token *,
1773 			const char *, unsigned int,
1774 			void *, unsigned int);
1775 static int parse_list(struct context *, const struct token *,
1776 		      const char *, unsigned int,
1777 		      void *, unsigned int);
1778 static int parse_aged(struct context *, const struct token *,
1779 		      const char *, unsigned int,
1780 		      void *, unsigned int);
1781 static int parse_isolate(struct context *, const struct token *,
1782 			 const char *, unsigned int,
1783 			 void *, unsigned int);
1784 static int parse_tunnel(struct context *, const struct token *,
1785 			const char *, unsigned int,
1786 			void *, unsigned int);
1787 static int parse_int(struct context *, const struct token *,
1788 		     const char *, unsigned int,
1789 		     void *, unsigned int);
1790 static int parse_prefix(struct context *, const struct token *,
1791 			const char *, unsigned int,
1792 			void *, unsigned int);
1793 static int parse_boolean(struct context *, const struct token *,
1794 			 const char *, unsigned int,
1795 			 void *, unsigned int);
1796 static int parse_string(struct context *, const struct token *,
1797 			const char *, unsigned int,
1798 			void *, unsigned int);
1799 static int parse_hex(struct context *ctx, const struct token *token,
1800 			const char *str, unsigned int len,
1801 			void *buf, unsigned int size);
1802 static int parse_string0(struct context *, const struct token *,
1803 			const char *, unsigned int,
1804 			void *, unsigned int);
1805 static int parse_mac_addr(struct context *, const struct token *,
1806 			  const char *, unsigned int,
1807 			  void *, unsigned int);
1808 static int parse_ipv4_addr(struct context *, const struct token *,
1809 			   const char *, unsigned int,
1810 			   void *, unsigned int);
1811 static int parse_ipv6_addr(struct context *, const struct token *,
1812 			   const char *, unsigned int,
1813 			   void *, unsigned int);
1814 static int parse_port(struct context *, const struct token *,
1815 		      const char *, unsigned int,
1816 		      void *, unsigned int);
1817 static int parse_ia(struct context *, const struct token *,
1818 		    const char *, unsigned int,
1819 		    void *, unsigned int);
1820 static int parse_ia_destroy(struct context *ctx, const struct token *token,
1821 			    const char *str, unsigned int len,
1822 			    void *buf, unsigned int size);
1823 static int parse_ia_id2ptr(struct context *ctx, const struct token *token,
1824 			   const char *str, unsigned int len, void *buf,
1825 			   unsigned int size);
1826 static int comp_none(struct context *, const struct token *,
1827 		     unsigned int, char *, unsigned int);
1828 static int comp_boolean(struct context *, const struct token *,
1829 			unsigned int, char *, unsigned int);
1830 static int comp_action(struct context *, const struct token *,
1831 		       unsigned int, char *, unsigned int);
1832 static int comp_port(struct context *, const struct token *,
1833 		     unsigned int, char *, unsigned int);
1834 static int comp_rule_id(struct context *, const struct token *,
1835 			unsigned int, char *, unsigned int);
1836 static int comp_vc_action_rss_type(struct context *, const struct token *,
1837 				   unsigned int, char *, unsigned int);
1838 static int comp_vc_action_rss_queue(struct context *, const struct token *,
1839 				    unsigned int, char *, unsigned int);
1840 static int comp_set_raw_index(struct context *, const struct token *,
1841 			      unsigned int, char *, unsigned int);
1842 static int comp_set_sample_index(struct context *, const struct token *,
1843 			      unsigned int, char *, unsigned int);
1844 static int comp_set_modify_field_op(struct context *, const struct token *,
1845 			      unsigned int, char *, unsigned int);
1846 static int comp_set_modify_field_id(struct context *, const struct token *,
1847 			      unsigned int, char *, unsigned int);
1848 
1849 /** Token definitions. */
1850 static const struct token token_list[] = {
1851 	/* Special tokens. */
1852 	[ZERO] = {
1853 		.name = "ZERO",
1854 		.help = "null entry, abused as the entry point",
1855 		.next = NEXT(NEXT_ENTRY(FLOW)),
1856 	},
1857 	[END] = {
1858 		.name = "",
1859 		.type = "RETURN",
1860 		.help = "command may end here",
1861 	},
1862 	[START_SET] = {
1863 		.name = "START_SET",
1864 		.help = "null entry, abused as the entry point for set",
1865 		.next = NEXT(NEXT_ENTRY(SET)),
1866 	},
1867 	[END_SET] = {
1868 		.name = "end_set",
1869 		.type = "RETURN",
1870 		.help = "set command may end here",
1871 	},
1872 	/* Common tokens. */
1873 	[INTEGER] = {
1874 		.name = "{int}",
1875 		.type = "INTEGER",
1876 		.help = "integer value",
1877 		.call = parse_int,
1878 		.comp = comp_none,
1879 	},
1880 	[UNSIGNED] = {
1881 		.name = "{unsigned}",
1882 		.type = "UNSIGNED",
1883 		.help = "unsigned integer value",
1884 		.call = parse_int,
1885 		.comp = comp_none,
1886 	},
1887 	[PREFIX] = {
1888 		.name = "{prefix}",
1889 		.type = "PREFIX",
1890 		.help = "prefix length for bit-mask",
1891 		.call = parse_prefix,
1892 		.comp = comp_none,
1893 	},
1894 	[BOOLEAN] = {
1895 		.name = "{boolean}",
1896 		.type = "BOOLEAN",
1897 		.help = "any boolean value",
1898 		.call = parse_boolean,
1899 		.comp = comp_boolean,
1900 	},
1901 	[STRING] = {
1902 		.name = "{string}",
1903 		.type = "STRING",
1904 		.help = "fixed string",
1905 		.call = parse_string,
1906 		.comp = comp_none,
1907 	},
1908 	[HEX] = {
1909 		.name = "{hex}",
1910 		.type = "HEX",
1911 		.help = "fixed string",
1912 		.call = parse_hex,
1913 	},
1914 	[FILE_PATH] = {
1915 		.name = "{file path}",
1916 		.type = "STRING",
1917 		.help = "file path",
1918 		.call = parse_string0,
1919 		.comp = comp_none,
1920 	},
1921 	[MAC_ADDR] = {
1922 		.name = "{MAC address}",
1923 		.type = "MAC-48",
1924 		.help = "standard MAC address notation",
1925 		.call = parse_mac_addr,
1926 		.comp = comp_none,
1927 	},
1928 	[IPV4_ADDR] = {
1929 		.name = "{IPv4 address}",
1930 		.type = "IPV4 ADDRESS",
1931 		.help = "standard IPv4 address notation",
1932 		.call = parse_ipv4_addr,
1933 		.comp = comp_none,
1934 	},
1935 	[IPV6_ADDR] = {
1936 		.name = "{IPv6 address}",
1937 		.type = "IPV6 ADDRESS",
1938 		.help = "standard IPv6 address notation",
1939 		.call = parse_ipv6_addr,
1940 		.comp = comp_none,
1941 	},
1942 	[RULE_ID] = {
1943 		.name = "{rule id}",
1944 		.type = "RULE ID",
1945 		.help = "rule identifier",
1946 		.call = parse_int,
1947 		.comp = comp_rule_id,
1948 	},
1949 	[PORT_ID] = {
1950 		.name = "{port_id}",
1951 		.type = "PORT ID",
1952 		.help = "port identifier",
1953 		.call = parse_port,
1954 		.comp = comp_port,
1955 	},
1956 	[GROUP_ID] = {
1957 		.name = "{group_id}",
1958 		.type = "GROUP ID",
1959 		.help = "group identifier",
1960 		.call = parse_int,
1961 		.comp = comp_none,
1962 	},
1963 	[PRIORITY_LEVEL] = {
1964 		.name = "{level}",
1965 		.type = "PRIORITY",
1966 		.help = "priority level",
1967 		.call = parse_int,
1968 		.comp = comp_none,
1969 	},
1970 	[INDIRECT_ACTION_ID] = {
1971 		.name = "{indirect_action_id}",
1972 		.type = "INDIRECT_ACTION_ID",
1973 		.help = "indirect action id",
1974 		.call = parse_int,
1975 		.comp = comp_none,
1976 	},
1977 	/* Top-level command. */
1978 	[FLOW] = {
1979 		.name = "flow",
1980 		.type = "{command} {port_id} [{arg} [...]]",
1981 		.help = "manage ingress/egress flow rules",
1982 		.next = NEXT(NEXT_ENTRY
1983 			     (INDIRECT_ACTION,
1984 			      VALIDATE,
1985 			      CREATE,
1986 			      DESTROY,
1987 			      FLUSH,
1988 			      DUMP,
1989 			      LIST,
1990 			      AGED,
1991 			      QUERY,
1992 			      ISOLATE,
1993 			      TUNNEL)),
1994 		.call = parse_init,
1995 	},
1996 	/* Top-level command. */
1997 	[INDIRECT_ACTION] = {
1998 		.name = "indirect_action",
1999 		.type = "{command} {port_id} [{arg} [...]]",
2000 		.help = "manage indirect actions",
2001 		.next = NEXT(next_ia_subcmd, NEXT_ENTRY(PORT_ID)),
2002 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2003 		.call = parse_ia,
2004 	},
2005 	/* Sub-level commands. */
2006 	[INDIRECT_ACTION_CREATE] = {
2007 		.name = "create",
2008 		.help = "create indirect action",
2009 		.next = NEXT(next_ia_create_attr),
2010 		.call = parse_ia,
2011 	},
2012 	[INDIRECT_ACTION_UPDATE] = {
2013 		.name = "update",
2014 		.help = "update indirect action",
2015 		.next = NEXT(NEXT_ENTRY(INDIRECT_ACTION_SPEC),
2016 			     NEXT_ENTRY(INDIRECT_ACTION_ID)),
2017 		.args = ARGS(ARGS_ENTRY(struct buffer, args.vc.attr.group)),
2018 		.call = parse_ia,
2019 	},
2020 	[INDIRECT_ACTION_DESTROY] = {
2021 		.name = "destroy",
2022 		.help = "destroy indirect action",
2023 		.next = NEXT(NEXT_ENTRY(INDIRECT_ACTION_DESTROY_ID)),
2024 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2025 		.call = parse_ia_destroy,
2026 	},
2027 	[INDIRECT_ACTION_QUERY] = {
2028 		.name = "query",
2029 		.help = "query indirect action",
2030 		.next = NEXT(NEXT_ENTRY(END), NEXT_ENTRY(INDIRECT_ACTION_ID)),
2031 		.args = ARGS(ARGS_ENTRY(struct buffer, args.ia.action_id)),
2032 		.call = parse_ia,
2033 	},
2034 	[VALIDATE] = {
2035 		.name = "validate",
2036 		.help = "check whether a flow rule can be created",
2037 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
2038 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2039 		.call = parse_vc,
2040 	},
2041 	[CREATE] = {
2042 		.name = "create",
2043 		.help = "create a flow rule",
2044 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PORT_ID)),
2045 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2046 		.call = parse_vc,
2047 	},
2048 	[DESTROY] = {
2049 		.name = "destroy",
2050 		.help = "destroy specific flow rules",
2051 		.next = NEXT(NEXT_ENTRY(DESTROY_RULE), NEXT_ENTRY(PORT_ID)),
2052 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2053 		.call = parse_destroy,
2054 	},
2055 	[FLUSH] = {
2056 		.name = "flush",
2057 		.help = "destroy all flow rules",
2058 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
2059 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2060 		.call = parse_flush,
2061 	},
2062 	[DUMP] = {
2063 		.name = "dump",
2064 		.help = "dump single/all flow rules to file",
2065 		.next = NEXT(next_dump_subcmd, NEXT_ENTRY(PORT_ID)),
2066 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2067 		.call = parse_dump,
2068 	},
2069 	[QUERY] = {
2070 		.name = "query",
2071 		.help = "query an existing flow rule",
2072 		.next = NEXT(NEXT_ENTRY(QUERY_ACTION),
2073 			     NEXT_ENTRY(RULE_ID),
2074 			     NEXT_ENTRY(PORT_ID)),
2075 		.args = ARGS(ARGS_ENTRY(struct buffer, args.query.action.type),
2076 			     ARGS_ENTRY(struct buffer, args.query.rule),
2077 			     ARGS_ENTRY(struct buffer, port)),
2078 		.call = parse_query,
2079 	},
2080 	[LIST] = {
2081 		.name = "list",
2082 		.help = "list existing flow rules",
2083 		.next = NEXT(next_list_attr, NEXT_ENTRY(PORT_ID)),
2084 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2085 		.call = parse_list,
2086 	},
2087 	[AGED] = {
2088 		.name = "aged",
2089 		.help = "list and destroy aged flows",
2090 		.next = NEXT(next_aged_attr, NEXT_ENTRY(PORT_ID)),
2091 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2092 		.call = parse_aged,
2093 	},
2094 	[ISOLATE] = {
2095 		.name = "isolate",
2096 		.help = "restrict ingress traffic to the defined flow rules",
2097 		.next = NEXT(NEXT_ENTRY(BOOLEAN),
2098 			     NEXT_ENTRY(PORT_ID)),
2099 		.args = ARGS(ARGS_ENTRY(struct buffer, args.isolate.set),
2100 			     ARGS_ENTRY(struct buffer, port)),
2101 		.call = parse_isolate,
2102 	},
2103 	[TUNNEL] = {
2104 		.name = "tunnel",
2105 		.help = "new tunnel API",
2106 		.next = NEXT(NEXT_ENTRY
2107 			     (TUNNEL_CREATE, TUNNEL_LIST, TUNNEL_DESTROY)),
2108 		.call = parse_tunnel,
2109 	},
2110 	/* Tunnel arguments. */
2111 	[TUNNEL_CREATE] = {
2112 		.name = "create",
2113 		.help = "create new tunnel object",
2114 		.next = NEXT(NEXT_ENTRY(TUNNEL_CREATE_TYPE),
2115 			     NEXT_ENTRY(PORT_ID)),
2116 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2117 		.call = parse_tunnel,
2118 	},
2119 	[TUNNEL_CREATE_TYPE] = {
2120 		.name = "type",
2121 		.help = "create new tunnel",
2122 		.next = NEXT(NEXT_ENTRY(FILE_PATH)),
2123 		.args = ARGS(ARGS_ENTRY(struct tunnel_ops, type)),
2124 		.call = parse_tunnel,
2125 	},
2126 	[TUNNEL_DESTROY] = {
2127 		.name = "destroy",
2128 		.help = "destroy tunel",
2129 		.next = NEXT(NEXT_ENTRY(TUNNEL_DESTROY_ID),
2130 			     NEXT_ENTRY(PORT_ID)),
2131 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2132 		.call = parse_tunnel,
2133 	},
2134 	[TUNNEL_DESTROY_ID] = {
2135 		.name = "id",
2136 		.help = "tunnel identifier to testroy",
2137 		.next = NEXT(NEXT_ENTRY(UNSIGNED)),
2138 		.args = ARGS(ARGS_ENTRY(struct tunnel_ops, id)),
2139 		.call = parse_tunnel,
2140 	},
2141 	[TUNNEL_LIST] = {
2142 		.name = "list",
2143 		.help = "list existing tunnels",
2144 		.next = NEXT(NEXT_ENTRY(PORT_ID)),
2145 		.args = ARGS(ARGS_ENTRY(struct buffer, port)),
2146 		.call = parse_tunnel,
2147 	},
2148 	/* Destroy arguments. */
2149 	[DESTROY_RULE] = {
2150 		.name = "rule",
2151 		.help = "specify a rule identifier",
2152 		.next = NEXT(next_destroy_attr, NEXT_ENTRY(RULE_ID)),
2153 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.destroy.rule)),
2154 		.call = parse_destroy,
2155 	},
2156 	/* Dump arguments. */
2157 	[DUMP_ALL] = {
2158 		.name = "all",
2159 		.help = "dump all",
2160 		.next = NEXT(next_dump_attr),
2161 		.args = ARGS(ARGS_ENTRY(struct buffer, args.dump.file)),
2162 		.call = parse_dump,
2163 	},
2164 	[DUMP_ONE] = {
2165 		.name = "rule",
2166 		.help = "dump one rule",
2167 		.next = NEXT(next_dump_attr, NEXT_ENTRY(RULE_ID)),
2168 		.args = ARGS(ARGS_ENTRY(struct buffer, args.dump.file),
2169 				ARGS_ENTRY(struct buffer, args.dump.rule)),
2170 		.call = parse_dump,
2171 	},
2172 	/* Query arguments. */
2173 	[QUERY_ACTION] = {
2174 		.name = "{action}",
2175 		.type = "ACTION",
2176 		.help = "action to query, must be part of the rule",
2177 		.call = parse_action,
2178 		.comp = comp_action,
2179 	},
2180 	/* List arguments. */
2181 	[LIST_GROUP] = {
2182 		.name = "group",
2183 		.help = "specify a group",
2184 		.next = NEXT(next_list_attr, NEXT_ENTRY(GROUP_ID)),
2185 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer, args.list.group)),
2186 		.call = parse_list,
2187 	},
2188 	[AGED_DESTROY] = {
2189 		.name = "destroy",
2190 		.help = "specify aged flows need be destroyed",
2191 		.call = parse_aged,
2192 		.comp = comp_none,
2193 	},
2194 	/* Validate/create attributes. */
2195 	[GROUP] = {
2196 		.name = "group",
2197 		.help = "specify a group",
2198 		.next = NEXT(next_vc_attr, NEXT_ENTRY(GROUP_ID)),
2199 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, group)),
2200 		.call = parse_vc,
2201 	},
2202 	[PRIORITY] = {
2203 		.name = "priority",
2204 		.help = "specify a priority level",
2205 		.next = NEXT(next_vc_attr, NEXT_ENTRY(PRIORITY_LEVEL)),
2206 		.args = ARGS(ARGS_ENTRY(struct rte_flow_attr, priority)),
2207 		.call = parse_vc,
2208 	},
2209 	[INGRESS] = {
2210 		.name = "ingress",
2211 		.help = "affect rule to ingress",
2212 		.next = NEXT(next_vc_attr),
2213 		.call = parse_vc,
2214 	},
2215 	[EGRESS] = {
2216 		.name = "egress",
2217 		.help = "affect rule to egress",
2218 		.next = NEXT(next_vc_attr),
2219 		.call = parse_vc,
2220 	},
2221 	[TRANSFER] = {
2222 		.name = "transfer",
2223 		.help = "apply rule directly to endpoints found in pattern",
2224 		.next = NEXT(next_vc_attr),
2225 		.call = parse_vc,
2226 	},
2227 	[TUNNEL_SET] = {
2228 		.name = "tunnel_set",
2229 		.help = "tunnel steer rule",
2230 		.next = NEXT(next_vc_attr, NEXT_ENTRY(UNSIGNED)),
2231 		.args = ARGS(ARGS_ENTRY(struct tunnel_ops, id)),
2232 		.call = parse_vc,
2233 	},
2234 	[TUNNEL_MATCH] = {
2235 		.name = "tunnel_match",
2236 		.help = "tunnel match rule",
2237 		.next = NEXT(next_vc_attr, NEXT_ENTRY(UNSIGNED)),
2238 		.args = ARGS(ARGS_ENTRY(struct tunnel_ops, id)),
2239 		.call = parse_vc,
2240 	},
2241 	/* Validate/create pattern. */
2242 	[PATTERN] = {
2243 		.name = "pattern",
2244 		.help = "submit a list of pattern items",
2245 		.next = NEXT(next_item),
2246 		.call = parse_vc,
2247 	},
2248 	[ITEM_PARAM_IS] = {
2249 		.name = "is",
2250 		.help = "match value perfectly (with full bit-mask)",
2251 		.call = parse_vc_spec,
2252 	},
2253 	[ITEM_PARAM_SPEC] = {
2254 		.name = "spec",
2255 		.help = "match value according to configured bit-mask",
2256 		.call = parse_vc_spec,
2257 	},
2258 	[ITEM_PARAM_LAST] = {
2259 		.name = "last",
2260 		.help = "specify upper bound to establish a range",
2261 		.call = parse_vc_spec,
2262 	},
2263 	[ITEM_PARAM_MASK] = {
2264 		.name = "mask",
2265 		.help = "specify bit-mask with relevant bits set to one",
2266 		.call = parse_vc_spec,
2267 	},
2268 	[ITEM_PARAM_PREFIX] = {
2269 		.name = "prefix",
2270 		.help = "generate bit-mask from a prefix length",
2271 		.call = parse_vc_spec,
2272 	},
2273 	[ITEM_NEXT] = {
2274 		.name = "/",
2275 		.help = "specify next pattern item",
2276 		.next = NEXT(next_item),
2277 	},
2278 	[ITEM_END] = {
2279 		.name = "end",
2280 		.help = "end list of pattern items",
2281 		.priv = PRIV_ITEM(END, 0),
2282 		.next = NEXT(NEXT_ENTRY(ACTIONS)),
2283 		.call = parse_vc,
2284 	},
2285 	[ITEM_VOID] = {
2286 		.name = "void",
2287 		.help = "no-op pattern item",
2288 		.priv = PRIV_ITEM(VOID, 0),
2289 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
2290 		.call = parse_vc,
2291 	},
2292 	[ITEM_INVERT] = {
2293 		.name = "invert",
2294 		.help = "perform actions when pattern does not match",
2295 		.priv = PRIV_ITEM(INVERT, 0),
2296 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
2297 		.call = parse_vc,
2298 	},
2299 	[ITEM_ANY] = {
2300 		.name = "any",
2301 		.help = "match any protocol for the current layer",
2302 		.priv = PRIV_ITEM(ANY, sizeof(struct rte_flow_item_any)),
2303 		.next = NEXT(item_any),
2304 		.call = parse_vc,
2305 	},
2306 	[ITEM_ANY_NUM] = {
2307 		.name = "num",
2308 		.help = "number of layers covered",
2309 		.next = NEXT(item_any, NEXT_ENTRY(UNSIGNED), item_param),
2310 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_any, num)),
2311 	},
2312 	[ITEM_PF] = {
2313 		.name = "pf",
2314 		.help = "match traffic from/to the physical function",
2315 		.priv = PRIV_ITEM(PF, 0),
2316 		.next = NEXT(NEXT_ENTRY(ITEM_NEXT)),
2317 		.call = parse_vc,
2318 	},
2319 	[ITEM_VF] = {
2320 		.name = "vf",
2321 		.help = "match traffic from/to a virtual function ID",
2322 		.priv = PRIV_ITEM(VF, sizeof(struct rte_flow_item_vf)),
2323 		.next = NEXT(item_vf),
2324 		.call = parse_vc,
2325 	},
2326 	[ITEM_VF_ID] = {
2327 		.name = "id",
2328 		.help = "VF ID",
2329 		.next = NEXT(item_vf, NEXT_ENTRY(UNSIGNED), item_param),
2330 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_vf, id)),
2331 	},
2332 	[ITEM_PHY_PORT] = {
2333 		.name = "phy_port",
2334 		.help = "match traffic from/to a specific physical port",
2335 		.priv = PRIV_ITEM(PHY_PORT,
2336 				  sizeof(struct rte_flow_item_phy_port)),
2337 		.next = NEXT(item_phy_port),
2338 		.call = parse_vc,
2339 	},
2340 	[ITEM_PHY_PORT_INDEX] = {
2341 		.name = "index",
2342 		.help = "physical port index",
2343 		.next = NEXT(item_phy_port, NEXT_ENTRY(UNSIGNED), item_param),
2344 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_phy_port, index)),
2345 	},
2346 	[ITEM_PORT_ID] = {
2347 		.name = "port_id",
2348 		.help = "match traffic from/to a given DPDK port ID",
2349 		.priv = PRIV_ITEM(PORT_ID,
2350 				  sizeof(struct rte_flow_item_port_id)),
2351 		.next = NEXT(item_port_id),
2352 		.call = parse_vc,
2353 	},
2354 	[ITEM_PORT_ID_ID] = {
2355 		.name = "id",
2356 		.help = "DPDK port ID",
2357 		.next = NEXT(item_port_id, NEXT_ENTRY(UNSIGNED), item_param),
2358 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_port_id, id)),
2359 	},
2360 	[ITEM_MARK] = {
2361 		.name = "mark",
2362 		.help = "match traffic against value set in previously matched rule",
2363 		.priv = PRIV_ITEM(MARK, sizeof(struct rte_flow_item_mark)),
2364 		.next = NEXT(item_mark),
2365 		.call = parse_vc,
2366 	},
2367 	[ITEM_MARK_ID] = {
2368 		.name = "id",
2369 		.help = "Integer value to match against",
2370 		.next = NEXT(item_mark, NEXT_ENTRY(UNSIGNED), item_param),
2371 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_mark, id)),
2372 	},
2373 	[ITEM_RAW] = {
2374 		.name = "raw",
2375 		.help = "match an arbitrary byte string",
2376 		.priv = PRIV_ITEM(RAW, ITEM_RAW_SIZE),
2377 		.next = NEXT(item_raw),
2378 		.call = parse_vc,
2379 	},
2380 	[ITEM_RAW_RELATIVE] = {
2381 		.name = "relative",
2382 		.help = "look for pattern after the previous item",
2383 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
2384 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
2385 					   relative, 1)),
2386 	},
2387 	[ITEM_RAW_SEARCH] = {
2388 		.name = "search",
2389 		.help = "search pattern from offset (see also limit)",
2390 		.next = NEXT(item_raw, NEXT_ENTRY(BOOLEAN), item_param),
2391 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_raw,
2392 					   search, 1)),
2393 	},
2394 	[ITEM_RAW_OFFSET] = {
2395 		.name = "offset",
2396 		.help = "absolute or relative offset for pattern",
2397 		.next = NEXT(item_raw, NEXT_ENTRY(INTEGER), item_param),
2398 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, offset)),
2399 	},
2400 	[ITEM_RAW_LIMIT] = {
2401 		.name = "limit",
2402 		.help = "search area limit for start of pattern",
2403 		.next = NEXT(item_raw, NEXT_ENTRY(UNSIGNED), item_param),
2404 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, limit)),
2405 	},
2406 	[ITEM_RAW_PATTERN] = {
2407 		.name = "pattern",
2408 		.help = "byte string to look for",
2409 		.next = NEXT(item_raw,
2410 			     NEXT_ENTRY(STRING),
2411 			     NEXT_ENTRY(ITEM_PARAM_IS,
2412 					ITEM_PARAM_SPEC,
2413 					ITEM_PARAM_MASK)),
2414 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_raw, pattern),
2415 			     ARGS_ENTRY(struct rte_flow_item_raw, length),
2416 			     ARGS_ENTRY_ARB(sizeof(struct rte_flow_item_raw),
2417 					    ITEM_RAW_PATTERN_SIZE)),
2418 	},
2419 	[ITEM_ETH] = {
2420 		.name = "eth",
2421 		.help = "match Ethernet header",
2422 		.priv = PRIV_ITEM(ETH, sizeof(struct rte_flow_item_eth)),
2423 		.next = NEXT(item_eth),
2424 		.call = parse_vc,
2425 	},
2426 	[ITEM_ETH_DST] = {
2427 		.name = "dst",
2428 		.help = "destination MAC",
2429 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
2430 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, dst)),
2431 	},
2432 	[ITEM_ETH_SRC] = {
2433 		.name = "src",
2434 		.help = "source MAC",
2435 		.next = NEXT(item_eth, NEXT_ENTRY(MAC_ADDR), item_param),
2436 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, src)),
2437 	},
2438 	[ITEM_ETH_TYPE] = {
2439 		.name = "type",
2440 		.help = "EtherType",
2441 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
2442 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_eth, type)),
2443 	},
2444 	[ITEM_ETH_HAS_VLAN] = {
2445 		.name = "has_vlan",
2446 		.help = "packet header contains VLAN",
2447 		.next = NEXT(item_eth, NEXT_ENTRY(UNSIGNED), item_param),
2448 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_eth,
2449 					   has_vlan, 1)),
2450 	},
2451 	[ITEM_VLAN] = {
2452 		.name = "vlan",
2453 		.help = "match 802.1Q/ad VLAN tag",
2454 		.priv = PRIV_ITEM(VLAN, sizeof(struct rte_flow_item_vlan)),
2455 		.next = NEXT(item_vlan),
2456 		.call = parse_vc,
2457 	},
2458 	[ITEM_VLAN_TCI] = {
2459 		.name = "tci",
2460 		.help = "tag control information",
2461 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2462 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan, tci)),
2463 	},
2464 	[ITEM_VLAN_PCP] = {
2465 		.name = "pcp",
2466 		.help = "priority code point",
2467 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2468 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2469 						  tci, "\xe0\x00")),
2470 	},
2471 	[ITEM_VLAN_DEI] = {
2472 		.name = "dei",
2473 		.help = "drop eligible indicator",
2474 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2475 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2476 						  tci, "\x10\x00")),
2477 	},
2478 	[ITEM_VLAN_VID] = {
2479 		.name = "vid",
2480 		.help = "VLAN identifier",
2481 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2482 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_vlan,
2483 						  tci, "\x0f\xff")),
2484 	},
2485 	[ITEM_VLAN_INNER_TYPE] = {
2486 		.name = "inner_type",
2487 		.help = "inner EtherType",
2488 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2489 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vlan,
2490 					     inner_type)),
2491 	},
2492 	[ITEM_VLAN_HAS_MORE_VLAN] = {
2493 		.name = "has_more_vlan",
2494 		.help = "packet header contains another VLAN",
2495 		.next = NEXT(item_vlan, NEXT_ENTRY(UNSIGNED), item_param),
2496 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_vlan,
2497 					   has_more_vlan, 1)),
2498 	},
2499 	[ITEM_IPV4] = {
2500 		.name = "ipv4",
2501 		.help = "match IPv4 header",
2502 		.priv = PRIV_ITEM(IPV4, sizeof(struct rte_flow_item_ipv4)),
2503 		.next = NEXT(item_ipv4),
2504 		.call = parse_vc,
2505 	},
2506 	[ITEM_IPV4_TOS] = {
2507 		.name = "tos",
2508 		.help = "type of service",
