xref: /dpdk/app/test-pmd/5tswap.c (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2014-2020 Mellanox Technologies, Ltd
3  */
4 
5 #include <stdarg.h>
6 #include <stdio.h>
7 #include <stdint.h>
8 #include <unistd.h>
9 #include <inttypes.h>
10 
11 #include <sys/queue.h>
12 #include <sys/stat.h>
13 
14 #include <rte_common.h>
15 #include <rte_ether.h>
16 #include <rte_ethdev.h>
17 #include <rte_ip.h>
18 #include <rte_flow.h>
19 
20 #include "macswap_common.h"
21 #include "testpmd.h"
22 
23 
24 static inline void
25 swap_mac(struct rte_ether_hdr *eth_hdr)
26 {
27 	struct rte_ether_addr addr;
28 
29 	/* Swap dest and src mac addresses. */
30 	rte_ether_addr_copy(&eth_hdr->d_addr, &addr);
31 	rte_ether_addr_copy(&eth_hdr->s_addr, &eth_hdr->d_addr);
32 	rte_ether_addr_copy(&addr, &eth_hdr->s_addr);
33 }
34 
35 static inline void
36 swap_ipv4(struct rte_ipv4_hdr *ipv4_hdr)
37 {
38 	rte_be32_t addr;
39 
40 	/* Swap dest and src ipv4 addresses. */
41 	addr = ipv4_hdr->src_addr;
42 	ipv4_hdr->src_addr = ipv4_hdr->dst_addr;
43 	ipv4_hdr->dst_addr = addr;
44 }
45 
46 static inline void
47 swap_ipv6(struct rte_ipv6_hdr *ipv6_hdr)
48 {
49 	uint8_t addr[16];
50 
51 	/* Swap dest and src ipv6 addresses. */
52 	memcpy(&addr, &ipv6_hdr->src_addr, 16);
53 	memcpy(&ipv6_hdr->src_addr, &ipv6_hdr->dst_addr, 16);
54 	memcpy(&ipv6_hdr->dst_addr, &addr, 16);
55 }
56 
57 static inline void
58 swap_tcp(struct rte_tcp_hdr *tcp_hdr)
59 {
60 	rte_be16_t port;
61 
62 	/* Swap dest and src tcp port. */
63 	port = tcp_hdr->src_port;
64 	tcp_hdr->src_port = tcp_hdr->dst_port;
65 	tcp_hdr->dst_port = port;
66 }
67 
68 static inline void
69 swap_udp(struct rte_udp_hdr *udp_hdr)
70 {
71 	rte_be16_t port;
72 
73 	/* Swap dest and src udp port */
74 	port = udp_hdr->src_port;
75 	udp_hdr->src_port = udp_hdr->dst_port;
76 	udp_hdr->dst_port = port;
77 }
78 
79 /*
80  * 5 tuple swap forwarding mode: Swap the source and the destination of layers
81  * 2,3,4. Swaps source and destination for MAC, IPv4/IPv6, UDP/TCP.
82  * Parses each layer and swaps it. When the next layer doesn't match it stops.
83  */
84 static void
85 pkt_burst_5tuple_swap(struct fwd_stream *fs)
86 {
87 	struct rte_mbuf  *pkts_burst[MAX_PKT_BURST];
88 	struct rte_port  *txp;
89 	struct rte_mbuf *mb;
90 	uint16_t next_proto;
91 	uint64_t ol_flags;
92 	uint16_t proto;
93 	uint16_t nb_rx;
94 	uint16_t nb_tx;
95 	uint32_t retry;
96 
97 	int i;
98 	union {
99 		struct rte_ether_hdr *eth;
100 		struct rte_vlan_hdr *vlan;
101 		struct rte_ipv4_hdr *ipv4;
102 		struct rte_ipv6_hdr *ipv6;
103 		struct rte_tcp_hdr *tcp;
104 		struct rte_udp_hdr *udp;
105 		uint8_t *byte;
106 	} h;
107 
108 	uint64_t start_tsc = 0;
109 
110 	get_start_cycles(&start_tsc);
111 
112 	/*
113 	 * Receive a burst of packets and forward them.
