xref: /dpdk/app/test-flow-perf/main.c (revision daa02b5cddbb8e11b31d41e2bf7bb1ae64dcae2f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2020 Mellanox Technologies, Ltd
3  *
4  * This file contain the application main file
5  * This application provides the user the ability to test the
6  * insertion rate for specific rte_flow rule under stress state ~4M rule/
7  *
8  * Then it will also provide packet per second measurement after installing
9  * all rules, the user may send traffic to test the PPS that match the rules
10  * after all rules are installed, to check performance or functionality after
11  * the stress.
12  *
13  * The flows insertion will go for all ports first, then it will print the
14  * results, after that the application will go into forwarding packets mode
15  * it will start receiving traffic if any and then forwarding it back and
16  * gives packet per second measurement.
17  */
18 
19 #include <stdio.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <stdint.h>
23 #include <inttypes.h>
24 #include <stdarg.h>
25 #include <errno.h>
26 #include <getopt.h>
27 #include <stdbool.h>
28 #include <sys/time.h>
29 #include <signal.h>
30 #include <unistd.h>
31 
32 #include <rte_malloc.h>
33 #include <rte_mempool.h>
34 #include <rte_mbuf.h>
35 #include <rte_ethdev.h>
36 #include <rte_flow.h>
37 #include <rte_mtr.h>
38 
39 #include "config.h"
40 #include "flow_gen.h"
41 
42 #define MAX_BATCHES_COUNT          100
43 #define DEFAULT_RULES_COUNT    4000000
44 #define DEFAULT_RULES_BATCH     100000
45 #define DEFAULT_GROUP                0
46 
47 struct rte_flow *flow;
48 static uint8_t flow_group;
49 
50 static uint64_t encap_data;
51 static uint64_t decap_data;
52 
53 static uint64_t flow_items[MAX_ITEMS_NUM];
54 static uint64_t flow_actions[MAX_ACTIONS_NUM];
55 static uint64_t flow_attrs[MAX_ATTRS_NUM];
56 static uint8_t items_idx, actions_idx, attrs_idx;
57 
58 static uint64_t ports_mask;
59 static volatile bool force_quit;
60 static bool dump_iterations;
61 static bool delete_flag;
62 static bool dump_socket_mem_flag;
63 static bool enable_fwd;
64 static bool unique_data;
65 
66 static struct rte_mempool *mbuf_mp;
67 static uint32_t nb_lcores;
68 static uint32_t rules_count;
69 static uint32_t rules_batch;
70 static uint32_t hairpin_queues_num; /* total hairpin q number - default: 0 */
71 static uint32_t nb_lcores;
72 
73 #define MAX_PKT_BURST    32
74 #define LCORE_MODE_PKT    1
75 #define LCORE_MODE_STATS  2
76 #define MAX_STREAMS      64
77 #define METER_CREATE	  1
78 #define METER_DELETE	  2
79 
80 struct stream {
81 	int tx_port;
82 	int tx_queue;
83 	int rx_port;
84 	int rx_queue;
85 };
86 
87 struct lcore_info {
88 	int mode;
89 	int streams_nb;
90 	struct stream streams[MAX_STREAMS];
91 	/* stats */
92 	uint64_t tx_pkts;
93 	uint64_t tx_drops;
94 	uint64_t rx_pkts;
95 	struct rte_mbuf *pkts[MAX_PKT_BURST];
96 } __rte_cache_aligned;
97 
98 static struct lcore_info lcore_infos[RTE_MAX_LCORE];
99 
100 struct used_cpu_time {
101 	double insertion[MAX_PORTS][RTE_MAX_LCORE];
102 	double deletion[MAX_PORTS][RTE_MAX_LCORE];
103 };
104 
105 struct multi_cores_pool {
106 	uint32_t cores_count;
107 	uint32_t rules_count;
108 	struct used_cpu_time meters_record;
109 	struct used_cpu_time flows_record;
110 	int64_t last_alloc[RTE_MAX_LCORE];
111 	int64_t current_alloc[RTE_MAX_LCORE];
112 } __rte_cache_aligned;
113 
114 static struct multi_cores_pool mc_pool = {
115 	.cores_count = 1,
116 };
117 
118 static void
119 usage(char *progname)
120 {
121 	printf("\nusage: %s\n", progname);
122 	printf("\nControl configurations:\n");
123 	printf("  --rules-count=N: to set the number of needed"
124 		" rules to insert, default is %d\n", DEFAULT_RULES_COUNT);
125 	printf("  --rules-batch=N: set number of batched rules,"
126 		" default is %d\n", DEFAULT_RULES_BATCH);
127 	printf("  --dump-iterations: To print rates for each"
128 		" iteration\n");
129 	printf("  --deletion-rate: Enable deletion rate"
130 		" calculations\n");
131 	printf("  --dump-socket-mem: To dump all socket memory\n");
132 	printf("  --enable-fwd: To enable packets forwarding"
133 		" after insertion\n");
134 	printf("  --portmask=N: hexadecimal bitmask of ports used\n");
135 	printf("  --unique-data: flag to set using unique data for all"
136 		" actions that support data, such as header modify and encap actions\n");
137 
138 	printf("To set flow attributes:\n");
139 	printf("  --ingress: set ingress attribute in flows\n");
140 	printf("  --egress: set egress attribute in flows\n");
141 	printf("  --transfer: set transfer attribute in flows\n");
142 	printf("  --group=N: set group for all flows,"
143 		" default is %d\n", DEFAULT_GROUP);
144 	printf("  --cores=N: to set the number of needed "
145 		"cores to insert rte_flow rules, default is 1\n");
146 
147 	printf("To set flow items:\n");
148 	printf("  --ether: add ether layer in flow items\n");
149 	printf("  --vlan: add vlan layer in flow items\n");
150 	printf("  --ipv4: add ipv4 layer in flow items\n");
151 	printf("  --ipv6: add ipv6 layer in flow items\n");
152 	printf("  --tcp: add tcp layer in flow items\n");
153 	printf("  --udp: add udp layer in flow items\n");
154 	printf("  --vxlan: add vxlan layer in flow items\n");
155 	printf("  --vxlan-gpe: add vxlan-gpe layer in flow items\n");
156 	printf("  --gre: add gre layer in flow items\n");
157 	printf("  --geneve: add geneve layer in flow items\n");
158 	printf("  --gtp: add gtp layer in flow items\n");
159 	printf("  --meta: add meta layer in flow items\n");
160 	printf("  --tag: add tag layer in flow items\n");
161 	printf("  --icmpv4: add icmpv4 layer in flow items\n");
162 	printf("  --icmpv6: add icmpv6 layer in flow items\n");
163 
164 	printf("To set flow actions:\n");
165 	printf("  --port-id: add port-id action in flow actions\n");
166 	printf("  --rss: add rss action in flow actions\n");
167 	printf("  --queue: add queue action in flow actions\n");
168 	printf("  --jump: add jump action in flow actions\n");
169 	printf("  --mark: add mark action in flow actions\n");
170 	printf("  --count: add count action in flow actions\n");
171 	printf("  --set-meta: add set meta action in flow actions\n");
172 	printf("  --set-tag: add set tag action in flow actions\n");
173 	printf("  --drop: add drop action in flow actions\n");
174 	printf("  --hairpin-queue=N: add hairpin-queue action in flow actions\n");
175 	printf("  --hairpin-rss=N: add hairpin-rss action in flow actions\n");
176 	printf("  --set-src-mac: add set src mac action to flow actions\n"
177 		"Src mac to be set is random each flow\n");
178 	printf("  --set-dst-mac: add set dst mac action to flow actions\n"
179 		 "Dst mac to be set is random each flow\n");
180 	printf("  --set-src-ipv4: add set src ipv4 action to flow actions\n"
181 		"Src ipv4 to be set is random each flow\n");
182 	printf("  --set-dst-ipv4 add set dst ipv4 action to flow actions\n"
183 		"Dst ipv4 to be set is random each flow\n");
184 	printf("  --set-src-ipv6: add set src ipv6 action to flow actions\n"
185 		"Src ipv6 to be set is random each flow\n");
186 	printf("  --set-dst-ipv6: add set dst ipv6 action to flow actions\n"
187 		"Dst ipv6 to be set is random each flow\n");
188 	printf("  --set-src-tp: add set src tp action to flow actions\n"
189 		"Src tp to be set is random each flow\n");
190 	printf("  --set-dst-tp: add set dst tp action to flow actions\n"
191 		"Dst tp to be set is random each flow\n");
192 	printf("  --inc-tcp-ack: add inc tcp ack action to flow actions\n"
193 		"tcp ack will be increments by 1\n");
194 	printf("  --dec-tcp-ack: add dec tcp ack action to flow actions\n"
195 		"tcp ack will be decrements by 1\n");
196 	printf("  --inc-tcp-seq: add inc tcp seq action to flow actions\n"
197 		"tcp seq will be increments by 1\n");
198 	printf("  --dec-tcp-seq: add dec tcp seq action to flow actions\n"