2509 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2510 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2511 					     hdr.type_of_service)),
2512 	},
2513 	[ITEM_IPV4_FRAGMENT_OFFSET] = {
2514 		.name = "fragment_offset",
2515 		.help = "fragmentation flags and fragment offset",
2516 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2517 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2518 					     hdr.fragment_offset)),
2519 	},
2520 	[ITEM_IPV4_TTL] = {
2521 		.name = "ttl",
2522 		.help = "time to live",
2523 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2524 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2525 					     hdr.time_to_live)),
2526 	},
2527 	[ITEM_IPV4_PROTO] = {
2528 		.name = "proto",
2529 		.help = "next protocol ID",
2530 		.next = NEXT(item_ipv4, NEXT_ENTRY(UNSIGNED), item_param),
2531 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2532 					     hdr.next_proto_id)),
2533 	},
2534 	[ITEM_IPV4_SRC] = {
2535 		.name = "src",
2536 		.help = "source address",
2537 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
2538 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2539 					     hdr.src_addr)),
2540 	},
2541 	[ITEM_IPV4_DST] = {
2542 		.name = "dst",
2543 		.help = "destination address",
2544 		.next = NEXT(item_ipv4, NEXT_ENTRY(IPV4_ADDR), item_param),
2545 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv4,
2546 					     hdr.dst_addr)),
2547 	},
2548 	[ITEM_IPV6] = {
2549 		.name = "ipv6",
2550 		.help = "match IPv6 header",
2551 		.priv = PRIV_ITEM(IPV6, sizeof(struct rte_flow_item_ipv6)),
2552 		.next = NEXT(item_ipv6),
2553 		.call = parse_vc,
2554 	},
2555 	[ITEM_IPV6_TC] = {
2556 		.name = "tc",
2557 		.help = "traffic class",
2558 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2559 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
2560 						  hdr.vtc_flow,
2561 						  "\x0f\xf0\x00\x00")),
2562 	},
2563 	[ITEM_IPV6_FLOW] = {
2564 		.name = "flow",
2565 		.help = "flow label",
2566 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2567 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_ipv6,
2568 						  hdr.vtc_flow,
2569 						  "\x00\x0f\xff\xff")),
2570 	},
2571 	[ITEM_IPV6_PROTO] = {
2572 		.name = "proto",
2573 		.help = "protocol (next header)",
2574 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2575 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2576 					     hdr.proto)),
2577 	},
2578 	[ITEM_IPV6_HOP] = {
2579 		.name = "hop",
2580 		.help = "hop limit",
2581 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2582 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2583 					     hdr.hop_limits)),
2584 	},
2585 	[ITEM_IPV6_SRC] = {
2586 		.name = "src",
2587 		.help = "source address",
2588 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
2589 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2590 					     hdr.src_addr)),
2591 	},
2592 	[ITEM_IPV6_DST] = {
2593 		.name = "dst",
2594 		.help = "destination address",
2595 		.next = NEXT(item_ipv6, NEXT_ENTRY(IPV6_ADDR), item_param),
2596 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6,
2597 					     hdr.dst_addr)),
2598 	},
2599 	[ITEM_IPV6_HAS_FRAG_EXT] = {
2600 		.name = "has_frag_ext",
2601 		.help = "fragment packet attribute",
2602 		.next = NEXT(item_ipv6, NEXT_ENTRY(UNSIGNED), item_param),
2603 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_item_ipv6,
2604 					   has_frag_ext, 1)),
2605 	},
2606 	[ITEM_ICMP] = {
2607 		.name = "icmp",
2608 		.help = "match ICMP header",
2609 		.priv = PRIV_ITEM(ICMP, sizeof(struct rte_flow_item_icmp)),
2610 		.next = NEXT(item_icmp),
2611 		.call = parse_vc,
2612 	},
2613 	[ITEM_ICMP_TYPE] = {
2614 		.name = "type",
2615 		.help = "ICMP packet type",
2616 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2617 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2618 					     hdr.icmp_type)),
2619 	},
2620 	[ITEM_ICMP_CODE] = {
2621 		.name = "code",
2622 		.help = "ICMP packet code",
2623 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2624 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2625 					     hdr.icmp_code)),
2626 	},
2627 	[ITEM_ICMP_IDENT] = {
2628 		.name = "ident",
2629 		.help = "ICMP packet identifier",
2630 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2631 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2632 					     hdr.icmp_ident)),
2633 	},
2634 	[ITEM_ICMP_SEQ] = {
2635 		.name = "seq",
2636 		.help = "ICMP packet sequence number",
2637 		.next = NEXT(item_icmp, NEXT_ENTRY(UNSIGNED), item_param),
2638 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp,
2639 					     hdr.icmp_seq_nb)),
2640 	},
2641 	[ITEM_UDP] = {
2642 		.name = "udp",
2643 		.help = "match UDP header",
2644 		.priv = PRIV_ITEM(UDP, sizeof(struct rte_flow_item_udp)),
2645 		.next = NEXT(item_udp),
2646 		.call = parse_vc,
2647 	},
2648 	[ITEM_UDP_SRC] = {
2649 		.name = "src",
2650 		.help = "UDP source port",
2651 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
2652 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
2653 					     hdr.src_port)),
2654 	},
2655 	[ITEM_UDP_DST] = {
2656 		.name = "dst",
2657 		.help = "UDP destination port",
2658 		.next = NEXT(item_udp, NEXT_ENTRY(UNSIGNED), item_param),
2659 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_udp,
2660 					     hdr.dst_port)),
2661 	},
2662 	[ITEM_TCP] = {
2663 		.name = "tcp",
2664 		.help = "match TCP header",
2665 		.priv = PRIV_ITEM(TCP, sizeof(struct rte_flow_item_tcp)),
2666 		.next = NEXT(item_tcp),
2667 		.call = parse_vc,
2668 	},
2669 	[ITEM_TCP_SRC] = {
2670 		.name = "src",
2671 		.help = "TCP source port",
2672 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2673 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2674 					     hdr.src_port)),
2675 	},
2676 	[ITEM_TCP_DST] = {
2677 		.name = "dst",
2678 		.help = "TCP destination port",
2679 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2680 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2681 					     hdr.dst_port)),
2682 	},
2683 	[ITEM_TCP_FLAGS] = {
2684 		.name = "flags",
2685 		.help = "TCP flags",
2686 		.next = NEXT(item_tcp, NEXT_ENTRY(UNSIGNED), item_param),
2687 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_tcp,
2688 					     hdr.tcp_flags)),
2689 	},
2690 	[ITEM_SCTP] = {
2691 		.name = "sctp",
2692 		.help = "match SCTP header",
2693 		.priv = PRIV_ITEM(SCTP, sizeof(struct rte_flow_item_sctp)),
2694 		.next = NEXT(item_sctp),
2695 		.call = parse_vc,
2696 	},
2697 	[ITEM_SCTP_SRC] = {
2698 		.name = "src",
2699 		.help = "SCTP source port",
2700 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2701 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2702 					     hdr.src_port)),
2703 	},
2704 	[ITEM_SCTP_DST] = {
2705 		.name = "dst",
2706 		.help = "SCTP destination port",
2707 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2708 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2709 					     hdr.dst_port)),
2710 	},
2711 	[ITEM_SCTP_TAG] = {
2712 		.name = "tag",
2713 		.help = "validation tag",
2714 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2715 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2716 					     hdr.tag)),
2717 	},
2718 	[ITEM_SCTP_CKSUM] = {
2719 		.name = "cksum",
2720 		.help = "checksum",
2721 		.next = NEXT(item_sctp, NEXT_ENTRY(UNSIGNED), item_param),
2722 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_sctp,
2723 					     hdr.cksum)),
2724 	},
2725 	[ITEM_VXLAN] = {
2726 		.name = "vxlan",
2727 		.help = "match VXLAN header",
2728 		.priv = PRIV_ITEM(VXLAN, sizeof(struct rte_flow_item_vxlan)),
2729 		.next = NEXT(item_vxlan),
2730 		.call = parse_vc,
2731 	},
2732 	[ITEM_VXLAN_VNI] = {
2733 		.name = "vni",
2734 		.help = "VXLAN identifier",
2735 		.next = NEXT(item_vxlan, NEXT_ENTRY(UNSIGNED), item_param),
2736 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan, vni)),
2737 	},
2738 	[ITEM_E_TAG] = {
2739 		.name = "e_tag",
2740 		.help = "match E-Tag header",
2741 		.priv = PRIV_ITEM(E_TAG, sizeof(struct rte_flow_item_e_tag)),
2742 		.next = NEXT(item_e_tag),
2743 		.call = parse_vc,
2744 	},
2745 	[ITEM_E_TAG_GRP_ECID_B] = {
2746 		.name = "grp_ecid_b",
2747 		.help = "GRP and E-CID base",
2748 		.next = NEXT(item_e_tag, NEXT_ENTRY(UNSIGNED), item_param),
2749 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_e_tag,
2750 						  rsvd_grp_ecid_b,
2751 						  "\x3f\xff")),
2752 	},
2753 	[ITEM_NVGRE] = {
2754 		.name = "nvgre",
2755 		.help = "match NVGRE header",
2756 		.priv = PRIV_ITEM(NVGRE, sizeof(struct rte_flow_item_nvgre)),
2757 		.next = NEXT(item_nvgre),
2758 		.call = parse_vc,
2759 	},
2760 	[ITEM_NVGRE_TNI] = {
2761 		.name = "tni",
2762 		.help = "virtual subnet ID",
2763 		.next = NEXT(item_nvgre, NEXT_ENTRY(UNSIGNED), item_param),
2764 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_nvgre, tni)),
2765 	},
2766 	[ITEM_MPLS] = {
2767 		.name = "mpls",
2768 		.help = "match MPLS header",
2769 		.priv = PRIV_ITEM(MPLS, sizeof(struct rte_flow_item_mpls)),
2770 		.next = NEXT(item_mpls),
2771 		.call = parse_vc,
2772 	},
2773 	[ITEM_MPLS_LABEL] = {
2774 		.name = "label",
2775 		.help = "MPLS label",
2776 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2777 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2778 						  label_tc_s,
2779 						  "\xff\xff\xf0")),
2780 	},
2781 	[ITEM_MPLS_TC] = {
2782 		.name = "tc",
2783 		.help = "MPLS Traffic Class",
2784 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2785 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2786 						  label_tc_s,
2787 						  "\x00\x00\x0e")),
2788 	},
2789 	[ITEM_MPLS_S] = {
2790 		.name = "s",
2791 		.help = "MPLS Bottom-of-Stack",
2792 		.next = NEXT(item_mpls, NEXT_ENTRY(UNSIGNED), item_param),
2793 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_mpls,
2794 						  label_tc_s,
2795 						  "\x00\x00\x01")),
2796 	},
2797 	[ITEM_GRE] = {
2798 		.name = "gre",
2799 		.help = "match GRE header",
2800 		.priv = PRIV_ITEM(GRE, sizeof(struct rte_flow_item_gre)),
2801 		.next = NEXT(item_gre),
2802 		.call = parse_vc,
2803 	},
2804 	[ITEM_GRE_PROTO] = {
2805 		.name = "protocol",
2806 		.help = "GRE protocol type",
2807 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2808 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2809 					     protocol)),
2810 	},
2811 	[ITEM_GRE_C_RSVD0_VER] = {
2812 		.name = "c_rsvd0_ver",
2813 		.help =
2814 			"checksum (1b), undefined (1b), key bit (1b),"
2815 			" sequence number (1b), reserved 0 (9b),"
2816 			" version (3b)",
2817 		.next = NEXT(item_gre, NEXT_ENTRY(UNSIGNED), item_param),
2818 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gre,
2819 					     c_rsvd0_ver)),
2820 	},
2821 	[ITEM_GRE_C_BIT] = {
2822 		.name = "c_bit",
2823 		.help = "checksum bit (C)",
2824 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2825 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2826 						  c_rsvd0_ver,
2827 						  "\x80\x00\x00\x00")),
2828 	},
2829 	[ITEM_GRE_S_BIT] = {
2830 		.name = "s_bit",
2831 		.help = "sequence number bit (S)",
2832 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2833 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2834 						  c_rsvd0_ver,
2835 						  "\x10\x00\x00\x00")),
2836 	},
2837 	[ITEM_GRE_K_BIT] = {
2838 		.name = "k_bit",
2839 		.help = "key bit (K)",
2840 		.next = NEXT(item_gre, NEXT_ENTRY(BOOLEAN), item_param),
2841 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_gre,
2842 						  c_rsvd0_ver,
2843 						  "\x20\x00\x00\x00")),
2844 	},
2845 	[ITEM_FUZZY] = {
2846 		.name = "fuzzy",
2847 		.help = "fuzzy pattern match, expect faster than default",
2848 		.priv = PRIV_ITEM(FUZZY,
2849 				sizeof(struct rte_flow_item_fuzzy)),
2850 		.next = NEXT(item_fuzzy),
2851 		.call = parse_vc,
2852 	},
2853 	[ITEM_FUZZY_THRESH] = {
2854 		.name = "thresh",
2855 		.help = "match accuracy threshold",
2856 		.next = NEXT(item_fuzzy, NEXT_ENTRY(UNSIGNED), item_param),
2857 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_fuzzy,
2858 					thresh)),
2859 	},
2860 	[ITEM_GTP] = {
2861 		.name = "gtp",
2862 		.help = "match GTP header",
2863 		.priv = PRIV_ITEM(GTP, sizeof(struct rte_flow_item_gtp)),
2864 		.next = NEXT(item_gtp),
2865 		.call = parse_vc,
2866 	},
2867 	[ITEM_GTP_FLAGS] = {
2868 		.name = "v_pt_rsv_flags",
2869 		.help = "GTP flags",
2870 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2871 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_gtp,
2872 					v_pt_rsv_flags)),
2873 	},
2874 	[ITEM_GTP_MSG_TYPE] = {
2875 		.name = "msg_type",
2876 		.help = "GTP message type",
2877 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2878 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_gtp, msg_type)),
2879 	},
2880 	[ITEM_GTP_TEID] = {
2881 		.name = "teid",
2882 		.help = "tunnel endpoint identifier",
2883 		.next = NEXT(item_gtp, NEXT_ENTRY(UNSIGNED), item_param),
2884 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp, teid)),
2885 	},
2886 	[ITEM_GTPC] = {
2887 		.name = "gtpc",
2888 		.help = "match GTP header",
2889 		.priv = PRIV_ITEM(GTPC, sizeof(struct rte_flow_item_gtp)),
2890 		.next = NEXT(item_gtp),
2891 		.call = parse_vc,
2892 	},
2893 	[ITEM_GTPU] = {
2894 		.name = "gtpu",
2895 		.help = "match GTP header",
2896 		.priv = PRIV_ITEM(GTPU, sizeof(struct rte_flow_item_gtp)),
2897 		.next = NEXT(item_gtp),
2898 		.call = parse_vc,
2899 	},
2900 	[ITEM_GENEVE] = {
2901 		.name = "geneve",
2902 		.help = "match GENEVE header",
2903 		.priv = PRIV_ITEM(GENEVE, sizeof(struct rte_flow_item_geneve)),
2904 		.next = NEXT(item_geneve),
2905 		.call = parse_vc,
2906 	},
2907 	[ITEM_GENEVE_VNI] = {
2908 		.name = "vni",
2909 		.help = "virtual network identifier",
2910 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2911 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve, vni)),
2912 	},
2913 	[ITEM_GENEVE_PROTO] = {
2914 		.name = "protocol",
2915 		.help = "GENEVE protocol type",
2916 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2917 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve,
2918 					     protocol)),
2919 	},
2920 	[ITEM_GENEVE_OPTLEN] = {
2921 		.name = "optlen",
2922 		.help = "GENEVE options length in dwords",
2923 		.next = NEXT(item_geneve, NEXT_ENTRY(UNSIGNED), item_param),
2924 		.args = ARGS(ARGS_ENTRY_MASK_HTON(struct rte_flow_item_geneve,
2925 						  ver_opt_len_o_c_rsvd0,
2926 						  "\x3f\x00")),
2927 	},
2928 	[ITEM_VXLAN_GPE] = {
2929 		.name = "vxlan-gpe",
2930 		.help = "match VXLAN-GPE header",
2931 		.priv = PRIV_ITEM(VXLAN_GPE,
2932 				  sizeof(struct rte_flow_item_vxlan_gpe)),
2933 		.next = NEXT(item_vxlan_gpe),
2934 		.call = parse_vc,
2935 	},
2936 	[ITEM_VXLAN_GPE_VNI] = {
2937 		.name = "vni",
2938 		.help = "VXLAN-GPE identifier",
2939 		.next = NEXT(item_vxlan_gpe, NEXT_ENTRY(UNSIGNED), item_param),
2940 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_vxlan_gpe,
2941 					     vni)),
2942 	},
2943 	[ITEM_ARP_ETH_IPV4] = {
2944 		.name = "arp_eth_ipv4",
2945 		.help = "match ARP header for Ethernet/IPv4",
2946 		.priv = PRIV_ITEM(ARP_ETH_IPV4,
2947 				  sizeof(struct rte_flow_item_arp_eth_ipv4)),
2948 		.next = NEXT(item_arp_eth_ipv4),
2949 		.call = parse_vc,
2950 	},
2951 	[ITEM_ARP_ETH_IPV4_SHA] = {
2952 		.name = "sha",
2953 		.help = "sender hardware address",
2954 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2955 			     item_param),
2956 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2957 					     sha)),
2958 	},
2959 	[ITEM_ARP_ETH_IPV4_SPA] = {
2960 		.name = "spa",
2961 		.help = "sender IPv4 address",
2962 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2963 			     item_param),
2964 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2965 					     spa)),
2966 	},
2967 	[ITEM_ARP_ETH_IPV4_THA] = {
2968 		.name = "tha",
2969 		.help = "target hardware address",
2970 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(MAC_ADDR),
2971 			     item_param),
2972 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2973 					     tha)),
2974 	},
2975 	[ITEM_ARP_ETH_IPV4_TPA] = {
2976 		.name = "tpa",
2977 		.help = "target IPv4 address",
2978 		.next = NEXT(item_arp_eth_ipv4, NEXT_ENTRY(IPV4_ADDR),
2979 			     item_param),
2980 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_arp_eth_ipv4,
2981 					     tpa)),
2982 	},
2983 	[ITEM_IPV6_EXT] = {
2984 		.name = "ipv6_ext",
2985 		.help = "match presence of any IPv6 extension header",
2986 		.priv = PRIV_ITEM(IPV6_EXT,
2987 				  sizeof(struct rte_flow_item_ipv6_ext)),
2988 		.next = NEXT(item_ipv6_ext),
2989 		.call = parse_vc,
2990 	},
2991 	[ITEM_IPV6_EXT_NEXT_HDR] = {
2992 		.name = "next_hdr",
2993 		.help = "next header",
2994 		.next = NEXT(item_ipv6_ext, NEXT_ENTRY(UNSIGNED), item_param),
2995 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_ext,
2996 					     next_hdr)),
2997 	},
2998 	[ITEM_IPV6_FRAG_EXT] = {
2999 		.name = "ipv6_frag_ext",
3000 		.help = "match presence of IPv6 fragment extension header",
3001 		.priv = PRIV_ITEM(IPV6_FRAG_EXT,
3002 				sizeof(struct rte_flow_item_ipv6_frag_ext)),
3003 		.next = NEXT(item_ipv6_frag_ext),
3004 		.call = parse_vc,
3005 	},
3006 	[ITEM_IPV6_FRAG_EXT_NEXT_HDR] = {
3007 		.name = "next_hdr",
3008 		.help = "next header",
3009 		.next = NEXT(item_ipv6_frag_ext, NEXT_ENTRY(UNSIGNED),
3010 			     item_param),
3011 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_ipv6_frag_ext,
3012 					hdr.next_header)),
3013 	},
3014 	[ITEM_IPV6_FRAG_EXT_FRAG_DATA] = {
3015 		.name = "frag_data",
3016 		.help = "Fragment flags and offset",
3017 		.next = NEXT(item_ipv6_frag_ext, NEXT_ENTRY(UNSIGNED),
3018 			     item_param),
3019 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ipv6_frag_ext,
3020 					     hdr.frag_data)),
3021 	},
3022 	[ITEM_ICMP6] = {
3023 		.name = "icmp6",
3024 		.help = "match any ICMPv6 header",
3025 		.priv = PRIV_ITEM(ICMP6, sizeof(struct rte_flow_item_icmp6)),
3026 		.next = NEXT(item_icmp6),
3027 		.call = parse_vc,
3028 	},
3029 	[ITEM_ICMP6_TYPE] = {
3030 		.name = "type",
3031 		.help = "ICMPv6 type",
3032 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
3033 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
3034 					     type)),
3035 	},
3036 	[ITEM_ICMP6_CODE] = {
3037 		.name = "code",
3038 		.help = "ICMPv6 code",
3039 		.next = NEXT(item_icmp6, NEXT_ENTRY(UNSIGNED), item_param),
3040 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6,
3041 					     code)),
3042 	},
3043 	[ITEM_ICMP6_ND_NS] = {
3044 		.name = "icmp6_nd_ns",
3045 		.help = "match ICMPv6 neighbor discovery solicitation",
3046 		.priv = PRIV_ITEM(ICMP6_ND_NS,
3047 				  sizeof(struct rte_flow_item_icmp6_nd_ns)),
3048 		.next = NEXT(item_icmp6_nd_ns),
3049 		.call = parse_vc,
3050 	},
3051 	[ITEM_ICMP6_ND_NS_TARGET_ADDR] = {
3052 		.name = "target_addr",
3053 		.help = "target address",
3054 		.next = NEXT(item_icmp6_nd_ns, NEXT_ENTRY(IPV6_ADDR),
3055 			     item_param),
3056 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_ns,
3057 					     target_addr)),
3058 	},
3059 	[ITEM_ICMP6_ND_NA] = {
3060 		.name = "icmp6_nd_na",
3061 		.help = "match ICMPv6 neighbor discovery advertisement",
3062 		.priv = PRIV_ITEM(ICMP6_ND_NA,
3063 				  sizeof(struct rte_flow_item_icmp6_nd_na)),
3064 		.next = NEXT(item_icmp6_nd_na),
3065 		.call = parse_vc,
3066 	},
3067 	[ITEM_ICMP6_ND_NA_TARGET_ADDR] = {
3068 		.name = "target_addr",
3069 		.help = "target address",
3070 		.next = NEXT(item_icmp6_nd_na, NEXT_ENTRY(IPV6_ADDR),
3071 			     item_param),
3072 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_na,
3073 					     target_addr)),
3074 	},
3075 	[ITEM_ICMP6_ND_OPT] = {
3076 		.name = "icmp6_nd_opt",
3077 		.help = "match presence of any ICMPv6 neighbor discovery"
3078 			" option",
3079 		.priv = PRIV_ITEM(ICMP6_ND_OPT,
3080 				  sizeof(struct rte_flow_item_icmp6_nd_opt)),
3081 		.next = NEXT(item_icmp6_nd_opt),
3082 		.call = parse_vc,
3083 	},
3084 	[ITEM_ICMP6_ND_OPT_TYPE] = {
3085 		.name = "type",
3086 		.help = "ND option type",
3087 		.next = NEXT(item_icmp6_nd_opt, NEXT_ENTRY(UNSIGNED),
3088 			     item_param),
3089 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_icmp6_nd_opt,
3090 					     type)),
3091 	},
3092 	[ITEM_ICMP6_ND_OPT_SLA_ETH] = {
3093 		.name = "icmp6_nd_opt_sla_eth",
3094 		.help = "match ICMPv6 neighbor discovery source Ethernet"
3095 			" link-layer address option",
3096 		.priv = PRIV_ITEM
3097 			(ICMP6_ND_OPT_SLA_ETH,
3098 			 sizeof(struct rte_flow_item_icmp6_nd_opt_sla_eth)),
3099 		.next = NEXT(item_icmp6_nd_opt_sla_eth),
3100 		.call = parse_vc,
3101 	},
3102 	[ITEM_ICMP6_ND_OPT_SLA_ETH_SLA] = {
3103 		.name = "sla",
3104 		.help = "source Ethernet LLA",
3105 		.next = NEXT(item_icmp6_nd_opt_sla_eth, NEXT_ENTRY(MAC_ADDR),
3106 			     item_param),
3107 		.args = ARGS(ARGS_ENTRY_HTON
3108 			     (struct rte_flow_item_icmp6_nd_opt_sla_eth, sla)),
3109 	},
3110 	[ITEM_ICMP6_ND_OPT_TLA_ETH] = {
3111 		.name = "icmp6_nd_opt_tla_eth",
3112 		.help = "match ICMPv6 neighbor discovery target Ethernet"
3113 			" link-layer address option",
3114 		.priv = PRIV_ITEM
3115 			(ICMP6_ND_OPT_TLA_ETH,
3116 			 sizeof(struct rte_flow_item_icmp6_nd_opt_tla_eth)),
3117 		.next = NEXT(item_icmp6_nd_opt_tla_eth),
3118 		.call = parse_vc,
3119 	},
3120 	[ITEM_ICMP6_ND_OPT_TLA_ETH_TLA] = {
3121 		.name = "tla",
3122 		.help = "target Ethernet LLA",
3123 		.next = NEXT(item_icmp6_nd_opt_tla_eth, NEXT_ENTRY(MAC_ADDR),
3124 			     item_param),
3125 		.args = ARGS(ARGS_ENTRY_HTON
3126 			     (struct rte_flow_item_icmp6_nd_opt_tla_eth, tla)),
3127 	},
3128 	[ITEM_META] = {
3129 		.name = "meta",
3130 		.help = "match metadata header",
3131 		.priv = PRIV_ITEM(META, sizeof(struct rte_flow_item_meta)),
3132 		.next = NEXT(item_meta),
3133 		.call = parse_vc,
3134 	},
3135 	[ITEM_META_DATA] = {
3136 		.name = "data",
3137 		.help = "metadata value",
3138 		.next = NEXT(item_meta, NEXT_ENTRY(UNSIGNED), item_param),
3139 		.args = ARGS(ARGS_ENTRY_MASK(struct rte_flow_item_meta,
3140 					     data, "\xff\xff\xff\xff")),
3141 	},
3142 	[ITEM_GRE_KEY] = {
3143 		.name = "gre_key",
3144 		.help = "match GRE key",
3145 		.priv = PRIV_ITEM(GRE_KEY, sizeof(rte_be32_t)),
3146 		.next = NEXT(item_gre_key),
3147 		.call = parse_vc,
3148 	},
3149 	[ITEM_GRE_KEY_VALUE] = {
3150 		.name = "value",
3151 		.help = "key value",
3152 		.next = NEXT(item_gre_key, NEXT_ENTRY(UNSIGNED), item_param),
3153 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
3154 	},
3155 	[ITEM_GTP_PSC] = {
3156 		.name = "gtp_psc",
3157 		.help = "match GTP extension header with type 0x85",
3158 		.priv = PRIV_ITEM(GTP_PSC,
3159 				sizeof(struct rte_flow_item_gtp_psc)),
3160 		.next = NEXT(item_gtp_psc),
3161 		.call = parse_vc,
3162 	},
3163 	[ITEM_GTP_PSC_QFI] = {
3164 		.name = "qfi",
3165 		.help = "QoS flow identifier",
3166 		.next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
3167 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
3168 					qfi)),
3169 	},
3170 	[ITEM_GTP_PSC_PDU_T] = {
3171 		.name = "pdu_t",
3172 		.help = "PDU type",
3173 		.next = NEXT(item_gtp_psc, NEXT_ENTRY(UNSIGNED), item_param),
3174 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_gtp_psc,
3175 					pdu_type)),
3176 	},
3177 	[ITEM_PPPOES] = {
3178 		.name = "pppoes",
3179 		.help = "match PPPoE session header",
3180 		.priv = PRIV_ITEM(PPPOES, sizeof(struct rte_flow_item_pppoe)),
3181 		.next = NEXT(item_pppoes),
3182 		.call = parse_vc,
3183 	},
3184 	[ITEM_PPPOED] = {
3185 		.name = "pppoed",
3186 		.help = "match PPPoE discovery header",
3187 		.priv = PRIV_ITEM(PPPOED, sizeof(struct rte_flow_item_pppoe)),
3188 		.next = NEXT(item_pppoed),
3189 		.call = parse_vc,
3190 	},
3191 	[ITEM_PPPOE_SEID] = {
3192 		.name = "seid",
3193 		.help = "session identifier",
3194 		.next = NEXT(item_pppoes, NEXT_ENTRY(UNSIGNED), item_param),
3195 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pppoe,
3196 					session_id)),
3197 	},
3198 	[ITEM_PPPOE_PROTO_ID] = {
3199 		.name = "pppoe_proto_id",
3200 		.help = "match PPPoE session protocol identifier",
3201 		.priv = PRIV_ITEM(PPPOE_PROTO_ID,
3202 				sizeof(struct rte_flow_item_pppoe_proto_id)),
3203 		.next = NEXT(item_pppoe_proto_id, NEXT_ENTRY(UNSIGNED),
3204 			     item_param),
3205 		.args = ARGS(ARGS_ENTRY_HTON
3206 			     (struct rte_flow_item_pppoe_proto_id, proto_id)),
3207 		.call = parse_vc,
3208 	},
3209 	[ITEM_HIGIG2] = {
3210 		.name = "higig2",
3211 		.help = "matches higig2 header",
3212 		.priv = PRIV_ITEM(HIGIG2,
3213 				sizeof(struct rte_flow_item_higig2_hdr)),
3214 		.next = NEXT(item_higig2),
3215 		.call = parse_vc,
3216 	},
3217 	[ITEM_HIGIG2_CLASSIFICATION] = {
3218 		.name = "classification",
3219 		.help = "matches classification of higig2 header",
3220 		.next = NEXT(item_higig2, NEXT_ENTRY(UNSIGNED), item_param),
3221 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_higig2_hdr,
3222 					hdr.ppt1.classification)),
3223 	},
3224 	[ITEM_HIGIG2_VID] = {
3225 		.name = "vid",
3226 		.help = "matches vid of higig2 header",
3227 		.next = NEXT(item_higig2, NEXT_ENTRY(UNSIGNED), item_param),
3228 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_higig2_hdr,
3229 					hdr.ppt1.vid)),
3230 	},
3231 	[ITEM_TAG] = {
3232 		.name = "tag",
3233 		.help = "match tag value",
3234 		.priv = PRIV_ITEM(TAG, sizeof(struct rte_flow_item_tag)),
