xref: /dpdk/app/test-flow-perf/main.c (revision 68a03efeed657e6e05f281479b33b51102797e15)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2020 Mellanox Technologies, Ltd
3  *
4  * This file contain the application main file
5  * This application provides the user the ability to test the
6  * insertion rate for specific rte_flow rule under stress state ~4M rule/
7  *
8  * Then it will also provide packet per second measurement after installing
9  * all rules, the user may send traffic to test the PPS that match the rules
10  * after all rules are installed, to check performance or functionality after
11  * the stress.
12  *
13  * The flows insertion will go for all ports first, then it will print the
14  * results, after that the application will go into forwarding packets mode
15  * it will start receiving traffic if any and then forwarding it back and
16  * gives packet per second measurement.
17  */
18 
19 #include <stdio.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <stdint.h>
23 #include <inttypes.h>
24 #include <stdarg.h>
25 #include <errno.h>
26 #include <getopt.h>
27 #include <stdbool.h>
28 #include <sys/time.h>
29 #include <signal.h>
30 #include <unistd.h>
31 
32 #include <rte_malloc.h>
33 #include <rte_mempool.h>
34 #include <rte_mbuf.h>
35 #include <rte_ethdev.h>
36 #include <rte_flow.h>
37 #include <rte_mtr.h>
38 
39 #include "config.h"
40 #include "flow_gen.h"
41 
42 #define MAX_BATCHES_COUNT          100
43 #define DEFAULT_RULES_COUNT    4000000
44 #define DEFAULT_RULES_BATCH     100000
45 #define DEFAULT_GROUP                0
46 
47 struct rte_flow *flow;
48 static uint8_t flow_group;
49 
50 static uint64_t encap_data;
51 static uint64_t decap_data;
52 
53 static uint64_t flow_items[MAX_ITEMS_NUM];
54 static uint64_t flow_actions[MAX_ACTIONS_NUM];
55 static uint64_t flow_attrs[MAX_ATTRS_NUM];
56 static uint8_t items_idx, actions_idx, attrs_idx;
57 
58 static uint64_t ports_mask;
59 static volatile bool force_quit;
60 static bool dump_iterations;
61 static bool delete_flag;
62 static bool dump_socket_mem_flag;
63 static bool enable_fwd;
64 
65 static struct rte_mempool *mbuf_mp;
66 static uint32_t nb_lcores;
67 static uint32_t rules_count;
68 static uint32_t rules_batch;
69 static uint32_t hairpin_queues_num; /* total hairpin q number - default: 0 */
70 static uint32_t nb_lcores;
71 
72 #define MAX_PKT_BURST    32
73 #define LCORE_MODE_PKT    1
74 #define LCORE_MODE_STATS  2
75 #define MAX_STREAMS      64
76 #define METER_CREATE	  1
77 #define METER_DELETE	  2
78 
79 struct stream {
80 	int tx_port;
81 	int tx_queue;
82 	int rx_port;
83 	int rx_queue;
84 };
85 
86 struct lcore_info {
87 	int mode;
88 	int streams_nb;
89 	struct stream streams[MAX_STREAMS];
90 	/* stats */
91 	uint64_t tx_pkts;
92 	uint64_t tx_drops;
93 	uint64_t rx_pkts;
94 	struct rte_mbuf *pkts[MAX_PKT_BURST];
95 } __rte_cache_aligned;
96 
97 static struct lcore_info lcore_infos[RTE_MAX_LCORE];
98 
99 struct used_cpu_time {
100 	double insertion[MAX_PORTS][RTE_MAX_LCORE];
101 	double deletion[MAX_PORTS][RTE_MAX_LCORE];
102 };
103 
104 struct multi_cores_pool {
105 	uint32_t cores_count;
106 	uint32_t rules_count;
107 	struct used_cpu_time create_meter;
108 	struct used_cpu_time create_flow;
109 	int64_t last_alloc[RTE_MAX_LCORE];
110 	int64_t current_alloc[RTE_MAX_LCORE];
111 } __rte_cache_aligned;
112 
113 static struct multi_cores_pool mc_pool = {
114 	.cores_count = 1,
115 };
116 
117 static void
118 usage(char *progname)
119 {
120 	printf("\nusage: %s\n", progname);
121 	printf("\nControl configurations:\n");
122 	printf("  --rules-count=N: to set the number of needed"
123 		" rules to insert, default is %d\n", DEFAULT_RULES_COUNT);
124 	printf("  --rules-batch=N: set number of batched rules,"
125 		" default is %d\n", DEFAULT_RULES_BATCH);