199 		"tcp seq will be decrements by 1\n");
200 	printf("  --set-ttl: add set ttl action to flow actions\n"
201 		"L3 ttl to be set is random each flow\n");
202 	printf("  --dec-ttl: add dec ttl action to flow actions\n"
203 		"L3 ttl will be decrements by 1\n");
204 	printf("  --set-ipv4-dscp: add set ipv4 dscp action to flow actions\n"
205 		"ipv4 dscp value to be set is random each flow\n");
206 	printf("  --set-ipv6-dscp: add set ipv6 dscp action to flow actions\n"
207 		"ipv6 dscp value to be set is random each flow\n");
208 	printf("  --flag: add flag action to flow actions\n");
209 	printf("  --meter: add meter action to flow actions\n");
210 	printf("  --raw-encap=<data>: add raw encap action to flow actions\n"
211 		"Data is the data needed to be encaped\n"
212 		"Example: raw-encap=ether,ipv4,udp,vxlan\n");
213 	printf("  --raw-decap=<data>: add raw decap action to flow actions\n"
214 		"Data is the data needed to be decaped\n"
215 		"Example: raw-decap=ether,ipv4,udp,vxlan\n");
216 	printf("  --vxlan-encap: add vxlan-encap action to flow actions\n"
217 		"Encapped data is fixed with pattern: ether,ipv4,udp,vxlan\n"
218 		"With fixed values\n");
219 	printf("  --vxlan-decap: add vxlan_decap action to flow actions\n");
220 }
221 
222 static void
223 args_parse(int argc, char **argv)
224 {
225 	uint64_t pm;
226 	char **argvopt;
227 	char *token;
228 	char *end;
229 	int n, opt;
230 	int opt_idx;
231 	size_t i;
232 
233 	static const struct option_dict {
234 		const char *str;
235 		const uint64_t mask;
236 		uint64_t *map;
237 		uint8_t *map_idx;
238 
239 	} flow_options[] = {
240 		{
241 			.str = "ether",
242 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ETH),
243 			.map = &flow_items[0],
244 			.map_idx = &items_idx
245 		},
246 		{
247 			.str = "ipv4",
248 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV4),
249 			.map = &flow_items[0],
250 			.map_idx = &items_idx
251 		},
252 		{
253 			.str = "ipv6",
254 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV6),
255 			.map = &flow_items[0],
256 			.map_idx = &items_idx
257 		},
258 		{
259 			.str = "vlan",
260 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VLAN),
261 			.map = &flow_items[0],
262 			.map_idx = &items_idx
263 		},
264 		{
265 			.str = "tcp",
266 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_TCP),
267 			.map = &flow_items[0],
268 			.map_idx = &items_idx
269 		},
270 		{
271 			.str = "udp",
272 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_UDP),
273 			.map = &flow_items[0],
274 			.map_idx = &items_idx
275 		},
276 		{
277 			.str = "vxlan",
278 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN),
279 			.map = &flow_items[0],
280 			.map_idx = &items_idx
281 		},
282 		{
283 			.str = "vxlan-gpe",
284 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN_GPE),
285 			.map = &flow_items[0],
286 			.map_idx = &items_idx
287 		},
288 		{
289 			.str = "gre",
290 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GRE),
291 			.map = &flow_items[0],
292 			.map_idx = &items_idx
293 		},
294 		{
295 			.str = "geneve",
296 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GENEVE),
297 			.map = &flow_items[0],
298 			.map_idx = &items_idx
299 		},
300 		{
301 			.str = "gtp",
302 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GTP),
303 			.map = &flow_items[0],
304 			.map_idx = &items_idx
305 		},
306 		{
307 			.str = "meta",
308 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_META),
309 			.map = &flow_items[0],
310 			.map_idx = &items_idx
311 		},
312 		{
313 			.str = "tag",
314 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_TAG),
315 			.map = &flow_items[0],
316 			.map_idx = &items_idx
317 		},
318 		{
319 			.str = "icmpv4",
320 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ICMP),
321 			.map = &flow_items[0],
322 			.map_idx = &items_idx
323 		},
324 		{
325 			.str = "icmpv6",
326 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ICMP6),
327 			.map = &flow_items[0],
328 			.map_idx = &items_idx
329 		},
330 		{
331 			.str = "ingress",
332 			.mask = INGRESS,
333 			.map = &flow_attrs[0],
334 			.map_idx = &attrs_idx
335 		},
336 		{
337 			.str = "egress",
338 			.mask = EGRESS,
339 			.map = &flow_attrs[0],
340 			.map_idx = &attrs_idx
341 		},
342 		{
343 			.str = "transfer",
344 			.mask = TRANSFER,
345 			.map = &flow_attrs[0],
346 			.map_idx = &attrs_idx
347 		},
348 		{
349 			.str = "port-id",
350 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_PORT_ID),
351 			.map = &flow_actions[0],
352 			.map_idx = &actions_idx
353 		},
354 		{
355 			.str = "rss",
356 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_RSS),
357 			.map = &flow_actions[0],
358 			.map_idx = &actions_idx
359 		},
360 		{
361 			.str = "queue",
362 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_QUEUE),
363 			.map = &flow_actions[0],
364 			.map_idx = &actions_idx
365 		},
366 		{
367 			.str = "jump",
368 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_JUMP),
369 			.map = &flow_actions[0],
370 			.map_idx = &actions_idx
371 		},
372 		{
373 			.str = "mark",
374 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_MARK),
375 			.map = &flow_actions[0],
376 			.map_idx = &actions_idx
377 		},
378 		{
379 			.str = "count",
380 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_COUNT),
381 			.map = &flow_actions[0],
382 			.map_idx = &actions_idx
383 		},
384 		{
385 			.str = "set-meta",
386 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_SET_META),
387 			.map = &flow_actions[0],
388 			.map_idx = &actions_idx
389 		},
390 		{
391 			.str = "set-tag",
392 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_SET_TAG),
393 			.map = &flow_actions[0],
394 			.map_idx = &actions_idx
395 		},
396 		{
397 			.str = "drop",
398 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_DROP),
399 			.map = &flow_actions[0],
400 			.map_idx = &actions_idx
401 		},
402 		{
403 			.str = "set-src-mac",
404 			.mask = FLOW_ACTION_MASK(
405 				RTE_FLOW_ACTION_TYPE_SET_MAC_SRC
406 			),
407 			.map = &flow_actions[0],
408 			.map_idx = &actions_idx
409 		},
410 		{
411 			.str = "set-dst-mac",
412 			.mask = FLOW_ACTION_MASK(
413 				RTE_FLOW_ACTION_TYPE_SET_MAC_DST
414 			),
415 			.map = &flow_actions[0],
416 			.map_idx = &actions_idx
417 		},
418 		{
419 			.str = "set-src-ipv4",
420 			.mask = FLOW_ACTION_MASK(
421 				RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC
422 			),
423 			.map = &flow_actions[0],
424 			.map_idx = &actions_idx
425 		},
426 		{
427 			.str = "set-dst-ipv4",
428 			.mask = FLOW_ACTION_MASK(
429 				RTE_FLOW_ACTION_TYPE_SET_IPV4_DST
430 			),
431 			.map = &flow_actions[0],
432 			.map_idx = &actions_idx
433 		},
434 		{
435 			.str = "set-src-ipv6",
436 			.mask = FLOW_ACTION_MASK(
437 				RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC
438 			),
439 			.map = &flow_actions[0],
440 			.map_idx = &actions_idx
441 		},
442 		{
443 			.str = "set-dst-ipv6",
444 			.mask = FLOW_ACTION_MASK(
445 				RTE_FLOW_ACTION_TYPE_SET_IPV6_DST
446 			),
447 			.map = &flow_actions[0],
448 			.map_idx = &actions_idx
449 		},
450 		{
451 			.str = "set-src-tp",
452 			.mask = FLOW_ACTION_MASK(
453 				RTE_FLOW_ACTION_TYPE_SET_TP_SRC
454 			),
455 			.map = &flow_actions[0],
456 			.map_idx = &actions_idx
457 		},
458 		{
459 			.str = "set-dst-tp",
460 			.mask = FLOW_ACTION_MASK(
461 				RTE_FLOW_ACTION_TYPE_SET_TP_DST
462 			),
463 			.map = &flow_actions[0],
464 			.map_idx = &actions_idx
465 		},
466 		{
467 			.str = "inc-tcp-ack",
468 			.mask = FLOW_ACTION_MASK(
469 				RTE_FLOW_ACTION_TYPE_INC_TCP_ACK
470 			),
471 			.map = &flow_actions[0],
472 			.map_idx = &actions_idx
473 		},
474 		{
475 			.str = "dec-tcp-ack",
476 			.mask = FLOW_ACTION_MASK(
477 				RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK
478 			),
479 			.map = &flow_actions[0],