3235 		.next = NEXT(item_tag),
3236 		.call = parse_vc,
3237 	},
3238 	[ITEM_TAG_DATA] = {
3239 		.name = "data",
3240 		.help = "tag value to match",
3241 		.next = NEXT(item_tag, NEXT_ENTRY(UNSIGNED), item_param),
3242 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_tag, data)),
3243 	},
3244 	[ITEM_TAG_INDEX] = {
3245 		.name = "index",
3246 		.help = "index of tag array to match",
3247 		.next = NEXT(item_tag, NEXT_ENTRY(UNSIGNED),
3248 			     NEXT_ENTRY(ITEM_PARAM_IS)),
3249 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_tag, index)),
3250 	},
3251 	[ITEM_L2TPV3OIP] = {
3252 		.name = "l2tpv3oip",
3253 		.help = "match L2TPv3 over IP header",
3254 		.priv = PRIV_ITEM(L2TPV3OIP,
3255 				  sizeof(struct rte_flow_item_l2tpv3oip)),
3256 		.next = NEXT(item_l2tpv3oip),
3257 		.call = parse_vc,
3258 	},
3259 	[ITEM_L2TPV3OIP_SESSION_ID] = {
3260 		.name = "session_id",
3261 		.help = "session identifier",
3262 		.next = NEXT(item_l2tpv3oip, NEXT_ENTRY(UNSIGNED), item_param),
3263 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_l2tpv3oip,
3264 					     session_id)),
3265 	},
3266 	[ITEM_ESP] = {
3267 		.name = "esp",
3268 		.help = "match ESP header",
3269 		.priv = PRIV_ITEM(ESP, sizeof(struct rte_flow_item_esp)),
3270 		.next = NEXT(item_esp),
3271 		.call = parse_vc,
3272 	},
3273 	[ITEM_ESP_SPI] = {
3274 		.name = "spi",
3275 		.help = "security policy index",
3276 		.next = NEXT(item_esp, NEXT_ENTRY(UNSIGNED), item_param),
3277 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_esp,
3278 				hdr.spi)),
3279 	},
3280 	[ITEM_AH] = {
3281 		.name = "ah",
3282 		.help = "match AH header",
3283 		.priv = PRIV_ITEM(AH, sizeof(struct rte_flow_item_ah)),
3284 		.next = NEXT(item_ah),
3285 		.call = parse_vc,
3286 	},
3287 	[ITEM_AH_SPI] = {
3288 		.name = "spi",
3289 		.help = "security parameters index",
3290 		.next = NEXT(item_ah, NEXT_ENTRY(UNSIGNED), item_param),
3291 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ah, spi)),
3292 	},
3293 	[ITEM_PFCP] = {
3294 		.name = "pfcp",
3295 		.help = "match pfcp header",
3296 		.priv = PRIV_ITEM(PFCP, sizeof(struct rte_flow_item_pfcp)),
3297 		.next = NEXT(item_pfcp),
3298 		.call = parse_vc,
3299 	},
3300 	[ITEM_PFCP_S_FIELD] = {
3301 		.name = "s_field",
3302 		.help = "S field",
3303 		.next = NEXT(item_pfcp, NEXT_ENTRY(UNSIGNED), item_param),
3304 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pfcp,
3305 				s_field)),
3306 	},
3307 	[ITEM_PFCP_SEID] = {
3308 		.name = "seid",
3309 		.help = "session endpoint identifier",
3310 		.next = NEXT(item_pfcp, NEXT_ENTRY(UNSIGNED), item_param),
3311 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_pfcp, seid)),
3312 	},
3313 	[ITEM_ECPRI] = {
3314 		.name = "ecpri",
3315 		.help = "match eCPRI header",
3316 		.priv = PRIV_ITEM(ECPRI, sizeof(struct rte_flow_item_ecpri)),
3317 		.next = NEXT(item_ecpri),
3318 		.call = parse_vc,
3319 	},
3320 	[ITEM_ECPRI_COMMON] = {
3321 		.name = "common",
3322 		.help = "eCPRI common header",
3323 		.next = NEXT(item_ecpri_common),
3324 	},
3325 	[ITEM_ECPRI_COMMON_TYPE] = {
3326 		.name = "type",
3327 		.help = "type of common header",
3328 		.next = NEXT(item_ecpri_common_type),
3329 		.args = ARGS(ARG_ENTRY_HTON(struct rte_flow_item_ecpri)),
3330 	},
3331 	[ITEM_ECPRI_COMMON_TYPE_IQ_DATA] = {
3332 		.name = "iq_data",
3333 		.help = "Type #0: IQ Data",
3334 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_IQ_DATA_PCID,
3335 					ITEM_NEXT)),
3336 		.call = parse_vc_item_ecpri_type,
3337 	},
3338 	[ITEM_ECPRI_MSG_IQ_DATA_PCID] = {
3339 		.name = "pc_id",
3340 		.help = "Physical Channel ID",
3341 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_IQ_DATA_PCID,
3342 				ITEM_ECPRI_COMMON, ITEM_NEXT),
3343 				NEXT_ENTRY(UNSIGNED), item_param),
3344 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ecpri,
3345 				hdr.type0.pc_id)),
3346 	},
3347 	[ITEM_ECPRI_COMMON_TYPE_RTC_CTRL] = {
3348 		.name = "rtc_ctrl",
3349 		.help = "Type #2: Real-Time Control Data",
3350 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_RTC_CTRL_RTCID,
3351 					ITEM_NEXT)),
3352 		.call = parse_vc_item_ecpri_type,
3353 	},
3354 	[ITEM_ECPRI_MSG_RTC_CTRL_RTCID] = {
3355 		.name = "rtc_id",
3356 		.help = "Real-Time Control Data ID",
3357 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_RTC_CTRL_RTCID,
3358 				ITEM_ECPRI_COMMON, ITEM_NEXT),
3359 				NEXT_ENTRY(UNSIGNED), item_param),
3360 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ecpri,
3361 				hdr.type2.rtc_id)),
3362 	},
3363 	[ITEM_ECPRI_COMMON_TYPE_DLY_MSR] = {
3364 		.name = "delay_measure",
3365 		.help = "Type #5: One-Way Delay Measurement",
3366 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_DLY_MSR_MSRID,
3367 					ITEM_NEXT)),
3368 		.call = parse_vc_item_ecpri_type,
3369 	},
3370 	[ITEM_ECPRI_MSG_DLY_MSR_MSRID] = {
3371 		.name = "msr_id",
3372 		.help = "Measurement ID",
3373 		.next = NEXT(NEXT_ENTRY(ITEM_ECPRI_MSG_DLY_MSR_MSRID,
3374 				ITEM_ECPRI_COMMON, ITEM_NEXT),
3375 				NEXT_ENTRY(UNSIGNED), item_param),
3376 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_ecpri,
3377 				hdr.type5.msr_id)),
3378 	},
3379 	[ITEM_GENEVE_OPT] = {
3380 		.name = "geneve-opt",
3381 		.help = "GENEVE header option",
3382 		.priv = PRIV_ITEM(GENEVE_OPT,
3383 				  sizeof(struct rte_flow_item_geneve_opt) +
3384 				  ITEM_GENEVE_OPT_DATA_SIZE),
3385 		.next = NEXT(item_geneve_opt),
3386 		.call = parse_vc,
3387 	},
3388 	[ITEM_GENEVE_OPT_CLASS]	= {
3389 		.name = "class",
3390 		.help = "GENEVE option class",
3391 		.next = NEXT(item_geneve_opt, NEXT_ENTRY(UNSIGNED), item_param),
3392 		.args = ARGS(ARGS_ENTRY_HTON(struct rte_flow_item_geneve_opt,
3393 					     option_class)),
3394 	},
3395 	[ITEM_GENEVE_OPT_TYPE] = {
3396 		.name = "type",
3397 		.help = "GENEVE option type",
3398 		.next = NEXT(item_geneve_opt, NEXT_ENTRY(UNSIGNED), item_param),
3399 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_geneve_opt,
3400 					option_type)),
3401 	},
3402 	[ITEM_GENEVE_OPT_LENGTH] = {
3403 		.name = "length",
3404 		.help = "GENEVE option data length (in 32b words)",
3405 		.next = NEXT(item_geneve_opt, NEXT_ENTRY(UNSIGNED), item_param),
3406 		.args = ARGS(ARGS_ENTRY_BOUNDED(
3407 				struct rte_flow_item_geneve_opt, option_len,
3408 				0, 31)),
3409 	},
3410 	[ITEM_GENEVE_OPT_DATA] = {
3411 		.name = "data",
3412 		.help = "GENEVE option data pattern",
3413 		.next = NEXT(item_geneve_opt, NEXT_ENTRY(HEX), item_param),
3414 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_geneve_opt, data),
3415 			     ARGS_ENTRY_ARB(0, 0),
3416 			     ARGS_ENTRY_ARB
3417 				(sizeof(struct rte_flow_item_geneve_opt),
3418 				ITEM_GENEVE_OPT_DATA_SIZE)),
3419 	},
3420 	[ITEM_INTEGRITY] = {
3421 		.name = "integrity",
3422 		.help = "match packet integrity",
3423 		.priv = PRIV_ITEM(INTEGRITY,
3424 				  sizeof(struct rte_flow_item_integrity)),
3425 		.next = NEXT(item_integrity),
3426 		.call = parse_vc,
3427 	},
3428 	[ITEM_INTEGRITY_LEVEL] = {
3429 		.name = "level",
3430 		.help = "integrity level",
3431 		.next = NEXT(item_integrity_lv, NEXT_ENTRY(UNSIGNED),
3432 			     item_param),
3433 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_integrity, level)),
3434 	},
3435 	[ITEM_INTEGRITY_VALUE] = {
3436 		.name = "value",
3437 		.help = "integrity value",
3438 		.next = NEXT(item_integrity_lv, NEXT_ENTRY(UNSIGNED),
3439 			     item_param),
3440 		.args = ARGS(ARGS_ENTRY(struct rte_flow_item_integrity, value)),
3441 	},
3442 	/* Validate/create actions. */
3443 	[ACTIONS] = {
3444 		.name = "actions",
3445 		.help = "submit a list of associated actions",
3446 		.next = NEXT(next_action),
3447 		.call = parse_vc,
3448 	},
3449 	[ACTION_NEXT] = {
3450 		.name = "/",
3451 		.help = "specify next action",
3452 		.next = NEXT(next_action),
3453 	},
3454 	[ACTION_END] = {
3455 		.name = "end",
3456 		.help = "end list of actions",
3457 		.priv = PRIV_ACTION(END, 0),
3458 		.call = parse_vc,
3459 	},
3460 	[ACTION_VOID] = {
3461 		.name = "void",
3462 		.help = "no-op action",
3463 		.priv = PRIV_ACTION(VOID, 0),
3464 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3465 		.call = parse_vc,
3466 	},
3467 	[ACTION_PASSTHRU] = {
3468 		.name = "passthru",
3469 		.help = "let subsequent rule process matched packets",
3470 		.priv = PRIV_ACTION(PASSTHRU, 0),
3471 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3472 		.call = parse_vc,
3473 	},
3474 	[ACTION_JUMP] = {
3475 		.name = "jump",
3476 		.help = "redirect traffic to a given group",
3477 		.priv = PRIV_ACTION(JUMP, sizeof(struct rte_flow_action_jump)),
3478 		.next = NEXT(action_jump),
3479 		.call = parse_vc,
3480 	},
3481 	[ACTION_JUMP_GROUP] = {
3482 		.name = "group",
3483 		.help = "group to redirect traffic to",
3484 		.next = NEXT(action_jump, NEXT_ENTRY(UNSIGNED)),
3485 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_jump, group)),
3486 		.call = parse_vc_conf,
3487 	},
3488 	[ACTION_MARK] = {
3489 		.name = "mark",
3490 		.help = "attach 32 bit value to packets",
3491 		.priv = PRIV_ACTION(MARK, sizeof(struct rte_flow_action_mark)),
3492 		.next = NEXT(action_mark),
3493 		.call = parse_vc,
3494 	},
3495 	[ACTION_MARK_ID] = {
3496 		.name = "id",
3497 		.help = "32 bit value to return with packets",
3498 		.next = NEXT(action_mark, NEXT_ENTRY(UNSIGNED)),
3499 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_mark, id)),
3500 		.call = parse_vc_conf,
3501 	},
3502 	[ACTION_FLAG] = {
3503 		.name = "flag",
3504 		.help = "flag packets",
3505 		.priv = PRIV_ACTION(FLAG, 0),
3506 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3507 		.call = parse_vc,
3508 	},
3509 	[ACTION_QUEUE] = {
3510 		.name = "queue",
3511 		.help = "assign packets to a given queue index",
3512 		.priv = PRIV_ACTION(QUEUE,
3513 				    sizeof(struct rte_flow_action_queue)),
3514 		.next = NEXT(action_queue),
3515 		.call = parse_vc,
3516 	},
3517 	[ACTION_QUEUE_INDEX] = {
3518 		.name = "index",
3519 		.help = "queue index to use",
3520 		.next = NEXT(action_queue, NEXT_ENTRY(UNSIGNED)),
3521 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_queue, index)),
3522 		.call = parse_vc_conf,
3523 	},
3524 	[ACTION_DROP] = {
3525 		.name = "drop",
3526 		.help = "drop packets (note: passthru has priority)",
3527 		.priv = PRIV_ACTION(DROP, 0),
3528 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3529 		.call = parse_vc,
3530 	},
3531 	[ACTION_COUNT] = {
3532 		.name = "count",
3533 		.help = "enable counters for this rule",
3534 		.priv = PRIV_ACTION(COUNT,
3535 				    sizeof(struct rte_flow_action_count)),
3536 		.next = NEXT(action_count),
3537 		.call = parse_vc,
3538 	},
3539 	[ACTION_COUNT_ID] = {
3540 		.name = "identifier",
3541 		.help = "counter identifier to use",
3542 		.next = NEXT(action_count, NEXT_ENTRY(UNSIGNED)),
3543 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_count, id)),
3544 		.call = parse_vc_conf,
3545 	},
3546 	[ACTION_COUNT_SHARED] = {
3547 		.name = "shared",
3548 		.help = "shared counter",
3549 		.next = NEXT(action_count, NEXT_ENTRY(BOOLEAN)),
3550 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_count,
3551 					   shared, 1)),
3552 		.call = parse_vc_conf,
3553 	},
3554 	[ACTION_RSS] = {
3555 		.name = "rss",
3556 		.help = "spread packets among several queues",
3557 		.priv = PRIV_ACTION(RSS, sizeof(struct action_rss_data)),
3558 		.next = NEXT(action_rss),
3559 		.call = parse_vc_action_rss,
3560 	},
3561 	[ACTION_RSS_FUNC] = {
3562 		.name = "func",
3563 		.help = "RSS hash function to apply",
3564 		.next = NEXT(action_rss,
3565 			     NEXT_ENTRY(ACTION_RSS_FUNC_DEFAULT,
3566 					ACTION_RSS_FUNC_TOEPLITZ,
3567 					ACTION_RSS_FUNC_SIMPLE_XOR,
3568 					ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ)),
3569 	},
3570 	[ACTION_RSS_FUNC_DEFAULT] = {
3571 		.name = "default",
3572 		.help = "default hash function",
3573 		.call = parse_vc_action_rss_func,
3574 	},
3575 	[ACTION_RSS_FUNC_TOEPLITZ] = {
3576 		.name = "toeplitz",
3577 		.help = "Toeplitz hash function",
3578 		.call = parse_vc_action_rss_func,
3579 	},
3580 	[ACTION_RSS_FUNC_SIMPLE_XOR] = {
3581 		.name = "simple_xor",
3582 		.help = "simple XOR hash function",
3583 		.call = parse_vc_action_rss_func,
3584 	},
3585 	[ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ] = {
3586 		.name = "symmetric_toeplitz",
3587 		.help = "Symmetric Toeplitz hash function",
3588 		.call = parse_vc_action_rss_func,
3589 	},
3590 	[ACTION_RSS_LEVEL] = {
3591 		.name = "level",
3592 		.help = "encapsulation level for \"types\"",
3593 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
3594 		.args = ARGS(ARGS_ENTRY_ARB
3595 			     (offsetof(struct action_rss_data, conf) +
3596 			      offsetof(struct rte_flow_action_rss, level),
3597 			      sizeof(((struct rte_flow_action_rss *)0)->
3598 				     level))),
3599 	},
3600 	[ACTION_RSS_TYPES] = {
3601 		.name = "types",
3602 		.help = "specific RSS hash types",
3603 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_TYPE)),
3604 	},
3605 	[ACTION_RSS_TYPE] = {
3606 		.name = "{type}",
3607 		.help = "RSS hash type",
3608 		.call = parse_vc_action_rss_type,
3609 		.comp = comp_vc_action_rss_type,
3610 	},
3611 	[ACTION_RSS_KEY] = {
3612 		.name = "key",
3613 		.help = "RSS hash key",
3614 		.next = NEXT(action_rss, NEXT_ENTRY(HEX)),
3615 		.args = ARGS(ARGS_ENTRY_ARB
3616 			     (offsetof(struct action_rss_data, conf) +
3617 			      offsetof(struct rte_flow_action_rss, key),
3618 			      sizeof(((struct rte_flow_action_rss *)0)->key)),
3619 			     ARGS_ENTRY_ARB
3620 			     (offsetof(struct action_rss_data, conf) +
3621 			      offsetof(struct rte_flow_action_rss, key_len),
3622 			      sizeof(((struct rte_flow_action_rss *)0)->
3623 				     key_len)),
3624 			     ARGS_ENTRY(struct action_rss_data, key)),
3625 	},
3626 	[ACTION_RSS_KEY_LEN] = {
3627 		.name = "key_len",
3628 		.help = "RSS hash key length in bytes",
3629 		.next = NEXT(action_rss, NEXT_ENTRY(UNSIGNED)),
3630 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
3631 			     (offsetof(struct action_rss_data, conf) +
3632 			      offsetof(struct rte_flow_action_rss, key_len),
3633 			      sizeof(((struct rte_flow_action_rss *)0)->
3634 				     key_len),
3635 			      0,
3636 			      RSS_HASH_KEY_LENGTH)),
3637 	},
3638 	[ACTION_RSS_QUEUES] = {
3639 		.name = "queues",
3640 		.help = "queue indices to use",
3641 		.next = NEXT(action_rss, NEXT_ENTRY(ACTION_RSS_QUEUE)),
3642 		.call = parse_vc_conf,
3643 	},
3644 	[ACTION_RSS_QUEUE] = {
3645 		.name = "{queue}",
3646 		.help = "queue index",
3647 		.call = parse_vc_action_rss_queue,
3648 		.comp = comp_vc_action_rss_queue,
3649 	},
3650 	[ACTION_PF] = {
3651 		.name = "pf",
3652 		.help = "direct traffic to physical function",
3653 		.priv = PRIV_ACTION(PF, 0),
3654 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3655 		.call = parse_vc,
3656 	},
3657 	[ACTION_VF] = {
3658 		.name = "vf",
3659 		.help = "direct traffic to a virtual function ID",
3660 		.priv = PRIV_ACTION(VF, sizeof(struct rte_flow_action_vf)),
3661 		.next = NEXT(action_vf),
3662 		.call = parse_vc,
3663 	},
3664 	[ACTION_VF_ORIGINAL] = {
3665 		.name = "original",
3666 		.help = "use original VF ID if possible",
3667 		.next = NEXT(action_vf, NEXT_ENTRY(BOOLEAN)),
3668 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_vf,
3669 					   original, 1)),
3670 		.call = parse_vc_conf,
3671 	},
3672 	[ACTION_VF_ID] = {
3673 		.name = "id",
3674 		.help = "VF ID",
3675 		.next = NEXT(action_vf, NEXT_ENTRY(UNSIGNED)),
3676 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_vf, id)),
3677 		.call = parse_vc_conf,
3678 	},
3679 	[ACTION_PHY_PORT] = {
3680 		.name = "phy_port",
3681 		.help = "direct packets to physical port index",
3682 		.priv = PRIV_ACTION(PHY_PORT,
3683 				    sizeof(struct rte_flow_action_phy_port)),
3684 		.next = NEXT(action_phy_port),
3685 		.call = parse_vc,
3686 	},
3687 	[ACTION_PHY_PORT_ORIGINAL] = {
3688 		.name = "original",
3689 		.help = "use original port index if possible",
3690 		.next = NEXT(action_phy_port, NEXT_ENTRY(BOOLEAN)),
3691 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_phy_port,
3692 					   original, 1)),
3693 		.call = parse_vc_conf,
3694 	},
3695 	[ACTION_PHY_PORT_INDEX] = {
3696 		.name = "index",
3697 		.help = "physical port index",
3698 		.next = NEXT(action_phy_port, NEXT_ENTRY(UNSIGNED)),
3699 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_phy_port,
3700 					index)),
3701 		.call = parse_vc_conf,
3702 	},
3703 	[ACTION_PORT_ID] = {
3704 		.name = "port_id",
3705 		.help = "direct matching traffic to a given DPDK port ID",
3706 		.priv = PRIV_ACTION(PORT_ID,
3707 				    sizeof(struct rte_flow_action_port_id)),
3708 		.next = NEXT(action_port_id),
3709 		.call = parse_vc,
3710 	},
3711 	[ACTION_PORT_ID_ORIGINAL] = {
3712 		.name = "original",
3713 		.help = "use original DPDK port ID if possible",
3714 		.next = NEXT(action_port_id, NEXT_ENTRY(BOOLEAN)),
3715 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_port_id,
3716 					   original, 1)),
3717 		.call = parse_vc_conf,
3718 	},
3719 	[ACTION_PORT_ID_ID] = {
3720 		.name = "id",
3721 		.help = "DPDK port ID",
3722 		.next = NEXT(action_port_id, NEXT_ENTRY(UNSIGNED)),
3723 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_port_id, id)),
3724 		.call = parse_vc_conf,
3725 	},
3726 	[ACTION_METER] = {
3727 		.name = "meter",
3728 		.help = "meter the directed packets at given id",
3729 		.priv = PRIV_ACTION(METER,
3730 				    sizeof(struct rte_flow_action_meter)),
3731 		.next = NEXT(action_meter),
3732 		.call = parse_vc,
3733 	},
3734 	[ACTION_METER_ID] = {
3735 		.name = "mtr_id",
3736 		.help = "meter id to use",
3737 		.next = NEXT(action_meter, NEXT_ENTRY(UNSIGNED)),
3738 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_meter, mtr_id)),
3739 		.call = parse_vc_conf,
3740 	},
3741 	[ACTION_OF_SET_MPLS_TTL] = {
3742 		.name = "of_set_mpls_ttl",
3743 		.help = "OpenFlow's OFPAT_SET_MPLS_TTL",
3744 		.priv = PRIV_ACTION
3745 			(OF_SET_MPLS_TTL,
3746 			 sizeof(struct rte_flow_action_of_set_mpls_ttl)),
3747 		.next = NEXT(action_of_set_mpls_ttl),
3748 		.call = parse_vc,
3749 	},
3750 	[ACTION_OF_SET_MPLS_TTL_MPLS_TTL] = {
3751 		.name = "mpls_ttl",
3752 		.help = "MPLS TTL",
3753 		.next = NEXT(action_of_set_mpls_ttl, NEXT_ENTRY(UNSIGNED)),
3754 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_mpls_ttl,
3755 					mpls_ttl)),
3756 		.call = parse_vc_conf,
3757 	},
3758 	[ACTION_OF_DEC_MPLS_TTL] = {
3759 		.name = "of_dec_mpls_ttl",
3760 		.help = "OpenFlow's OFPAT_DEC_MPLS_TTL",
3761 		.priv = PRIV_ACTION(OF_DEC_MPLS_TTL, 0),
3762 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3763 		.call = parse_vc,
3764 	},
3765 	[ACTION_OF_SET_NW_TTL] = {
3766 		.name = "of_set_nw_ttl",
3767 		.help = "OpenFlow's OFPAT_SET_NW_TTL",
3768 		.priv = PRIV_ACTION
3769 			(OF_SET_NW_TTL,
3770 			 sizeof(struct rte_flow_action_of_set_nw_ttl)),
3771 		.next = NEXT(action_of_set_nw_ttl),
3772 		.call = parse_vc,
3773 	},
3774 	[ACTION_OF_SET_NW_TTL_NW_TTL] = {
3775 		.name = "nw_ttl",
3776 		.help = "IP TTL",
3777 		.next = NEXT(action_of_set_nw_ttl, NEXT_ENTRY(UNSIGNED)),
3778 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_of_set_nw_ttl,
3779 					nw_ttl)),
3780 		.call = parse_vc_conf,
3781 	},
3782 	[ACTION_OF_DEC_NW_TTL] = {
3783 		.name = "of_dec_nw_ttl",
3784 		.help = "OpenFlow's OFPAT_DEC_NW_TTL",
3785 		.priv = PRIV_ACTION(OF_DEC_NW_TTL, 0),
3786 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3787 		.call = parse_vc,
3788 	},
3789 	[ACTION_OF_COPY_TTL_OUT] = {
3790 		.name = "of_copy_ttl_out",
3791 		.help = "OpenFlow's OFPAT_COPY_TTL_OUT",
3792 		.priv = PRIV_ACTION(OF_COPY_TTL_OUT, 0),
3793 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3794 		.call = parse_vc,
3795 	},
3796 	[ACTION_OF_COPY_TTL_IN] = {
3797 		.name = "of_copy_ttl_in",
3798 		.help = "OpenFlow's OFPAT_COPY_TTL_IN",
3799 		.priv = PRIV_ACTION(OF_COPY_TTL_IN, 0),
3800 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3801 		.call = parse_vc,
3802 	},
3803 	[ACTION_OF_POP_VLAN] = {
3804 		.name = "of_pop_vlan",
3805 		.help = "OpenFlow's OFPAT_POP_VLAN",
3806 		.priv = PRIV_ACTION(OF_POP_VLAN, 0),
3807 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3808 		.call = parse_vc,
3809 	},
3810 	[ACTION_OF_PUSH_VLAN] = {
3811 		.name = "of_push_vlan",
3812 		.help = "OpenFlow's OFPAT_PUSH_VLAN",
3813 		.priv = PRIV_ACTION
3814 			(OF_PUSH_VLAN,
3815 			 sizeof(struct rte_flow_action_of_push_vlan)),
3816 		.next = NEXT(action_of_push_vlan),
3817 		.call = parse_vc,
3818 	},
3819 	[ACTION_OF_PUSH_VLAN_ETHERTYPE] = {
3820 		.name = "ethertype",
3821 		.help = "EtherType",
3822 		.next = NEXT(action_of_push_vlan, NEXT_ENTRY(UNSIGNED)),
3823 		.args = ARGS(ARGS_ENTRY_HTON
3824 			     (struct rte_flow_action_of_push_vlan,
3825 			      ethertype)),
3826 		.call = parse_vc_conf,
3827 	},
3828 	[ACTION_OF_SET_VLAN_VID] = {
3829 		.name = "of_set_vlan_vid",
3830 		.help = "OpenFlow's OFPAT_SET_VLAN_VID",
3831 		.priv = PRIV_ACTION
3832 			(OF_SET_VLAN_VID,
3833 			 sizeof(struct rte_flow_action_of_set_vlan_vid)),
3834 		.next = NEXT(action_of_set_vlan_vid),
3835 		.call = parse_vc,
3836 	},
3837 	[ACTION_OF_SET_VLAN_VID_VLAN_VID] = {
3838 		.name = "vlan_vid",
3839 		.help = "VLAN id",
3840 		.next = NEXT(action_of_set_vlan_vid, NEXT_ENTRY(UNSIGNED)),
3841 		.args = ARGS(ARGS_ENTRY_HTON
3842 			     (struct rte_flow_action_of_set_vlan_vid,
3843 			      vlan_vid)),
3844 		.call = parse_vc_conf,
3845 	},
3846 	[ACTION_OF_SET_VLAN_PCP] = {
3847 		.name = "of_set_vlan_pcp",
3848 		.help = "OpenFlow's OFPAT_SET_VLAN_PCP",
3849 		.priv = PRIV_ACTION
3850 			(OF_SET_VLAN_PCP,
3851 			 sizeof(struct rte_flow_action_of_set_vlan_pcp)),
3852 		.next = NEXT(action_of_set_vlan_pcp),
3853 		.call = parse_vc,
3854 	},
3855 	[ACTION_OF_SET_VLAN_PCP_VLAN_PCP] = {
3856 		.name = "vlan_pcp",
3857 		.help = "VLAN priority",
3858 		.next = NEXT(action_of_set_vlan_pcp, NEXT_ENTRY(UNSIGNED)),
3859 		.args = ARGS(ARGS_ENTRY_HTON
3860 			     (struct rte_flow_action_of_set_vlan_pcp,
3861 			      vlan_pcp)),
3862 		.call = parse_vc_conf,
3863 	},
3864 	[ACTION_OF_POP_MPLS] = {
3865 		.name = "of_pop_mpls",
3866 		.help = "OpenFlow's OFPAT_POP_MPLS",
3867 		.priv = PRIV_ACTION(OF_POP_MPLS,
3868 				    sizeof(struct rte_flow_action_of_pop_mpls)),
3869 		.next = NEXT(action_of_pop_mpls),
3870 		.call = parse_vc,
3871 	},
3872 	[ACTION_OF_POP_MPLS_ETHERTYPE] = {
3873 		.name = "ethertype",
3874 		.help = "EtherType",
3875 		.next = NEXT(action_of_pop_mpls, NEXT_ENTRY(UNSIGNED)),
3876 		.args = ARGS(ARGS_ENTRY_HTON
3877 			     (struct rte_flow_action_of_pop_mpls,
3878 			      ethertype)),
3879 		.call = parse_vc_conf,
3880 	},
3881 	[ACTION_OF_PUSH_MPLS] = {
3882 		.name = "of_push_mpls",
3883 		.help = "OpenFlow's OFPAT_PUSH_MPLS",
3884 		.priv = PRIV_ACTION
3885 			(OF_PUSH_MPLS,
3886 			 sizeof(struct rte_flow_action_of_push_mpls)),
3887 		.next = NEXT(action_of_push_mpls),
3888 		.call = parse_vc,
3889 	},
3890 	[ACTION_OF_PUSH_MPLS_ETHERTYPE] = {
3891 		.name = "ethertype",
3892 		.help = "EtherType",
3893 		.next = NEXT(action_of_push_mpls, NEXT_ENTRY(UNSIGNED)),
3894 		.args = ARGS(ARGS_ENTRY_HTON
3895 			     (struct rte_flow_action_of_push_mpls,
3896 			      ethertype)),
3897 		.call = parse_vc_conf,
3898 	},
3899 	[ACTION_VXLAN_ENCAP] = {
3900 		.name = "vxlan_encap",
3901 		.help = "VXLAN encapsulation, uses configuration set by \"set"
3902 			" vxlan\"",
3903 		.priv = PRIV_ACTION(VXLAN_ENCAP,
3904 				    sizeof(struct action_vxlan_encap_data)),
3905 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3906 		.call = parse_vc_action_vxlan_encap,
3907 	},
3908 	[ACTION_VXLAN_DECAP] = {
3909 		.name = "vxlan_decap",
3910 		.help = "Performs a decapsulation action by stripping all"
3911 			" headers of the VXLAN tunnel network overlay from the"
3912 			" matched flow.",
3913 		.priv = PRIV_ACTION(VXLAN_DECAP, 0),
3914 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3915 		.call = parse_vc,
3916 	},
3917 	[ACTION_NVGRE_ENCAP] = {
3918 		.name = "nvgre_encap",
3919 		.help = "NVGRE encapsulation, uses configuration set by \"set"
3920 			" nvgre\"",
3921 		.priv = PRIV_ACTION(NVGRE_ENCAP,
3922 				    sizeof(struct action_nvgre_encap_data)),
3923 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3924 		.call = parse_vc_action_nvgre_encap,
3925 	},
3926 	[ACTION_NVGRE_DECAP] = {
3927 		.name = "nvgre_decap",
3928 		.help = "Performs a decapsulation action by stripping all"
3929 			" headers of the NVGRE tunnel network overlay from the"
3930 			" matched flow.",
3931 		.priv = PRIV_ACTION(NVGRE_DECAP, 0),
3932 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3933 		.call = parse_vc,
3934 	},
3935 	[ACTION_L2_ENCAP] = {
3936 		.name = "l2_encap",
3937 		.help = "l2 encap, uses configuration set by"
3938 			" \"set l2_encap\"",
3939 		.priv = PRIV_ACTION(RAW_ENCAP,
3940 				    sizeof(struct action_raw_encap_data)),
3941 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3942 		.call = parse_vc_action_l2_encap,
3943 	},
3944 	[ACTION_L2_DECAP] = {
3945 		.name = "l2_decap",
3946 		.help = "l2 decap, uses configuration set by"
3947 			" \"set l2_decap\"",
3948 		.priv = PRIV_ACTION(RAW_DECAP,
3949 				    sizeof(struct action_raw_decap_data)),