126 	printf("  --dump-iterations: To print rates for each"
127 		" iteration\n");
128 	printf("  --deletion-rate: Enable deletion rate"
129 		" calculations\n");
130 	printf("  --dump-socket-mem: To dump all socket memory\n");
131 	printf("  --enable-fwd: To enable packets forwarding"
132 		" after insertion\n");
133 	printf("  --portmask=N: hexadecimal bitmask of ports used\n");
134 
135 	printf("To set flow attributes:\n");
136 	printf("  --ingress: set ingress attribute in flows\n");
137 	printf("  --egress: set egress attribute in flows\n");
138 	printf("  --transfer: set transfer attribute in flows\n");
139 	printf("  --group=N: set group for all flows,"
140 		" default is %d\n", DEFAULT_GROUP);
141 	printf("  --cores=N: to set the number of needed "
142 		"cores to insert rte_flow rules, default is 1\n");
143 
144 	printf("To set flow items:\n");
145 	printf("  --ether: add ether layer in flow items\n");
146 	printf("  --vlan: add vlan layer in flow items\n");
147 	printf("  --ipv4: add ipv4 layer in flow items\n");
148 	printf("  --ipv6: add ipv6 layer in flow items\n");
149 	printf("  --tcp: add tcp layer in flow items\n");
150 	printf("  --udp: add udp layer in flow items\n");
151 	printf("  --vxlan: add vxlan layer in flow items\n");
152 	printf("  --vxlan-gpe: add vxlan-gpe layer in flow items\n");
153 	printf("  --gre: add gre layer in flow items\n");
154 	printf("  --geneve: add geneve layer in flow items\n");
155 	printf("  --gtp: add gtp layer in flow items\n");
156 	printf("  --meta: add meta layer in flow items\n");
157 	printf("  --tag: add tag layer in flow items\n");
158 	printf("  --icmpv4: add icmpv4 layer in flow items\n");
159 	printf("  --icmpv6: add icmpv6 layer in flow items\n");
160 
161 	printf("To set flow actions:\n");
162 	printf("  --port-id: add port-id action in flow actions\n");
163 	printf("  --rss: add rss action in flow actions\n");
164 	printf("  --queue: add queue action in flow actions\n");
165 	printf("  --jump: add jump action in flow actions\n");
166 	printf("  --mark: add mark action in flow actions\n");
167 	printf("  --count: add count action in flow actions\n");
168 	printf("  --set-meta: add set meta action in flow actions\n");
169 	printf("  --set-tag: add set tag action in flow actions\n");
170 	printf("  --drop: add drop action in flow actions\n");
171 	printf("  --hairpin-queue=N: add hairpin-queue action in flow actions\n");
172 	printf("  --hairpin-rss=N: add hairpin-rss action in flow actions\n");
173 	printf("  --set-src-mac: add set src mac action to flow actions\n"
174 		"Src mac to be set is random each flow\n");
175 	printf("  --set-dst-mac: add set dst mac action to flow actions\n"
176 		 "Dst mac to be set is random each flow\n");
177 	printf("  --set-src-ipv4: add set src ipv4 action to flow actions\n"
178 		"Src ipv4 to be set is random each flow\n");
179 	printf("  --set-dst-ipv4 add set dst ipv4 action to flow actions\n"
180 		"Dst ipv4 to be set is random each flow\n");
181 	printf("  --set-src-ipv6: add set src ipv6 action to flow actions\n"
182 		"Src ipv6 to be set is random each flow\n");
183 	printf("  --set-dst-ipv6: add set dst ipv6 action to flow actions\n"
184 		"Dst ipv6 to be set is random each flow\n");
185 	printf("  --set-src-tp: add set src tp action to flow actions\n"
186 		"Src tp to be set is random each flow\n");
187 	printf("  --set-dst-tp: add set dst tp action to flow actions\n"
188 		"Dst tp to be set is random each flow\n");
189 	printf("  --inc-tcp-ack: add inc tcp ack action to flow actions\n"
190 		"tcp ack will be increments by 1\n");
191 	printf("  --dec-tcp-ack: add dec tcp ack action to flow actions\n"
192 		"tcp ack will be decrements by 1\n");
193 	printf("  --inc-tcp-seq: add inc tcp seq action to flow actions\n"