480 			.map_idx = &actions_idx
481 		},
482 		{
483 			.str = "inc-tcp-seq",
484 			.mask = FLOW_ACTION_MASK(
485 				RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ
486 			),
487 			.map = &flow_actions[0],
488 			.map_idx = &actions_idx
489 		},
490 		{
491 			.str = "dec-tcp-seq",
492 			.mask = FLOW_ACTION_MASK(
493 				RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ
494 			),
495 			.map = &flow_actions[0],
496 			.map_idx = &actions_idx
497 		},
498 		{
499 			.str = "set-ttl",
500 			.mask = FLOW_ACTION_MASK(
501 				RTE_FLOW_ACTION_TYPE_SET_TTL
502 			),
503 			.map = &flow_actions[0],
504 			.map_idx = &actions_idx
505 		},
506 		{
507 			.str = "dec-ttl",
508 			.mask = FLOW_ACTION_MASK(
509 				RTE_FLOW_ACTION_TYPE_DEC_TTL
510 			),
511 			.map = &flow_actions[0],
512 			.map_idx = &actions_idx
513 		},
514 		{
515 			.str = "set-ipv4-dscp",
516 			.mask = FLOW_ACTION_MASK(
517 				RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP
518 			),
519 			.map = &flow_actions[0],
520 			.map_idx = &actions_idx
521 		},
522 		{
523 			.str = "set-ipv6-dscp",
524 			.mask = FLOW_ACTION_MASK(
525 				RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP
526 			),
527 			.map = &flow_actions[0],
528 			.map_idx = &actions_idx
529 		},
530 		{
531 			.str = "flag",
532 			.mask = FLOW_ACTION_MASK(
533 				RTE_FLOW_ACTION_TYPE_FLAG
534 			),
535 			.map = &flow_actions[0],
536 			.map_idx = &actions_idx
537 		},
538 		{
539 			.str = "meter",
540 			.mask = FLOW_ACTION_MASK(
541 				RTE_FLOW_ACTION_TYPE_METER
542 			),
543 			.map = &flow_actions[0],
544 			.map_idx = &actions_idx
545 		},
546 		{
547 			.str = "vxlan-encap",
548 			.mask = FLOW_ACTION_MASK(
549 				RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP
550 			),
551 			.map = &flow_actions[0],
552 			.map_idx = &actions_idx
553 		},
554 		{
555 			.str = "vxlan-decap",
556 			.mask = FLOW_ACTION_MASK(
557 				RTE_FLOW_ACTION_TYPE_VXLAN_DECAP
558 			),
559 			.map = &flow_actions[0],
560 			.map_idx = &actions_idx
561 		},
562 	};
563 
564 	static const struct option lgopts[] = {
565 		/* Control */
566 		{ "help",                       0, 0, 0 },
567 		{ "rules-count",                1, 0, 0 },
568 		{ "rules-batch",                1, 0, 0 },
569 		{ "dump-iterations",            0, 0, 0 },
570 		{ "deletion-rate",              0, 0, 0 },
571 		{ "dump-socket-mem",            0, 0, 0 },
572 		{ "enable-fwd",                 0, 0, 0 },
573 		{ "unique-data",                0, 0, 0 },
574 		{ "portmask",                   1, 0, 0 },
575 		{ "cores",                      1, 0, 0 },
576 		/* Attributes */
577 		{ "ingress",                    0, 0, 0 },
578 		{ "egress",                     0, 0, 0 },
579 		{ "transfer",                   0, 0, 0 },
580 		{ "group",                      1, 0, 0 },
581 		/* Items */
582 		{ "ether",                      0, 0, 0 },
583 		{ "vlan",                       0, 0, 0 },
584 		{ "ipv4",                       0, 0, 0 },
585 		{ "ipv6",                       0, 0, 0 },
586 		{ "tcp",                        0, 0, 0 },
587 		{ "udp",                        0, 0, 0 },
588 		{ "vxlan",                      0, 0, 0 },
589 		{ "vxlan-gpe",                  0, 0, 0 },
590 		{ "gre",                        0, 0, 0 },
591 		{ "geneve",                     0, 0, 0 },
592 		{ "gtp",                        0, 0, 0 },
593 		{ "meta",                       0, 0, 0 },
594 		{ "tag",                        0, 0, 0 },
595 		{ "icmpv4",                     0, 0, 0 },
596 		{ "icmpv6",                     0, 0, 0 },
597 		/* Actions */
598 		{ "port-id",                    0, 0, 0 },
599 		{ "rss",                        0, 0, 0 },
600 		{ "queue",                      0, 0, 0 },
601 		{ "jump",                       0, 0, 0 },
602 		{ "mark",                       0, 0, 0 },
603 		{ "count",                      0, 0, 0 },
604 		{ "set-meta",                   0, 0, 0 },
605 		{ "set-tag",                    0, 0, 0 },
606 		{ "drop",                       0, 0, 0 },
607 		{ "hairpin-queue",              1, 0, 0 },
608 		{ "hairpin-rss",                1, 0, 0 },
609 		{ "set-src-mac",                0, 0, 0 },
610 		{ "set-dst-mac",                0, 0, 0 },
611 		{ "set-src-ipv4",               0, 0, 0 },
612 		{ "set-dst-ipv4",               0, 0, 0 },
613 		{ "set-src-ipv6",               0, 0, 0 },
614 		{ "set-dst-ipv6",               0, 0, 0 },
615 		{ "set-src-tp",                 0, 0, 0 },
616 		{ "set-dst-tp",                 0, 0, 0 },
617 		{ "inc-tcp-ack",                0, 0, 0 },
618 		{ "dec-tcp-ack",                0, 0, 0 },
619 		{ "inc-tcp-seq",                0, 0, 0 },
620 		{ "dec-tcp-seq",                0, 0, 0 },
621 		{ "set-ttl",                    0, 0, 0 },
622 		{ "dec-ttl",                    0, 0, 0 },
623 		{ "set-ipv4-dscp",              0, 0, 0 },
624 		{ "set-ipv6-dscp",              0, 0, 0 },
625 		{ "flag",                       0, 0, 0 },
626 		{ "meter",		        0, 0, 0 },
627 		{ "raw-encap",                  1, 0, 0 },
628 		{ "raw-decap",                  1, 0, 0 },
629 		{ "vxlan-encap",                0, 0, 0 },
630 		{ "vxlan-decap",                0, 0, 0 },
631 	};
632 
633 	RTE_ETH_FOREACH_DEV(i)
634 		ports_mask |= 1 << i;
635 
636 	hairpin_queues_num = 0;
637 	argvopt = argv;
638 
639 	printf(":: Flow -> ");
640 	while ((opt = getopt_long(argc, argvopt, "",
641 				lgopts, &opt_idx)) != EOF) {
642 		switch (opt) {
643 		case 0:
644 			if (strcmp(lgopts[opt_idx].name, "help") == 0) {
645 				usage(argv[0]);
646 				exit(EXIT_SUCCESS);
647 			}
648 
649 			if (strcmp(lgopts[opt_idx].name, "group") == 0) {
650 				n = atoi(optarg);
651 				if (n >= 0)
652 					flow_group = n;
653 				else
654 					rte_exit(EXIT_FAILURE,
655 						"flow group should be >= 0\n");
656 				printf("group %d / ", flow_group);
657 			}
658 
659 			for (i = 0; i < RTE_DIM(flow_options); i++)
660 				if (strcmp(lgopts[opt_idx].name,
661 						flow_options[i].str) == 0) {
662 					flow_options[i].map[
663 					(*flow_options[i].map_idx)++] =
664 						flow_options[i].mask;
665 					printf("%s / ", flow_options[i].str);
666 				}
667 
668 			if (strcmp(lgopts[opt_idx].name,
669 					"hairpin-rss") == 0) {
670 				n = atoi(optarg);
671 				if (n > 0)
672 					hairpin_queues_num = n;
673 				else
674 					rte_exit(EXIT_FAILURE,
675 						"Hairpin queues should be > 0\n");
676 
677 				flow_actions[actions_idx++] =
678 					HAIRPIN_RSS_ACTION;
679 				printf("hairpin-rss / ");
680 			}
681 			if (strcmp(lgopts[opt_idx].name,
682 					"hairpin-queue") == 0) {
683 				n = atoi(optarg);
684 				if (n > 0)
685 					hairpin_queues_num = n;
686 				else
687 					rte_exit(EXIT_FAILURE,
688 						"Hairpin queues should be > 0\n");
689 
690 				flow_actions[actions_idx++] =
691 					HAIRPIN_QUEUE_ACTION;
692 				printf("hairpin-queue / ");
693 			}
694 
695 			if (strcmp(lgopts[opt_idx].name, "raw-encap") == 0) {
696 				printf("raw-encap ");
697 				flow_actions[actions_idx++] =
698 					FLOW_ITEM_MASK(
699 						RTE_FLOW_ACTION_TYPE_RAW_ENCAP
700 					);
701 
702 				token = strtok(optarg, ",");
703 				while (token != NULL) {
704 					for (i = 0; i < RTE_DIM(flow_options); i++) {
705 						if (strcmp(flow_options[i].str, token) == 0) {
706 							printf("%s,", token);
707 							encap_data |= flow_options[i].mask;
708 							break;
709 						}
710 						/* Reached last item with no match */
711 						if (i == (RTE_DIM(flow_options) - 1))
712 							rte_exit(EXIT_FAILURE,
713 								"Invalid encap item: %s\n", token);
714 					}
715 					token = strtok(NULL, ",");
716 				}
717 				printf(" / ");
718 			}
719 			if (strcmp(lgopts[opt_idx].name, "raw-decap") == 0) {
720 				printf("raw-decap ");
721 				flow_actions[actions_idx++] =
722 					FLOW_ITEM_MASK(
723 						RTE_FLOW_ACTION_TYPE_RAW_DECAP
724 					);
725 