3950 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3951 		.call = parse_vc_action_l2_decap,
3952 	},
3953 	[ACTION_MPLSOGRE_ENCAP] = {
3954 		.name = "mplsogre_encap",
3955 		.help = "mplsogre encapsulation, uses configuration set by"
3956 			" \"set mplsogre_encap\"",
3957 		.priv = PRIV_ACTION(RAW_ENCAP,
3958 				    sizeof(struct action_raw_encap_data)),
3959 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3960 		.call = parse_vc_action_mplsogre_encap,
3961 	},
3962 	[ACTION_MPLSOGRE_DECAP] = {
3963 		.name = "mplsogre_decap",
3964 		.help = "mplsogre decapsulation, uses configuration set by"
3965 			" \"set mplsogre_decap\"",
3966 		.priv = PRIV_ACTION(RAW_DECAP,
3967 				    sizeof(struct action_raw_decap_data)),
3968 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3969 		.call = parse_vc_action_mplsogre_decap,
3970 	},
3971 	[ACTION_MPLSOUDP_ENCAP] = {
3972 		.name = "mplsoudp_encap",
3973 		.help = "mplsoudp encapsulation, uses configuration set by"
3974 			" \"set mplsoudp_encap\"",
3975 		.priv = PRIV_ACTION(RAW_ENCAP,
3976 				    sizeof(struct action_raw_encap_data)),
3977 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3978 		.call = parse_vc_action_mplsoudp_encap,
3979 	},
3980 	[ACTION_MPLSOUDP_DECAP] = {
3981 		.name = "mplsoudp_decap",
3982 		.help = "mplsoudp decapsulation, uses configuration set by"
3983 			" \"set mplsoudp_decap\"",
3984 		.priv = PRIV_ACTION(RAW_DECAP,
3985 				    sizeof(struct action_raw_decap_data)),
3986 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
3987 		.call = parse_vc_action_mplsoudp_decap,
3988 	},
3989 	[ACTION_SET_IPV4_SRC] = {
3990 		.name = "set_ipv4_src",
3991 		.help = "Set a new IPv4 source address in the outermost"
3992 			" IPv4 header",
3993 		.priv = PRIV_ACTION(SET_IPV4_SRC,
3994 			sizeof(struct rte_flow_action_set_ipv4)),
3995 		.next = NEXT(action_set_ipv4_src),
3996 		.call = parse_vc,
3997 	},
3998 	[ACTION_SET_IPV4_SRC_IPV4_SRC] = {
3999 		.name = "ipv4_addr",
4000 		.help = "new IPv4 source address to set",
4001 		.next = NEXT(action_set_ipv4_src, NEXT_ENTRY(IPV4_ADDR)),
4002 		.args = ARGS(ARGS_ENTRY_HTON
4003 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
4004 		.call = parse_vc_conf,
4005 	},
4006 	[ACTION_SET_IPV4_DST] = {
4007 		.name = "set_ipv4_dst",
4008 		.help = "Set a new IPv4 destination address in the outermost"
4009 			" IPv4 header",
4010 		.priv = PRIV_ACTION(SET_IPV4_DST,
4011 			sizeof(struct rte_flow_action_set_ipv4)),
4012 		.next = NEXT(action_set_ipv4_dst),
4013 		.call = parse_vc,
4014 	},
4015 	[ACTION_SET_IPV4_DST_IPV4_DST] = {
4016 		.name = "ipv4_addr",
4017 		.help = "new IPv4 destination address to set",
4018 		.next = NEXT(action_set_ipv4_dst, NEXT_ENTRY(IPV4_ADDR)),
4019 		.args = ARGS(ARGS_ENTRY_HTON
4020 			(struct rte_flow_action_set_ipv4, ipv4_addr)),
4021 		.call = parse_vc_conf,
4022 	},
4023 	[ACTION_SET_IPV6_SRC] = {
4024 		.name = "set_ipv6_src",
4025 		.help = "Set a new IPv6 source address in the outermost"
4026 			" IPv6 header",
4027 		.priv = PRIV_ACTION(SET_IPV6_SRC,
4028 			sizeof(struct rte_flow_action_set_ipv6)),
4029 		.next = NEXT(action_set_ipv6_src),
4030 		.call = parse_vc,
4031 	},
4032 	[ACTION_SET_IPV6_SRC_IPV6_SRC] = {
4033 		.name = "ipv6_addr",
4034 		.help = "new IPv6 source address to set",
4035 		.next = NEXT(action_set_ipv6_src, NEXT_ENTRY(IPV6_ADDR)),
4036 		.args = ARGS(ARGS_ENTRY_HTON
4037 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
4038 		.call = parse_vc_conf,
4039 	},
4040 	[ACTION_SET_IPV6_DST] = {
4041 		.name = "set_ipv6_dst",
4042 		.help = "Set a new IPv6 destination address in the outermost"
4043 			" IPv6 header",
4044 		.priv = PRIV_ACTION(SET_IPV6_DST,
4045 			sizeof(struct rte_flow_action_set_ipv6)),
4046 		.next = NEXT(action_set_ipv6_dst),
4047 		.call = parse_vc,
4048 	},
4049 	[ACTION_SET_IPV6_DST_IPV6_DST] = {
4050 		.name = "ipv6_addr",
4051 		.help = "new IPv6 destination address to set",
4052 		.next = NEXT(action_set_ipv6_dst, NEXT_ENTRY(IPV6_ADDR)),
4053 		.args = ARGS(ARGS_ENTRY_HTON
4054 			(struct rte_flow_action_set_ipv6, ipv6_addr)),
4055 		.call = parse_vc_conf,
4056 	},
4057 	[ACTION_SET_TP_SRC] = {
4058 		.name = "set_tp_src",
4059 		.help = "set a new source port number in the outermost"
4060 			" TCP/UDP header",
4061 		.priv = PRIV_ACTION(SET_TP_SRC,
4062 			sizeof(struct rte_flow_action_set_tp)),
4063 		.next = NEXT(action_set_tp_src),
4064 		.call = parse_vc,
4065 	},
4066 	[ACTION_SET_TP_SRC_TP_SRC] = {
4067 		.name = "port",
4068 		.help = "new source port number to set",
4069 		.next = NEXT(action_set_tp_src, NEXT_ENTRY(UNSIGNED)),
4070 		.args = ARGS(ARGS_ENTRY_HTON
4071 			     (struct rte_flow_action_set_tp, port)),
4072 		.call = parse_vc_conf,
4073 	},
4074 	[ACTION_SET_TP_DST] = {
4075 		.name = "set_tp_dst",
4076 		.help = "set a new destination port number in the outermost"
4077 			" TCP/UDP header",
4078 		.priv = PRIV_ACTION(SET_TP_DST,
4079 			sizeof(struct rte_flow_action_set_tp)),
4080 		.next = NEXT(action_set_tp_dst),
4081 		.call = parse_vc,
4082 	},
4083 	[ACTION_SET_TP_DST_TP_DST] = {
4084 		.name = "port",
4085 		.help = "new destination port number to set",
4086 		.next = NEXT(action_set_tp_dst, NEXT_ENTRY(UNSIGNED)),
4087 		.args = ARGS(ARGS_ENTRY_HTON
4088 			     (struct rte_flow_action_set_tp, port)),
4089 		.call = parse_vc_conf,
4090 	},
4091 	[ACTION_MAC_SWAP] = {
4092 		.name = "mac_swap",
4093 		.help = "Swap the source and destination MAC addresses"
4094 			" in the outermost Ethernet header",
4095 		.priv = PRIV_ACTION(MAC_SWAP, 0),
4096 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4097 		.call = parse_vc,
4098 	},
4099 	[ACTION_DEC_TTL] = {
4100 		.name = "dec_ttl",
4101 		.help = "decrease network TTL if available",
4102 		.priv = PRIV_ACTION(DEC_TTL, 0),
4103 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4104 		.call = parse_vc,
4105 	},
4106 	[ACTION_SET_TTL] = {
4107 		.name = "set_ttl",
4108 		.help = "set ttl value",
4109 		.priv = PRIV_ACTION(SET_TTL,
4110 			sizeof(struct rte_flow_action_set_ttl)),
4111 		.next = NEXT(action_set_ttl),
4112 		.call = parse_vc,
4113 	},
4114 	[ACTION_SET_TTL_TTL] = {
4115 		.name = "ttl_value",
4116 		.help = "new ttl value to set",
4117 		.next = NEXT(action_set_ttl, NEXT_ENTRY(UNSIGNED)),
4118 		.args = ARGS(ARGS_ENTRY_HTON
4119 			     (struct rte_flow_action_set_ttl, ttl_value)),
4120 		.call = parse_vc_conf,
4121 	},
4122 	[ACTION_SET_MAC_SRC] = {
4123 		.name = "set_mac_src",
4124 		.help = "set source mac address",
4125 		.priv = PRIV_ACTION(SET_MAC_SRC,
4126 			sizeof(struct rte_flow_action_set_mac)),
4127 		.next = NEXT(action_set_mac_src),
4128 		.call = parse_vc,
4129 	},
4130 	[ACTION_SET_MAC_SRC_MAC_SRC] = {
4131 		.name = "mac_addr",
4132 		.help = "new source mac address",
4133 		.next = NEXT(action_set_mac_src, NEXT_ENTRY(MAC_ADDR)),
4134 		.args = ARGS(ARGS_ENTRY_HTON
4135 			     (struct rte_flow_action_set_mac, mac_addr)),
4136 		.call = parse_vc_conf,
4137 	},
4138 	[ACTION_SET_MAC_DST] = {
4139 		.name = "set_mac_dst",
4140 		.help = "set destination mac address",
4141 		.priv = PRIV_ACTION(SET_MAC_DST,
4142 			sizeof(struct rte_flow_action_set_mac)),
4143 		.next = NEXT(action_set_mac_dst),
4144 		.call = parse_vc,
4145 	},
4146 	[ACTION_SET_MAC_DST_MAC_DST] = {
4147 		.name = "mac_addr",
4148 		.help = "new destination mac address to set",
4149 		.next = NEXT(action_set_mac_dst, NEXT_ENTRY(MAC_ADDR)),
4150 		.args = ARGS(ARGS_ENTRY_HTON
4151 			     (struct rte_flow_action_set_mac, mac_addr)),
4152 		.call = parse_vc_conf,
4153 	},
4154 	[ACTION_INC_TCP_SEQ] = {
4155 		.name = "inc_tcp_seq",
4156 		.help = "increase TCP sequence number",
4157 		.priv = PRIV_ACTION(INC_TCP_SEQ, sizeof(rte_be32_t)),
4158 		.next = NEXT(action_inc_tcp_seq),
4159 		.call = parse_vc,
4160 	},
4161 	[ACTION_INC_TCP_SEQ_VALUE] = {
4162 		.name = "value",
4163 		.help = "the value to increase TCP sequence number by",
4164 		.next = NEXT(action_inc_tcp_seq, NEXT_ENTRY(UNSIGNED)),
4165 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
4166 		.call = parse_vc_conf,
4167 	},
4168 	[ACTION_DEC_TCP_SEQ] = {
4169 		.name = "dec_tcp_seq",
4170 		.help = "decrease TCP sequence number",
4171 		.priv = PRIV_ACTION(DEC_TCP_SEQ, sizeof(rte_be32_t)),
4172 		.next = NEXT(action_dec_tcp_seq),
4173 		.call = parse_vc,
4174 	},
4175 	[ACTION_DEC_TCP_SEQ_VALUE] = {
4176 		.name = "value",
4177 		.help = "the value to decrease TCP sequence number by",
4178 		.next = NEXT(action_dec_tcp_seq, NEXT_ENTRY(UNSIGNED)),
4179 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
4180 		.call = parse_vc_conf,
4181 	},
4182 	[ACTION_INC_TCP_ACK] = {
4183 		.name = "inc_tcp_ack",
4184 		.help = "increase TCP acknowledgment number",
4185 		.priv = PRIV_ACTION(INC_TCP_ACK, sizeof(rte_be32_t)),
4186 		.next = NEXT(action_inc_tcp_ack),
4187 		.call = parse_vc,
4188 	},
4189 	[ACTION_INC_TCP_ACK_VALUE] = {
4190 		.name = "value",
4191 		.help = "the value to increase TCP acknowledgment number by",
4192 		.next = NEXT(action_inc_tcp_ack, NEXT_ENTRY(UNSIGNED)),
4193 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
4194 		.call = parse_vc_conf,
4195 	},
4196 	[ACTION_DEC_TCP_ACK] = {
4197 		.name = "dec_tcp_ack",
4198 		.help = "decrease TCP acknowledgment number",
4199 		.priv = PRIV_ACTION(DEC_TCP_ACK, sizeof(rte_be32_t)),
4200 		.next = NEXT(action_dec_tcp_ack),
4201 		.call = parse_vc,
4202 	},
4203 	[ACTION_DEC_TCP_ACK_VALUE] = {
4204 		.name = "value",
4205 		.help = "the value to decrease TCP acknowledgment number by",
4206 		.next = NEXT(action_dec_tcp_ack, NEXT_ENTRY(UNSIGNED)),
4207 		.args = ARGS(ARG_ENTRY_HTON(rte_be32_t)),
4208 		.call = parse_vc_conf,
4209 	},
4210 	[ACTION_RAW_ENCAP] = {
4211 		.name = "raw_encap",
4212 		.help = "encapsulation data, defined by set raw_encap",
4213 		.priv = PRIV_ACTION(RAW_ENCAP,
4214 			sizeof(struct action_raw_encap_data)),
4215 		.next = NEXT(action_raw_encap),
4216 		.call = parse_vc_action_raw_encap,
4217 	},
4218 	[ACTION_RAW_ENCAP_INDEX] = {
4219 		.name = "index",
4220 		.help = "the index of raw_encap_confs",
4221 		.next = NEXT(NEXT_ENTRY(ACTION_RAW_ENCAP_INDEX_VALUE)),
4222 	},
4223 	[ACTION_RAW_ENCAP_INDEX_VALUE] = {
4224 		.name = "{index}",
4225 		.type = "UNSIGNED",
4226 		.help = "unsigned integer value",
4227 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4228 		.call = parse_vc_action_raw_encap_index,
4229 		.comp = comp_set_raw_index,
4230 	},
4231 	[ACTION_RAW_DECAP] = {
4232 		.name = "raw_decap",
4233 		.help = "decapsulation data, defined by set raw_encap",
4234 		.priv = PRIV_ACTION(RAW_DECAP,
4235 			sizeof(struct action_raw_decap_data)),
4236 		.next = NEXT(action_raw_decap),
4237 		.call = parse_vc_action_raw_decap,
4238 	},
4239 	[ACTION_RAW_DECAP_INDEX] = {
4240 		.name = "index",
4241 		.help = "the index of raw_encap_confs",
4242 		.next = NEXT(NEXT_ENTRY(ACTION_RAW_DECAP_INDEX_VALUE)),
4243 	},
4244 	[ACTION_RAW_DECAP_INDEX_VALUE] = {
4245 		.name = "{index}",
4246 		.type = "UNSIGNED",
4247 		.help = "unsigned integer value",
4248 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4249 		.call = parse_vc_action_raw_decap_index,
4250 		.comp = comp_set_raw_index,
4251 	},
4252 	[ACTION_MODIFY_FIELD] = {
4253 		.name = "modify_field",
4254 		.help = "modify destination field with data from source field",
4255 		.priv = PRIV_ACTION(MODIFY_FIELD,
4256 			sizeof(struct rte_flow_action_modify_field)),
4257 		.next = NEXT(NEXT_ENTRY(ACTION_MODIFY_FIELD_OP)),
4258 		.call = parse_vc,
4259 	},
4260 	[ACTION_MODIFY_FIELD_OP] = {
4261 		.name = "op",
4262 		.help = "operation type",
4263 		.next = NEXT(NEXT_ENTRY(ACTION_MODIFY_FIELD_DST_TYPE),
4264 			NEXT_ENTRY(ACTION_MODIFY_FIELD_OP_VALUE)),
4265 		.call = parse_vc_conf,
4266 	},
4267 	[ACTION_MODIFY_FIELD_OP_VALUE] = {
4268 		.name = "{operation}",
4269 		.help = "operation type value",
4270 		.call = parse_vc_modify_field_op,
4271 		.comp = comp_set_modify_field_op,
4272 	},
4273 	[ACTION_MODIFY_FIELD_DST_TYPE] = {
4274 		.name = "dst_type",
4275 		.help = "destination field type",
4276 		.next = NEXT(action_modify_field_dst,
4277 			NEXT_ENTRY(ACTION_MODIFY_FIELD_DST_TYPE_VALUE)),
4278 		.call = parse_vc_conf,
4279 	},
4280 	[ACTION_MODIFY_FIELD_DST_TYPE_VALUE] = {
4281 		.name = "{dst_type}",
4282 		.help = "destination field type value",
4283 		.call = parse_vc_modify_field_id,
4284 		.comp = comp_set_modify_field_id,
4285 	},
4286 	[ACTION_MODIFY_FIELD_DST_LEVEL] = {
4287 		.name = "dst_level",
4288 		.help = "destination field level",
4289 		.next = NEXT(action_modify_field_dst, NEXT_ENTRY(UNSIGNED)),
4290 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4291 					dst.level)),
4292 		.call = parse_vc_conf,
4293 	},
4294 	[ACTION_MODIFY_FIELD_DST_OFFSET] = {
4295 		.name = "dst_offset",
4296 		.help = "destination field bit offset",
4297 		.next = NEXT(action_modify_field_dst, NEXT_ENTRY(UNSIGNED)),
4298 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4299 					dst.offset)),
4300 		.call = parse_vc_conf,
4301 	},
4302 	[ACTION_MODIFY_FIELD_SRC_TYPE] = {
4303 		.name = "src_type",
4304 		.help = "source field type",
4305 		.next = NEXT(action_modify_field_src,
4306 			NEXT_ENTRY(ACTION_MODIFY_FIELD_SRC_TYPE_VALUE)),
4307 		.call = parse_vc_conf,
4308 	},
4309 	[ACTION_MODIFY_FIELD_SRC_TYPE_VALUE] = {
4310 		.name = "{src_type}",
4311 		.help = "source field type value",
4312 		.call = parse_vc_modify_field_id,
4313 		.comp = comp_set_modify_field_id,
4314 	},
4315 	[ACTION_MODIFY_FIELD_SRC_LEVEL] = {
4316 		.name = "src_level",
4317 		.help = "source field level",
4318 		.next = NEXT(action_modify_field_src, NEXT_ENTRY(UNSIGNED)),
4319 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4320 					src.level)),
4321 		.call = parse_vc_conf,
4322 	},
4323 	[ACTION_MODIFY_FIELD_SRC_OFFSET] = {
4324 		.name = "src_offset",
4325 		.help = "source field bit offset",
4326 		.next = NEXT(action_modify_field_src, NEXT_ENTRY(UNSIGNED)),
4327 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4328 					src.offset)),
4329 		.call = parse_vc_conf,
4330 	},
4331 	[ACTION_MODIFY_FIELD_SRC_VALUE] = {
4332 		.name = "src_value",
4333 		.help = "source immediate value",
4334 		.next = NEXT(NEXT_ENTRY(ACTION_MODIFY_FIELD_WIDTH),
4335 			NEXT_ENTRY(UNSIGNED)),
4336 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4337 					src.value)),
4338 		.call = parse_vc_conf,
4339 	},
4340 	[ACTION_MODIFY_FIELD_WIDTH] = {
4341 		.name = "width",
4342 		.help = "number of bits to copy",
4343 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT),
4344 			NEXT_ENTRY(UNSIGNED)),
4345 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_modify_field,
4346 					width)),
4347 		.call = parse_vc_conf,
4348 	},
4349 	/* Top level command. */
4350 	[SET] = {
4351 		.name = "set",
4352 		.help = "set raw encap/decap/sample data",
4353 		.type = "set raw_encap|raw_decap <index> <pattern>"
4354 				" or set sample_actions <index> <action>",
4355 		.next = NEXT(NEXT_ENTRY
4356 			     (SET_RAW_ENCAP,
4357 			      SET_RAW_DECAP,
4358 			      SET_SAMPLE_ACTIONS)),
4359 		.call = parse_set_init,
4360 	},
4361 	/* Sub-level commands. */
4362 	[SET_RAW_ENCAP] = {
4363 		.name = "raw_encap",
4364 		.help = "set raw encap data",
4365 		.next = NEXT(next_set_raw),
4366 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
4367 				(offsetof(struct buffer, port),
4368 				 sizeof(((struct buffer *)0)->port),
4369 				 0, RAW_ENCAP_CONFS_MAX_NUM - 1)),
4370 		.call = parse_set_raw_encap_decap,
4371 	},
4372 	[SET_RAW_DECAP] = {
4373 		.name = "raw_decap",
4374 		.help = "set raw decap data",
4375 		.next = NEXT(next_set_raw),
4376 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
4377 				(offsetof(struct buffer, port),
4378 				 sizeof(((struct buffer *)0)->port),
4379 				 0, RAW_ENCAP_CONFS_MAX_NUM - 1)),
4380 		.call = parse_set_raw_encap_decap,
4381 	},
4382 	[SET_RAW_INDEX] = {
4383 		.name = "{index}",
4384 		.type = "UNSIGNED",
4385 		.help = "index of raw_encap/raw_decap data",
4386 		.next = NEXT(next_item),
4387 		.call = parse_port,
4388 	},
4389 	[SET_SAMPLE_INDEX] = {
4390 		.name = "{index}",
4391 		.type = "UNSIGNED",
4392 		.help = "index of sample actions",
4393 		.next = NEXT(next_action_sample),
4394 		.call = parse_port,
4395 	},
4396 	[SET_SAMPLE_ACTIONS] = {
4397 		.name = "sample_actions",
4398 		.help = "set sample actions list",
4399 		.next = NEXT(NEXT_ENTRY(SET_SAMPLE_INDEX)),
4400 		.args = ARGS(ARGS_ENTRY_ARB_BOUNDED
4401 				(offsetof(struct buffer, port),
4402 				 sizeof(((struct buffer *)0)->port),
4403 				 0, RAW_SAMPLE_CONFS_MAX_NUM - 1)),
4404 		.call = parse_set_sample_action,
4405 	},
4406 	[ACTION_SET_TAG] = {
4407 		.name = "set_tag",
4408 		.help = "set tag",
4409 		.priv = PRIV_ACTION(SET_TAG,
4410 			sizeof(struct rte_flow_action_set_tag)),
4411 		.next = NEXT(action_set_tag),
4412 		.call = parse_vc,
4413 	},
4414 	[ACTION_SET_TAG_INDEX] = {
4415 		.name = "index",
4416 		.help = "index of tag array",
4417 		.next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
4418 		.args = ARGS(ARGS_ENTRY(struct rte_flow_action_set_tag, index)),
4419 		.call = parse_vc_conf,
4420 	},
4421 	[ACTION_SET_TAG_DATA] = {
4422 		.name = "data",
4423 		.help = "tag value",
4424 		.next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
4425 		.args = ARGS(ARGS_ENTRY
4426 			     (struct rte_flow_action_set_tag, data)),
4427 		.call = parse_vc_conf,
4428 	},
4429 	[ACTION_SET_TAG_MASK] = {
4430 		.name = "mask",
4431 		.help = "mask for tag value",
4432 		.next = NEXT(action_set_tag, NEXT_ENTRY(UNSIGNED)),
4433 		.args = ARGS(ARGS_ENTRY
4434 			     (struct rte_flow_action_set_tag, mask)),
4435 		.call = parse_vc_conf,
4436 	},
4437 	[ACTION_SET_META] = {
4438 		.name = "set_meta",
4439 		.help = "set metadata",
4440 		.priv = PRIV_ACTION(SET_META,
4441 			sizeof(struct rte_flow_action_set_meta)),
4442 		.next = NEXT(action_set_meta),
4443 		.call = parse_vc_action_set_meta,
4444 	},
4445 	[ACTION_SET_META_DATA] = {
4446 		.name = "data",
4447 		.help = "metadata value",
4448 		.next = NEXT(action_set_meta, NEXT_ENTRY(UNSIGNED)),
4449 		.args = ARGS(ARGS_ENTRY
4450 			     (struct rte_flow_action_set_meta, data)),
4451 		.call = parse_vc_conf,
4452 	},
4453 	[ACTION_SET_META_MASK] = {
4454 		.name = "mask",
4455 		.help = "mask for metadata value",
4456 		.next = NEXT(action_set_meta, NEXT_ENTRY(UNSIGNED)),
4457 		.args = ARGS(ARGS_ENTRY
4458 			     (struct rte_flow_action_set_meta, mask)),
4459 		.call = parse_vc_conf,
4460 	},
4461 	[ACTION_SET_IPV4_DSCP] = {
4462 		.name = "set_ipv4_dscp",
4463 		.help = "set DSCP value",
4464 		.priv = PRIV_ACTION(SET_IPV4_DSCP,
4465 			sizeof(struct rte_flow_action_set_dscp)),
4466 		.next = NEXT(action_set_ipv4_dscp),
4467 		.call = parse_vc,
4468 	},
4469 	[ACTION_SET_IPV4_DSCP_VALUE] = {
4470 		.name = "dscp_value",
4471 		.help = "new IPv4 DSCP value to set",
4472 		.next = NEXT(action_set_ipv4_dscp, NEXT_ENTRY(UNSIGNED)),
4473 		.args = ARGS(ARGS_ENTRY
4474 			     (struct rte_flow_action_set_dscp, dscp)),
4475 		.call = parse_vc_conf,
4476 	},
4477 	[ACTION_SET_IPV6_DSCP] = {
4478 		.name = "set_ipv6_dscp",
4479 		.help = "set DSCP value",
4480 		.priv = PRIV_ACTION(SET_IPV6_DSCP,
4481 			sizeof(struct rte_flow_action_set_dscp)),
4482 		.next = NEXT(action_set_ipv6_dscp),
4483 		.call = parse_vc,
4484 	},
4485 	[ACTION_SET_IPV6_DSCP_VALUE] = {
4486 		.name = "dscp_value",
4487 		.help = "new IPv6 DSCP value to set",
4488 		.next = NEXT(action_set_ipv6_dscp, NEXT_ENTRY(UNSIGNED)),
4489 		.args = ARGS(ARGS_ENTRY
4490 			     (struct rte_flow_action_set_dscp, dscp)),
4491 		.call = parse_vc_conf,
4492 	},
4493 	[ACTION_AGE] = {
4494 		.name = "age",
4495 		.help = "set a specific metadata header",
4496 		.next = NEXT(action_age),
4497 		.priv = PRIV_ACTION(AGE,
4498 			sizeof(struct rte_flow_action_age)),
4499 		.call = parse_vc,
4500 	},
4501 	[ACTION_AGE_TIMEOUT] = {
4502 		.name = "timeout",
4503 		.help = "flow age timeout value",
4504 		.args = ARGS(ARGS_ENTRY_BF(struct rte_flow_action_age,
4505 					   timeout, 24)),
4506 		.next = NEXT(action_age, NEXT_ENTRY(UNSIGNED)),
4507 		.call = parse_vc_conf,
4508 	},
4509 	[ACTION_SAMPLE] = {
4510 		.name = "sample",
4511 		.help = "set a sample action",
4512 		.next = NEXT(action_sample),
4513 		.priv = PRIV_ACTION(SAMPLE,
4514 			sizeof(struct action_sample_data)),
4515 		.call = parse_vc_action_sample,
4516 	},
4517 	[ACTION_SAMPLE_RATIO] = {
4518 		.name = "ratio",
4519 		.help = "flow sample ratio value",
4520 		.next = NEXT(action_sample, NEXT_ENTRY(UNSIGNED)),
4521 		.args = ARGS(ARGS_ENTRY_ARB
4522 			     (offsetof(struct action_sample_data, conf) +
4523 			      offsetof(struct rte_flow_action_sample, ratio),
4524 			      sizeof(((struct rte_flow_action_sample *)0)->
4525 				     ratio))),
4526 	},
4527 	[ACTION_SAMPLE_INDEX] = {
4528 		.name = "index",
4529 		.help = "the index of sample actions list",
4530 		.next = NEXT(NEXT_ENTRY(ACTION_SAMPLE_INDEX_VALUE)),
4531 	},
4532 	[ACTION_SAMPLE_INDEX_VALUE] = {
4533 		.name = "{index}",
4534 		.type = "UNSIGNED",
4535 		.help = "unsigned integer value",
4536 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4537 		.call = parse_vc_action_sample_index,
4538 		.comp = comp_set_sample_index,
4539 	},
4540 	/* Indirect action destroy arguments. */
4541 	[INDIRECT_ACTION_DESTROY_ID] = {
4542 		.name = "action_id",
4543 		.help = "specify a indirect action id to destroy",
4544 		.next = NEXT(next_ia_destroy_attr,
4545 			     NEXT_ENTRY(INDIRECT_ACTION_ID)),
4546 		.args = ARGS(ARGS_ENTRY_PTR(struct buffer,
4547 					    args.ia_destroy.action_id)),
4548 		.call = parse_ia_destroy,
4549 	},
4550 	/* Indirect action create arguments. */
4551 	[INDIRECT_ACTION_CREATE_ID] = {
4552 		.name = "action_id",
4553 		.help = "specify a indirect action id to create",
4554 		.next = NEXT(next_ia_create_attr,
4555 			     NEXT_ENTRY(INDIRECT_ACTION_ID)),
4556 		.args = ARGS(ARGS_ENTRY(struct buffer, args.vc.attr.group)),
4557 	},
4558 	[ACTION_INDIRECT] = {
4559 		.name = "indirect",
4560 		.help = "apply indirect action by id",
4561 		.priv = PRIV_ACTION(INDIRECT, 0),
4562 		.next = NEXT(NEXT_ENTRY(INDIRECT_ACTION_ID2PTR)),
4563 		.args = ARGS(ARGS_ENTRY_ARB(0, sizeof(uint32_t))),
4564 		.call = parse_vc,
4565 	},
4566 	[INDIRECT_ACTION_ID2PTR] = {
4567 		.name = "{action_id}",
4568 		.type = "INDIRECT_ACTION_ID",
4569 		.help = "indirect action id",
4570 		.next = NEXT(NEXT_ENTRY(ACTION_NEXT)),
4571 		.call = parse_ia_id2ptr,
4572 		.comp = comp_none,
4573 	},
4574 	[INDIRECT_ACTION_INGRESS] = {
4575 		.name = "ingress",
4576 		.help = "affect rule to ingress",
4577 		.next = NEXT(next_ia_create_attr),
4578 		.call = parse_ia,
4579 	},
4580 	[INDIRECT_ACTION_EGRESS] = {
4581 		.name = "egress",
4582 		.help = "affect rule to egress",
4583 		.next = NEXT(next_ia_create_attr),
4584 		.call = parse_ia,
4585 	},
4586 	[INDIRECT_ACTION_TRANSFER] = {
4587 		.name = "transfer",
4588 		.help = "affect rule to transfer",
4589 		.next = NEXT(next_ia_create_attr),
4590 		.call = parse_ia,
4591 	},
4592 	[INDIRECT_ACTION_SPEC] = {
4593 		.name = "action",
4594 		.help = "specify action to create indirect handle",
4595 		.next = NEXT(next_action),
4596 	},
4597 };
4598 
4599 /** Remove and return last entry from argument stack. */
4600 static const struct arg *
4601 pop_args(struct context *ctx)
4602 {
4603 	return ctx->args_num ? ctx->args[--ctx->args_num] : NULL;
4604 }
4605 
4606 /** Add entry on top of the argument stack. */
4607 static int
4608 push_args(struct context *ctx, const struct arg *arg)
4609 {
4610 	if (ctx->args_num == CTX_STACK_SIZE)
4611 		return -1;
4612 	ctx->args[ctx->args_num++] = arg;
4613 	return 0;
4614 }
4615 
4616 /** Spread value into buffer according to bit-mask. */
4617 static size_t
4618 arg_entry_bf_fill(void *dst, uintmax_t val, const struct arg *arg)
4619 {
4620 	uint32_t i = arg->size;
4621 	uint32_t end = 0;
4622 	int sub = 1;
4623 	int add = 0;
4624 	size_t len = 0;
4625 
4626 	if (!arg->mask)
4627 		return 0;
4628 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4629 	if (!arg->hton) {
4630 		i = 0;
4631 		end = arg->size;
4632 		sub = 0;
4633 		add = 1;
4634 	}
4635 #endif
4636 	while (i != end) {
4637 		unsigned int shift = 0;
4638 		uint8_t *buf = (uint8_t *)dst + arg->offset + (i -= sub);
4639 
4640 		for (shift = 0; arg->mask[i] >> shift; ++shift) {
4641 			if (!(arg->mask[i] & (1 << shift)))
4642 				continue;
4643 			++len;
4644 			if (!dst)
4645 				continue;
4646 			*buf &= ~(1 << shift);
4647 			*buf |= (val & 1) << shift;
4648 			val >>= 1;
4649 		}
4650 		i += add;
4651 	}
4652 	return len;
4653 }
4654 
4655 /** Compare a string with a partial one of a given length. */
4656 static int
4657 strcmp_partial(const char *full, const char *partial, size_t partial_len)
4658 {
4659 	int r = strncmp(full, partial, partial_len);
4660 
4661 	if (r)
4662 		return r;
4663 	if (strlen(full) <= partial_len)
4664 		return 0;
4665 	return full[partial_len];
4666 }
4667 
4668 /**
4669  * Parse a prefix length and generate a bit-mask.
4670  *
4671  * Last argument (ctx->args) is retrieved to determine mask size, storage
4672  * location and whether the result must use network byte ordering.