194 		"tcp seq will be increments by 1\n");
195 	printf("  --dec-tcp-seq: add dec tcp seq action to flow actions\n"
196 		"tcp seq will be decrements by 1\n");
197 	printf("  --set-ttl: add set ttl action to flow actions\n"
198 		"L3 ttl to be set is random each flow\n");
199 	printf("  --dec-ttl: add dec ttl action to flow actions\n"
200 		"L3 ttl will be decrements by 1\n");
201 	printf("  --set-ipv4-dscp: add set ipv4 dscp action to flow actions\n"
202 		"ipv4 dscp value to be set is random each flow\n");
203 	printf("  --set-ipv6-dscp: add set ipv6 dscp action to flow actions\n"
204 		"ipv6 dscp value to be set is random each flow\n");
205 	printf("  --flag: add flag action to flow actions\n");
206 	printf("  --meter: add meter action to flow actions\n");
207 	printf("  --raw-encap=<data>: add raw encap action to flow actions\n"
208 		"Data is the data needed to be encaped\n"
209 		"Example: raw-encap=ether,ipv4,udp,vxlan\n");
210 	printf("  --raw-decap=<data>: add raw decap action to flow actions\n"
211 		"Data is the data needed to be decaped\n"
212 		"Example: raw-decap=ether,ipv4,udp,vxlan\n");
213 	printf("  --vxlan-encap: add vxlan-encap action to flow actions\n"
214 		"Encapped data is fixed with pattern: ether,ipv4,udp,vxlan\n"
215 		"With fixed values\n");
216 	printf("  --vxlan-decap: add vxlan_decap action to flow actions\n");
217 }
218 
219 static void
220 args_parse(int argc, char **argv)
221 {
222 	uint64_t pm;
223 	char **argvopt;
224 	char *token;
225 	char *end;
226 	int n, opt;
227 	int opt_idx;
228 	size_t i;
229 
230 	static const struct option_dict {
231 		const char *str;
232 		const uint64_t mask;
233 		uint64_t *map;
234 		uint8_t *map_idx;
235 
236 	} flow_options[] = {
237 		{
238 			.str = "ether",
239 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ETH),
240 			.map = &flow_items[0],
241 			.map_idx = &items_idx
242 		},
243 		{
244 			.str = "ipv4",
245 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV4),
246 			.map = &flow_items[0],
247 			.map_idx = &items_idx
248 		},
249 		{
250 			.str = "ipv6",
251 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_IPV6),
252 			.map = &flow_items[0],
253 			.map_idx = &items_idx
254 		},
255 		{
256 			.str = "vlan",
257 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VLAN),
258 			.map = &flow_items[0],
259 			.map_idx = &items_idx
260 		},
261 		{
262 			.str = "tcp",
263 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_TCP),
264 			.map = &flow_items[0],
265 			.map_idx = &items_idx
266 		},
267 		{
268 			.str = "udp",
269 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_UDP),
270 			.map = &flow_items[0],
271 			.map_idx = &items_idx
272 		},
273 		{
274 			.str = "vxlan",
275 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN),
276 			.map = &flow_items[0],
277 			.map_idx = &items_idx
278 		},
279 		{
280 			.str = "vxlan-gpe",
281 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_VXLAN_GPE),
282 			.map = &flow_items[0],
283 			.map_idx = &items_idx
284 		},
285 		{
286 			.str = "gre",
287 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GRE),
288 			.map = &flow_items[0],
289 			.map_idx = &items_idx
290 		},
291 		{
292 			.str = "geneve",
293 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GENEVE),
294 			.map = &flow_items[0],
295 			.map_idx = &items_idx
296 		},
297 		{
298 			.str = "gtp",
299 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_GTP),
300 			.map = &flow_items[0],
301 			.map_idx = &items_idx
302 		},
303 		{
304 			.str = "meta",
305 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_META),
306 			.map = &flow_items[0],
307 			.map_idx = &items_idx
308 		},
309 		{
310 			.str = "tag",
311 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_TAG),