726 				token = strtok(optarg, ",");
727 				while (token != NULL) {
728 					for (i = 0; i < RTE_DIM(flow_options); i++) {
729 						if (strcmp(flow_options[i].str, token) == 0) {
730 							printf("%s,", token);
731 							decap_data |= flow_options[i].mask;
732 							break;
733 						}
734 						/* Reached last item with no match */
735 						if (i == (RTE_DIM(flow_options) - 1))
736 							rte_exit(EXIT_FAILURE,
737 								"Invalid decap item %s\n", token);
738 					}
739 					token = strtok(NULL, ",");
740 				}
741 				printf(" / ");
742 			}
743 			/* Control */
744 			if (strcmp(lgopts[opt_idx].name,
745 					"rules-batch") == 0) {
746 				n = atoi(optarg);
747 				if (n >= DEFAULT_RULES_BATCH)
748 					rules_batch = n;
749 				else {
750 					rte_exit(EXIT_FAILURE,
751 						"rules_batch should be >= %d\n",
752 						DEFAULT_RULES_BATCH);
753 				}
754 			}
755 			if (strcmp(lgopts[opt_idx].name,
756 					"rules-count") == 0) {
757 				n = atoi(optarg);
758 				if (n >= (int) rules_batch)
759 					rules_count = n;
760 				else {
761 					rte_exit(EXIT_FAILURE,
762 						"rules_count should be >= %d\n",
763 						rules_batch);
764 				}
765 			}
766 			if (strcmp(lgopts[opt_idx].name,
767 					"dump-iterations") == 0)
768 				dump_iterations = true;
769 			if (strcmp(lgopts[opt_idx].name,
770 					"unique-data") == 0)
771 				unique_data = true;
772 			if (strcmp(lgopts[opt_idx].name,
773 					"deletion-rate") == 0)
774 				delete_flag = true;
775 			if (strcmp(lgopts[opt_idx].name,
776 					"dump-socket-mem") == 0)
777 				dump_socket_mem_flag = true;
778 			if (strcmp(lgopts[opt_idx].name,
779 					"enable-fwd") == 0)
780 				enable_fwd = true;
781 			if (strcmp(lgopts[opt_idx].name,
782 					"portmask") == 0) {
783 				/* parse hexadecimal string */
784 				end = NULL;
785 				pm = strtoull(optarg, &end, 16);
786 				if ((optarg[0] == '\0') || (end == NULL) || (*end != '\0'))
787 					rte_exit(EXIT_FAILURE, "Invalid fwd port mask\n");
788 				ports_mask = pm;
789 			}
790 			if (strcmp(lgopts[opt_idx].name, "cores") == 0) {
791 				n = atoi(optarg);
792 				if ((int) rte_lcore_count() <= n) {
793 					rte_exit(EXIT_FAILURE,
794 						"Error: you need %d cores to run on multi-cores\n"
795 						"Existing cores are: %d\n", n, rte_lcore_count());
796 				}
797 				if (n <= RTE_MAX_LCORE && n > 0)
798 					mc_pool.cores_count = n;
799 				else {
800 					rte_exit(EXIT_FAILURE,
801 						"Error: cores count must be > 0 and < %d\n",
802 						RTE_MAX_LCORE);
803 				}
804 			}
805 			break;
806 		default:
807 			usage(argv[0]);
808 			rte_exit(EXIT_FAILURE, "Invalid option: %s\n",
809 					argv[optind]);
810 			break;
811 		}
812 	}
813 	printf("end_flow\n");
814 }
815 
816 /* Dump the socket memory statistics on console */
817 static size_t
818 dump_socket_mem(FILE *f)
819 {
820 	struct rte_malloc_socket_stats socket_stats;
821 	unsigned int i = 0;
822 	size_t total = 0;
823 	size_t alloc = 0;
824 	size_t free = 0;
825 	unsigned int n_alloc = 0;
826 	unsigned int n_free = 0;
827 	bool active_nodes = false;
828 
829 
830 	for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
831 		if (rte_malloc_get_socket_stats(i, &socket_stats) ||
832 		    !socket_stats.heap_totalsz_bytes)
833 			continue;
834 		active_nodes = true;
835 		total += socket_stats.heap_totalsz_bytes;
836 		alloc += socket_stats.heap_allocsz_bytes;
837 		free += socket_stats.heap_freesz_bytes;
838 		n_alloc += socket_stats.alloc_count;
839 		n_free += socket_stats.free_count;
840 		if (dump_socket_mem_flag) {
841 			fprintf(f, "::::::::::::::::::::::::::::::::::::::::");
842 			fprintf(f,
843 				"\nSocket %u:\nsize(M) total: %.6lf\nalloc:"
844 				" %.6lf(%.3lf%%)\nfree: %.6lf"
845 				"\nmax: %.6lf"
846 				"\ncount alloc: %u\nfree: %u\n",
847 				i,
848 				socket_stats.heap_totalsz_bytes / 1.0e6,
849 				socket_stats.heap_allocsz_bytes / 1.0e6,
850 				(double)socket_stats.heap_allocsz_bytes * 100 /
851 				(double)socket_stats.heap_totalsz_bytes,
852 				socket_stats.heap_freesz_bytes / 1.0e6,
853 				socket_stats.greatest_free_size / 1.0e6,
854 				socket_stats.alloc_count,
855 				socket_stats.free_count);
856 				fprintf(f, "::::::::::::::::::::::::::::::::::::::::");
857 		}
858 	}
859 	if (dump_socket_mem_flag && active_nodes) {
860 		fprintf(f,
861 			"\nTotal: size(M)\ntotal: %.6lf"
862 			"\nalloc: %.6lf(%.3lf%%)\nfree: %.6lf"
863 			"\ncount alloc: %u\nfree: %u\n",
864 			total / 1.0e6, alloc / 1.0e6,
865 			(double)alloc * 100 / (double)total, free / 1.0e6,
866 			n_alloc, n_free);
867 		fprintf(f, "::::::::::::::::::::::::::::::::::::::::\n");
868 	}
869 	return alloc;
870 }
871 
872 static void
873 print_flow_error(struct rte_flow_error error)
874 {
875 	printf("Flow can't be created %d message: %s\n",
876 		error.type,
877 		error.message ? error.message : "(no stated reason)");
878 }
879 
880 static inline void
881 print_rules_batches(double *cpu_time_per_batch)
882 {
883 	uint8_t idx;
884 	double delta;
885 	double rate;
886 
887 	for (idx = 0; idx < MAX_BATCHES_COUNT; idx++) {
888 		if (!cpu_time_per_batch[idx])
889 			break;
890 		delta = (double)(rules_batch / cpu_time_per_batch[idx]);
891 		rate = delta / 1000; /* Save rate in K unit. */
892 		printf(":: Rules batch #%d: %d rules "
893 			"in %f sec[ Rate = %f K Rule/Sec ]\n",
894 			idx, rules_batch,
895 			cpu_time_per_batch[idx], rate);
896 	}
897 }
898 
899 
900 static inline int
901 has_meter(void)
902 {
903 	int i;
904 
905 	for (i = 0; i < MAX_ACTIONS_NUM; i++) {
906 		if (flow_actions[i] == 0)
907 			break;
908 		if (flow_actions[i]
909 				& FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_METER))
910 			return 1;
911 	}
912 	return 0;
913 }
914 
915 static void
916 create_meter_rule(int port_id, uint32_t counter)
917 {
918 	int ret;
919 	struct rte_mtr_params params;
920 	uint32_t default_prof_id = 100;
921 	struct rte_mtr_error error;
922 
923 	memset(&params, 0, sizeof(struct rte_mtr_params));
924 	params.meter_enable = 1;
925 	params.stats_mask = 0xffff;
926 	params.use_prev_mtr_color = 0;
927 	params.dscp_table = NULL;
928 
929 	/*create meter*/
930 	params.meter_profile_id = default_prof_id;
931 	ret = rte_mtr_create(port_id, counter, &params, 1, &error);
932 	if (ret != 0) {
933 		printf("Port %u create meter idx(%d) error(%d) message: %s\n",
934 			port_id, counter, error.type,
935 			error.message ? error.message : "(no stated reason)");
936 		rte_exit(EXIT_FAILURE, "Error in creating meter\n");
937 	}
938 }
939 
940 static void
941 destroy_meter_rule(int port_id, uint32_t counter)
942 {
943 	struct rte_mtr_error error;
944 
945 	if (rte_mtr_destroy(port_id, counter, &error)) {
946 		printf("Port %u destroy meter(%d) error(%d) message: %s\n",
947 			port_id, counter, error.type,
948 			error.message ? error.message : "(no stated reason)");
949 		rte_exit(EXIT_FAILURE, "Error in deleting meter rule\n");
950 	}
951 }
952 
953 static void
954 meters_handler(int port_id, uint8_t core_id, uint8_t ops)
955 {
956 	uint64_t start_batch;
957 	double cpu_time_used, insertion_rate;
958 	int rules_count_per_core, rules_batch_idx;
959 	uint32_t counter, start_counter = 0, end_counter;
960 	double cpu_time_per_batch[MAX_BATCHES_COUNT] = { 0 };
961 
962 	rules_count_per_core = rules_count / mc_pool.cores_count;
963 
964 	if (core_id)
965 		start_counter = core_id * rules_count_per_core;
966 	end_counter = (core_id + 1) * rules_count_per_core;
967 
968 	cpu_time_used = 0;
969 	start_batch = rte_get_timer_cycles();
970 	for (counter = start_counter; counter < end_counter; counter++) {
971 		if (ops == METER_CREATE)
972 			create_meter_rule(port_id, counter);
973 		else
974 			destroy_meter_rule(port_id, counter);
975 		/*
976 		 * Save the insertion rate for rules batch.
977 		 * Check if the insertion reached the rules
978 		 * patch counter, then save the insertion rate
979 		 * for this batch.