4673  */
4674 static int
4675 parse_prefix(struct context *ctx, const struct token *token,
4676 	     const char *str, unsigned int len,
4677 	     void *buf, unsigned int size)
4678 {
4679 	const struct arg *arg = pop_args(ctx);
4680 	static const uint8_t conv[] = "\x00\x80\xc0\xe0\xf0\xf8\xfc\xfe\xff";
4681 	char *end;
4682 	uintmax_t u;
4683 	unsigned int bytes;
4684 	unsigned int extra;
4685 
4686 	(void)token;
4687 	/* Argument is expected. */
4688 	if (!arg)
4689 		return -1;
4690 	errno = 0;
4691 	u = strtoumax(str, &end, 0);
4692 	if (errno || (size_t)(end - str) != len)
4693 		goto error;
4694 	if (arg->mask) {
4695 		uintmax_t v = 0;
4696 
4697 		extra = arg_entry_bf_fill(NULL, 0, arg);
4698 		if (u > extra)
4699 			goto error;
4700 		if (!ctx->object)
4701 			return len;
4702 		extra -= u;
4703 		while (u--)
4704 			(v <<= 1, v |= 1);
4705 		v <<= extra;
4706 		if (!arg_entry_bf_fill(ctx->object, v, arg) ||
4707 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
4708 			goto error;
4709 		return len;
4710 	}
4711 	bytes = u / 8;
4712 	extra = u % 8;
4713 	size = arg->size;
4714 	if (bytes > size || bytes + !!extra > size)
4715 		goto error;
4716 	if (!ctx->object)
4717 		return len;
4718 	buf = (uint8_t *)ctx->object + arg->offset;
4719 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
4720 	if (!arg->hton) {
4721 		memset((uint8_t *)buf + size - bytes, 0xff, bytes);
4722 		memset(buf, 0x00, size - bytes);
4723 		if (extra)
4724 			((uint8_t *)buf)[size - bytes - 1] = conv[extra];
4725 	} else
4726 #endif
4727 	{
4728 		memset(buf, 0xff, bytes);
4729 		memset((uint8_t *)buf + bytes, 0x00, size - bytes);
4730 		if (extra)
4731 			((uint8_t *)buf)[bytes] = conv[extra];
4732 	}
4733 	if (ctx->objmask)
4734 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
4735 	return len;
4736 error:
4737 	push_args(ctx, arg);
4738 	return -1;
4739 }
4740 
4741 /** Default parsing function for token name matching. */
4742 static int
4743 parse_default(struct context *ctx, const struct token *token,
4744 	      const char *str, unsigned int len,
4745 	      void *buf, unsigned int size)
4746 {
4747 	(void)ctx;
4748 	(void)buf;
4749 	(void)size;
4750 	if (strcmp_partial(token->name, str, len))
4751 		return -1;
4752 	return len;
4753 }
4754 
4755 /** Parse flow command, initialize output buffer for subsequent tokens. */
4756 static int
4757 parse_init(struct context *ctx, const struct token *token,
4758 	   const char *str, unsigned int len,
4759 	   void *buf, unsigned int size)
4760 {
4761 	struct buffer *out = buf;
4762 
4763 	/* Token name must match. */
4764 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4765 		return -1;
4766 	/* Nothing else to do if there is no buffer. */
4767 	if (!out)
4768 		return len;
4769 	/* Make sure buffer is large enough. */
4770 	if (size < sizeof(*out))
4771 		return -1;
4772 	/* Initialize buffer. */
4773 	memset(out, 0x00, sizeof(*out));
4774 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
4775 	ctx->objdata = 0;
4776 	ctx->object = out;
4777 	ctx->objmask = NULL;
4778 	return len;
4779 }
4780 
4781 /** Parse tokens for indirect action commands. */
4782 static int
4783 parse_ia(struct context *ctx, const struct token *token,
4784 	 const char *str, unsigned int len,
4785 	 void *buf, unsigned int size)
4786 {
4787 	struct buffer *out = buf;
4788 
4789 	/* Token name must match. */
4790 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4791 		return -1;
4792 	/* Nothing else to do if there is no buffer. */
4793 	if (!out)
4794 		return len;
4795 	if (!out->command) {
4796 		if (ctx->curr != INDIRECT_ACTION)
4797 			return -1;
4798 		if (sizeof(*out) > size)
4799 			return -1;
4800 		out->command = ctx->curr;
4801 		ctx->objdata = 0;
4802 		ctx->object = out;
4803 		ctx->objmask = NULL;
4804 		out->args.vc.data = (uint8_t *)out + size;
4805 		return len;
4806 	}
4807 	switch (ctx->curr) {
4808 	case INDIRECT_ACTION_CREATE:
4809 	case INDIRECT_ACTION_UPDATE:
4810 		out->args.vc.actions =
4811 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4812 					       sizeof(double));
4813 		out->args.vc.attr.group = UINT32_MAX;
4814 		/* fallthrough */
4815 	case INDIRECT_ACTION_QUERY:
4816 		out->command = ctx->curr;
4817 		ctx->objdata = 0;
4818 		ctx->object = out;
4819 		ctx->objmask = NULL;
4820 		return len;
4821 	case INDIRECT_ACTION_EGRESS:
4822 		out->args.vc.attr.egress = 1;
4823 		return len;
4824 	case INDIRECT_ACTION_INGRESS:
4825 		out->args.vc.attr.ingress = 1;
4826 		return len;
4827 	case INDIRECT_ACTION_TRANSFER:
4828 		out->args.vc.attr.transfer = 1;
4829 		return len;
4830 	default:
4831 		return -1;
4832 	}
4833 }
4834 
4835 
4836 /** Parse tokens for indirect action destroy command. */
4837 static int
4838 parse_ia_destroy(struct context *ctx, const struct token *token,
4839 		 const char *str, unsigned int len,
4840 		 void *buf, unsigned int size)
4841 {
4842 	struct buffer *out = buf;
4843 	uint32_t *action_id;
4844 
4845 	/* Token name must match. */
4846 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4847 		return -1;
4848 	/* Nothing else to do if there is no buffer. */
4849 	if (!out)
4850 		return len;
4851 	if (!out->command || out->command == INDIRECT_ACTION) {
4852 		if (ctx->curr != INDIRECT_ACTION_DESTROY)
4853 			return -1;
4854 		if (sizeof(*out) > size)
4855 			return -1;
4856 		out->command = ctx->curr;
4857 		ctx->objdata = 0;
4858 		ctx->object = out;
4859 		ctx->objmask = NULL;
4860 		out->args.ia_destroy.action_id =
4861 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4862 					       sizeof(double));
4863 		return len;
4864 	}
4865 	action_id = out->args.ia_destroy.action_id
4866 		    + out->args.ia_destroy.action_id_n++;
4867 	if ((uint8_t *)action_id > (uint8_t *)out + size)
4868 		return -1;
4869 	ctx->objdata = 0;
4870 	ctx->object = action_id;
4871 	ctx->objmask = NULL;
4872 	return len;
4873 }
4874 
4875 /** Parse tokens for validate/create commands. */
4876 static int
4877 parse_vc(struct context *ctx, const struct token *token,
4878 	 const char *str, unsigned int len,
4879 	 void *buf, unsigned int size)
4880 {
4881 	struct buffer *out = buf;
4882 	uint8_t *data;
4883 	uint32_t data_size;
4884 
4885 	/* Token name must match. */
4886 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
4887 		return -1;
4888 	/* Nothing else to do if there is no buffer. */
4889 	if (!out)
4890 		return len;
4891 	if (!out->command) {
4892 		if (ctx->curr != VALIDATE && ctx->curr != CREATE)
4893 			return -1;
4894 		if (sizeof(*out) > size)
4895 			return -1;
4896 		out->command = ctx->curr;
4897 		ctx->objdata = 0;
4898 		ctx->object = out;
4899 		ctx->objmask = NULL;
4900 		out->args.vc.data = (uint8_t *)out + size;
4901 		return len;
4902 	}
4903 	ctx->objdata = 0;
4904 	switch (ctx->curr) {
4905 	default:
4906 		ctx->object = &out->args.vc.attr;
4907 		break;
4908 	case TUNNEL_SET:
4909 	case TUNNEL_MATCH:
4910 		ctx->object = &out->args.vc.tunnel_ops;
4911 		break;
4912 	}
4913 	ctx->objmask = NULL;
4914 	switch (ctx->curr) {
4915 	case GROUP:
4916 	case PRIORITY:
4917 		return len;
4918 	case TUNNEL_SET:
4919 		out->args.vc.tunnel_ops.enabled = 1;
4920 		out->args.vc.tunnel_ops.actions = 1;
4921 		return len;
4922 	case TUNNEL_MATCH:
4923 		out->args.vc.tunnel_ops.enabled = 1;
4924 		out->args.vc.tunnel_ops.items = 1;
4925 		return len;
4926 	case INGRESS:
4927 		out->args.vc.attr.ingress = 1;
4928 		return len;
4929 	case EGRESS:
4930 		out->args.vc.attr.egress = 1;
4931 		return len;
4932 	case TRANSFER:
4933 		out->args.vc.attr.transfer = 1;
4934 		return len;
4935 	case PATTERN:
4936 		out->args.vc.pattern =
4937 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
4938 					       sizeof(double));
4939 		ctx->object = out->args.vc.pattern;
4940 		ctx->objmask = NULL;
4941 		return len;
4942 	case ACTIONS:
4943 		out->args.vc.actions =
4944 			(void *)RTE_ALIGN_CEIL((uintptr_t)
4945 					       (out->args.vc.pattern +
4946 						out->args.vc.pattern_n),
4947 					       sizeof(double));
4948 		ctx->object = out->args.vc.actions;
4949 		ctx->objmask = NULL;
4950 		return len;
4951 	default:
4952 		if (!token->priv)
4953 			return -1;
4954 		break;
4955 	}
4956 	if (!out->args.vc.actions) {
4957 		const struct parse_item_priv *priv = token->priv;
4958 		struct rte_flow_item *item =
4959 			out->args.vc.pattern + out->args.vc.pattern_n;
4960 
4961 		data_size = priv->size * 3; /* spec, last, mask */
4962 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
4963 					       (out->args.vc.data - data_size),
4964 					       sizeof(double));
4965 		if ((uint8_t *)item + sizeof(*item) > data)
4966 			return -1;
4967 		*item = (struct rte_flow_item){
4968 			.type = priv->type,
4969 		};
4970 		++out->args.vc.pattern_n;
4971 		ctx->object = item;
4972 		ctx->objmask = NULL;
4973 	} else {
4974 		const struct parse_action_priv *priv = token->priv;
4975 		struct rte_flow_action *action =
4976 			out->args.vc.actions + out->args.vc.actions_n;
4977 
4978 		data_size = priv->size; /* configuration */
4979 		data = (void *)RTE_ALIGN_FLOOR((uintptr_t)
4980 					       (out->args.vc.data - data_size),
4981 					       sizeof(double));
4982 		if ((uint8_t *)action + sizeof(*action) > data)
4983 			return -1;
4984 		*action = (struct rte_flow_action){
4985 			.type = priv->type,
4986 			.conf = data_size ? data : NULL,
4987 		};
4988 		++out->args.vc.actions_n;
4989 		ctx->object = action;
4990 		ctx->objmask = NULL;
4991 	}
4992 	memset(data, 0, data_size);
4993 	out->args.vc.data = data;
4994 	ctx->objdata = data_size;
4995 	return len;
4996 }
4997 
4998 /** Parse pattern item parameter type. */
4999 static int
5000 parse_vc_spec(struct context *ctx, const struct token *token,
5001 	      const char *str, unsigned int len,
5002 	      void *buf, unsigned int size)
5003 {
5004 	struct buffer *out = buf;
5005 	struct rte_flow_item *item;
5006 	uint32_t data_size;
5007 	int index;
5008 	int objmask = 0;
5009 
5010 	(void)size;
5011 	/* Token name must match. */
5012 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5013 		return -1;
5014 	/* Parse parameter types. */
5015 	switch (ctx->curr) {
5016 		static const enum index prefix[] = NEXT_ENTRY(PREFIX);
5017 
5018 	case ITEM_PARAM_IS:
5019 		index = 0;
5020 		objmask = 1;
5021 		break;
5022 	case ITEM_PARAM_SPEC:
5023 		index = 0;
5024 		break;
5025 	case ITEM_PARAM_LAST:
5026 		index = 1;
5027 		break;
5028 	case ITEM_PARAM_PREFIX:
5029 		/* Modify next token to expect a prefix. */
5030 		if (ctx->next_num < 2)
5031 			return -1;
5032 		ctx->next[ctx->next_num - 2] = prefix;
5033 		/* Fall through. */
5034 	case ITEM_PARAM_MASK:
5035 		index = 2;
5036 		break;
5037 	default:
5038 		return -1;
5039 	}
5040 	/* Nothing else to do if there is no buffer. */
5041 	if (!out)
5042 		return len;
5043 	if (!out->args.vc.pattern_n)
5044 		return -1;
5045 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
5046 	data_size = ctx->objdata / 3; /* spec, last, mask */
5047 	/* Point to selected object. */
5048 	ctx->object = out->args.vc.data + (data_size * index);
5049 	if (objmask) {
5050 		ctx->objmask = out->args.vc.data + (data_size * 2); /* mask */
5051 		item->mask = ctx->objmask;
5052 	} else
5053 		ctx->objmask = NULL;
5054 	/* Update relevant item pointer. */
5055 	*((const void **[]){ &item->spec, &item->last, &item->mask })[index] =
5056 		ctx->object;
5057 	return len;
5058 }
5059 
5060 /** Parse action configuration field. */
5061 static int
5062 parse_vc_conf(struct context *ctx, const struct token *token,
5063 	      const char *str, unsigned int len,
5064 	      void *buf, unsigned int size)
5065 {
5066 	struct buffer *out = buf;
5067 
5068 	(void)size;
5069 	/* Token name must match. */
5070 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5071 		return -1;
5072 	/* Nothing else to do if there is no buffer. */
5073 	if (!out)
5074 		return len;
5075 	/* Point to selected object. */
5076 	ctx->object = out->args.vc.data;
5077 	ctx->objmask = NULL;
5078 	return len;
5079 }
5080 
5081 /** Parse eCPRI common header type field. */
5082 static int
5083 parse_vc_item_ecpri_type(struct context *ctx, const struct token *token,
5084 			 const char *str, unsigned int len,
5085 			 void *buf, unsigned int size)
5086 {
5087 	struct rte_flow_item_ecpri *ecpri;
5088 	struct rte_flow_item_ecpri *ecpri_mask;
5089 	struct rte_flow_item *item;
5090 	uint32_t data_size;
5091 	uint8_t msg_type;
5092 	struct buffer *out = buf;
5093 	const struct arg *arg;
5094 
5095 	(void)size;
5096 	/* Token name must match. */
5097 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5098 		return -1;
5099 	switch (ctx->curr) {
5100 	case ITEM_ECPRI_COMMON_TYPE_IQ_DATA:
5101 		msg_type = RTE_ECPRI_MSG_TYPE_IQ_DATA;
5102 		break;
5103 	case ITEM_ECPRI_COMMON_TYPE_RTC_CTRL:
5104 		msg_type = RTE_ECPRI_MSG_TYPE_RTC_CTRL;
5105 		break;
5106 	case ITEM_ECPRI_COMMON_TYPE_DLY_MSR:
5107 		msg_type = RTE_ECPRI_MSG_TYPE_DLY_MSR;
5108 		break;
5109 	default:
5110 		return -1;
5111 	}
5112 	if (!ctx->object)
5113 		return len;
5114 	arg = pop_args(ctx);
5115 	if (!arg)
5116 		return -1;
5117 	ecpri = (struct rte_flow_item_ecpri *)out->args.vc.data;
5118 	ecpri->hdr.common.type = msg_type;
5119 	data_size = ctx->objdata / 3; /* spec, last, mask */
5120 	ecpri_mask = (struct rte_flow_item_ecpri *)(out->args.vc.data +
5121 						    (data_size * 2));
5122 	ecpri_mask->hdr.common.type = 0xFF;
5123 	if (arg->hton) {
5124 		ecpri->hdr.common.u32 = rte_cpu_to_be_32(ecpri->hdr.common.u32);
5125 		ecpri_mask->hdr.common.u32 =
5126 				rte_cpu_to_be_32(ecpri_mask->hdr.common.u32);
5127 	}
5128 	item = &out->args.vc.pattern[out->args.vc.pattern_n - 1];
5129 	item->spec = ecpri;
5130 	item->mask = ecpri_mask;
5131 	return len;
5132 }
5133 
5134 /** Parse RSS action. */
5135 static int
5136 parse_vc_action_rss(struct context *ctx, const struct token *token,
5137 		    const char *str, unsigned int len,
5138 		    void *buf, unsigned int size)
5139 {
5140 	struct buffer *out = buf;
5141 	struct rte_flow_action *action;
5142 	struct action_rss_data *action_rss_data;
5143 	unsigned int i;
5144 	int ret;
5145 
5146 	ret = parse_vc(ctx, token, str, len, buf, size);
5147 	if (ret < 0)
5148 		return ret;
5149 	/* Nothing else to do if there is no buffer. */
5150 	if (!out)
5151 		return ret;
5152 	if (!out->args.vc.actions_n)
5153 		return -1;
5154 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5155 	/* Point to selected object. */
5156 	ctx->object = out->args.vc.data;
5157 	ctx->objmask = NULL;
5158 	/* Set up default configuration. */
5159 	action_rss_data = ctx->object;
5160 	*action_rss_data = (struct action_rss_data){
5161 		.conf = (struct rte_flow_action_rss){
5162 			.func = RTE_ETH_HASH_FUNCTION_DEFAULT,
5163 			.level = 0,
5164 			.types = rss_hf,
5165 			.key_len = 0,
5166 			.queue_num = RTE_MIN(nb_rxq, ACTION_RSS_QUEUE_NUM),
5167 			.key = NULL,
5168 			.queue = action_rss_data->queue,
5169 		},
5170 		.queue = { 0 },
5171 	};
5172 	for (i = 0; i < action_rss_data->conf.queue_num; ++i)
5173 		action_rss_data->queue[i] = i;
5174 	action->conf = &action_rss_data->conf;
5175 	return ret;
5176 }
5177 
5178 /**
5179  * Parse func field for RSS action.
5180  *
5181  * The RTE_ETH_HASH_FUNCTION_* value to assign is derived from the
5182  * ACTION_RSS_FUNC_* index that called this function.
5183  */
5184 static int
5185 parse_vc_action_rss_func(struct context *ctx, const struct token *token,
5186 			 const char *str, unsigned int len,
5187 			 void *buf, unsigned int size)
5188 {
5189 	struct action_rss_data *action_rss_data;
5190 	enum rte_eth_hash_function func;
5191 
5192 	(void)buf;
5193 	(void)size;
5194 	/* Token name must match. */
5195 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
5196 		return -1;
5197 	switch (ctx->curr) {
5198 	case ACTION_RSS_FUNC_DEFAULT:
5199 		func = RTE_ETH_HASH_FUNCTION_DEFAULT;
5200 		break;
5201 	case ACTION_RSS_FUNC_TOEPLITZ:
5202 		func = RTE_ETH_HASH_FUNCTION_TOEPLITZ;
5203 		break;
5204 	case ACTION_RSS_FUNC_SIMPLE_XOR:
5205 		func = RTE_ETH_HASH_FUNCTION_SIMPLE_XOR;
5206 		break;
5207 	case ACTION_RSS_FUNC_SYMMETRIC_TOEPLITZ:
5208 		func = RTE_ETH_HASH_FUNCTION_SYMMETRIC_TOEPLITZ;
5209 		break;
5210 	default:
5211 		return -1;
5212 	}
5213 	if (!ctx->object)
5214 		return len;
5215 	action_rss_data = ctx->object;
5216 	action_rss_data->conf.func = func;
5217 	return len;
5218 }
5219 
5220 /**
5221  * Parse type field for RSS action.
5222  *
5223  * Valid tokens are type field names and the "end" token.
5224  */
5225 static int
5226 parse_vc_action_rss_type(struct context *ctx, const struct token *token,
5227 			  const char *str, unsigned int len,
5228 			  void *buf, unsigned int size)
5229 {
5230 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_TYPE);
5231 	struct action_rss_data *action_rss_data;
5232 	unsigned int i;
5233 
5234 	(void)token;
5235 	(void)buf;
5236 	(void)size;
5237 	if (ctx->curr != ACTION_RSS_TYPE)
5238 		return -1;
5239 	if (!(ctx->objdata >> 16) && ctx->object) {
5240 		action_rss_data = ctx->object;
5241 		action_rss_data->conf.types = 0;
5242 	}
5243 	if (!strcmp_partial("end", str, len)) {
5244 		ctx->objdata &= 0xffff;
5245 		return len;
5246 	}
5247 	for (i = 0; rss_type_table[i].str; ++i)
5248 		if (!strcmp_partial(rss_type_table[i].str, str, len))
5249 			break;
5250 	if (!rss_type_table[i].str)
5251 		return -1;
5252 	ctx->objdata = 1 << 16 | (ctx->objdata & 0xffff);
5253 	/* Repeat token. */
5254 	if (ctx->next_num == RTE_DIM(ctx->next))
5255 		return -1;
5256 	ctx->next[ctx->next_num++] = next;
5257 	if (!ctx->object)
5258 		return len;
5259 	action_rss_data = ctx->object;
5260 	action_rss_data->conf.types |= rss_type_table[i].rss_type;
5261 	return len;
5262 }
5263 
5264 /**
5265  * Parse queue field for RSS action.
5266  *
5267  * Valid tokens are queue indices and the "end" token.
5268  */
5269 static int
5270 parse_vc_action_rss_queue(struct context *ctx, const struct token *token,
5271 			  const char *str, unsigned int len,
5272 			  void *buf, unsigned int size)
5273 {
5274 	static const enum index next[] = NEXT_ENTRY(ACTION_RSS_QUEUE);
5275 	struct action_rss_data *action_rss_data;
5276 	const struct arg *arg;
5277 	int ret;
5278 	int i;
5279 
5280 	(void)token;
5281 	(void)buf;
5282 	(void)size;
5283 	if (ctx->curr != ACTION_RSS_QUEUE)
5284 		return -1;
5285 	i = ctx->objdata >> 16;
5286 	if (!strcmp_partial("end", str, len)) {
5287 		ctx->objdata &= 0xffff;
5288 		goto end;
5289 	}
5290 	if (i >= ACTION_RSS_QUEUE_NUM)
5291 		return -1;
5292 	arg = ARGS_ENTRY_ARB(offsetof(struct action_rss_data, queue) +
5293 			     i * sizeof(action_rss_data->queue[i]),
5294 			     sizeof(action_rss_data->queue[i]));
5295 	if (push_args(ctx, arg))
5296 		return -1;
5297 	ret = parse_int(ctx, token, str, len, NULL, 0);
5298 	if (ret < 0) {
5299 		pop_args(ctx);
5300 		return -1;
5301 	}
5302 	++i;
5303 	ctx->objdata = i << 16 | (ctx->objdata & 0xffff);
5304 	/* Repeat token. */
5305 	if (ctx->next_num == RTE_DIM(ctx->next))
5306 		return -1;
5307 	ctx->next[ctx->next_num++] = next;
5308 end:
5309 	if (!ctx->object)
5310 		return len;
5311 	action_rss_data = ctx->object;
5312 	action_rss_data->conf.queue_num = i;
5313 	action_rss_data->conf.queue = i ? action_rss_data->queue : NULL;
5314 	return len;
5315 }
5316 
5317 /** Setup VXLAN encap configuration. */
5318 static int
5319 parse_setup_vxlan_encap_data(struct action_vxlan_encap_data *action_vxlan_encap_data)
5320 {
5321 	/* Set up default configuration. */
5322 	*action_vxlan_encap_data = (struct action_vxlan_encap_data){
5323 		.conf = (struct rte_flow_action_vxlan_encap){
5324 			.definition = action_vxlan_encap_data->items,
5325 		},
5326 		.items = {
5327 			{
5328 				.type = RTE_FLOW_ITEM_TYPE_ETH,
5329 				.spec = &action_vxlan_encap_data->item_eth,
5330 				.mask = &rte_flow_item_eth_mask,
5331 			},
5332 			{
5333 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
5334 				.spec = &action_vxlan_encap_data->item_vlan,
5335 				.mask = &rte_flow_item_vlan_mask,
5336 			},
5337 			{
5338 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
5339 				.spec = &action_vxlan_encap_data->item_ipv4,
5340 				.mask = &rte_flow_item_ipv4_mask,
5341 			},
5342 			{
5343 				.type = RTE_FLOW_ITEM_TYPE_UDP,
5344 				.spec = &action_vxlan_encap_data->item_udp,
5345 				.mask = &rte_flow_item_udp_mask,
5346 			},
5347 			{
5348 				.type = RTE_FLOW_ITEM_TYPE_VXLAN,
5349 				.spec = &action_vxlan_encap_data->item_vxlan,
5350 				.mask = &rte_flow_item_vxlan_mask,
5351 			},
5352 			{
5353 				.type = RTE_FLOW_ITEM_TYPE_END,
5354 			},
5355 		},
5356 		.item_eth.type = 0,
5357 		.item_vlan = {
5358 			.tci = vxlan_encap_conf.vlan_tci,
5359 			.inner_type = 0,
5360 		},
5361 		.item_ipv4.hdr = {
5362 			.src_addr = vxlan_encap_conf.ipv4_src,
5363 			.dst_addr = vxlan_encap_conf.ipv4_dst,
5364 		},
5365 		.item_udp.hdr = {
5366 			.src_port = vxlan_encap_conf.udp_src,
5367 			.dst_port = vxlan_encap_conf.udp_dst,
5368 		},
5369 		.item_vxlan.flags = 0,
5370 	};
5371 	memcpy(action_vxlan_encap_data->item_eth.dst.addr_bytes,
5372 	       vxlan_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5373 	memcpy(action_vxlan_encap_data->item_eth.src.addr_bytes,
5374 	       vxlan_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5375 	if (!vxlan_encap_conf.select_ipv4) {
5376 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.src_addr,
5377 		       &vxlan_encap_conf.ipv6_src,
5378 		       sizeof(vxlan_encap_conf.ipv6_src));
5379 		memcpy(&action_vxlan_encap_data->item_ipv6.hdr.dst_addr,
5380 		       &vxlan_encap_conf.ipv6_dst,
5381 		       sizeof(vxlan_encap_conf.ipv6_dst));
5382 		action_vxlan_encap_data->items[2] = (struct rte_flow_item){
5383 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
5384 			.spec = &action_vxlan_encap_data->item_ipv6,
5385 			.mask = &rte_flow_item_ipv6_mask,
5386 		};
5387 	}
5388 	if (!vxlan_encap_conf.select_vlan)
5389 		action_vxlan_encap_data->items[1].type =
5390 			RTE_FLOW_ITEM_TYPE_VOID;
5391 	if (vxlan_encap_conf.select_tos_ttl) {
5392 		if (vxlan_encap_conf.select_ipv4) {
5393 			static struct rte_flow_item_ipv4 ipv4_mask_tos;
5394 
5395 			memcpy(&ipv4_mask_tos, &rte_flow_item_ipv4_mask,
5396 			       sizeof(ipv4_mask_tos));
5397 			ipv4_mask_tos.hdr.type_of_service = 0xff;
5398 			ipv4_mask_tos.hdr.time_to_live = 0xff;
5399 			action_vxlan_encap_data->item_ipv4.hdr.type_of_service =
5400 					vxlan_encap_conf.ip_tos;
5401 			action_vxlan_encap_data->item_ipv4.hdr.time_to_live =
5402 					vxlan_encap_conf.ip_ttl;
5403 			action_vxlan_encap_data->items[2].mask =
5404 							&ipv4_mask_tos;
5405 		} else {
5406 			static struct rte_flow_item_ipv6 ipv6_mask_tos;
5407 
5408 			memcpy(&ipv6_mask_tos, &rte_flow_item_ipv6_mask,
5409 			       sizeof(ipv6_mask_tos));
5410 			ipv6_mask_tos.hdr.vtc_flow |=
5411 				RTE_BE32(0xfful << RTE_IPV6_HDR_TC_SHIFT);
5412 			ipv6_mask_tos.hdr.hop_limits = 0xff;
5413 			action_vxlan_encap_data->item_ipv6.hdr.vtc_flow |=
5414 				rte_cpu_to_be_32
5415 					((uint32_t)vxlan_encap_conf.ip_tos <<
5416 					 RTE_IPV6_HDR_TC_SHIFT);
5417 			action_vxlan_encap_data->item_ipv6.hdr.hop_limits =
5418 					vxlan_encap_conf.ip_ttl;
5419 			action_vxlan_encap_data->items[2].mask =
5420 							&ipv6_mask_tos;
5421 		}
5422 	}
5423 	memcpy(action_vxlan_encap_data->item_vxlan.vni, vxlan_encap_conf.vni,
5424 	       RTE_DIM(vxlan_encap_conf.vni));
5425 	return 0;
5426 }
5427 
5428 /** Parse VXLAN encap action. */
5429 static int
5430 parse_vc_action_vxlan_encap(struct context *ctx, const struct token *token,
5431 			    const char *str, unsigned int len,
5432 			    void *buf, unsigned int size)
5433 {
5434 	struct buffer *out = buf;
5435 	struct rte_flow_action *action;
5436 	struct action_vxlan_encap_data *action_vxlan_encap_data;
5437 	int ret;
5438 
5439 	ret = parse_vc(ctx, token, str, len, buf, size);
5440 	if (ret < 0)
5441 		return ret;
5442 	/* Nothing else to do if there is no buffer. */
5443 	if (!out)
5444 		return ret;
5445 	if (!out->args.vc.actions_n)
5446 		return -1;
5447 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5448 	/* Point to selected object. */
5449 	ctx->object = out->args.vc.data;
5450 	ctx->objmask = NULL;
5451 	action_vxlan_encap_data = ctx->object;
5452 	parse_setup_vxlan_encap_data(action_vxlan_encap_data);
5453 	action->conf = &action_vxlan_encap_data->conf;
5454 	return ret;
5455 }
5456 
5457 /** Setup NVGRE encap configuration. */
5458 static int
5459 parse_setup_nvgre_encap_data(struct action_nvgre_encap_data *action_nvgre_encap_data)
5460 {
5461 	/* Set up default configuration. */
5462 	*action_nvgre_encap_data = (struct action_nvgre_encap_data){
5463 		.conf = (struct rte_flow_action_nvgre_encap){
5464 			.definition = action_nvgre_encap_data->items,
5465 		},
5466 		.items = {
5467 			{
5468 				.type = RTE_FLOW_ITEM_TYPE_ETH,
5469 				.spec = &action_nvgre_encap_data->item_eth,
5470 				.mask = &rte_flow_item_eth_mask,
5471 			},
5472 			{
5473 				.type = RTE_FLOW_ITEM_TYPE_VLAN,
5474 				.spec = &action_nvgre_encap_data->item_vlan,
5475 				.mask = &rte_flow_item_vlan_mask,
5476 			},
5477 			{
5478 				.type = RTE_FLOW_ITEM_TYPE_IPV4,
5479 				.spec = &action_nvgre_encap_data->item_ipv4,
5480 				.mask = &rte_flow_item_ipv4_mask,
5481 			},
5482 			{
5483 				.type = RTE_FLOW_ITEM_TYPE_NVGRE,
5484 				.spec = &action_nvgre_encap_data->item_nvgre,
5485 				.mask = &rte_flow_item_nvgre_mask,
5486 			},
5487 			{
5488 				.type = RTE_FLOW_ITEM_TYPE_END,
5489 			},
5490 		},
5491 		.item_eth.type = 0,
5492 		.item_vlan = {
5493 			.tci = nvgre_encap_conf.vlan_tci,
5494 			.inner_type = 0,
5495 		},
5496 		.item_ipv4.hdr = {
5497 		       .src_addr = nvgre_encap_conf.ipv4_src,
5498 		       .dst_addr = nvgre_encap_conf.ipv4_dst,
5499 		},
5500 		.item_nvgre.c_k_s_rsvd0_ver = RTE_BE16(0x2000),
5501 		.item_nvgre.protocol = RTE_BE16(RTE_ETHER_TYPE_TEB),
5502 		.item_nvgre.flow_id = 0,
5503 	};
5504 	memcpy(action_nvgre_encap_data->item_eth.dst.addr_bytes,
5505 	       nvgre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5506 	memcpy(action_nvgre_encap_data->item_eth.src.addr_bytes,
5507 	       nvgre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5508 	if (!nvgre_encap_conf.select_ipv4) {
5509 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.src_addr,
5510 		       &nvgre_encap_conf.ipv6_src,
5511 		       sizeof(nvgre_encap_conf.ipv6_src));
5512 		memcpy(&action_nvgre_encap_data->item_ipv6.hdr.dst_addr,
5513 		       &nvgre_encap_conf.ipv6_dst,
5514 		       sizeof(nvgre_encap_conf.ipv6_dst));
5515 		action_nvgre_encap_data->items[2] = (struct rte_flow_item){
5516 			.type = RTE_FLOW_ITEM_TYPE_IPV6,
5517 			.spec = &action_nvgre_encap_data->item_ipv6,
5518 			.mask = &rte_flow_item_ipv6_mask,
5519 		};
5520 	}
5521 	if (!nvgre_encap_conf.select_vlan)
5522 		action_nvgre_encap_data->items[1].type =
5523 			RTE_FLOW_ITEM_TYPE_VOID;
5524 	memcpy(action_nvgre_encap_data->item_nvgre.tni, nvgre_encap_conf.tni,
5525 	       RTE_DIM(nvgre_encap_conf.tni));
5526 	return 0;
5527 }
5528 
5529 /** Parse NVGRE encap action. */
5530 static int
5531 parse_vc_action_nvgre_encap(struct context *ctx, const struct token *token,
5532 			    const char *str, unsigned int len,
5533 			    void *buf, unsigned int size)
5534 {
5535 	struct buffer *out = buf;
5536 	struct rte_flow_action *action;
5537 	struct action_nvgre_encap_data *action_nvgre_encap_data;
5538 	int ret;
5539 
5540 	ret = parse_vc(ctx, token, str, len, buf, size);
5541 	if (ret < 0)
5542 		return ret;
5543 	/* Nothing else to do if there is no buffer. */
5544 	if (!out)
5545 		return ret;
5546 	if (!out->args.vc.actions_n)
5547 		return -1;
5548 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5549 	/* Point to selected object. */
5550 	ctx->object = out->args.vc.data;
5551 	ctx->objmask = NULL;
5552 	action_nvgre_encap_data = ctx->object;
5553 	parse_setup_nvgre_encap_data(action_nvgre_encap_data);
5554 	action->conf = &action_nvgre_encap_data->conf;
5555 	return ret;
5556 }
5557 
5558 /** Parse l2 encap action. */
5559 static int
5560 parse_vc_action_l2_encap(struct context *ctx, const struct token *token,
5561 			 const char *str, unsigned int len,
5562 			 void *buf, unsigned int size)
5563 {
5564 	struct buffer *out = buf;
5565 	struct rte_flow_action *action;
5566 	struct action_raw_encap_data *action_encap_data;
5567 	struct rte_flow_item_eth eth = { .type = 0, };
5568 	struct rte_flow_item_vlan vlan = {
5569 		.tci = mplsoudp_encap_conf.vlan_tci,
5570 		.inner_type = 0,
5571 	};
5572 	uint8_t *header;
5573 	int ret;
5574 
5575 	ret = parse_vc(ctx, token, str, len, buf, size);
5576 	if (ret < 0)
5577 		return ret;
5578 	/* Nothing else to do if there is no buffer. */
5579 	if (!out)
5580 		return ret;
5581 	if (!out->args.vc.actions_n)
5582 		return -1;
5583 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5584 	/* Point to selected object. */
5585 	ctx->object = out->args.vc.data;
5586 	ctx->objmask = NULL;
5587 	/* Copy the headers to the buffer. */
5588 	action_encap_data = ctx->object;
5589 	*action_encap_data = (struct action_raw_encap_data) {
5590 		.conf = (struct rte_flow_action_raw_encap){
5591 			.data = action_encap_data->data,
5592 		},
5593 		.data = {},
5594 	};
5595 	header = action_encap_data->data;
5596 	if (l2_encap_conf.select_vlan)
5597 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5598 	else if (l2_encap_conf.select_ipv4)
5599 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5600 	else
5601 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5602 	memcpy(eth.dst.addr_bytes,
5603 	       l2_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5604 	memcpy(eth.src.addr_bytes,
5605 	       l2_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5606 	memcpy(header, &eth, sizeof(eth));
5607 	header += sizeof(eth);
5608 	if (l2_encap_conf.select_vlan) {
5609 		if (l2_encap_conf.select_ipv4)
5610 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5611 		else
5612 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5613 		memcpy(header, &vlan, sizeof(vlan));
5614 		header += sizeof(vlan);
5615 	}
5616 	action_encap_data->conf.size = header -
5617 		action_encap_data->data;
5618 	action->conf = &action_encap_data->conf;
5619 	return ret;
5620 }
5621 
5622 /** Parse l2 decap action. */
5623 static int
5624 parse_vc_action_l2_decap(struct context *ctx, const struct token *token,
5625 			 const char *str, unsigned int len,
5626 			 void *buf, unsigned int size)
5627 {
5628 	struct buffer *out = buf;
5629 	struct rte_flow_action *action;
5630 	struct action_raw_decap_data *action_decap_data;
5631 	struct rte_flow_item_eth eth = { .type = 0, };
5632 	struct rte_flow_item_vlan vlan = {
5633 		.tci = mplsoudp_encap_conf.vlan_tci,
5634 		.inner_type = 0,
5635 	};
5636 	uint8_t *header;
5637 	int ret;
5638 
5639 	ret = parse_vc(ctx, token, str, len, buf, size);
5640 	if (ret < 0)
5641 		return ret;
5642 	/* Nothing else to do if there is no buffer. */
5643 	if (!out)
5644 		return ret;
5645 	if (!out->args.vc.actions_n)
5646 		return -1;
5647 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5648 	/* Point to selected object. */
5649 	ctx->object = out->args.vc.data;
5650 	ctx->objmask = NULL;
5651 	/* Copy the headers to the buffer. */
5652 	action_decap_data = ctx->object;
5653 	*action_decap_data = (struct action_raw_decap_data) {
5654 		.conf = (struct rte_flow_action_raw_decap){
5655 			.data = action_decap_data->data,
5656 		},
5657 		.data = {},
5658 	};
5659 	header = action_decap_data->data;
5660 	if (l2_decap_conf.select_vlan)
5661 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5662 	memcpy(header, &eth, sizeof(eth));
5663 	header += sizeof(eth);
5664 	if (l2_decap_conf.select_vlan) {