114 	 */
115 	nb_rx = rte_eth_rx_burst(fs->rx_port, fs->rx_queue, pkts_burst,
116 				 nb_pkt_per_burst);
117 	inc_rx_burst_stats(fs, nb_rx);
118 	if (unlikely(nb_rx == 0))
119 		return;
120 
121 	fs->rx_packets += nb_rx;
122 	txp = &ports[fs->tx_port];
123 	ol_flags = ol_flags_init(txp->dev_conf.txmode.offloads);
124 	vlan_qinq_set(pkts_burst, nb_rx, ol_flags,
125 			txp->tx_vlan_id, txp->tx_vlan_id_outer);
126 	for (i = 0; i < nb_rx; i++) {
127 		if (likely(i < nb_rx - 1))
128 			rte_prefetch0(rte_pktmbuf_mtod(pkts_burst[i+1],
129 					void *));
130 		mb = pkts_burst[i];
131 		h.eth = rte_pktmbuf_mtod(mb, struct rte_ether_hdr *);
132 		proto = h.eth->ether_type;
133 		swap_mac(h.eth);
134 		mb->l2_len = sizeof(struct rte_ether_hdr);
135 		h.eth++;
136 		while (proto == RTE_BE16(RTE_ETHER_TYPE_VLAN) ||
137 		       proto == RTE_BE16(RTE_ETHER_TYPE_QINQ)) {
138 			proto = h.vlan->eth_proto;
139 			h.vlan++;
140 			mb->l2_len += sizeof(struct rte_vlan_hdr);
141 		}
142 		if (proto == RTE_BE16(RTE_ETHER_TYPE_IPV4)) {
143 			swap_ipv4(h.ipv4);
144 			next_proto = h.ipv4->next_proto_id;
145 			mb->l3_len = rte_ipv4_hdr_len(h.ipv4);
146 			h.byte += mb->l3_len;
147 		} else if (proto == RTE_BE16(RTE_ETHER_TYPE_IPV6)) {
148 			swap_ipv6(h.ipv6);
149 			next_proto = h.ipv6->proto;
150 			h.ipv6++;
151 			mb->l3_len = sizeof(struct rte_ipv6_hdr);
152 		} else {
153 			mbuf_field_set(mb, ol_flags);
154 			continue;
155 		}
156 		if (next_proto == IPPROTO_UDP) {
157 			swap_udp(h.udp);
158 			mb->l4_len = sizeof(struct rte_udp_hdr);
159 		} else if (next_proto == IPPROTO_TCP) {
160 			swap_tcp(h.tcp);
161 			mb->l4_len = (h.tcp->data_off & 0xf0) >> 2;
162 		}
163 		mbuf_field_set(mb, ol_flags);
164 	}
165 	nb_tx = rte_eth_tx_burst(fs->tx_port, fs->tx_queue, pkts_burst, nb_rx);
166 	/*
167 	 * Retry if necessary
168 	 */
169 	if (unlikely(nb_tx < nb_rx) && fs->retry_enabled) {
170 		retry = 0;
171 		while (nb_tx < nb_rx && retry++ < burst_tx_retry_num) {
172 			rte_delay_us(burst_tx_delay_time);
173 			nb_tx += rte_eth_tx_burst(fs->tx_port, fs->tx_queue,
174 					&pkts_burst[nb_tx], nb_rx - nb_tx);
175 		}
176 	}
177 	fs->tx_packets += nb_tx;
178 	inc_tx_burst_stats(fs, nb_tx);
179 	if (unlikely(nb_tx < nb_rx)) {
180 		fs->fwd_dropped += (nb_rx - nb_tx);
181 		do {
182 			rte_pktmbuf_free(pkts_burst[nb_tx]);
183 		} while (++nb_tx < nb_rx);
184 	}
185 	get_end_cycles(fs, start_tsc);
186 }
187 
188 struct fwd_engine five_tuple_swap_fwd_engine = {
189 	.fwd_mode_name  = "5tswap",
190 	.port_fwd_begin = NULL,
191 	.port_fwd_end   = NULL,
192 	.packet_fwd     = pkt_burst_5tuple_swap,
193 };
194