980 		 */
981 		if (!((counter + 1) % rules_batch)) {
982 			rules_batch_idx = ((counter + 1) / rules_batch) - 1;
983 			cpu_time_per_batch[rules_batch_idx] =
984 				((double)(rte_get_timer_cycles() - start_batch))
985 				/ rte_get_timer_hz();
986 			cpu_time_used += cpu_time_per_batch[rules_batch_idx];
987 			start_batch = rte_get_timer_cycles();
988 		}
989 	}
990 
991 	/* Print insertion rates for all batches */
992 	if (dump_iterations)
993 		print_rules_batches(cpu_time_per_batch);
994 
995 	insertion_rate =
996 		((double) (rules_count_per_core / cpu_time_used) / 1000);
997 
998 	/* Insertion rate for all rules in one core */
999 	printf(":: Port %d :: Core %d Meter %s :: start @[%d] - end @[%d],"
1000 		" use:%.02fs, rate:%.02fk Rule/Sec\n",
1001 		port_id, core_id, ops == METER_CREATE ? "create" : "delete",
1002 		start_counter, end_counter - 1,
1003 		cpu_time_used, insertion_rate);
1004 
1005 	if (ops == METER_CREATE)
1006 		mc_pool.meters_record.insertion[port_id][core_id]
1007 			= cpu_time_used;
1008 	else
1009 		mc_pool.meters_record.deletion[port_id][core_id]
1010 			= cpu_time_used;
1011 }
1012 
1013 static void
1014 destroy_meter_profile(void)
1015 {
1016 	struct rte_mtr_error error;
1017 	uint16_t nr_ports;
1018 	int port_id;
1019 
1020 	nr_ports = rte_eth_dev_count_avail();
1021 	for (port_id = 0; port_id < nr_ports; port_id++) {
1022 		/* If port outside portmask */
1023 		if (!((ports_mask >> port_id) & 0x1))
1024 			continue;
1025 
1026 		if (rte_mtr_meter_profile_delete
1027 			(port_id, DEFAULT_METER_PROF_ID, &error)) {
1028 			printf("Port %u del profile error(%d) message: %s\n",
1029 				port_id, error.type,
1030 				error.message ? error.message : "(no stated reason)");
1031 			rte_exit(EXIT_FAILURE, "Error: Destroy meter profile Failed!\n");
1032 		}
1033 	}
1034 }
1035 
1036 static void
1037 create_meter_profile(void)
1038 {
1039 	uint16_t nr_ports;
1040 	int ret, port_id;
1041 	struct rte_mtr_meter_profile mp;
1042 	struct rte_mtr_error error;
1043 
1044 	/*
1045 	 *currently , only create one meter file for one port
1046 	 *1 meter profile -> N meter rules -> N rte flows
1047 	 */
1048 	memset(&mp, 0, sizeof(struct rte_mtr_meter_profile));
1049 	nr_ports = rte_eth_dev_count_avail();
1050 	for (port_id = 0; port_id < nr_ports; port_id++) {
1051 		/* If port outside portmask */
1052 		if (!((ports_mask >> port_id) & 0x1))
1053 			continue;
1054 
1055 		mp.alg = RTE_MTR_SRTCM_RFC2697;
1056 		mp.srtcm_rfc2697.cir = METER_CIR;
1057 		mp.srtcm_rfc2697.cbs = METER_CIR / 8;
1058 		mp.srtcm_rfc2697.ebs = 0;
1059 
1060 		ret = rte_mtr_meter_profile_add
1061 			(port_id, DEFAULT_METER_PROF_ID, &mp, &error);
1062 		if (ret != 0) {
1063 			printf("Port %u create Profile error(%d) message: %s\n",
1064 				port_id, error.type,
1065 				error.message ? error.message : "(no stated reason)");
1066 			rte_exit(EXIT_FAILURE, "Error: Creation meter profile Failed!\n");
1067 		}
1068 	}
1069 }
1070 
1071 static inline void
1072 destroy_flows(int port_id, uint8_t core_id, struct rte_flow **flows_list)
1073 {
1074 	struct rte_flow_error error;
1075 	clock_t start_batch, end_batch;
1076 	double cpu_time_used = 0;
1077 	double deletion_rate;
1078 	double cpu_time_per_batch[MAX_BATCHES_COUNT] = { 0 };
1079 	double delta;
1080 	uint32_t i;
1081 	int rules_batch_idx;
1082 	int rules_count_per_core;
1083 
1084 	rules_count_per_core = rules_count / mc_pool.cores_count;
1085 	/* If group > 0 , should add 1 flow which created in group 0 */
1086 	if (flow_group > 0 && core_id == 0)
1087 		rules_count_per_core++;
1088 
1089 	start_batch = rte_get_timer_cycles();
1090 	for (i = 0; i < (uint32_t) rules_count_per_core; i++) {
1091 		if (flows_list[i] == 0)
1092 			break;
1093 
1094 		memset(&error, 0x33, sizeof(error));
1095 		if (rte_flow_destroy(port_id, flows_list[i], &error)) {
1096 			print_flow_error(error);
1097 			rte_exit(EXIT_FAILURE, "Error in deleting flow\n");
1098 		}
1099 
1100 		/*
1101 		 * Save the deletion rate for rules batch.
1102 		 * Check if the deletion reached the rules
1103 		 * patch counter, then save the deletion rate
1104 		 * for this batch.
1105 		 */
1106 		if (!((i + 1) % rules_batch)) {
1107 			end_batch = rte_get_timer_cycles();
1108 			delta = (double) (end_batch - start_batch);
1109 			rules_batch_idx = ((i + 1) / rules_batch) - 1;
1110 			cpu_time_per_batch[rules_batch_idx] = delta / rte_get_timer_hz();
1111 			cpu_time_used += cpu_time_per_batch[rules_batch_idx];
1112 			start_batch = rte_get_timer_cycles();
1113 		}
1114 	}
1115 
1116 	/* Print deletion rates for all batches */
1117 	if (dump_iterations)
1118 		print_rules_batches(cpu_time_per_batch);
1119 
1120 	/* Deletion rate for all rules */
1121 	deletion_rate = ((double) (rules_count_per_core / cpu_time_used) / 1000);
1122 	printf(":: Port %d :: Core %d :: Rules deletion rate -> %f K Rule/Sec\n",
1123 		port_id, core_id, deletion_rate);
1124 	printf(":: Port %d :: Core %d :: The time for deleting %d rules is %f seconds\n",
1125 		port_id, core_id, rules_count_per_core, cpu_time_used);
1126 
1127 	mc_pool.flows_record.deletion[port_id][core_id] = cpu_time_used;
1128 }
1129 
1130 static struct rte_flow **
1131 insert_flows(int port_id, uint8_t core_id)
1132 {
1133 	struct rte_flow **flows_list;
1134 	struct rte_flow_error error;
1135 	clock_t start_batch, end_batch;
1136 	double first_flow_latency;
1137 	double cpu_time_used;
1138 	double insertion_rate;
1139 	double cpu_time_per_batch[MAX_BATCHES_COUNT] = { 0 };
1140 	double delta;
1141 	uint32_t flow_index;
1142 	uint32_t counter, start_counter = 0, end_counter;
1143 	uint64_t global_items[MAX_ITEMS_NUM] = { 0 };
1144 	uint64_t global_actions[MAX_ACTIONS_NUM] = { 0 };
1145 	int rules_batch_idx;
1146 	int rules_count_per_core;
1147 
1148 	rules_count_per_core = rules_count / mc_pool.cores_count;
1149 
1150 	/* Set boundaries of rules for each core. */
1151 	if (core_id)
1152 		start_counter = core_id * rules_count_per_core;
1153 	end_counter = (core_id + 1) * rules_count_per_core;
1154 
1155 	global_items[0] = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ETH);
1156 	global_actions[0] = FLOW_ITEM_MASK(RTE_FLOW_ACTION_TYPE_JUMP);
1157 
1158 	flows_list = rte_zmalloc("flows_list",
1159 		(sizeof(struct rte_flow *) * rules_count_per_core) + 1, 0);
1160 	if (flows_list == NULL)
1161 		rte_exit(EXIT_FAILURE, "No Memory available!\n");
1162 
1163 	cpu_time_used = 0;
1164 	flow_index = 0;
1165 	if (flow_group > 0 && core_id == 0) {
1166 		/*
1167 		 * Create global rule to jump into flow_group,
1168 		 * this way the app will avoid the default rules.
1169 		 *
1170 		 * This rule will be created only once.
1171 		 *
1172 		 * Global rule:
1173 		 * group 0 eth / end actions jump group <flow_group>
1174 		 */
1175 		flow = generate_flow(port_id, 0, flow_attrs,
1176 			global_items, global_actions,
1177 			flow_group, 0, 0, 0, 0, core_id, unique_data, &error);
1178 
1179 		if (flow == NULL) {
1180 			print_flow_error(error);
1181 			rte_exit(EXIT_FAILURE, "Error in creating flow\n");
1182 		}
1183 		flows_list[flow_index++] = flow;
1184 	}
1185 
1186 	start_batch = rte_get_timer_cycles();
1187 	for (counter = start_counter; counter < end_counter; counter++) {
1188 		flow = generate_flow(port_id, flow_group,
1189 			flow_attrs, flow_items, flow_actions,
1190 			JUMP_ACTION_TABLE, counter,
1191 			hairpin_queues_num,
1192 			encap_data, decap_data,
1193 			core_id, unique_data, &error);
1194 
1195 		if (!counter) {
1196 			first_flow_latency = (double) (rte_get_timer_cycles() - start_batch);
1197 			first_flow_latency /= rte_get_timer_hz();
1198 			/* In millisecond */
1199 			first_flow_latency *= 1000;
1200 			printf(":: First Flow Latency :: Port %d :: First flow "
1201 				"installed in %f milliseconds\n",
1202 				port_id, first_flow_latency);
1203 		}
1204 
1205 		if (force_quit)
1206 			counter = end_counter;
1207 
1208 		if (!flow) {
1209 			print_flow_error(error);
1210 			rte_exit(EXIT_FAILURE, "Error in creating flow\n");
1211 		}
1212 
1213 		flows_list[flow_index++] = flow;
1214 
1215 		/*
1216 		 * Save the insertion rate for rules batch.
1217 		 * Check if the insertion reached the rules
1218 		 * patch counter, then save the insertion rate
1219 		 * for this batch.