5665 		memcpy(header, &vlan, sizeof(vlan));
5666 		header += sizeof(vlan);
5667 	}
5668 	action_decap_data->conf.size = header -
5669 		action_decap_data->data;
5670 	action->conf = &action_decap_data->conf;
5671 	return ret;
5672 }
5673 
5674 #define ETHER_TYPE_MPLS_UNICAST 0x8847
5675 
5676 /** Parse MPLSOGRE encap action. */
5677 static int
5678 parse_vc_action_mplsogre_encap(struct context *ctx, const struct token *token,
5679 			       const char *str, unsigned int len,
5680 			       void *buf, unsigned int size)
5681 {
5682 	struct buffer *out = buf;
5683 	struct rte_flow_action *action;
5684 	struct action_raw_encap_data *action_encap_data;
5685 	struct rte_flow_item_eth eth = { .type = 0, };
5686 	struct rte_flow_item_vlan vlan = {
5687 		.tci = mplsogre_encap_conf.vlan_tci,
5688 		.inner_type = 0,
5689 	};
5690 	struct rte_flow_item_ipv4 ipv4 = {
5691 		.hdr =  {
5692 			.src_addr = mplsogre_encap_conf.ipv4_src,
5693 			.dst_addr = mplsogre_encap_conf.ipv4_dst,
5694 			.next_proto_id = IPPROTO_GRE,
5695 			.version_ihl = RTE_IPV4_VHL_DEF,
5696 			.time_to_live = IPDEFTTL,
5697 		},
5698 	};
5699 	struct rte_flow_item_ipv6 ipv6 = {
5700 		.hdr =  {
5701 			.proto = IPPROTO_GRE,
5702 			.hop_limits = IPDEFTTL,
5703 		},
5704 	};
5705 	struct rte_flow_item_gre gre = {
5706 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
5707 	};
5708 	struct rte_flow_item_mpls mpls = {
5709 		.ttl = 0,
5710 	};
5711 	uint8_t *header;
5712 	int ret;
5713 
5714 	ret = parse_vc(ctx, token, str, len, buf, size);
5715 	if (ret < 0)
5716 		return ret;
5717 	/* Nothing else to do if there is no buffer. */
5718 	if (!out)
5719 		return ret;
5720 	if (!out->args.vc.actions_n)
5721 		return -1;
5722 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5723 	/* Point to selected object. */
5724 	ctx->object = out->args.vc.data;
5725 	ctx->objmask = NULL;
5726 	/* Copy the headers to the buffer. */
5727 	action_encap_data = ctx->object;
5728 	*action_encap_data = (struct action_raw_encap_data) {
5729 		.conf = (struct rte_flow_action_raw_encap){
5730 			.data = action_encap_data->data,
5731 		},
5732 		.data = {},
5733 		.preserve = {},
5734 	};
5735 	header = action_encap_data->data;
5736 	if (mplsogre_encap_conf.select_vlan)
5737 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5738 	else if (mplsogre_encap_conf.select_ipv4)
5739 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5740 	else
5741 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5742 	memcpy(eth.dst.addr_bytes,
5743 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5744 	memcpy(eth.src.addr_bytes,
5745 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5746 	memcpy(header, &eth, sizeof(eth));
5747 	header += sizeof(eth);
5748 	if (mplsogre_encap_conf.select_vlan) {
5749 		if (mplsogre_encap_conf.select_ipv4)
5750 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5751 		else
5752 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5753 		memcpy(header, &vlan, sizeof(vlan));
5754 		header += sizeof(vlan);
5755 	}
5756 	if (mplsogre_encap_conf.select_ipv4) {
5757 		memcpy(header, &ipv4, sizeof(ipv4));
5758 		header += sizeof(ipv4);
5759 	} else {
5760 		memcpy(&ipv6.hdr.src_addr,
5761 		       &mplsogre_encap_conf.ipv6_src,
5762 		       sizeof(mplsogre_encap_conf.ipv6_src));
5763 		memcpy(&ipv6.hdr.dst_addr,
5764 		       &mplsogre_encap_conf.ipv6_dst,
5765 		       sizeof(mplsogre_encap_conf.ipv6_dst));
5766 		memcpy(header, &ipv6, sizeof(ipv6));
5767 		header += sizeof(ipv6);
5768 	}
5769 	memcpy(header, &gre, sizeof(gre));
5770 	header += sizeof(gre);
5771 	memcpy(mpls.label_tc_s, mplsogre_encap_conf.label,
5772 	       RTE_DIM(mplsogre_encap_conf.label));
5773 	mpls.label_tc_s[2] |= 0x1;
5774 	memcpy(header, &mpls, sizeof(mpls));
5775 	header += sizeof(mpls);
5776 	action_encap_data->conf.size = header -
5777 		action_encap_data->data;
5778 	action->conf = &action_encap_data->conf;
5779 	return ret;
5780 }
5781 
5782 /** Parse MPLSOGRE decap action. */
5783 static int
5784 parse_vc_action_mplsogre_decap(struct context *ctx, const struct token *token,
5785 			       const char *str, unsigned int len,
5786 			       void *buf, unsigned int size)
5787 {
5788 	struct buffer *out = buf;
5789 	struct rte_flow_action *action;
5790 	struct action_raw_decap_data *action_decap_data;
5791 	struct rte_flow_item_eth eth = { .type = 0, };
5792 	struct rte_flow_item_vlan vlan = {.tci = 0};
5793 	struct rte_flow_item_ipv4 ipv4 = {
5794 		.hdr =  {
5795 			.next_proto_id = IPPROTO_GRE,
5796 		},
5797 	};
5798 	struct rte_flow_item_ipv6 ipv6 = {
5799 		.hdr =  {
5800 			.proto = IPPROTO_GRE,
5801 		},
5802 	};
5803 	struct rte_flow_item_gre gre = {
5804 		.protocol = rte_cpu_to_be_16(ETHER_TYPE_MPLS_UNICAST),
5805 	};
5806 	struct rte_flow_item_mpls mpls;
5807 	uint8_t *header;
5808 	int ret;
5809 
5810 	ret = parse_vc(ctx, token, str, len, buf, size);
5811 	if (ret < 0)
5812 		return ret;
5813 	/* Nothing else to do if there is no buffer. */
5814 	if (!out)
5815 		return ret;
5816 	if (!out->args.vc.actions_n)
5817 		return -1;
5818 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5819 	/* Point to selected object. */
5820 	ctx->object = out->args.vc.data;
5821 	ctx->objmask = NULL;
5822 	/* Copy the headers to the buffer. */
5823 	action_decap_data = ctx->object;
5824 	*action_decap_data = (struct action_raw_decap_data) {
5825 		.conf = (struct rte_flow_action_raw_decap){
5826 			.data = action_decap_data->data,
5827 		},
5828 		.data = {},
5829 	};
5830 	header = action_decap_data->data;
5831 	if (mplsogre_decap_conf.select_vlan)
5832 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5833 	else if (mplsogre_encap_conf.select_ipv4)
5834 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5835 	else
5836 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5837 	memcpy(eth.dst.addr_bytes,
5838 	       mplsogre_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5839 	memcpy(eth.src.addr_bytes,
5840 	       mplsogre_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5841 	memcpy(header, &eth, sizeof(eth));
5842 	header += sizeof(eth);
5843 	if (mplsogre_encap_conf.select_vlan) {
5844 		if (mplsogre_encap_conf.select_ipv4)
5845 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5846 		else
5847 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5848 		memcpy(header, &vlan, sizeof(vlan));
5849 		header += sizeof(vlan);
5850 	}
5851 	if (mplsogre_encap_conf.select_ipv4) {
5852 		memcpy(header, &ipv4, sizeof(ipv4));
5853 		header += sizeof(ipv4);
5854 	} else {
5855 		memcpy(header, &ipv6, sizeof(ipv6));
5856 		header += sizeof(ipv6);
5857 	}
5858 	memcpy(header, &gre, sizeof(gre));
5859 	header += sizeof(gre);
5860 	memset(&mpls, 0, sizeof(mpls));
5861 	memcpy(header, &mpls, sizeof(mpls));
5862 	header += sizeof(mpls);
5863 	action_decap_data->conf.size = header -
5864 		action_decap_data->data;
5865 	action->conf = &action_decap_data->conf;
5866 	return ret;
5867 }
5868 
5869 /** Parse MPLSOUDP encap action. */
5870 static int
5871 parse_vc_action_mplsoudp_encap(struct context *ctx, const struct token *token,
5872 			       const char *str, unsigned int len,
5873 			       void *buf, unsigned int size)
5874 {
5875 	struct buffer *out = buf;
5876 	struct rte_flow_action *action;
5877 	struct action_raw_encap_data *action_encap_data;
5878 	struct rte_flow_item_eth eth = { .type = 0, };
5879 	struct rte_flow_item_vlan vlan = {
5880 		.tci = mplsoudp_encap_conf.vlan_tci,
5881 		.inner_type = 0,
5882 	};
5883 	struct rte_flow_item_ipv4 ipv4 = {
5884 		.hdr =  {
5885 			.src_addr = mplsoudp_encap_conf.ipv4_src,
5886 			.dst_addr = mplsoudp_encap_conf.ipv4_dst,
5887 			.next_proto_id = IPPROTO_UDP,
5888 			.version_ihl = RTE_IPV4_VHL_DEF,
5889 			.time_to_live = IPDEFTTL,
5890 		},
5891 	};
5892 	struct rte_flow_item_ipv6 ipv6 = {
5893 		.hdr =  {
5894 			.proto = IPPROTO_UDP,
5895 			.hop_limits = IPDEFTTL,
5896 		},
5897 	};
5898 	struct rte_flow_item_udp udp = {
5899 		.hdr = {
5900 			.src_port = mplsoudp_encap_conf.udp_src,
5901 			.dst_port = mplsoudp_encap_conf.udp_dst,
5902 		},
5903 	};
5904 	struct rte_flow_item_mpls mpls;
5905 	uint8_t *header;
5906 	int ret;
5907 
5908 	ret = parse_vc(ctx, token, str, len, buf, size);
5909 	if (ret < 0)
5910 		return ret;
5911 	/* Nothing else to do if there is no buffer. */
5912 	if (!out)
5913 		return ret;
5914 	if (!out->args.vc.actions_n)
5915 		return -1;
5916 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
5917 	/* Point to selected object. */
5918 	ctx->object = out->args.vc.data;
5919 	ctx->objmask = NULL;
5920 	/* Copy the headers to the buffer. */
5921 	action_encap_data = ctx->object;
5922 	*action_encap_data = (struct action_raw_encap_data) {
5923 		.conf = (struct rte_flow_action_raw_encap){
5924 			.data = action_encap_data->data,
5925 		},
5926 		.data = {},
5927 		.preserve = {},
5928 	};
5929 	header = action_encap_data->data;
5930 	if (mplsoudp_encap_conf.select_vlan)
5931 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
5932 	else if (mplsoudp_encap_conf.select_ipv4)
5933 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5934 	else
5935 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5936 	memcpy(eth.dst.addr_bytes,
5937 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
5938 	memcpy(eth.src.addr_bytes,
5939 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
5940 	memcpy(header, &eth, sizeof(eth));
5941 	header += sizeof(eth);
5942 	if (mplsoudp_encap_conf.select_vlan) {
5943 		if (mplsoudp_encap_conf.select_ipv4)
5944 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
5945 		else
5946 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
5947 		memcpy(header, &vlan, sizeof(vlan));
5948 		header += sizeof(vlan);
5949 	}
5950 	if (mplsoudp_encap_conf.select_ipv4) {
5951 		memcpy(header, &ipv4, sizeof(ipv4));
5952 		header += sizeof(ipv4);
5953 	} else {
5954 		memcpy(&ipv6.hdr.src_addr,
5955 		       &mplsoudp_encap_conf.ipv6_src,
5956 		       sizeof(mplsoudp_encap_conf.ipv6_src));
5957 		memcpy(&ipv6.hdr.dst_addr,
5958 		       &mplsoudp_encap_conf.ipv6_dst,
5959 		       sizeof(mplsoudp_encap_conf.ipv6_dst));
5960 		memcpy(header, &ipv6, sizeof(ipv6));
5961 		header += sizeof(ipv6);
5962 	}
5963 	memcpy(header, &udp, sizeof(udp));
5964 	header += sizeof(udp);
5965 	memcpy(mpls.label_tc_s, mplsoudp_encap_conf.label,
5966 	       RTE_DIM(mplsoudp_encap_conf.label));
5967 	mpls.label_tc_s[2] |= 0x1;
5968 	memcpy(header, &mpls, sizeof(mpls));
5969 	header += sizeof(mpls);
5970 	action_encap_data->conf.size = header -
5971 		action_encap_data->data;
5972 	action->conf = &action_encap_data->conf;
5973 	return ret;
5974 }
5975 
5976 /** Parse MPLSOUDP decap action. */
5977 static int
5978 parse_vc_action_mplsoudp_decap(struct context *ctx, const struct token *token,
5979 			       const char *str, unsigned int len,
5980 			       void *buf, unsigned int size)
5981 {
5982 	struct buffer *out = buf;
5983 	struct rte_flow_action *action;
5984 	struct action_raw_decap_data *action_decap_data;
5985 	struct rte_flow_item_eth eth = { .type = 0, };
5986 	struct rte_flow_item_vlan vlan = {.tci = 0};
5987 	struct rte_flow_item_ipv4 ipv4 = {
5988 		.hdr =  {
5989 			.next_proto_id = IPPROTO_UDP,
5990 		},
5991 	};
5992 	struct rte_flow_item_ipv6 ipv6 = {
5993 		.hdr =  {
5994 			.proto = IPPROTO_UDP,
5995 		},
5996 	};
5997 	struct rte_flow_item_udp udp = {
5998 		.hdr = {
5999 			.dst_port = rte_cpu_to_be_16(6635),
6000 		},
6001 	};
6002 	struct rte_flow_item_mpls mpls;
6003 	uint8_t *header;
6004 	int ret;
6005 
6006 	ret = parse_vc(ctx, token, str, len, buf, size);
6007 	if (ret < 0)
6008 		return ret;
6009 	/* Nothing else to do if there is no buffer. */
6010 	if (!out)
6011 		return ret;
6012 	if (!out->args.vc.actions_n)
6013 		return -1;
6014 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6015 	/* Point to selected object. */
6016 	ctx->object = out->args.vc.data;
6017 	ctx->objmask = NULL;
6018 	/* Copy the headers to the buffer. */
6019 	action_decap_data = ctx->object;
6020 	*action_decap_data = (struct action_raw_decap_data) {
6021 		.conf = (struct rte_flow_action_raw_decap){
6022 			.data = action_decap_data->data,
6023 		},
6024 		.data = {},
6025 	};
6026 	header = action_decap_data->data;
6027 	if (mplsoudp_decap_conf.select_vlan)
6028 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN);
6029 	else if (mplsoudp_encap_conf.select_ipv4)
6030 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
6031 	else
6032 		eth.type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
6033 	memcpy(eth.dst.addr_bytes,
6034 	       mplsoudp_encap_conf.eth_dst, RTE_ETHER_ADDR_LEN);
6035 	memcpy(eth.src.addr_bytes,
6036 	       mplsoudp_encap_conf.eth_src, RTE_ETHER_ADDR_LEN);
6037 	memcpy(header, &eth, sizeof(eth));
6038 	header += sizeof(eth);
6039 	if (mplsoudp_encap_conf.select_vlan) {
6040 		if (mplsoudp_encap_conf.select_ipv4)
6041 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4);
6042 		else
6043 			vlan.inner_type = rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6);
6044 		memcpy(header, &vlan, sizeof(vlan));
6045 		header += sizeof(vlan);
6046 	}
6047 	if (mplsoudp_encap_conf.select_ipv4) {
6048 		memcpy(header, &ipv4, sizeof(ipv4));
6049 		header += sizeof(ipv4);
6050 	} else {
6051 		memcpy(header, &ipv6, sizeof(ipv6));
6052 		header += sizeof(ipv6);
6053 	}
6054 	memcpy(header, &udp, sizeof(udp));
6055 	header += sizeof(udp);
6056 	memset(&mpls, 0, sizeof(mpls));
6057 	memcpy(header, &mpls, sizeof(mpls));
6058 	header += sizeof(mpls);
6059 	action_decap_data->conf.size = header -
6060 		action_decap_data->data;
6061 	action->conf = &action_decap_data->conf;
6062 	return ret;
6063 }
6064 
6065 static int
6066 parse_vc_action_raw_decap_index(struct context *ctx, const struct token *token,
6067 				const char *str, unsigned int len, void *buf,
6068 				unsigned int size)
6069 {
6070 	struct action_raw_decap_data *action_raw_decap_data;
6071 	struct rte_flow_action *action;
6072 	const struct arg *arg;
6073 	struct buffer *out = buf;
6074 	int ret;
6075 	uint16_t idx;
6076 
6077 	RTE_SET_USED(token);
6078 	RTE_SET_USED(buf);
6079 	RTE_SET_USED(size);
6080 	arg = ARGS_ENTRY_ARB_BOUNDED
6081 		(offsetof(struct action_raw_decap_data, idx),
6082 		 sizeof(((struct action_raw_decap_data *)0)->idx),
6083 		 0, RAW_ENCAP_CONFS_MAX_NUM - 1);
6084 	if (push_args(ctx, arg))
6085 		return -1;
6086 	ret = parse_int(ctx, token, str, len, NULL, 0);
6087 	if (ret < 0) {
6088 		pop_args(ctx);
6089 		return -1;
6090 	}
6091 	if (!ctx->object)
6092 		return len;
6093 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6094 	action_raw_decap_data = ctx->object;
6095 	idx = action_raw_decap_data->idx;
6096 	action_raw_decap_data->conf.data = raw_decap_confs[idx].data;
6097 	action_raw_decap_data->conf.size = raw_decap_confs[idx].size;
6098 	action->conf = &action_raw_decap_data->conf;
6099 	return len;
6100 }
6101 
6102 
6103 static int
6104 parse_vc_action_raw_encap_index(struct context *ctx, const struct token *token,
6105 				const char *str, unsigned int len, void *buf,
6106 				unsigned int size)
6107 {
6108 	struct action_raw_encap_data *action_raw_encap_data;
6109 	struct rte_flow_action *action;
6110 	const struct arg *arg;
6111 	struct buffer *out = buf;
6112 	int ret;
6113 	uint16_t idx;
6114 
6115 	RTE_SET_USED(token);
6116 	RTE_SET_USED(buf);
6117 	RTE_SET_USED(size);
6118 	if (ctx->curr != ACTION_RAW_ENCAP_INDEX_VALUE)
6119 		return -1;
6120 	arg = ARGS_ENTRY_ARB_BOUNDED
6121 		(offsetof(struct action_raw_encap_data, idx),
6122 		 sizeof(((struct action_raw_encap_data *)0)->idx),
6123 		 0, RAW_ENCAP_CONFS_MAX_NUM - 1);
6124 	if (push_args(ctx, arg))
6125 		return -1;
6126 	ret = parse_int(ctx, token, str, len, NULL, 0);
6127 	if (ret < 0) {
6128 		pop_args(ctx);
6129 		return -1;
6130 	}
6131 	if (!ctx->object)
6132 		return len;
6133 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6134 	action_raw_encap_data = ctx->object;
6135 	idx = action_raw_encap_data->idx;
6136 	action_raw_encap_data->conf.data = raw_encap_confs[idx].data;
6137 	action_raw_encap_data->conf.size = raw_encap_confs[idx].size;
6138 	action_raw_encap_data->conf.preserve = NULL;
6139 	action->conf = &action_raw_encap_data->conf;
6140 	return len;
6141 }
6142 
6143 static int
6144 parse_vc_action_raw_encap(struct context *ctx, const struct token *token,
6145 			  const char *str, unsigned int len, void *buf,
6146 			  unsigned int size)
6147 {
6148 	struct buffer *out = buf;
6149 	struct rte_flow_action *action;
6150 	struct action_raw_encap_data *action_raw_encap_data = NULL;
6151 	int ret;
6152 
6153 	ret = parse_vc(ctx, token, str, len, buf, size);
6154 	if (ret < 0)
6155 		return ret;
6156 	/* Nothing else to do if there is no buffer. */
6157 	if (!out)
6158 		return ret;
6159 	if (!out->args.vc.actions_n)
6160 		return -1;
6161 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6162 	/* Point to selected object. */
6163 	ctx->object = out->args.vc.data;
6164 	ctx->objmask = NULL;
6165 	/* Copy the headers to the buffer. */
6166 	action_raw_encap_data = ctx->object;
6167 	action_raw_encap_data->conf.data = raw_encap_confs[0].data;
6168 	action_raw_encap_data->conf.preserve = NULL;
6169 	action_raw_encap_data->conf.size = raw_encap_confs[0].size;
6170 	action->conf = &action_raw_encap_data->conf;
6171 	return ret;
6172 }
6173 
6174 static int
6175 parse_vc_action_raw_decap(struct context *ctx, const struct token *token,
6176 			  const char *str, unsigned int len, void *buf,
6177 			  unsigned int size)
6178 {
6179 	struct buffer *out = buf;
6180 	struct rte_flow_action *action;
6181 	struct action_raw_decap_data *action_raw_decap_data = NULL;
6182 	int ret;
6183 
6184 	ret = parse_vc(ctx, token, str, len, buf, size);
6185 	if (ret < 0)
6186 		return ret;
6187 	/* Nothing else to do if there is no buffer. */
6188 	if (!out)
6189 		return ret;
6190 	if (!out->args.vc.actions_n)
6191 		return -1;
6192 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6193 	/* Point to selected object. */
6194 	ctx->object = out->args.vc.data;
6195 	ctx->objmask = NULL;
6196 	/* Copy the headers to the buffer. */
6197 	action_raw_decap_data = ctx->object;
6198 	action_raw_decap_data->conf.data = raw_decap_confs[0].data;
6199 	action_raw_decap_data->conf.size = raw_decap_confs[0].size;
6200 	action->conf = &action_raw_decap_data->conf;
6201 	return ret;
6202 }
6203 
6204 static int
6205 parse_vc_action_set_meta(struct context *ctx, const struct token *token,
6206 			 const char *str, unsigned int len, void *buf,
6207 			 unsigned int size)
6208 {
6209 	int ret;
6210 
6211 	ret = parse_vc(ctx, token, str, len, buf, size);
6212 	if (ret < 0)
6213 		return ret;
6214 	ret = rte_flow_dynf_metadata_register();
6215 	if (ret < 0)
6216 		return -1;
6217 	return len;
6218 }
6219 
6220 static int
6221 parse_vc_action_sample(struct context *ctx, const struct token *token,
6222 			 const char *str, unsigned int len, void *buf,
6223 			 unsigned int size)
6224 {
6225 	struct buffer *out = buf;
6226 	struct rte_flow_action *action;
6227 	struct action_sample_data *action_sample_data = NULL;
6228 	static struct rte_flow_action end_action = {
6229 		RTE_FLOW_ACTION_TYPE_END, 0
6230 	};
6231 	int ret;
6232 
6233 	ret = parse_vc(ctx, token, str, len, buf, size);
6234 	if (ret < 0)
6235 		return ret;
6236 	/* Nothing else to do if there is no buffer. */
6237 	if (!out)
6238 		return ret;
6239 	if (!out->args.vc.actions_n)
6240 		return -1;
6241 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6242 	/* Point to selected object. */
6243 	ctx->object = out->args.vc.data;
6244 	ctx->objmask = NULL;
6245 	/* Copy the headers to the buffer. */
6246 	action_sample_data = ctx->object;
6247 	action_sample_data->conf.actions = &end_action;
6248 	action->conf = &action_sample_data->conf;
6249 	return ret;
6250 }
6251 
6252 static int
6253 parse_vc_action_sample_index(struct context *ctx, const struct token *token,
6254 				const char *str, unsigned int len, void *buf,
6255 				unsigned int size)
6256 {
6257 	struct action_sample_data *action_sample_data;
6258 	struct rte_flow_action *action;
6259 	const struct arg *arg;
6260 	struct buffer *out = buf;
6261 	int ret;
6262 	uint16_t idx;
6263 
6264 	RTE_SET_USED(token);
6265 	RTE_SET_USED(buf);
6266 	RTE_SET_USED(size);
6267 	if (ctx->curr != ACTION_SAMPLE_INDEX_VALUE)
6268 		return -1;
6269 	arg = ARGS_ENTRY_ARB_BOUNDED
6270 		(offsetof(struct action_sample_data, idx),
6271 		 sizeof(((struct action_sample_data *)0)->idx),
6272 		 0, RAW_SAMPLE_CONFS_MAX_NUM - 1);
6273 	if (push_args(ctx, arg))
6274 		return -1;
6275 	ret = parse_int(ctx, token, str, len, NULL, 0);
6276 	if (ret < 0) {
6277 		pop_args(ctx);
6278 		return -1;
6279 	}
6280 	if (!ctx->object)
6281 		return len;
6282 	action = &out->args.vc.actions[out->args.vc.actions_n - 1];
6283 	action_sample_data = ctx->object;
6284 	idx = action_sample_data->idx;
6285 	action_sample_data->conf.actions = raw_sample_confs[idx].data;
6286 	action->conf = &action_sample_data->conf;
6287 	return len;
6288 }
6289 
6290 /** Parse operation for modify_field command. */
6291 static int
6292 parse_vc_modify_field_op(struct context *ctx, const struct token *token,
6293 			 const char *str, unsigned int len, void *buf,
6294 			 unsigned int size)
6295 {
6296 	struct rte_flow_action_modify_field *action_modify_field;
6297 	unsigned int i;
6298 
6299 	(void)token;
6300 	(void)buf;
6301 	(void)size;
6302 	if (ctx->curr != ACTION_MODIFY_FIELD_OP_VALUE)
6303 		return -1;
6304 	for (i = 0; modify_field_ops[i]; ++i)
6305 		if (!strcmp_partial(modify_field_ops[i], str, len))
6306 			break;
6307 	if (!modify_field_ops[i])
6308 		return -1;
6309 	if (!ctx->object)
6310 		return len;
6311 	action_modify_field = ctx->object;
6312 	action_modify_field->operation = (enum rte_flow_modify_op)i;
6313 	return len;
6314 }
6315 
6316 /** Parse id for modify_field command. */
6317 static int
6318 parse_vc_modify_field_id(struct context *ctx, const struct token *token,
6319 			 const char *str, unsigned int len, void *buf,
6320 			 unsigned int size)
6321 {
6322 	struct rte_flow_action_modify_field *action_modify_field;
6323 	unsigned int i;
6324 
6325 	(void)token;
6326 	(void)buf;
6327 	(void)size;
6328 	if (ctx->curr != ACTION_MODIFY_FIELD_DST_TYPE_VALUE &&
6329 		ctx->curr != ACTION_MODIFY_FIELD_SRC_TYPE_VALUE)
6330 		return -1;
6331 	for (i = 0; modify_field_ids[i]; ++i)
6332 		if (!strcmp_partial(modify_field_ids[i], str, len))
6333 			break;
6334 	if (!modify_field_ids[i])
6335 		return -1;
6336 	if (!ctx->object)
6337 		return len;
6338 	action_modify_field = ctx->object;
6339 	if (ctx->curr == ACTION_MODIFY_FIELD_DST_TYPE_VALUE)
6340 		action_modify_field->dst.field = (enum rte_flow_field_id)i;
6341 	else
6342 		action_modify_field->src.field = (enum rte_flow_field_id)i;
6343 	return len;
6344 }
6345 
6346 /** Parse tokens for destroy command. */
6347 static int
6348 parse_destroy(struct context *ctx, const struct token *token,
6349 	      const char *str, unsigned int len,
6350 	      void *buf, unsigned int size)
6351 {
6352 	struct buffer *out = buf;
6353 
6354 	/* Token name must match. */
6355 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6356 		return -1;
6357 	/* Nothing else to do if there is no buffer. */
6358 	if (!out)
6359 		return len;
6360 	if (!out->command) {
6361 		if (ctx->curr != DESTROY)
6362 			return -1;
6363 		if (sizeof(*out) > size)
6364 			return -1;
6365 		out->command = ctx->curr;
6366 		ctx->objdata = 0;
6367 		ctx->object = out;
6368 		ctx->objmask = NULL;
6369 		out->args.destroy.rule =
6370 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
6371 					       sizeof(double));
6372 		return len;
6373 	}
6374 	if (((uint8_t *)(out->args.destroy.rule + out->args.destroy.rule_n) +
6375 	     sizeof(*out->args.destroy.rule)) > (uint8_t *)out + size)
6376 		return -1;
6377 	ctx->objdata = 0;
6378 	ctx->object = out->args.destroy.rule + out->args.destroy.rule_n++;
6379 	ctx->objmask = NULL;
6380 	return len;
6381 }
6382 
6383 /** Parse tokens for flush command. */
6384 static int
6385 parse_flush(struct context *ctx, const struct token *token,
6386 	    const char *str, unsigned int len,
6387 	    void *buf, unsigned int size)
6388 {
6389 	struct buffer *out = buf;
6390 
6391 	/* Token name must match. */
6392 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6393 		return -1;
6394 	/* Nothing else to do if there is no buffer. */
6395 	if (!out)
6396 		return len;
6397 	if (!out->command) {
6398 		if (ctx->curr != FLUSH)
6399 			return -1;
6400 		if (sizeof(*out) > size)
6401 			return -1;
6402 		out->command = ctx->curr;
6403 		ctx->objdata = 0;
6404 		ctx->object = out;
6405 		ctx->objmask = NULL;
6406 	}
6407 	return len;
6408 }
6409 
6410 /** Parse tokens for dump command. */
6411 static int
6412 parse_dump(struct context *ctx, const struct token *token,
6413 	    const char *str, unsigned int len,
6414 	    void *buf, unsigned int size)
6415 {
6416 	struct buffer *out = buf;
6417 
6418 	/* Token name must match. */
6419 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6420 		return -1;
6421 	/* Nothing else to do if there is no buffer. */
6422 	if (!out)
6423 		return len;
6424 	if (!out->command) {
6425 		if (ctx->curr != DUMP)
6426 			return -1;
6427 		if (sizeof(*out) > size)
6428 			return -1;
6429 		out->command = ctx->curr;
6430 		ctx->objdata = 0;
6431 		ctx->object = out;
6432 		ctx->objmask = NULL;
6433 		return len;
6434 	}
6435 	switch (ctx->curr) {
6436 	case DUMP_ALL:
6437 	case DUMP_ONE:
6438 		out->args.dump.mode = (ctx->curr == DUMP_ALL) ? true : false;
6439 		out->command = ctx->curr;
6440 		ctx->objdata = 0;
6441 		ctx->object = out;
6442 		ctx->objmask = NULL;
6443 		return len;
6444 	default:
6445 		return -1;
6446 	}
6447 }
6448 
6449 /** Parse tokens for query command. */
6450 static int
6451 parse_query(struct context *ctx, const struct token *token,
6452 	    const char *str, unsigned int len,
6453 	    void *buf, unsigned int size)
6454 {
6455 	struct buffer *out = buf;
6456 
6457 	/* Token name must match. */
6458 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6459 		return -1;
6460 	/* Nothing else to do if there is no buffer. */
6461 	if (!out)
6462 		return len;
6463 	if (!out->command) {
6464 		if (ctx->curr != QUERY)
6465 			return -1;
6466 		if (sizeof(*out) > size)
6467 			return -1;
6468 		out->command = ctx->curr;
6469 		ctx->objdata = 0;
6470 		ctx->object = out;
6471 		ctx->objmask = NULL;
6472 	}
6473 	return len;
6474 }
6475 
6476 /** Parse action names. */
6477 static int
6478 parse_action(struct context *ctx, const struct token *token,
6479 	     const char *str, unsigned int len,
6480 	     void *buf, unsigned int size)
6481 {
6482 	struct buffer *out = buf;
6483 	const struct arg *arg = pop_args(ctx);
6484 	unsigned int i;
6485 
6486 	(void)size;
6487 	/* Argument is expected. */
6488 	if (!arg)
6489 		return -1;
6490 	/* Parse action name. */
6491 	for (i = 0; next_action[i]; ++i) {
6492 		const struct parse_action_priv *priv;
6493 
6494 		token = &token_list[next_action[i]];
6495 		if (strcmp_partial(token->name, str, len))
6496 			continue;
6497 		priv = token->priv;
6498 		if (!priv)
6499 			goto error;
6500 		if (out)
6501 			memcpy((uint8_t *)ctx->object + arg->offset,
6502 			       &priv->type,
6503 			       arg->size);
6504 		return len;
6505 	}
6506 error:
6507 	push_args(ctx, arg);
6508 	return -1;
6509 }
6510 
6511 /** Parse tokens for list command. */
6512 static int
6513 parse_list(struct context *ctx, const struct token *token,
6514 	   const char *str, unsigned int len,
6515 	   void *buf, unsigned int size)
6516 {
6517 	struct buffer *out = buf;
6518 
6519 	/* Token name must match. */
6520 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6521 		return -1;
6522 	/* Nothing else to do if there is no buffer. */
6523 	if (!out)
6524 		return len;
6525 	if (!out->command) {
6526 		if (ctx->curr != LIST)
6527 			return -1;
6528 		if (sizeof(*out) > size)
6529 			return -1;
6530 		out->command = ctx->curr;
6531 		ctx->objdata = 0;
6532 		ctx->object = out;
6533 		ctx->objmask = NULL;
6534 		out->args.list.group =
6535 			(void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
6536 					       sizeof(double));
6537 		return len;
6538 	}
6539 	if (((uint8_t *)(out->args.list.group + out->args.list.group_n) +
6540 	     sizeof(*out->args.list.group)) > (uint8_t *)out + size)
6541 		return -1;
6542 	ctx->objdata = 0;
6543 	ctx->object = out->args.list.group + out->args.list.group_n++;
6544 	ctx->objmask = NULL;
6545 	return len;
6546 }
6547 
6548 /** Parse tokens for list all aged flows command. */
6549 static int
6550 parse_aged(struct context *ctx, const struct token *token,
6551 	   const char *str, unsigned int len,
6552 	   void *buf, unsigned int size)
6553 {
6554 	struct buffer *out = buf;
6555 
6556 	/* Token name must match. */
6557 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6558 		return -1;
6559 	/* Nothing else to do if there is no buffer. */
6560 	if (!out)
6561 		return len;
6562 	if (!out->command) {
6563 		if (ctx->curr != AGED)
6564 			return -1;
6565 		if (sizeof(*out) > size)
6566 			return -1;
6567 		out->command = ctx->curr;
6568 		ctx->objdata = 0;
6569 		ctx->object = out;
6570 		ctx->objmask = NULL;
6571 	}
6572 	if (ctx->curr == AGED_DESTROY)
6573 		out->args.aged.destroy = 1;
6574 	return len;
6575 }
6576 
6577 /** Parse tokens for isolate command. */
6578 static int
6579 parse_isolate(struct context *ctx, const struct token *token,
6580 	      const char *str, unsigned int len,
6581 	      void *buf, unsigned int size)
6582 {
6583 	struct buffer *out = buf;
6584 
6585 	/* Token name must match. */
6586 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6587 		return -1;
6588 	/* Nothing else to do if there is no buffer. */
6589 	if (!out)
6590 		return len;
6591 	if (!out->command) {
6592 		if (ctx->curr != ISOLATE)
6593 			return -1;
6594 		if (sizeof(*out) > size)
6595 			return -1;
6596 		out->command = ctx->curr;
6597 		ctx->objdata = 0;
6598 		ctx->object = out;
6599 		ctx->objmask = NULL;
6600 	}
6601 	return len;
6602 }
6603 
6604 static int
6605 parse_tunnel(struct context *ctx, const struct token *token,
6606 	     const char *str, unsigned int len,
6607 	     void *buf, unsigned int size)
6608 {
6609 	struct buffer *out = buf;
6610 
6611 	/* Token name must match. */
6612 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
6613 		return -1;
6614 	/* Nothing else to do if there is no buffer. */
6615 	if (!out)
6616 		return len;
6617 	if (!out->command) {
6618 		if (ctx->curr != TUNNEL)
6619 			return -1;
6620 		if (sizeof(*out) > size)
6621 			return -1;
6622 		out->command = ctx->curr;
6623 		ctx->objdata = 0;
6624 		ctx->object = out;
6625 		ctx->objmask = NULL;
6626 	} else {
6627 		switch (ctx->curr) {
6628 		default:
6629 			break;
6630 		case TUNNEL_CREATE:
6631 		case TUNNEL_DESTROY:
6632 		case TUNNEL_LIST:
6633 			out->command = ctx->curr;
6634 			break;
6635 		case TUNNEL_CREATE_TYPE:
6636 		case TUNNEL_DESTROY_ID:
6637 			ctx->object = &out->args.vc.tunnel_ops;
6638 			break;
6639 		}
6640 	}
6641 
6642 	return len;
6643 }
6644 
6645 /**
6646  * Parse signed/unsigned integers 8 to 64-bit long.
6647  *
6648  * Last argument (ctx->args) is retrieved to determine integer type and
6649  * storage location.
6650  */
6651 static int
6652 parse_int(struct context *ctx, const struct token *token,
6653 	  const char *str, unsigned int len,
6654 	  void *buf, unsigned int size)
6655 {
6656 	const struct arg *arg = pop_args(ctx);
6657 	uintmax_t u;
6658 	char *end;
6659 
6660 	(void)token;
6661 	/* Argument is expected. */
6662 	if (!arg)
6663 		return -1;
6664 	errno = 0;
6665 	u = arg->sign ?