1220 		 */
1221 		if (!((counter + 1) % rules_batch)) {
1222 			end_batch = rte_get_timer_cycles();
1223 			delta = (double) (end_batch - start_batch);
1224 			rules_batch_idx = ((counter + 1) / rules_batch) - 1;
1225 			cpu_time_per_batch[rules_batch_idx] = delta / rte_get_timer_hz();
1226 			cpu_time_used += cpu_time_per_batch[rules_batch_idx];
1227 			start_batch = rte_get_timer_cycles();
1228 		}
1229 	}
1230 
1231 	/* Print insertion rates for all batches */
1232 	if (dump_iterations)
1233 		print_rules_batches(cpu_time_per_batch);
1234 
1235 	printf(":: Port %d :: Core %d boundaries :: start @[%d] - end @[%d]\n",
1236 		port_id, core_id, start_counter, end_counter - 1);
1237 
1238 	/* Insertion rate for all rules in one core */
1239 	insertion_rate = ((double) (rules_count_per_core / cpu_time_used) / 1000);
1240 	printf(":: Port %d :: Core %d :: Rules insertion rate -> %f K Rule/Sec\n",
1241 		port_id, core_id, insertion_rate);
1242 	printf(":: Port %d :: Core %d :: The time for creating %d in rules %f seconds\n",
1243 		port_id, core_id, rules_count_per_core, cpu_time_used);
1244 
1245 	mc_pool.flows_record.insertion[port_id][core_id] = cpu_time_used;
1246 	return flows_list;
1247 }
1248 
1249 static void
1250 flows_handler(uint8_t core_id)
1251 {
1252 	struct rte_flow **flows_list;
1253 	uint16_t nr_ports;
1254 	int port_id;
1255 
1256 	nr_ports = rte_eth_dev_count_avail();
1257 
1258 	if (rules_batch > rules_count)
1259 		rules_batch = rules_count;
1260 
1261 	printf(":: Rules Count per port: %d\n\n", rules_count);
1262 
1263 	for (port_id = 0; port_id < nr_ports; port_id++) {
1264 		/* If port outside portmask */
1265 		if (!((ports_mask >> port_id) & 0x1))
1266 			continue;
1267 
1268 		/* Insertion part. */
1269 		mc_pool.last_alloc[core_id] = (int64_t)dump_socket_mem(stdout);
1270 		if (has_meter())
1271 			meters_handler(port_id, core_id, METER_CREATE);
1272 		flows_list = insert_flows(port_id, core_id);
1273 		if (flows_list == NULL)
1274 			rte_exit(EXIT_FAILURE, "Error: Insertion Failed!\n");
1275 		mc_pool.current_alloc[core_id] = (int64_t)dump_socket_mem(stdout);
1276 
1277 		/* Deletion part. */
1278 		if (delete_flag) {
1279 			destroy_flows(port_id, core_id, flows_list);
1280 			if (has_meter())
1281 				meters_handler(port_id, core_id, METER_DELETE);
1282 		}
1283 	}
1284 }
1285 
1286 static void
1287 dump_used_cpu_time(const char *item,
1288 		uint16_t port, struct used_cpu_time *used_time)
1289 {
1290 	uint32_t i;
1291 	/* Latency: total count of rte rules divided
1292 	 * over max time used by thread between all
1293 	 * threads time.
1294 	 *
1295 	 * Throughput: total count of rte rules divided
1296 	 * over the average of the time cosumed by all
1297 	 * threads time.
1298 	 */
1299 	double insertion_latency_time;
1300 	double insertion_throughput_time;
1301 	double deletion_latency_time;
1302 	double deletion_throughput_time;
1303 	double insertion_latency, insertion_throughput;
1304 	double deletion_latency, deletion_throughput;
1305 
1306 	/* Save first insertion/deletion rates from first thread.
1307 	 * Start comparing with all threads, if any thread used
1308 	 * time more than current saved, replace it.
1309 	 *
1310 	 * Thus in the end we will have the max time used for
1311 	 * insertion/deletion by one thread.
1312 	 *
1313 	 * As for memory consumption, save the min of all threads
1314 	 * of last alloc, and save the max for all threads for
1315 	 * current alloc.
1316 	 */
1317 
1318 	insertion_latency_time = used_time->insertion[port][0];
1319 	deletion_latency_time = used_time->deletion[port][0];
1320 	insertion_throughput_time = used_time->insertion[port][0];
1321 	deletion_throughput_time = used_time->deletion[port][0];
1322 
1323 	i = mc_pool.cores_count;
1324 	while (i-- > 1) {
1325 		insertion_throughput_time += used_time->insertion[port][i];
1326 		deletion_throughput_time += used_time->deletion[port][i];
1327 		if (insertion_latency_time < used_time->insertion[port][i])
1328 			insertion_latency_time = used_time->insertion[port][i];
1329 		if (deletion_latency_time < used_time->deletion[port][i])
1330 			deletion_latency_time = used_time->deletion[port][i];
1331 	}
1332 
1333 	insertion_latency = ((double) (mc_pool.rules_count
1334 				/ insertion_latency_time) / 1000);
1335 	deletion_latency = ((double) (mc_pool.rules_count
1336 				/ deletion_latency_time) / 1000);
1337 
1338 	insertion_throughput_time /= mc_pool.cores_count;
1339 	deletion_throughput_time /= mc_pool.cores_count;
1340 	insertion_throughput = ((double) (mc_pool.rules_count
1341 				/ insertion_throughput_time) / 1000);
1342 	deletion_throughput = ((double) (mc_pool.rules_count
1343 				/ deletion_throughput_time) / 1000);
1344 
1345 	/* Latency stats */
1346 	printf("\n%s\n:: [Latency | Insertion] All Cores :: Port %d :: ",
1347 		item, port);
1348 	printf("Total flows insertion rate -> %f K Rules/Sec\n",
1349 		insertion_latency);
1350 	printf(":: [Latency | Insertion] All Cores :: Port %d :: ", port);
1351 	printf("The time for creating %d rules is %f seconds\n",
1352 		mc_pool.rules_count, insertion_latency_time);
1353 
1354 	/* Throughput stats */
1355 	printf(":: [Throughput | Insertion] All Cores :: Port %d :: ", port);
1356 	printf("Total flows insertion rate -> %f K Rules/Sec\n",
1357 		insertion_throughput);
1358 	printf(":: [Throughput | Insertion] All Cores :: Port %d :: ", port);
1359 	printf("The average time for creating %d rules is %f seconds\n",
1360 		mc_pool.rules_count, insertion_throughput_time);
1361 
1362 	if (delete_flag) {
1363 	/* Latency stats */
1364 		printf(":: [Latency | Deletion] All Cores :: Port %d :: Total "
1365 			"deletion rate -> %f K Rules/Sec\n",
1366 			port, deletion_latency);
1367 		printf(":: [Latency | Deletion] All Cores :: Port %d :: ",
1368 			port);
1369 		printf("The time for deleting %d rules is %f seconds\n",
1370 			mc_pool.rules_count, deletion_latency_time);
1371 
1372 		/* Throughput stats */
1373 		printf(":: [Throughput | Deletion] All Cores :: Port %d :: Total "
1374 			"deletion rate -> %f K Rules/Sec\n",
1375 			port, deletion_throughput);
1376 		printf(":: [Throughput | Deletion] All Cores :: Port %d :: ",
1377 			port);
1378 		printf("The average time for deleting %d rules is %f seconds\n",
1379 			mc_pool.rules_count, deletion_throughput_time);
1380 	}
1381 }
1382 
1383 static void
1384 dump_used_mem(uint16_t port)
1385 {
1386 	uint32_t i;
1387 	int64_t last_alloc, current_alloc;
1388 	int flow_size_in_bytes;
1389 
1390 	last_alloc = mc_pool.last_alloc[0];
1391 	current_alloc = mc_pool.current_alloc[0];
1392 
1393 	i = mc_pool.cores_count;
1394 	while (i-- > 1) {
1395 		if (last_alloc > mc_pool.last_alloc[i])
1396 			last_alloc = mc_pool.last_alloc[i];
1397 		if (current_alloc < mc_pool.current_alloc[i])
1398 			current_alloc = mc_pool.current_alloc[i];
1399 	}
1400 
1401 	flow_size_in_bytes = (current_alloc - last_alloc) / mc_pool.rules_count;
1402 	printf("\n:: Port %d :: rte_flow size in DPDK layer: %d Bytes\n",
1403 		port, flow_size_in_bytes);
1404 }
1405 
1406 static int
1407 run_rte_flow_handler_cores(void *data __rte_unused)
1408 {
1409 	uint16_t port;
1410 	int lcore_counter = 0;
1411 	int lcore_id = rte_lcore_id();
1412 	int i;
1413 
1414 	RTE_LCORE_FOREACH(i) {
1415 		/*  If core not needed return. */
1416 		if (lcore_id == i) {
1417 			printf(":: lcore %d mapped with index %d\n", lcore_id, lcore_counter);
1418 			if (lcore_counter >= (int) mc_pool.cores_count)
1419 				return 0;
1420 			break;
1421 		}
1422 		lcore_counter++;
1423 	}
1424 	lcore_id = lcore_counter;
1425 
1426 	if (lcore_id >= (int) mc_pool.cores_count)
1427 		return 0;
1428 
1429 	mc_pool.rules_count = rules_count;
1430 
1431 	flows_handler(lcore_id);
1432 
1433 	/* Only main core to print total results. */
1434 	if (lcore_id != 0)
1435 		return 0;
1436 
1437 	/* Make sure all cores finished insertion/deletion process. */
1438 	rte_eal_mp_wait_lcore();
1439 
1440 	RTE_ETH_FOREACH_DEV(port) {
1441 		/* If port outside portmask */
1442 		if (!((ports_mask >> port) & 0x1))
1443 			continue;
1444 		if (has_meter())
1445 			dump_used_cpu_time("Meters:",
1446 				port, &mc_pool.meters_record);
1447 		dump_used_cpu_time("Flows:",
1448 			port, &mc_pool.flows_record);
1449 		dump_used_mem(port);
1450 	}
1451 
1452 	return 0;
1453 }
1454 
1455 static void
1456 signal_handler(int signum)
1457 {
1458 	if (signum == SIGINT || signum == SIGTERM) {
1459 		printf("\n\nSignal %d received, preparing to exit...\n",
1460 					signum);
1461 		printf("Error: Stats are wrong due to sudden signal!\n\n");
1462 		force_quit = true;
1463 	}
1464 }
1465 
1466 static inline uint16_t
1467 do_rx(struct lcore_info *li, uint16_t rx_port, uint16_t rx_queue)
1468 {
1469 	uint16_t cnt = 0;
1470 	cnt = rte_eth_rx_burst(rx_port, rx_queue, li->pkts, MAX_PKT_BURST);
1471 	li->rx_pkts += cnt;
1472 	return cnt;
1473 }
1474 
1475 static inline void
1476 do_tx(struct lcore_info *li, uint16_t cnt, uint16_t tx_port,
1477 			uint16_t tx_queue)
1478 {
1479 	uint16_t nr_tx = 0;
1480 	uint16_t i;
1481 
1482 	nr_tx = rte_eth_tx_burst(tx_port, tx_queue, li->pkts, cnt);
1483 	li->tx_pkts  += nr_tx;
1484 	li->tx_drops += cnt - nr_tx;
1485 
1486 	for (i = nr_tx; i < cnt; i++)
1487 		rte_pktmbuf_free(li->pkts[i]);
1488 }
1489 
1490 /*
1491  * Method to convert numbers into pretty numbers that easy
1492  * to read. The design here is to add comma after each three
1493  * digits and set all of this inside buffer.