6666 		(uintmax_t)strtoimax(str, &end, 0) :
6667 		strtoumax(str, &end, 0);
6668 	if (errno || (size_t)(end - str) != len)
6669 		goto error;
6670 	if (arg->bounded &&
6671 	    ((arg->sign && ((intmax_t)u < (intmax_t)arg->min ||
6672 			    (intmax_t)u > (intmax_t)arg->max)) ||
6673 	     (!arg->sign && (u < arg->min || u > arg->max))))
6674 		goto error;
6675 	if (!ctx->object)
6676 		return len;
6677 	if (arg->mask) {
6678 		if (!arg_entry_bf_fill(ctx->object, u, arg) ||
6679 		    !arg_entry_bf_fill(ctx->objmask, -1, arg))
6680 			goto error;
6681 		return len;
6682 	}
6683 	buf = (uint8_t *)ctx->object + arg->offset;
6684 	size = arg->size;
6685 	if (u > RTE_LEN2MASK(size * CHAR_BIT, uint64_t))
6686 		return -1;
6687 objmask:
6688 	switch (size) {
6689 	case sizeof(uint8_t):
6690 		*(uint8_t *)buf = u;
6691 		break;
6692 	case sizeof(uint16_t):
6693 		*(uint16_t *)buf = arg->hton ? rte_cpu_to_be_16(u) : u;
6694 		break;
6695 	case sizeof(uint8_t [3]):
6696 #if RTE_BYTE_ORDER == RTE_LITTLE_ENDIAN
6697 		if (!arg->hton) {
6698 			((uint8_t *)buf)[0] = u;
6699 			((uint8_t *)buf)[1] = u >> 8;
6700 			((uint8_t *)buf)[2] = u >> 16;
6701 			break;
6702 		}
6703 #endif
6704 		((uint8_t *)buf)[0] = u >> 16;
6705 		((uint8_t *)buf)[1] = u >> 8;
6706 		((uint8_t *)buf)[2] = u;
6707 		break;
6708 	case sizeof(uint32_t):
6709 		*(uint32_t *)buf = arg->hton ? rte_cpu_to_be_32(u) : u;
6710 		break;
6711 	case sizeof(uint64_t):
6712 		*(uint64_t *)buf = arg->hton ? rte_cpu_to_be_64(u) : u;
6713 		break;
6714 	default:
6715 		goto error;
6716 	}
6717 	if (ctx->objmask && buf != (uint8_t *)ctx->objmask + arg->offset) {
6718 		u = -1;
6719 		buf = (uint8_t *)ctx->objmask + arg->offset;
6720 		goto objmask;
6721 	}
6722 	return len;
6723 error:
6724 	push_args(ctx, arg);
6725 	return -1;
6726 }
6727 
6728 /**
6729  * Parse a string.
6730  *
6731  * Three arguments (ctx->args) are retrieved from the stack to store data,
6732  * its actual length and address (in that order).
6733  */
6734 static int
6735 parse_string(struct context *ctx, const struct token *token,
6736 	     const char *str, unsigned int len,
6737 	     void *buf, unsigned int size)
6738 {
6739 	const struct arg *arg_data = pop_args(ctx);
6740 	const struct arg *arg_len = pop_args(ctx);
6741 	const struct arg *arg_addr = pop_args(ctx);
6742 	char tmp[16]; /* Ought to be enough. */
6743 	int ret;
6744 
6745 	/* Arguments are expected. */
6746 	if (!arg_data)
6747 		return -1;
6748 	if (!arg_len) {
6749 		push_args(ctx, arg_data);
6750 		return -1;
6751 	}
6752 	if (!arg_addr) {
6753 		push_args(ctx, arg_len);
6754 		push_args(ctx, arg_data);
6755 		return -1;
6756 	}
6757 	size = arg_data->size;
6758 	/* Bit-mask fill is not supported. */
6759 	if (arg_data->mask || size < len)
6760 		goto error;
6761 	if (!ctx->object)
6762 		return len;
6763 	/* Let parse_int() fill length information first. */
6764 	ret = snprintf(tmp, sizeof(tmp), "%u", len);
6765 	if (ret < 0)
6766 		goto error;
6767 	push_args(ctx, arg_len);
6768 	ret = parse_int(ctx, token, tmp, ret, NULL, 0);
6769 	if (ret < 0) {
6770 		pop_args(ctx);
6771 		goto error;
6772 	}
6773 	buf = (uint8_t *)ctx->object + arg_data->offset;
6774 	/* Output buffer is not necessarily NUL-terminated. */
6775 	memcpy(buf, str, len);
6776 	memset((uint8_t *)buf + len, 0x00, size - len);
6777 	if (ctx->objmask)
6778 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
6779 	/* Save address if requested. */
6780 	if (arg_addr->size) {
6781 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
6782 		       (void *[]){
6783 			(uint8_t *)ctx->object + arg_data->offset
6784 		       },
6785 		       arg_addr->size);
6786 		if (ctx->objmask)
6787 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
6788 			       (void *[]){
6789 				(uint8_t *)ctx->objmask + arg_data->offset
6790 			       },
6791 			       arg_addr->size);
6792 	}
6793 	return len;
6794 error:
6795 	push_args(ctx, arg_addr);
6796 	push_args(ctx, arg_len);
6797 	push_args(ctx, arg_data);
6798 	return -1;
6799 }
6800 
6801 static int
6802 parse_hex_string(const char *src, uint8_t *dst, uint32_t *size)
6803 {
6804 	char *c = NULL;
6805 	uint32_t i, len;
6806 	char tmp[3];
6807 
6808 	/* Check input parameters */
6809 	if ((src == NULL) ||
6810 		(dst == NULL) ||
6811 		(size == NULL) ||
6812 		(*size == 0))
6813 		return -1;
6814 
6815 	/* Convert chars to bytes */
6816 	for (i = 0, len = 0; i < *size; i += 2) {
6817 		snprintf(tmp, 3, "%s", src + i);
6818 		dst[len++] = strtoul(tmp, &c, 16);
6819 		if (*c != 0) {
6820 			len--;
6821 			dst[len] = 0;
6822 			*size = len;
6823 			return -1;
6824 		}
6825 	}
6826 	dst[len] = 0;
6827 	*size = len;
6828 
6829 	return 0;
6830 }
6831 
6832 static int
6833 parse_hex(struct context *ctx, const struct token *token,
6834 		const char *str, unsigned int len,
6835 		void *buf, unsigned int size)
6836 {
6837 	const struct arg *arg_data = pop_args(ctx);
6838 	const struct arg *arg_len = pop_args(ctx);
6839 	const struct arg *arg_addr = pop_args(ctx);
6840 	char tmp[16]; /* Ought to be enough. */
6841 	int ret;
6842 	unsigned int hexlen = len;
6843 	unsigned int length = 256;
6844 	uint8_t hex_tmp[length];
6845 
6846 	/* Arguments are expected. */
6847 	if (!arg_data)
6848 		return -1;
6849 	if (!arg_len) {
6850 		push_args(ctx, arg_data);
6851 		return -1;
6852 	}
6853 	if (!arg_addr) {
6854 		push_args(ctx, arg_len);
6855 		push_args(ctx, arg_data);
6856 		return -1;
6857 	}
6858 	size = arg_data->size;
6859 	/* Bit-mask fill is not supported. */
6860 	if (arg_data->mask)
6861 		goto error;
6862 	if (!ctx->object)
6863 		return len;
6864 
6865 	/* translate bytes string to array. */
6866 	if (str[0] == '0' && ((str[1] == 'x') ||
6867 			(str[1] == 'X'))) {
6868 		str += 2;
6869 		hexlen -= 2;
6870 	}
6871 	if (hexlen > length)
6872 		return -1;
6873 	ret = parse_hex_string(str, hex_tmp, &hexlen);
6874 	if (ret < 0)
6875 		goto error;
6876 	/* Let parse_int() fill length information first. */
6877 	ret = snprintf(tmp, sizeof(tmp), "%u", hexlen);
6878 	if (ret < 0)
6879 		goto error;
6880 	/* Save length if requested. */
6881 	if (arg_len->size) {
6882 		push_args(ctx, arg_len);
6883 		ret = parse_int(ctx, token, tmp, ret, NULL, 0);
6884 		if (ret < 0) {
6885 			pop_args(ctx);
6886 			goto error;
6887 		}
6888 	}
6889 	buf = (uint8_t *)ctx->object + arg_data->offset;
6890 	/* Output buffer is not necessarily NUL-terminated. */
6891 	memcpy(buf, hex_tmp, hexlen);
6892 	memset((uint8_t *)buf + hexlen, 0x00, size - hexlen);
6893 	if (ctx->objmask)
6894 		memset((uint8_t *)ctx->objmask + arg_data->offset,
6895 					0xff, hexlen);
6896 	/* Save address if requested. */
6897 	if (arg_addr->size) {
6898 		memcpy((uint8_t *)ctx->object + arg_addr->offset,
6899 		       (void *[]){
6900 			(uint8_t *)ctx->object + arg_data->offset
6901 		       },
6902 		       arg_addr->size);
6903 		if (ctx->objmask)
6904 			memcpy((uint8_t *)ctx->objmask + arg_addr->offset,
6905 			       (void *[]){
6906 				(uint8_t *)ctx->objmask + arg_data->offset
6907 			       },
6908 			       arg_addr->size);
6909 	}
6910 	return len;
6911 error:
6912 	push_args(ctx, arg_addr);
6913 	push_args(ctx, arg_len);
6914 	push_args(ctx, arg_data);
6915 	return -1;
6916 
6917 }
6918 
6919 /**
6920  * Parse a zero-ended string.
6921  */
6922 static int
6923 parse_string0(struct context *ctx, const struct token *token __rte_unused,
6924 	     const char *str, unsigned int len,
6925 	     void *buf, unsigned int size)
6926 {
6927 	const struct arg *arg_data = pop_args(ctx);
6928 
6929 	/* Arguments are expected. */
6930 	if (!arg_data)
6931 		return -1;
6932 	size = arg_data->size;
6933 	/* Bit-mask fill is not supported. */
6934 	if (arg_data->mask || size < len + 1)
6935 		goto error;
6936 	if (!ctx->object)
6937 		return len;
6938 	buf = (uint8_t *)ctx->object + arg_data->offset;
6939 	strncpy(buf, str, len);
6940 	if (ctx->objmask)
6941 		memset((uint8_t *)ctx->objmask + arg_data->offset, 0xff, len);
6942 	return len;
6943 error:
6944 	push_args(ctx, arg_data);
6945 	return -1;
6946 }
6947 
6948 /**
6949  * Parse a MAC address.
6950  *
6951  * Last argument (ctx->args) is retrieved to determine storage size and
6952  * location.
6953  */
6954 static int
6955 parse_mac_addr(struct context *ctx, const struct token *token,
6956 	       const char *str, unsigned int len,
6957 	       void *buf, unsigned int size)
6958 {
6959 	const struct arg *arg = pop_args(ctx);
6960 	struct rte_ether_addr tmp;
6961 	int ret;
6962 
6963 	(void)token;
6964 	/* Argument is expected. */
6965 	if (!arg)
6966 		return -1;
6967 	size = arg->size;
6968 	/* Bit-mask fill is not supported. */
6969 	if (arg->mask || size != sizeof(tmp))
6970 		goto error;
6971 	/* Only network endian is supported. */
6972 	if (!arg->hton)
6973 		goto error;
6974 	ret = cmdline_parse_etheraddr(NULL, str, &tmp, size);
6975 	if (ret < 0 || (unsigned int)ret != len)
6976 		goto error;
6977 	if (!ctx->object)
6978 		return len;
6979 	buf = (uint8_t *)ctx->object + arg->offset;
6980 	memcpy(buf, &tmp, size);
6981 	if (ctx->objmask)
6982 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
6983 	return len;
6984 error:
6985 	push_args(ctx, arg);
6986 	return -1;
6987 }
6988 
6989 /**
6990  * Parse an IPv4 address.
6991  *
6992  * Last argument (ctx->args) is retrieved to determine storage size and
6993  * location.
6994  */
6995 static int
6996 parse_ipv4_addr(struct context *ctx, const struct token *token,
6997 		const char *str, unsigned int len,
6998 		void *buf, unsigned int size)
6999 {
7000 	const struct arg *arg = pop_args(ctx);
7001 	char str2[len + 1];
7002 	struct in_addr tmp;
7003 	int ret;
7004 
7005 	/* Argument is expected. */
7006 	if (!arg)
7007 		return -1;
7008 	size = arg->size;
7009 	/* Bit-mask fill is not supported. */
7010 	if (arg->mask || size != sizeof(tmp))
7011 		goto error;
7012 	/* Only network endian is supported. */
7013 	if (!arg->hton)
7014 		goto error;
7015 	memcpy(str2, str, len);
7016 	str2[len] = '\0';
7017 	ret = inet_pton(AF_INET, str2, &tmp);
7018 	if (ret != 1) {
7019 		/* Attempt integer parsing. */
7020 		push_args(ctx, arg);
7021 		return parse_int(ctx, token, str, len, buf, size);
7022 	}
7023 	if (!ctx->object)
7024 		return len;
7025 	buf = (uint8_t *)ctx->object + arg->offset;
7026 	memcpy(buf, &tmp, size);
7027 	if (ctx->objmask)
7028 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
7029 	return len;
7030 error:
7031 	push_args(ctx, arg);
7032 	return -1;
7033 }
7034 
7035 /**
7036  * Parse an IPv6 address.
7037  *
7038  * Last argument (ctx->args) is retrieved to determine storage size and
7039  * location.
7040  */
7041 static int
7042 parse_ipv6_addr(struct context *ctx, const struct token *token,
7043 		const char *str, unsigned int len,
7044 		void *buf, unsigned int size)
7045 {
7046 	const struct arg *arg = pop_args(ctx);
7047 	char str2[len + 1];
7048 	struct in6_addr tmp;
7049 	int ret;
7050 
7051 	(void)token;
7052 	/* Argument is expected. */
7053 	if (!arg)
7054 		return -1;
7055 	size = arg->size;
7056 	/* Bit-mask fill is not supported. */
7057 	if (arg->mask || size != sizeof(tmp))
7058 		goto error;
7059 	/* Only network endian is supported. */
7060 	if (!arg->hton)
7061 		goto error;
7062 	memcpy(str2, str, len);
7063 	str2[len] = '\0';
7064 	ret = inet_pton(AF_INET6, str2, &tmp);
7065 	if (ret != 1)
7066 		goto error;
7067 	if (!ctx->object)
7068 		return len;
7069 	buf = (uint8_t *)ctx->object + arg->offset;
7070 	memcpy(buf, &tmp, size);
7071 	if (ctx->objmask)
7072 		memset((uint8_t *)ctx->objmask + arg->offset, 0xff, size);
7073 	return len;
7074 error:
7075 	push_args(ctx, arg);
7076 	return -1;
7077 }
7078 
7079 /** Boolean values (even indices stand for false). */
7080 static const char *const boolean_name[] = {
7081 	"0", "1",
7082 	"false", "true",
7083 	"no", "yes",
7084 	"N", "Y",
7085 	"off", "on",
7086 	NULL,
7087 };
7088 
7089 /**
7090  * Parse a boolean value.
7091  *
7092  * Last argument (ctx->args) is retrieved to determine storage size and
7093  * location.
7094  */
7095 static int
7096 parse_boolean(struct context *ctx, const struct token *token,
7097 	      const char *str, unsigned int len,
7098 	      void *buf, unsigned int size)
7099 {
7100 	const struct arg *arg = pop_args(ctx);
7101 	unsigned int i;
7102 	int ret;
7103 
7104 	/* Argument is expected. */
7105 	if (!arg)
7106 		return -1;
7107 	for (i = 0; boolean_name[i]; ++i)
7108 		if (!strcmp_partial(boolean_name[i], str, len))
7109 			break;
7110 	/* Process token as integer. */
7111 	if (boolean_name[i])
7112 		str = i & 1 ? "1" : "0";
7113 	push_args(ctx, arg);
7114 	ret = parse_int(ctx, token, str, strlen(str), buf, size);
7115 	return ret > 0 ? (int)len : ret;
7116 }
7117 
7118 /** Parse port and update context. */
7119 static int
7120 parse_port(struct context *ctx, const struct token *token,
7121 	   const char *str, unsigned int len,
7122 	   void *buf, unsigned int size)
7123 {
7124 	struct buffer *out = &(struct buffer){ .port = 0 };
7125 	int ret;
7126 
7127 	if (buf)
7128 		out = buf;
7129 	else {
7130 		ctx->objdata = 0;
7131 		ctx->object = out;
7132 		ctx->objmask = NULL;
7133 		size = sizeof(*out);
7134 	}
7135 	ret = parse_int(ctx, token, str, len, out, size);
7136 	if (ret >= 0)
7137 		ctx->port = out->port;
7138 	if (!buf)
7139 		ctx->object = NULL;
7140 	return ret;
7141 }
7142 
7143 static int
7144 parse_ia_id2ptr(struct context *ctx, const struct token *token,
7145 		const char *str, unsigned int len,
7146 		void *buf, unsigned int size)
7147 {
7148 	struct rte_flow_action *action = ctx->object;
7149 	uint32_t id;
7150 	int ret;
7151 
7152 	(void)buf;
7153 	(void)size;
7154 	ctx->objdata = 0;
7155 	ctx->object = &id;
7156 	ctx->objmask = NULL;
7157 	ret = parse_int(ctx, token, str, len, ctx->object, sizeof(id));
7158 	ctx->object = action;
7159 	if (ret != (int)len)
7160 		return ret;
7161 	/* set indirect action */
7162 	if (action) {
7163 		action->conf = port_action_handle_get_by_id(ctx->port, id);
7164 		ret = (action->conf) ? ret : -1;
7165 	}
7166 	return ret;
7167 }
7168 
7169 /** Parse set command, initialize output buffer for subsequent tokens. */
7170 static int
7171 parse_set_raw_encap_decap(struct context *ctx, const struct token *token,
7172 			  const char *str, unsigned int len,
7173 			  void *buf, unsigned int size)
7174 {
7175 	struct buffer *out = buf;
7176 
7177 	/* Token name must match. */
7178 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
7179 		return -1;
7180 	/* Nothing else to do if there is no buffer. */
7181 	if (!out)
7182 		return len;
7183 	/* Make sure buffer is large enough. */
7184 	if (size < sizeof(*out))
7185 		return -1;
7186 	ctx->objdata = 0;
7187 	ctx->objmask = NULL;
7188 	ctx->object = out;
7189 	if (!out->command)
7190 		return -1;
7191 	out->command = ctx->curr;
7192 	/* For encap/decap we need is pattern */
7193 	out->args.vc.pattern = (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
7194 						       sizeof(double));
7195 	return len;
7196 }
7197 
7198 /** Parse set command, initialize output buffer for subsequent tokens. */
7199 static int
7200 parse_set_sample_action(struct context *ctx, const struct token *token,
7201 			  const char *str, unsigned int len,
7202 			  void *buf, unsigned int size)
7203 {
7204 	struct buffer *out = buf;
7205 
7206 	/* Token name must match. */
7207 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
7208 		return -1;
7209 	/* Nothing else to do if there is no buffer. */
7210 	if (!out)
7211 		return len;
7212 	/* Make sure buffer is large enough. */
7213 	if (size < sizeof(*out))
7214 		return -1;
7215 	ctx->objdata = 0;
7216 	ctx->objmask = NULL;
7217 	ctx->object = out;
7218 	if (!out->command)
7219 		return -1;
7220 	out->command = ctx->curr;
7221 	/* For sampler we need is actions */
7222 	out->args.vc.actions = (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
7223 						       sizeof(double));
7224 	return len;
7225 }
7226 
7227 /**
7228  * Parse set raw_encap/raw_decap command,
7229  * initialize output buffer for subsequent tokens.
7230  */
7231 static int
7232 parse_set_init(struct context *ctx, const struct token *token,
7233 	       const char *str, unsigned int len,
7234 	       void *buf, unsigned int size)
7235 {
7236 	struct buffer *out = buf;
7237 
7238 	/* Token name must match. */
7239 	if (parse_default(ctx, token, str, len, NULL, 0) < 0)
7240 		return -1;
7241 	/* Nothing else to do if there is no buffer. */
7242 	if (!out)
7243 		return len;
7244 	/* Make sure buffer is large enough. */
7245 	if (size < sizeof(*out))
7246 		return -1;
7247 	/* Initialize buffer. */
7248 	memset(out, 0x00, sizeof(*out));
7249 	memset((uint8_t *)out + sizeof(*out), 0x22, size - sizeof(*out));
7250 	ctx->objdata = 0;
7251 	ctx->object = out;
7252 	ctx->objmask = NULL;
7253 	if (!out->command) {
7254 		if (ctx->curr != SET)
7255 			return -1;
7256 		if (sizeof(*out) > size)
7257 			return -1;
7258 		out->command = ctx->curr;
7259 		out->args.vc.data = (uint8_t *)out + size;
7260 		ctx->object  = (void *)RTE_ALIGN_CEIL((uintptr_t)(out + 1),
7261 						       sizeof(double));
7262 	}
7263 	return len;
7264 }
7265 
7266 /** No completion. */
7267 static int
7268 comp_none(struct context *ctx, const struct token *token,
7269 	  unsigned int ent, char *buf, unsigned int size)
7270 {
7271 	(void)ctx;
7272 	(void)token;
7273 	(void)ent;
7274 	(void)buf;
7275 	(void)size;
7276 	return 0;
7277 }
7278 
7279 /** Complete boolean values. */
7280 static int
7281 comp_boolean(struct context *ctx, const struct token *token,
7282 	     unsigned int ent, char *buf, unsigned int size)
7283 {
7284 	unsigned int i;
7285 
7286 	(void)ctx;
7287 	(void)token;
7288 	for (i = 0; boolean_name[i]; ++i)
7289 		if (buf && i == ent)
7290 			return strlcpy(buf, boolean_name[i], size);
7291 	if (buf)
7292 		return -1;
7293 	return i;
7294 }
7295 
7296 /** Complete action names. */
7297 static int
7298 comp_action(struct context *ctx, const struct token *token,
7299 	    unsigned int ent, char *buf, unsigned int size)
7300 {
7301 	unsigned int i;
7302 
7303 	(void)ctx;
7304 	(void)token;
7305 	for (i = 0; next_action[i]; ++i)
7306 		if (buf && i == ent)
7307 			return strlcpy(buf, token_list[next_action[i]].name,
7308 				       size);
7309 	if (buf)
7310 		return -1;
7311 	return i;
7312 }
7313 
7314 /** Complete available ports. */
7315 static int
7316 comp_port(struct context *ctx, const struct token *token,
7317 	  unsigned int ent, char *buf, unsigned int size)
7318 {
7319 	unsigned int i = 0;
7320 	portid_t p;
7321 
7322 	(void)ctx;
7323 	(void)token;
7324 	RTE_ETH_FOREACH_DEV(p) {
7325 		if (buf && i == ent)
7326 			return snprintf(buf, size, "%u", p);
7327 		++i;
7328 	}
7329 	if (buf)
7330 		return -1;
7331 	return i;
7332 }
7333 
7334 /** Complete available rule IDs. */
7335 static int
7336 comp_rule_id(struct context *ctx, const struct token *token,
7337 	     unsigned int ent, char *buf, unsigned int size)
7338 {
7339 	unsigned int i = 0;
7340 	struct rte_port *port;
7341 	struct port_flow *pf;
7342 
7343 	(void)token;
7344 	if (port_id_is_invalid(ctx->port, DISABLED_WARN) ||
7345 	    ctx->port == (portid_t)RTE_PORT_ALL)
7346 		return -1;
7347 	port = &ports[ctx->port];
7348 	for (pf = port->flow_list; pf != NULL; pf = pf->next) {
7349 		if (buf && i == ent)
7350 			return snprintf(buf, size, "%u", pf->id);
7351 		++i;
7352 	}
7353 	if (buf)
7354 		return -1;
7355 	return i;
7356 }
7357 
7358 /** Complete type field for RSS action. */
7359 static int
7360 comp_vc_action_rss_type(struct context *ctx, const struct token *token,
7361 			unsigned int ent, char *buf, unsigned int size)
7362 {
7363 	unsigned int i;
7364 
7365 	(void)ctx;
7366 	(void)token;
7367 	for (i = 0; rss_type_table[i].str; ++i)
7368 		;
7369 	if (!buf)
7370 		return i + 1;
7371 	if (ent < i)
7372 		return strlcpy(buf, rss_type_table[ent].str, size);
7373 	if (ent == i)
7374 		return snprintf(buf, size, "end");
7375 	return -1;
7376 }
7377 
7378 /** Complete queue field for RSS action. */
7379 static int
7380 comp_vc_action_rss_queue(struct context *ctx, const struct token *token,
7381 			 unsigned int ent, char *buf, unsigned int size)
7382 {
7383 	(void)ctx;
7384 	(void)token;
7385 	if (!buf)
7386 		return nb_rxq + 1;
7387 	if (ent < nb_rxq)
7388 		return snprintf(buf, size, "%u", ent);
7389 	if (ent == nb_rxq)
7390 		return snprintf(buf, size, "end");
7391 	return -1;
7392 }
7393 
7394 /** Complete index number for set raw_encap/raw_decap commands. */
7395 static int
7396 comp_set_raw_index(struct context *ctx, const struct token *token,
7397 		   unsigned int ent, char *buf, unsigned int size)
7398 {
7399 	uint16_t idx = 0;
7400 	uint16_t nb = 0;
7401 
7402 	RTE_SET_USED(ctx);
7403 	RTE_SET_USED(token);
7404 	for (idx = 0; idx < RAW_ENCAP_CONFS_MAX_NUM; ++idx) {
7405 		if (buf && idx == ent)
7406 			return snprintf(buf, size, "%u", idx);
7407 		++nb;
7408 	}
7409 	return nb;
7410 }
7411 
7412 /** Complete index number for set raw_encap/raw_decap commands. */
7413 static int
7414 comp_set_sample_index(struct context *ctx, const struct token *token,
7415 		   unsigned int ent, char *buf, unsigned int size)
7416 {
7417 	uint16_t idx = 0;
7418 	uint16_t nb = 0;
7419 
7420 	RTE_SET_USED(ctx);
7421 	RTE_SET_USED(token);
7422 	for (idx = 0; idx < RAW_SAMPLE_CONFS_MAX_NUM; ++idx) {
7423 		if (buf && idx == ent)
7424 			return snprintf(buf, size, "%u", idx);
7425 		++nb;
7426 	}
7427 	return nb;
7428 }
7429 
7430 /** Complete operation for modify_field command. */
7431 static int
7432 comp_set_modify_field_op(struct context *ctx, const struct token *token,
7433 		   unsigned int ent, char *buf, unsigned int size)
7434 {
7435 	uint16_t idx = 0;
7436 
7437 	RTE_SET_USED(ctx);
7438 	RTE_SET_USED(token);
7439 	for (idx = 0; modify_field_ops[idx]; ++idx)
7440 		;
7441 	if (!buf)
7442 		return idx + 1;
7443 	if (ent < idx)
7444 		return strlcpy(buf, modify_field_ops[ent], size);
7445 	return -1;
7446 }
7447 
7448 /** Complete field id for modify_field command. */
7449 static int
7450 comp_set_modify_field_id(struct context *ctx, const struct token *token,
7451 		   unsigned int ent, char *buf, unsigned int size)
7452 {
7453 	uint16_t idx = 0;
7454 
7455 	RTE_SET_USED(ctx);
7456 	RTE_SET_USED(token);
7457 	for (idx = 0; modify_field_ids[idx]; ++idx)
7458 		;
7459 	if (!buf)
7460 		return idx + 1;
7461 	if (ent < idx)
7462 		return strlcpy(buf, modify_field_ids[ent], size);
7463 	return -1;
7464 }
7465 
7466 /** Internal context. */
7467 static struct context cmd_flow_context;
7468 
7469 /** Global parser instance (cmdline API). */
7470 cmdline_parse_inst_t cmd_flow;
7471 cmdline_parse_inst_t cmd_set_raw;
7472 
7473 /** Initialize context. */
7474 static void
7475 cmd_flow_context_init(struct context *ctx)
7476 {
7477 	/* A full memset() is not necessary. */
7478 	ctx->curr = ZERO;
7479 	ctx->prev = ZERO;
7480 	ctx->next_num = 0;
7481 	ctx->args_num = 0;
7482 	ctx->eol = 0;
7483 	ctx->last = 0;
7484 	ctx->port = 0;
7485 	ctx->objdata = 0;
7486 	ctx->object = NULL;
7487 	ctx->objmask = NULL;
7488 }
7489 
7490 /** Parse a token (cmdline API). */
7491 static int
7492 cmd_flow_parse(cmdline_parse_token_hdr_t *hdr, const char *src, void *result,
7493 	       unsigned int size)
7494 {
7495 	struct context *ctx = &cmd_flow_context;
7496 	const struct token *token;
7497 	const enum index *list;
7498 	int len;
7499 	int i;
7500 
7501 	(void)hdr;
7502 	token = &token_list[ctx->curr];
7503 	/* Check argument length. */
7504 	ctx->eol = 0;
7505 	ctx->last = 1;
7506 	for (len = 0; src[len]; ++len)
7507 		if (src[len] == '#' || isspace(src[len]))
7508 			break;
7509 	if (!len)
7510 		return -1;
7511 	/* Last argument and EOL detection. */
7512 	for (i = len; src[i]; ++i)
7513 		if (src[i] == '#' || src[i] == '\r' || src[i] == '\n')
7514 			break;
7515 		else if (!isspace(src[i])) {
7516 			ctx->last = 0;
7517 			break;
7518 		}
7519 	for (; src[i]; ++i)
7520 		if (src[i] == '\r' || src[i] == '\n') {
7521 			ctx->eol = 1;
7522 			break;
7523 		}
7524 	/* Initialize context if necessary. */
7525 	if (!ctx->next_num) {
7526 		if (!token->next)
7527 			return 0;
7528 		ctx->next[ctx->next_num++] = token->next[0];
7529 	}
7530 	/* Process argument through candidates. */
7531 	ctx->prev = ctx->curr;
7532 	list = ctx->next[ctx->next_num - 1];
7533 	for (i = 0; list[i]; ++i) {
7534 		const struct token *next = &token_list[list[i]];
7535 		int tmp;
7536 
7537 		ctx->curr = list[i];
7538 		if (next->call)
7539 			tmp = next->call(ctx, next, src, len, result, size);
7540 		else
7541 			tmp = parse_default(ctx, next, src, len, result, size);
7542 		if (tmp == -1 || tmp != len)
7543 			continue;
7544 		token = next;
7545 		break;
7546 	}
7547 	if (!list[i])
7548 		return -1;
7549 	--ctx->next_num;
7550 	/* Push subsequent tokens if any. */
7551 	if (token->next)
7552 		for (i = 0; token->next[i]; ++i) {
7553 			if (ctx->next_num == RTE_DIM(ctx->next))
7554 				return -1;
7555 			ctx->next[ctx->next_num++] = token->next[i];
7556 		}
7557 	/* Push arguments if any. */
7558 	if (token->args)
7559 		for (i = 0; token->args[i]; ++i) {
7560 			if (ctx->args_num == RTE_DIM(ctx->args))
7561 				return -1;
7562 			ctx->args[ctx->args_num++] = token->args[i];
7563 		}
7564 	return len;
7565 }
7566 
7567 /** Return number of completion entries (cmdline API). */
7568 static int
7569 cmd_flow_complete_get_nb(cmdline_parse_token_hdr_t *hdr)
7570 {
7571 	struct context *ctx = &cmd_flow_context;
7572 	const struct token *token = &token_list[ctx->curr];
7573 	const enum index *list;
7574 	int i;
7575 
7576 	(void)hdr;
7577 	/* Count number of tokens in current list. */
7578 	if (ctx->next_num)
7579 		list = ctx->next[ctx->next_num - 1];
7580 	else
7581 		list = token->next[0];
7582 	for (i = 0; list[i]; ++i)
7583 		;
7584 	if (!i)
7585 		return 0;
7586 	/*
7587 	 * If there is a single token, use its completion callback, otherwise
7588 	 * return the number of entries.