1494  *
1495  * For example if n = 1799321, the output will be
1496  * 1,799,321 after this method which is easier to read.
1497  */
1498 static char *
1499 pretty_number(uint64_t n, char *buf)
1500 {
1501 	char p[6][4];
1502 	int i = 0;
1503 	int off = 0;
1504 
1505 	while (n > 1000) {
1506 		sprintf(p[i], "%03d", (int)(n % 1000));
1507 		n /= 1000;
1508 		i += 1;
1509 	}
1510 
1511 	sprintf(p[i++], "%d", (int)n);
1512 
1513 	while (i--)
1514 		off += sprintf(buf + off, "%s,", p[i]);
1515 	buf[strlen(buf) - 1] = '\0';
1516 
1517 	return buf;
1518 }
1519 
1520 static void
1521 packet_per_second_stats(void)
1522 {
1523 	struct lcore_info *old;
1524 	struct lcore_info *li, *oli;
1525 	int nr_lines = 0;
1526 	int i;
1527 
1528 	old = rte_zmalloc("old",
1529 		sizeof(struct lcore_info) * RTE_MAX_LCORE, 0);
1530 	if (old == NULL)
1531 		rte_exit(EXIT_FAILURE, "No Memory available!\n");
1532 
1533 	memcpy(old, lcore_infos,
1534 		sizeof(struct lcore_info) * RTE_MAX_LCORE);
1535 
1536 	while (!force_quit) {
1537 		uint64_t total_tx_pkts = 0;
1538 		uint64_t total_rx_pkts = 0;
1539 		uint64_t total_tx_drops = 0;
1540 		uint64_t tx_delta, rx_delta, drops_delta;
1541 		char buf[3][32];
1542 		int nr_valid_core = 0;
1543 
1544 		sleep(1);
1545 
1546 		if (nr_lines) {
1547 			char go_up_nr_lines[16];
1548 
1549 			sprintf(go_up_nr_lines, "%c[%dA\r", 27, nr_lines);
1550 			printf("%s\r", go_up_nr_lines);
1551 		}
1552 
1553 		printf("\n%6s %16s %16s %16s\n", "core", "tx", "tx drops", "rx");
1554 		printf("%6s %16s %16s %16s\n", "------", "----------------",
1555 			"----------------", "----------------");
1556 		nr_lines = 3;
1557 		for (i = 0; i < RTE_MAX_LCORE; i++) {
1558 			li  = &lcore_infos[i];
1559 			oli = &old[i];
1560 			if (li->mode != LCORE_MODE_PKT)
1561 				continue;
1562 
1563 			tx_delta    = li->tx_pkts  - oli->tx_pkts;
1564 			rx_delta    = li->rx_pkts  - oli->rx_pkts;
1565 			drops_delta = li->tx_drops - oli->tx_drops;
1566 			printf("%6d %16s %16s %16s\n", i,
1567 				pretty_number(tx_delta,    buf[0]),
1568 				pretty_number(drops_delta, buf[1]),
1569 				pretty_number(rx_delta,    buf[2]));
1570 
1571 			total_tx_pkts  += tx_delta;
1572 			total_rx_pkts  += rx_delta;
1573 			total_tx_drops += drops_delta;
1574 
1575 			nr_valid_core++;
1576 			nr_lines += 1;
1577 		}
1578 
1579 		if (nr_valid_core > 1) {
1580 			printf("%6s %16s %16s %16s\n", "total",
1581 				pretty_number(total_tx_pkts,  buf[0]),
1582 				pretty_number(total_tx_drops, buf[1]),
1583 				pretty_number(total_rx_pkts,  buf[2]));
1584 			nr_lines += 1;
1585 		}
1586 
1587 		memcpy(old, lcore_infos,
1588 			sizeof(struct lcore_info) * RTE_MAX_LCORE);
1589 	}
1590 }
1591 
1592 static int
1593 start_forwarding(void *data __rte_unused)
1594 {
1595 	int lcore = rte_lcore_id();
1596 	int stream_id;
1597 	uint16_t cnt;
1598 	struct lcore_info *li = &lcore_infos[lcore];
1599 
1600 	if (!li->mode)
1601 		return 0;
1602 
1603 	if (li->mode == LCORE_MODE_STATS) {
1604 		printf(":: started stats on lcore %u\n", lcore);
1605 		packet_per_second_stats();
1606 		return 0;
1607 	}
1608 
1609 	while (!force_quit)
1610 		for (stream_id = 0; stream_id < MAX_STREAMS; stream_id++) {
1611 			if (li->streams[stream_id].rx_port == -1)
1612 				continue;
1613 
1614 			cnt = do_rx(li,
1615 					li->streams[stream_id].rx_port,
1616 					li->streams[stream_id].rx_queue);
1617 			if (cnt)
1618 				do_tx(li, cnt,
1619 					li->streams[stream_id].tx_port,
1620 					li->streams[stream_id].tx_queue);
1621 		}
1622 	return 0;
1623 }
1624 
1625 static void
1626 init_lcore_info(void)
1627 {
1628 	int i, j;
1629 	unsigned int lcore;
1630 	uint16_t nr_port;
1631 	uint16_t queue;
1632 	int port;
1633 	int stream_id = 0;
1634 	int streams_per_core;
1635 	int unassigned_streams;
1636 	int nb_fwd_streams;
1637 	nr_port = rte_eth_dev_count_avail();
1638 
1639 	/* First logical core is reserved for stats printing */
1640 	lcore = rte_get_next_lcore(-1, 0, 0);
1641 	lcore_infos[lcore].mode = LCORE_MODE_STATS;
1642 
1643 	/*
1644 	 * Initialize all cores
1645 	 * All cores at first must have -1 value in all streams
1646 	 * This means that this stream is not used, or not set
1647 	 * yet.
1648 	 */
1649 	for (i = 0; i < RTE_MAX_LCORE; i++)
1650 		for (j = 0; j < MAX_STREAMS; j++) {
1651 			lcore_infos[i].streams[j].tx_port = -1;
1652 			lcore_infos[i].streams[j].rx_port = -1;
1653 			lcore_infos[i].streams[j].tx_queue = -1;
1654 			lcore_infos[i].streams[j].rx_queue = -1;
1655 			lcore_infos[i].streams_nb = 0;
1656 		}
1657 
1658 	/*
1659 	 * Calculate the total streams count.
1660 	 * Also distribute those streams count between the available
1661 	 * logical cores except first core, since it's reserved for
1662 	 * stats prints.
1663 	 */
1664 	nb_fwd_streams = nr_port * RXQ_NUM;
1665 	if ((int)(nb_lcores - 1) >= nb_fwd_streams)
1666 		for (i = 0; i < (int)(nb_lcores - 1); i++) {
1667 			lcore = rte_get_next_lcore(lcore, 0, 0);
1668 			lcore_infos[lcore].streams_nb = 1;
1669 		}
1670 	else {
1671 		streams_per_core = nb_fwd_streams / (nb_lcores - 1);
1672 		unassigned_streams = nb_fwd_streams % (nb_lcores - 1);
1673 		for (i = 0; i < (int)(nb_lcores - 1); i++) {
1674 			lcore = rte_get_next_lcore(lcore, 0, 0);
1675 			lcore_infos[lcore].streams_nb = streams_per_core;
1676 			if (unassigned_streams) {
1677 				lcore_infos[lcore].streams_nb++;
1678 				unassigned_streams--;
1679 			}
1680 		}
1681 	}
1682 
1683 	/*
1684 	 * Set the streams for the cores according to each logical
1685 	 * core stream count.
1686 	 * The streams is built on the design of what received should
1687 	 * forward as well, this means that if you received packets on
1688 	 * port 0 queue 0 then the same queue should forward the
1689 	 * packets, using the same logical core.