7589 	 */
7590 	token = &token_list[list[0]];
7591 	if (i == 1 && token->comp) {
7592 		/* Save index for cmd_flow_get_help(). */
7593 		ctx->prev = list[0];
7594 		return token->comp(ctx, token, 0, NULL, 0);
7595 	}
7596 	return i;
7597 }
7598 
7599 /** Return a completion entry (cmdline API). */
7600 static int
7601 cmd_flow_complete_get_elt(cmdline_parse_token_hdr_t *hdr, int index,
7602 			  char *dst, unsigned int size)
7603 {
7604 	struct context *ctx = &cmd_flow_context;
7605 	const struct token *token = &token_list[ctx->curr];
7606 	const enum index *list;
7607 	int i;
7608 
7609 	(void)hdr;
7610 	/* Count number of tokens in current list. */
7611 	if (ctx->next_num)
7612 		list = ctx->next[ctx->next_num - 1];
7613 	else
7614 		list = token->next[0];
7615 	for (i = 0; list[i]; ++i)
7616 		;
7617 	if (!i)
7618 		return -1;
7619 	/* If there is a single token, use its completion callback. */
7620 	token = &token_list[list[0]];
7621 	if (i == 1 && token->comp) {
7622 		/* Save index for cmd_flow_get_help(). */
7623 		ctx->prev = list[0];
7624 		return token->comp(ctx, token, index, dst, size) < 0 ? -1 : 0;
7625 	}
7626 	/* Otherwise make sure the index is valid and use defaults. */
7627 	if (index >= i)
7628 		return -1;
7629 	token = &token_list[list[index]];
7630 	strlcpy(dst, token->name, size);
7631 	/* Save index for cmd_flow_get_help(). */
7632 	ctx->prev = list[index];
7633 	return 0;
7634 }
7635 
7636 /** Populate help strings for current token (cmdline API). */
7637 static int
7638 cmd_flow_get_help(cmdline_parse_token_hdr_t *hdr, char *dst, unsigned int size)
7639 {
7640 	struct context *ctx = &cmd_flow_context;
7641 	const struct token *token = &token_list[ctx->prev];
7642 
7643 	(void)hdr;
7644 	if (!size)
7645 		return -1;
7646 	/* Set token type and update global help with details. */
7647 	strlcpy(dst, (token->type ? token->type : "TOKEN"), size);
7648 	if (token->help)
7649 		cmd_flow.help_str = token->help;
7650 	else
7651 		cmd_flow.help_str = token->name;
7652 	return 0;
7653 }
7654 
7655 /** Token definition template (cmdline API). */
7656 static struct cmdline_token_hdr cmd_flow_token_hdr = {
7657 	.ops = &(struct cmdline_token_ops){
7658 		.parse = cmd_flow_parse,
7659 		.complete_get_nb = cmd_flow_complete_get_nb,
7660 		.complete_get_elt = cmd_flow_complete_get_elt,
7661 		.get_help = cmd_flow_get_help,
7662 	},
7663 	.offset = 0,
7664 };
7665 
7666 /** Populate the next dynamic token. */
7667 static void
7668 cmd_flow_tok(cmdline_parse_token_hdr_t **hdr,
7669 	     cmdline_parse_token_hdr_t **hdr_inst)
7670 {
7671 	struct context *ctx = &cmd_flow_context;
7672 
7673 	/* Always reinitialize context before requesting the first token. */
7674 	if (!(hdr_inst - cmd_flow.tokens))
7675 		cmd_flow_context_init(ctx);
7676 	/* Return NULL when no more tokens are expected. */
7677 	if (!ctx->next_num && ctx->curr) {
7678 		*hdr = NULL;
7679 		return;
7680 	}
7681 	/* Determine if command should end here. */
7682 	if (ctx->eol && ctx->last && ctx->next_num) {
7683 		const enum index *list = ctx->next[ctx->next_num - 1];
7684 		int i;
7685 
7686 		for (i = 0; list[i]; ++i) {
7687 			if (list[i] != END)
7688 				continue;
7689 			*hdr = NULL;
7690 			return;
7691 		}
7692 	}
7693 	*hdr = &cmd_flow_token_hdr;
7694 }
7695 
7696 /** Dispatch parsed buffer to function calls. */
7697 static void
7698 cmd_flow_parsed(const struct buffer *in)
7699 {
7700 	switch (in->command) {
7701 	case INDIRECT_ACTION_CREATE:
7702 		port_action_handle_create(
7703 				in->port, in->args.vc.attr.group,
7704 				&((const struct rte_flow_indir_action_conf) {
7705 					.ingress = in->args.vc.attr.ingress,
7706 					.egress = in->args.vc.attr.egress,
7707 					.transfer = in->args.vc.attr.transfer,
7708 				}),
7709 				in->args.vc.actions);
7710 		break;
7711 	case INDIRECT_ACTION_DESTROY:
7712 		port_action_handle_destroy(in->port,
7713 					   in->args.ia_destroy.action_id_n,
7714 					   in->args.ia_destroy.action_id);
7715 		break;
7716 	case INDIRECT_ACTION_UPDATE:
7717 		port_action_handle_update(in->port, in->args.vc.attr.group,
7718 					  in->args.vc.actions);
7719 		break;
7720 	case INDIRECT_ACTION_QUERY:
7721 		port_action_handle_query(in->port, in->args.ia.action_id);
7722 		break;
7723 	case VALIDATE:
7724 		port_flow_validate(in->port, &in->args.vc.attr,
7725 				   in->args.vc.pattern, in->args.vc.actions,
7726 				   &in->args.vc.tunnel_ops);
7727 		break;
7728 	case CREATE:
7729 		port_flow_create(in->port, &in->args.vc.attr,
7730 				 in->args.vc.pattern, in->args.vc.actions,
7731 				 &in->args.vc.tunnel_ops);
7732 		break;
7733 	case DESTROY:
7734 		port_flow_destroy(in->port, in->args.destroy.rule_n,
7735 				  in->args.destroy.rule);
7736 		break;
7737 	case FLUSH:
7738 		port_flow_flush(in->port);
7739 		break;
7740 	case DUMP_ONE:
7741 	case DUMP_ALL:
7742 		port_flow_dump(in->port, in->args.dump.mode,
7743 				in->args.dump.rule, in->args.dump.file);
7744 		break;
7745 	case QUERY:
7746 		port_flow_query(in->port, in->args.query.rule,
7747 				&in->args.query.action);
7748 		break;
7749 	case LIST:
7750 		port_flow_list(in->port, in->args.list.group_n,
7751 			       in->args.list.group);
7752 		break;
7753 	case ISOLATE:
7754 		port_flow_isolate(in->port, in->args.isolate.set);
7755 		break;
7756 	case AGED:
7757 		port_flow_aged(in->port, in->args.aged.destroy);
7758 		break;
7759 	case TUNNEL_CREATE:
7760 		port_flow_tunnel_create(in->port, &in->args.vc.tunnel_ops);
7761 		break;
7762 	case TUNNEL_DESTROY:
7763 		port_flow_tunnel_destroy(in->port, in->args.vc.tunnel_ops.id);
7764 		break;
7765 	case TUNNEL_LIST:
7766 		port_flow_tunnel_list(in->port);
7767 		break;
7768 	default:
7769 		break;
7770 	}
7771 }
7772 
7773 /** Token generator and output processing callback (cmdline API). */
7774 static void
7775 cmd_flow_cb(void *arg0, struct cmdline *cl, void *arg2)
7776 {
7777 	if (cl == NULL)
7778 		cmd_flow_tok(arg0, arg2);
7779 	else
7780 		cmd_flow_parsed(arg0);
7781 }
7782 
7783 /** Global parser instance (cmdline API). */
7784 cmdline_parse_inst_t cmd_flow = {
7785 	.f = cmd_flow_cb,
7786 	.data = NULL, /**< Unused. */
7787 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
7788 	.tokens = {
7789 		NULL,
7790 	}, /**< Tokens are returned by cmd_flow_tok(). */
7791 };
7792 
7793 /** set cmd facility. Reuse cmd flow's infrastructure as much as possible. */
7794 
7795 static void
7796 update_fields(uint8_t *buf, struct rte_flow_item *item, uint16_t next_proto)
7797 {
7798 	struct rte_ipv4_hdr *ipv4;
7799 	struct rte_ether_hdr *eth;
7800 	struct rte_ipv6_hdr *ipv6;
7801 	struct rte_vxlan_hdr *vxlan;
7802 	struct rte_vxlan_gpe_hdr *gpe;
7803 	struct rte_flow_item_nvgre *nvgre;
7804 	uint32_t ipv6_vtc_flow;
7805 
7806 	switch (item->type) {
7807 	case RTE_FLOW_ITEM_TYPE_ETH:
7808 		eth = (struct rte_ether_hdr *)buf;
7809 		if (next_proto)
7810 			eth->ether_type = rte_cpu_to_be_16(next_proto);
7811 		break;
7812 	case RTE_FLOW_ITEM_TYPE_IPV4:
7813 		ipv4 = (struct rte_ipv4_hdr *)buf;
7814 		ipv4->version_ihl = 0x45;
7815 		if (next_proto && ipv4->next_proto_id == 0)
7816 			ipv4->next_proto_id = (uint8_t)next_proto;
7817 		break;
7818 	case RTE_FLOW_ITEM_TYPE_IPV6:
7819 		ipv6 = (struct rte_ipv6_hdr *)buf;
7820 		if (next_proto && ipv6->proto == 0)
7821 			ipv6->proto = (uint8_t)next_proto;
7822 		ipv6_vtc_flow = rte_be_to_cpu_32(ipv6->vtc_flow);
7823 		ipv6_vtc_flow &= 0x0FFFFFFF; /*< reset version bits. */
7824 		ipv6_vtc_flow |= 0x60000000; /*< set ipv6 version. */
7825 		ipv6->vtc_flow = rte_cpu_to_be_32(ipv6_vtc_flow);
7826 		break;
7827 	case RTE_FLOW_ITEM_TYPE_VXLAN:
7828 		vxlan = (struct rte_vxlan_hdr *)buf;
7829 		vxlan->vx_flags = 0x08;
7830 		break;
7831 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
7832 		gpe = (struct rte_vxlan_gpe_hdr *)buf;
7833 		gpe->vx_flags = 0x0C;
7834 		break;
7835 	case RTE_FLOW_ITEM_TYPE_NVGRE:
7836 		nvgre = (struct rte_flow_item_nvgre *)buf;
7837 		nvgre->protocol = rte_cpu_to_be_16(0x6558);
7838 		nvgre->c_k_s_rsvd0_ver = rte_cpu_to_be_16(0x2000);
7839 		break;
7840 	default:
7841 		break;
7842 	}
7843 }
7844 
7845 /** Helper of get item's default mask. */
7846 static const void *
7847 flow_item_default_mask(const struct rte_flow_item *item)
7848 {
7849 	const void *mask = NULL;
7850 	static rte_be32_t gre_key_default_mask = RTE_BE32(UINT32_MAX);
7851 
7852 	switch (item->type) {
7853 	case RTE_FLOW_ITEM_TYPE_ANY:
7854 		mask = &rte_flow_item_any_mask;
7855 		break;
7856 	case RTE_FLOW_ITEM_TYPE_VF:
7857 		mask = &rte_flow_item_vf_mask;
7858 		break;
7859 	case RTE_FLOW_ITEM_TYPE_PORT_ID:
7860 		mask = &rte_flow_item_port_id_mask;
7861 		break;
7862 	case RTE_FLOW_ITEM_TYPE_RAW:
7863 		mask = &rte_flow_item_raw_mask;
7864 		break;
7865 	case RTE_FLOW_ITEM_TYPE_ETH:
7866 		mask = &rte_flow_item_eth_mask;
7867 		break;
7868 	case RTE_FLOW_ITEM_TYPE_VLAN:
7869 		mask = &rte_flow_item_vlan_mask;
7870 		break;
7871 	case RTE_FLOW_ITEM_TYPE_IPV4:
7872 		mask = &rte_flow_item_ipv4_mask;
7873 		break;
7874 	case RTE_FLOW_ITEM_TYPE_IPV6:
7875 		mask = &rte_flow_item_ipv6_mask;
7876 		break;
7877 	case RTE_FLOW_ITEM_TYPE_ICMP:
7878 		mask = &rte_flow_item_icmp_mask;
7879 		break;
7880 	case RTE_FLOW_ITEM_TYPE_UDP:
7881 		mask = &rte_flow_item_udp_mask;
7882 		break;
7883 	case RTE_FLOW_ITEM_TYPE_TCP:
7884 		mask = &rte_flow_item_tcp_mask;
7885 		break;
7886 	case RTE_FLOW_ITEM_TYPE_SCTP:
7887 		mask = &rte_flow_item_sctp_mask;
7888 		break;
7889 	case RTE_FLOW_ITEM_TYPE_VXLAN:
7890 		mask = &rte_flow_item_vxlan_mask;
7891 		break;
7892 	case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
7893 		mask = &rte_flow_item_vxlan_gpe_mask;
7894 		break;
7895 	case RTE_FLOW_ITEM_TYPE_E_TAG:
7896 		mask = &rte_flow_item_e_tag_mask;
7897 		break;
7898 	case RTE_FLOW_ITEM_TYPE_NVGRE:
7899 		mask = &rte_flow_item_nvgre_mask;
7900 		break;
7901 	case RTE_FLOW_ITEM_TYPE_MPLS:
7902 		mask = &rte_flow_item_mpls_mask;
7903 		break;
7904 	case RTE_FLOW_ITEM_TYPE_GRE:
7905 		mask = &rte_flow_item_gre_mask;
7906 		break;
7907 	case RTE_FLOW_ITEM_TYPE_GRE_KEY:
7908 		mask = &gre_key_default_mask;
7909 		break;
7910 	case RTE_FLOW_ITEM_TYPE_META:
7911 		mask = &rte_flow_item_meta_mask;
7912 		break;
7913 	case RTE_FLOW_ITEM_TYPE_FUZZY:
7914 		mask = &rte_flow_item_fuzzy_mask;
7915 		break;
7916 	case RTE_FLOW_ITEM_TYPE_GTP:
7917 		mask = &rte_flow_item_gtp_mask;
7918 		break;
7919 	case RTE_FLOW_ITEM_TYPE_GTP_PSC:
7920 		mask = &rte_flow_item_gtp_psc_mask;
7921 		break;
7922 	case RTE_FLOW_ITEM_TYPE_GENEVE:
7923 		mask = &rte_flow_item_geneve_mask;
7924 		break;
7925 	case RTE_FLOW_ITEM_TYPE_GENEVE_OPT:
7926 		mask = &rte_flow_item_geneve_opt_mask;
7927 		break;
7928 	case RTE_FLOW_ITEM_TYPE_PPPOE_PROTO_ID:
7929 		mask = &rte_flow_item_pppoe_proto_id_mask;
7930 		break;
7931 	case RTE_FLOW_ITEM_TYPE_L2TPV3OIP:
7932 		mask = &rte_flow_item_l2tpv3oip_mask;
7933 		break;
7934 	case RTE_FLOW_ITEM_TYPE_ESP:
7935 		mask = &rte_flow_item_esp_mask;
7936 		break;
7937 	case RTE_FLOW_ITEM_TYPE_AH:
7938 		mask = &rte_flow_item_ah_mask;
7939 		break;
7940 	case RTE_FLOW_ITEM_TYPE_PFCP:
7941 		mask = &rte_flow_item_pfcp_mask;
7942 		break;
7943 	default:
7944 		break;
7945 	}
7946 	return mask;
7947 }
7948 
7949 /** Dispatch parsed buffer to function calls. */
7950 static void
7951 cmd_set_raw_parsed_sample(const struct buffer *in)
7952 {
7953 	uint32_t n = in->args.vc.actions_n;
7954 	uint32_t i = 0;
7955 	struct rte_flow_action *action = NULL;
7956 	struct rte_flow_action *data = NULL;
7957 	const struct rte_flow_action_rss *rss = NULL;
7958 	size_t size = 0;
7959 	uint16_t idx = in->port; /* We borrow port field as index */
7960 	uint32_t max_size = sizeof(struct rte_flow_action) *
7961 						ACTION_SAMPLE_ACTIONS_NUM;
7962 
7963 	RTE_ASSERT(in->command == SET_SAMPLE_ACTIONS);
7964 	data = (struct rte_flow_action *)&raw_sample_confs[idx].data;
7965 	memset(data, 0x00, max_size);
7966 	for (; i <= n - 1; i++) {
7967 		action = in->args.vc.actions + i;
7968 		if (action->type == RTE_FLOW_ACTION_TYPE_END)
7969 			break;
7970 		switch (action->type) {
7971 		case RTE_FLOW_ACTION_TYPE_MARK:
7972 			size = sizeof(struct rte_flow_action_mark);
7973 			rte_memcpy(&sample_mark[idx],
7974 				(const void *)action->conf, size);
7975 			action->conf = &sample_mark[idx];
7976 			break;
7977 		case RTE_FLOW_ACTION_TYPE_COUNT:
7978 			size = sizeof(struct rte_flow_action_count);
7979 			rte_memcpy(&sample_count[idx],
7980 				(const void *)action->conf, size);
7981 			action->conf = &sample_count[idx];
7982 			break;
7983 		case RTE_FLOW_ACTION_TYPE_QUEUE:
7984 			size = sizeof(struct rte_flow_action_queue);
7985 			rte_memcpy(&sample_queue[idx],
7986 				(const void *)action->conf, size);
7987 			action->conf = &sample_queue[idx];
7988 			break;
7989 		case RTE_FLOW_ACTION_TYPE_RSS:
7990 			size = sizeof(struct rte_flow_action_rss);
7991 			rss = action->conf;
7992 			rte_memcpy(&sample_rss_data[idx].conf,
7993 				   (const void *)rss, size);
7994 			if (rss->key_len && rss->key) {
7995 				sample_rss_data[idx].conf.key =
7996 						sample_rss_data[idx].key;
7997 				rte_memcpy((void *)((uintptr_t)
7998 					   sample_rss_data[idx].conf.key),
7999 					   (const void *)rss->key,
8000 					   sizeof(uint8_t) * rss->key_len);
8001 			}
8002 			if (rss->queue_num && rss->queue) {
8003 				sample_rss_data[idx].conf.queue =
8004 						sample_rss_data[idx].queue;
8005 				rte_memcpy((void *)((uintptr_t)
8006 					   sample_rss_data[idx].conf.queue),
8007 					   (const void *)rss->queue,
8008 					   sizeof(uint16_t) * rss->queue_num);
8009 			}
8010 			action->conf = &sample_rss_data[idx].conf;
8011 			break;
8012 		case RTE_FLOW_ACTION_TYPE_RAW_ENCAP:
8013 			size = sizeof(struct rte_flow_action_raw_encap);
8014 			rte_memcpy(&sample_encap[idx],
8015 				(const void *)action->conf, size);
8016 			action->conf = &sample_encap[idx];
8017 			break;
8018 		case RTE_FLOW_ACTION_TYPE_PORT_ID:
8019 			size = sizeof(struct rte_flow_action_port_id);
8020 			rte_memcpy(&sample_port_id[idx],
8021 				(const void *)action->conf, size);
8022 			action->conf = &sample_port_id[idx];
8023 			break;
8024 		case RTE_FLOW_ACTION_TYPE_PF:
8025 			break;
8026 		case RTE_FLOW_ACTION_TYPE_VF:
8027 			size = sizeof(struct rte_flow_action_vf);
8028 			rte_memcpy(&sample_vf[idx],
8029 					(const void *)action->conf, size);
8030 			action->conf = &sample_vf[idx];
8031 			break;
8032 		case RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP:
8033 			size = sizeof(struct rte_flow_action_vxlan_encap);
8034 			parse_setup_vxlan_encap_data(&sample_vxlan_encap[idx]);
8035 			action->conf = &sample_vxlan_encap[idx].conf;
8036 			break;
8037 		case RTE_FLOW_ACTION_TYPE_NVGRE_ENCAP:
8038 			size = sizeof(struct rte_flow_action_nvgre_encap);
8039 			parse_setup_nvgre_encap_data(&sample_nvgre_encap[idx]);
8040 			action->conf = &sample_nvgre_encap[idx];
8041 			break;
8042 		default:
8043 			printf("Error - Not supported action\n");
8044 			return;
8045 		}
8046 		rte_memcpy(data, action, sizeof(struct rte_flow_action));
8047 		data++;
8048 	}
8049 }
8050 
8051 /** Dispatch parsed buffer to function calls. */
8052 static void
8053 cmd_set_raw_parsed(const struct buffer *in)
8054 {
8055 	uint32_t n = in->args.vc.pattern_n;
8056 	int i = 0;
8057 	struct rte_flow_item *item = NULL;
8058 	size_t size = 0;
8059 	uint8_t *data = NULL;
8060 	uint8_t *data_tail = NULL;
8061 	size_t *total_size = NULL;
8062 	uint16_t upper_layer = 0;
8063 	uint16_t proto = 0;
8064 	uint16_t idx = in->port; /* We borrow port field as index */
8065 	int gtp_psc = -1; /* GTP PSC option index. */
8066 
8067 	if (in->command == SET_SAMPLE_ACTIONS)
8068 		return cmd_set_raw_parsed_sample(in);
8069 	RTE_ASSERT(in->command == SET_RAW_ENCAP ||
8070 		   in->command == SET_RAW_DECAP);
8071 	if (in->command == SET_RAW_ENCAP) {
8072 		total_size = &raw_encap_confs[idx].size;
8073 		data = (uint8_t *)&raw_encap_confs[idx].data;
8074 	} else {
8075 		total_size = &raw_decap_confs[idx].size;
8076 		data = (uint8_t *)&raw_decap_confs[idx].data;
8077 	}
8078 	*total_size = 0;
8079 	memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
8080 	/* process hdr from upper layer to low layer (L3/L4 -> L2). */
8081 	data_tail = data + ACTION_RAW_ENCAP_MAX_DATA;
8082 	for (i = n - 1 ; i >= 0; --i) {
8083 		const struct rte_flow_item_gtp *gtp;
8084 		const struct rte_flow_item_geneve_opt *opt;
8085 
8086 		item = in->args.vc.pattern + i;
8087 		if (item->spec == NULL)
8088 			item->spec = flow_item_default_mask(item);
8089 		switch (item->type) {
8090 		case RTE_FLOW_ITEM_TYPE_ETH:
8091 			size = sizeof(struct rte_ether_hdr);
8092 			break;
8093 		case RTE_FLOW_ITEM_TYPE_VLAN:
8094 			size = sizeof(struct rte_vlan_hdr);
8095 			proto = RTE_ETHER_TYPE_VLAN;
8096 			break;
8097 		case RTE_FLOW_ITEM_TYPE_IPV4:
8098 			size = sizeof(struct rte_ipv4_hdr);
8099 			proto = RTE_ETHER_TYPE_IPV4;
8100 			break;
8101 		case RTE_FLOW_ITEM_TYPE_IPV6:
8102 			size = sizeof(struct rte_ipv6_hdr);
8103 			proto = RTE_ETHER_TYPE_IPV6;
8104 			break;
8105 		case RTE_FLOW_ITEM_TYPE_UDP:
8106 			size = sizeof(struct rte_udp_hdr);
8107 			proto = 0x11;
8108 			break;
8109 		case RTE_FLOW_ITEM_TYPE_TCP:
8110 			size = sizeof(struct rte_tcp_hdr);
8111 			proto = 0x06;
8112 			break;
8113 		case RTE_FLOW_ITEM_TYPE_VXLAN:
8114 			size = sizeof(struct rte_vxlan_hdr);
8115 			break;
8116 		case RTE_FLOW_ITEM_TYPE_VXLAN_GPE:
8117 			size = sizeof(struct rte_vxlan_gpe_hdr);
8118 			break;
8119 		case RTE_FLOW_ITEM_TYPE_GRE:
8120 			size = sizeof(struct rte_gre_hdr);
8121 			proto = 0x2F;
8122 			break;
8123 		case RTE_FLOW_ITEM_TYPE_GRE_KEY:
8124 			size = sizeof(rte_be32_t);
8125 			proto = 0x0;
8126 			break;
8127 		case RTE_FLOW_ITEM_TYPE_MPLS:
8128 			size = sizeof(struct rte_mpls_hdr);
8129 			proto = 0x0;
8130 			break;
8131 		case RTE_FLOW_ITEM_TYPE_NVGRE:
8132 			size = sizeof(struct rte_flow_item_nvgre);
8133 			proto = 0x2F;
8134 			break;
8135 		case RTE_FLOW_ITEM_TYPE_GENEVE:
8136 			size = sizeof(struct rte_geneve_hdr);
8137 			break;
8138 		case RTE_FLOW_ITEM_TYPE_GENEVE_OPT:
8139 			opt = (const struct rte_flow_item_geneve_opt *)
8140 								item->spec;
8141 			size = offsetof(struct rte_flow_item_geneve_opt, data);
8142 			if (opt->option_len && opt->data) {
8143 				*total_size += opt->option_len *
8144 					       sizeof(uint32_t);
8145 				rte_memcpy(data_tail - (*total_size),
8146 					   opt->data,
8147 					   opt->option_len * sizeof(uint32_t));
8148 			}
8149 			break;
8150 		case RTE_FLOW_ITEM_TYPE_L2TPV3OIP:
8151 			size = sizeof(rte_be32_t);
8152 			proto = 0x73;
8153 			break;
8154 		case RTE_FLOW_ITEM_TYPE_ESP:
8155 			size = sizeof(struct rte_esp_hdr);
8156 			proto = 0x32;
8157 			break;
8158 		case RTE_FLOW_ITEM_TYPE_AH:
8159 			size = sizeof(struct rte_flow_item_ah);
8160 			proto = 0x33;
8161 			break;
8162 		case RTE_FLOW_ITEM_TYPE_GTP:
8163 			if (gtp_psc < 0) {
8164 				size = sizeof(struct rte_gtp_hdr);
8165 				break;
8166 			}
8167 			if (gtp_psc != i + 1) {
8168 				printf("Error - GTP PSC does not follow GTP\n");
8169 				goto error;
8170 			}
8171 			gtp = item->spec;
8172 			if ((gtp->v_pt_rsv_flags & 0x07) != 0x04) {
8173 				/* Only E flag should be set. */
8174 				printf("Error - GTP unsupported flags\n");
8175 				goto error;
8176 			} else {
8177 				struct rte_gtp_hdr_ext_word ext_word = {
8178 					.next_ext = 0x85
8179 				};
8180 
8181 				/* We have to add GTP header extra word. */
8182 				*total_size += sizeof(ext_word);
8183 				rte_memcpy(data_tail - (*total_size),
8184 					   &ext_word, sizeof(ext_word));
8185 			}
8186 			size = sizeof(struct rte_gtp_hdr);
8187 			break;
8188 		case RTE_FLOW_ITEM_TYPE_GTP_PSC:
8189 			if (gtp_psc >= 0) {
8190 				printf("Error - Multiple GTP PSC items\n");
8191 				goto error;
8192 			} else {
8193 				const struct rte_flow_item_gtp_psc
8194 					*opt = item->spec;
8195 				struct {
8196 					uint8_t len;
8197 					uint8_t pdu_type;
8198 					uint8_t qfi;
8199 					uint8_t next;
8200 				} psc;
8201 
8202 				if (opt->pdu_type & 0x0F) {
8203 					/* Support the minimal option only. */
8204 					printf("Error - GTP PSC option with "
8205 					       "extra fields not supported\n");
8206 					goto error;
8207 				}
8208 				psc.len = sizeof(psc);
8209 				psc.pdu_type = opt->pdu_type;
8210 				psc.qfi = opt->qfi;
8211 				psc.next = 0;
8212 				*total_size += sizeof(psc);
8213 				rte_memcpy(data_tail - (*total_size),
8214 					   &psc, sizeof(psc));
8215 				gtp_psc = i;
8216 				size = 0;
8217 			}
8218 			break;
8219 		case RTE_FLOW_ITEM_TYPE_PFCP:
8220 			size = sizeof(struct rte_flow_item_pfcp);
8221 			break;
8222 		default:
8223 			printf("Error - Not supported item\n");
8224 			goto error;
8225 		}
8226 		*total_size += size;
8227 		rte_memcpy(data_tail - (*total_size), item->spec, size);
8228 		/* update some fields which cannot be set by cmdline */
8229 		update_fields((data_tail - (*total_size)), item,
8230 			      upper_layer);
8231 		upper_layer = proto;
8232 	}
8233 	if (verbose_level & 0x1)
8234 		printf("total data size is %zu\n", (*total_size));
8235 	RTE_ASSERT((*total_size) <= ACTION_RAW_ENCAP_MAX_DATA);
8236 	memmove(data, (data_tail - (*total_size)), *total_size);
8237 	return;
8238 
8239 error:
8240 	*total_size = 0;
8241 	memset(data, 0x00, ACTION_RAW_ENCAP_MAX_DATA);
8242 }
8243 
8244 /** Populate help strings for current token (cmdline API). */
8245 static int
8246 cmd_set_raw_get_help(cmdline_parse_token_hdr_t *hdr, char *dst,
8247 		     unsigned int size)
8248 {
8249 	struct context *ctx = &cmd_flow_context;
8250 	const struct token *token = &token_list[ctx->prev];
8251 
8252 	(void)hdr;
8253 	if (!size)
8254 		return -1;
8255 	/* Set token type and update global help with details. */
8256 	snprintf(dst, size, "%s", (token->type ? token->type : "TOKEN"));
8257 	if (token->help)
8258 		cmd_set_raw.help_str = token->help;
8259 	else
8260 		cmd_set_raw.help_str = token->name;
8261 	return 0;
8262 }
8263 
8264 /** Token definition template (cmdline API). */
8265 static struct cmdline_token_hdr cmd_set_raw_token_hdr = {
8266 	.ops = &(struct cmdline_token_ops){
8267 		.parse = cmd_flow_parse,
8268 		.complete_get_nb = cmd_flow_complete_get_nb,
8269 		.complete_get_elt = cmd_flow_complete_get_elt,
8270 		.get_help = cmd_set_raw_get_help,
8271 	},
8272 	.offset = 0,
8273 };
8274 
8275 /** Populate the next dynamic token. */
8276 static void
8277 cmd_set_raw_tok(cmdline_parse_token_hdr_t **hdr,
8278 	     cmdline_parse_token_hdr_t **hdr_inst)
8279 {
8280 	struct context *ctx = &cmd_flow_context;
8281 
8282 	/* Always reinitialize context before requesting the first token. */
8283 	if (!(hdr_inst - cmd_set_raw.tokens)) {
8284 		cmd_flow_context_init(ctx);
8285 		ctx->curr = START_SET;
8286 	}
8287 	/* Return NULL when no more tokens are expected. */
8288 	if (!ctx->next_num && (ctx->curr != START_SET)) {
8289 		*hdr = NULL;
8290 		return;
8291 	}
8292 	/* Determine if command should end here. */
8293 	if (ctx->eol && ctx->last && ctx->next_num) {
8294 		const enum index *list = ctx->next[ctx->next_num - 1];
8295 		int i;
8296 
8297 		for (i = 0; list[i]; ++i) {
8298 			if (list[i] != END)
8299 				continue;
8300 			*hdr = NULL;
8301 			return;
8302 		}
8303 	}
8304 	*hdr = &cmd_set_raw_token_hdr;
8305 }
8306 
8307 /** Token generator and output processing callback (cmdline API). */
8308 static void
8309 cmd_set_raw_cb(void *arg0, struct cmdline *cl, void *arg2)
8310 {
8311 	if (cl == NULL)
8312 		cmd_set_raw_tok(arg0, arg2);
8313 	else
8314 		cmd_set_raw_parsed(arg0);
8315 }
8316 
8317 /** Global parser instance (cmdline API). */
8318 cmdline_parse_inst_t cmd_set_raw = {
8319 	.f = cmd_set_raw_cb,
8320 	.data = NULL, /**< Unused. */
8321 	.help_str = NULL, /**< Updated by cmd_flow_get_help(). */
8322 	.tokens = {
8323 		NULL,
8324 	}, /**< Tokens are returned by cmd_flow_tok(). */
8325 };
8326 
8327 /* *** display raw_encap/raw_decap buf */
8328 struct cmd_show_set_raw_result {
8329 	cmdline_fixed_string_t cmd_show;
8330 	cmdline_fixed_string_t cmd_what;
8331 	cmdline_fixed_string_t cmd_all;
8332 	uint16_t cmd_index;
8333 };
8334 
8335 static void
8336 cmd_show_set_raw_parsed(void *parsed_result, struct cmdline *cl, void *data)
8337 {
8338 	struct cmd_show_set_raw_result *res = parsed_result;
8339 	uint16_t index = res->cmd_index;
8340 	uint8_t all = 0;
8341 	uint8_t *raw_data = NULL;
8342 	size_t raw_size = 0;
8343 	char title[16] = {0};
8344 
8345 	RTE_SET_USED(cl);
8346 	RTE_SET_USED(data);
8347 	if (!strcmp(res->cmd_all, "all")) {
8348 		all = 1;
8349 		index = 0;
8350 	} else if (index >= RAW_ENCAP_CONFS_MAX_NUM) {
8351 		printf("index should be 0-%u\n", RAW_ENCAP_CONFS_MAX_NUM - 1);
8352 		return;
8353 	}
8354 	do {
8355 		if (!strcmp(res->cmd_what, "raw_encap")) {
8356 			raw_data = (uint8_t *)&raw_encap_confs[index].data;
8357 			raw_size = raw_encap_confs[index].size;
8358 			snprintf(title, 16, "\nindex: %u", index);
8359 			rte_hexdump(stdout, title, raw_data, raw_size);
8360 		} else {
8361 			raw_data = (uint8_t *)&raw_decap_confs[index].data;
8362 			raw_size = raw_decap_confs[index].size;
8363 			snprintf(title, 16, "\nindex: %u", index);
8364 			rte_hexdump(stdout, title, raw_data, raw_size);
8365 		}
8366 	} while (all && ++index < RAW_ENCAP_CONFS_MAX_NUM);
8367 }
8368 
8369 cmdline_parse_token_string_t cmd_show_set_raw_cmd_show =
8370 	TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
8371 			cmd_show, "show");
8372 cmdline_parse_token_string_t cmd_show_set_raw_cmd_what =
8373 	TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
8374 			cmd_what, "raw_encap#raw_decap");
8375 cmdline_parse_token_num_t cmd_show_set_raw_cmd_index =
8376 	TOKEN_NUM_INITIALIZER(struct cmd_show_set_raw_result,
8377 			cmd_index, RTE_UINT16);
8378 cmdline_parse_token_string_t cmd_show_set_raw_cmd_all =
8379 	TOKEN_STRING_INITIALIZER(struct cmd_show_set_raw_result,
8380 			cmd_all, "all");
8381 cmdline_parse_inst_t cmd_show_set_raw = {
8382 	.f = cmd_show_set_raw_parsed,
8383 	.data = NULL,
8384 	.help_str = "show <raw_encap|raw_decap> <index>",
8385 	.tokens = {
8386 		(void *)&cmd_show_set_raw_cmd_show,
8387 		(void *)&cmd_show_set_raw_cmd_what,
8388 		(void *)&cmd_show_set_raw_cmd_index,
8389 		NULL,
8390 	},
8391 };
8392 cmdline_parse_inst_t cmd_show_set_raw_all = {
8393 	.f = cmd_show_set_raw_parsed,
8394 	.data = NULL,
8395 	.help_str = "show <raw_encap|raw_decap> all",
8396 	.tokens = {
8397 		(void *)&cmd_show_set_raw_cmd_show,
8398 		(void *)&cmd_show_set_raw_cmd_what,
8399 		(void *)&cmd_show_set_raw_cmd_all,
8400 		NULL,
8401 	},
8402 };
8403