1690 	 */
1691 	lcore = rte_get_next_lcore(-1, 0, 0);
1692 	for (port = 0; port < nr_port; port++) {
1693 		/* Create FWD stream */
1694 		for (queue = 0; queue < RXQ_NUM; queue++) {
1695 			if (!lcore_infos[lcore].streams_nb ||
1696 				!(stream_id % lcore_infos[lcore].streams_nb)) {
1697 				lcore = rte_get_next_lcore(lcore, 0, 0);
1698 				lcore_infos[lcore].mode = LCORE_MODE_PKT;
1699 				stream_id = 0;
1700 			}
1701 			lcore_infos[lcore].streams[stream_id].rx_queue = queue;
1702 			lcore_infos[lcore].streams[stream_id].tx_queue = queue;
1703 			lcore_infos[lcore].streams[stream_id].rx_port = port;
1704 			lcore_infos[lcore].streams[stream_id].tx_port = port;
1705 			stream_id++;
1706 		}
1707 	}
1708 
1709 	/* Print all streams */
1710 	printf(":: Stream -> core id[N]: (rx_port, rx_queue)->(tx_port, tx_queue)\n");
1711 	for (i = 0; i < RTE_MAX_LCORE; i++)
1712 		for (j = 0; j < MAX_STREAMS; j++) {
1713 			/* No streams for this core */
1714 			if (lcore_infos[i].streams[j].tx_port == -1)
1715 				break;
1716 			printf("Stream -> core id[%d]: (%d,%d)->(%d,%d)\n",
1717 				i,
1718 				lcore_infos[i].streams[j].rx_port,
1719 				lcore_infos[i].streams[j].rx_queue,
1720 				lcore_infos[i].streams[j].tx_port,
1721 				lcore_infos[i].streams[j].tx_queue);
1722 		}
1723 }
1724 
1725 static void
1726 init_port(void)
1727 {
1728 	int ret;
1729 	uint16_t std_queue;
1730 	uint16_t hairpin_queue;
1731 	uint16_t port_id;
1732 	uint16_t nr_ports;
1733 	uint16_t nr_queues;
1734 	struct rte_eth_hairpin_conf hairpin_conf = {
1735 		.peer_count = 1,
1736 	};
1737 	struct rte_eth_conf port_conf = {
1738 		.rx_adv_conf = {
1739 			.rss_conf.rss_hf =
1740 				GET_RSS_HF(),
1741 		}
1742 	};
1743 	struct rte_eth_txconf txq_conf;
1744 	struct rte_eth_rxconf rxq_conf;
1745 	struct rte_eth_dev_info dev_info;
1746 
1747 	nr_queues = RXQ_NUM;
1748 	if (hairpin_queues_num != 0)
1749 		nr_queues = RXQ_NUM + hairpin_queues_num;
1750 
1751 	nr_ports = rte_eth_dev_count_avail();
1752 	if (nr_ports == 0)
1753 		rte_exit(EXIT_FAILURE, "Error: no port detected\n");
1754 
1755 	mbuf_mp = rte_pktmbuf_pool_create("mbuf_pool",
1756 					TOTAL_MBUF_NUM, MBUF_CACHE_SIZE,
1757 					0, MBUF_SIZE,
1758 					rte_socket_id());
1759 	if (mbuf_mp == NULL)
1760 		rte_exit(EXIT_FAILURE, "Error: can't init mbuf pool\n");
1761 
1762 	for (port_id = 0; port_id < nr_ports; port_id++) {
1763 		uint64_t rx_metadata = 0;
1764 
1765 		rx_metadata |= RTE_ETH_RX_METADATA_USER_FLAG;
1766 		rx_metadata |= RTE_ETH_RX_METADATA_USER_MARK;
1767 
1768 		ret = rte_eth_rx_metadata_negotiate(port_id, &rx_metadata);
1769 		if (ret == 0) {
1770 			if (!(rx_metadata & RTE_ETH_RX_METADATA_USER_FLAG)) {
1771 				printf(":: flow action FLAG will not affect Rx mbufs on port=%u\n",
1772 				       port_id);
1773 			}
1774 
1775 			if (!(rx_metadata & RTE_ETH_RX_METADATA_USER_MARK)) {
1776 				printf(":: flow action MARK will not affect Rx mbufs on port=%u\n",
1777 				       port_id);
1778 			}
1779 		} else if (ret != -ENOTSUP) {
1780 			rte_exit(EXIT_FAILURE, "Error when negotiating Rx meta features on port=%u: %s\n",
1781 				 port_id, rte_strerror(-ret));
1782 		}
1783 
1784 		ret = rte_eth_dev_info_get(port_id, &dev_info);
1785 		if (ret != 0)
1786 			rte_exit(EXIT_FAILURE,
1787 				"Error during getting device"
1788 				" (port %u) info: %s\n",
1789 				port_id, strerror(-ret));
1790 
1791 		port_conf.txmode.offloads &= dev_info.tx_offload_capa;
1792 		port_conf.rxmode.offloads &= dev_info.rx_offload_capa;
1793 
1794 		printf(":: initializing port: %d\n", port_id);
1795 
1796 		ret = rte_eth_dev_configure(port_id, nr_queues,
1797 				nr_queues, &port_conf);
1798 		if (ret < 0)
1799 			rte_exit(EXIT_FAILURE,
1800 				":: cannot configure device: err=%d, port=%u\n",
1801 				ret, port_id);
1802 
1803 		rxq_conf = dev_info.default_rxconf;
1804 		for (std_queue = 0; std_queue < RXQ_NUM; std_queue++) {
1805 			ret = rte_eth_rx_queue_setup(port_id, std_queue, NR_RXD,
1806 					rte_eth_dev_socket_id(port_id),
1807 					&rxq_conf,
1808 					mbuf_mp);
1809 			if (ret < 0)
1810 				rte_exit(EXIT_FAILURE,
1811 					":: Rx queue setup failed: err=%d, port=%u\n",
1812 					ret, port_id);
1813 		}
1814 
1815 		txq_conf = dev_info.default_txconf;
1816 		for (std_queue = 0; std_queue < TXQ_NUM; std_queue++) {
1817 			ret = rte_eth_tx_queue_setup(port_id, std_queue, NR_TXD,
1818 					rte_eth_dev_socket_id(port_id),
1819 					&txq_conf);
1820 			if (ret < 0)
1821 				rte_exit(EXIT_FAILURE,
1822 					":: Tx queue setup failed: err=%d, port=%u\n",
1823 					ret, port_id);
1824 		}
1825 
1826 		/* Catch all packets from traffic generator. */
1827 		ret = rte_eth_promiscuous_enable(port_id);
1828 		if (ret != 0)
1829 			rte_exit(EXIT_FAILURE,
1830 				":: promiscuous mode enable failed: err=%s, port=%u\n",
1831 				rte_strerror(-ret), port_id);
1832 
1833 		if (hairpin_queues_num != 0) {
1834 			/*
1835 			 * Configure peer which represents hairpin Tx.
1836 			 * Hairpin queue numbers start after standard queues
1837 			 * (RXQ_NUM and TXQ_NUM).
1838 			 */
1839 			for (hairpin_queue = RXQ_NUM, std_queue = 0;
1840 					hairpin_queue < nr_queues;
1841 					hairpin_queue++, std_queue++) {
1842 				hairpin_conf.peers[0].port = port_id;
1843 				hairpin_conf.peers[0].queue =
1844 					std_queue + TXQ_NUM;
1845 				ret = rte_eth_rx_hairpin_queue_setup(
1846 						port_id, hairpin_queue,
1847 						NR_RXD, &hairpin_conf);
1848 				if (ret != 0)
1849 					rte_exit(EXIT_FAILURE,
1850 						":: Hairpin rx queue setup failed: err=%d, port=%u\n",
1851 						ret, port_id);
1852 			}
1853 
1854 			for (hairpin_queue = TXQ_NUM, std_queue = 0;
1855 					hairpin_queue < nr_queues;
1856 					hairpin_queue++, std_queue++) {
1857 				hairpin_conf.peers[0].port = port_id;
1858 				hairpin_conf.peers[0].queue =
1859 					std_queue + RXQ_NUM;
1860 				ret = rte_eth_tx_hairpin_queue_setup(
1861 						port_id, hairpin_queue,
1862 						NR_TXD, &hairpin_conf);
1863 				if (ret != 0)
1864 					rte_exit(EXIT_FAILURE,
1865 						":: Hairpin tx queue setup failed: err=%d, port=%u\n",
1866 						ret, port_id);
1867 			}
1868 		}
1869 
1870 		ret = rte_eth_dev_start(port_id);
1871 		if (ret < 0)
1872 			rte_exit(EXIT_FAILURE,
1873 				"rte_eth_dev_start:err=%d, port=%u\n",
1874 				ret, port_id);
1875 
1876 		printf(":: initializing port: %d done\n", port_id);
1877 	}
1878 }
1879 
1880 int
1881 main(int argc, char **argv)
1882 {
1883 	int ret;
1884 	uint16_t port;
1885 	struct rte_flow_error error;
1886 
1887 	ret = rte_eal_init(argc, argv);
1888 	if (ret < 0)
1889 		rte_exit(EXIT_FAILURE, "EAL init failed\n");
1890 
1891 	force_quit = false;
1892 	dump_iterations = false;
1893 	rules_count = DEFAULT_RULES_COUNT;
1894 	rules_batch = DEFAULT_RULES_BATCH;
1895 	delete_flag = false;
1896 	dump_socket_mem_flag = false;
1897 	flow_group = DEFAULT_GROUP;
1898 	unique_data = false;
1899 
1900 	signal(SIGINT, signal_handler);
1901 	signal(SIGTERM, signal_handler);
1902 
1903 	argc -= ret;
1904 	argv += ret;
1905 	if (argc > 1)
1906 		args_parse(argc, argv);
1907 
1908 	init_port();
1909 
1910 	nb_lcores = rte_lcore_count();
1911 	if (nb_lcores <= 1)
1912 		rte_exit(EXIT_FAILURE, "This app needs at least two cores\n");
1913 
1914 	printf(":: Flows Count per port: %d\n\n", rules_count);
1915 
1916 	if (has_meter())
1917 		create_meter_profile();
1918 	rte_eal_mp_remote_launch(run_rte_flow_handler_cores, NULL, CALL_MAIN);
1919 
1920 	if (enable_fwd) {
1921 		init_lcore_info();
1922 		rte_eal_mp_remote_launch(start_forwarding, NULL, CALL_MAIN);
1923 	}
1924 	if (has_meter() && delete_flag)
1925 		destroy_meter_profile();
1926 
1927 	RTE_ETH_FOREACH_DEV(port) {
1928 		rte_flow_flush(port, &error);
1929 		if (rte_eth_dev_stop(port) != 0)
1930 			printf("Failed to stop device on port %u\n", port);
1931 		rte_eth_dev_close(port);
1932 	}
1933 	printf("\nBye ...\n");
1934 	return 0;
1935 }
1936