312 			.map = &flow_items[0],
313 			.map_idx = &items_idx
314 		},
315 		{
316 			.str = "icmpv4",
317 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ICMP),
318 			.map = &flow_items[0],
319 			.map_idx = &items_idx
320 		},
321 		{
322 			.str = "icmpv6",
323 			.mask = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ICMP6),
324 			.map = &flow_items[0],
325 			.map_idx = &items_idx
326 		},
327 		{
328 			.str = "ingress",
329 			.mask = INGRESS,
330 			.map = &flow_attrs[0],
331 			.map_idx = &attrs_idx
332 		},
333 		{
334 			.str = "egress",
335 			.mask = EGRESS,
336 			.map = &flow_attrs[0],
337 			.map_idx = &attrs_idx
338 		},
339 		{
340 			.str = "transfer",
341 			.mask = TRANSFER,
342 			.map = &flow_attrs[0],
343 			.map_idx = &attrs_idx
344 		},
345 		{
346 			.str = "port-id",
347 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_PORT_ID),
348 			.map = &flow_actions[0],
349 			.map_idx = &actions_idx
350 		},
351 		{
352 			.str = "rss",
353 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_RSS),
354 			.map = &flow_actions[0],
355 			.map_idx = &actions_idx
356 		},
357 		{
358 			.str = "queue",
359 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_QUEUE),
360 			.map = &flow_actions[0],
361 			.map_idx = &actions_idx
362 		},
363 		{
364 			.str = "jump",
365 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_JUMP),
366 			.map = &flow_actions[0],
367 			.map_idx = &actions_idx
368 		},
369 		{
370 			.str = "mark",
371 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_MARK),
372 			.map = &flow_actions[0],
373 			.map_idx = &actions_idx
374 		},
375 		{
376 			.str = "count",
377 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_COUNT),
378 			.map = &flow_actions[0],
379 			.map_idx = &actions_idx
380 		},
381 		{
382 			.str = "set-meta",
383 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_SET_META),
384 			.map = &flow_actions[0],
385 			.map_idx = &actions_idx
386 		},
387 		{
388 			.str = "set-tag",
389 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_SET_TAG),
390 			.map = &flow_actions[0],
391 			.map_idx = &actions_idx
392 		},
393 		{
394 			.str = "drop",
395 			.mask = FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_DROP),
396 			.map = &flow_actions[0],
397 			.map_idx = &actions_idx
398 		},
399 		{
400 			.str = "set-src-mac",
401 			.mask = FLOW_ACTION_MASK(
402 				RTE_FLOW_ACTION_TYPE_SET_MAC_SRC
403 			),
404 			.map = &flow_actions[0],
405 			.map_idx = &actions_idx
406 		},
407 		{
408 			.str = "set-dst-mac",
409 			.mask = FLOW_ACTION_MASK(
410 				RTE_FLOW_ACTION_TYPE_SET_MAC_DST
411 			),
412 			.map = &flow_actions[0],
413 			.map_idx = &actions_idx
414 		},
415 		{
416 			.str = "set-src-ipv4",
417 			.mask = FLOW_ACTION_MASK(
418 				RTE_FLOW_ACTION_TYPE_SET_IPV4_SRC
419 			),
420 			.map = &flow_actions[0],
421 			.map_idx = &actions_idx
422 		},
423 		{
424 			.str = "set-dst-ipv4",
425 			.mask = FLOW_ACTION_MASK(
426 				RTE_FLOW_ACTION_TYPE_SET_IPV4_DST
427 			),
428 			.map = &flow_actions[0],
429 			.map_idx = &actions_idx
430 		},
431 		{
432 			.str = "set-src-ipv6",
433 			.mask = FLOW_ACTION_MASK(
434 				RTE_FLOW_ACTION_TYPE_SET_IPV6_SRC
435 			),
436 			.map = &flow_actions[0],
437 			.map_idx = &actions_idx
438 		},
439 		{
440 			.str = "set-dst-ipv6",
441 			.mask = FLOW_ACTION_MASK(
442 				RTE_FLOW_ACTION_TYPE_SET_IPV6_DST
443 			),
444 			.map = &flow_actions[0],
445 			.map_idx = &actions_idx
446 		},
447 		{
448 			.str = "set-src-tp",
449 			.mask = FLOW_ACTION_MASK(
450 				RTE_FLOW_ACTION_TYPE_SET_TP_SRC
451 			),
452 			.map = &flow_actions[0],
453 			.map_idx = &actions_idx
454 		},
455 		{
456 			.str = "set-dst-tp",
457 			.mask = FLOW_ACTION_MASK(
458 				RTE_FLOW_ACTION_TYPE_SET_TP_DST
459 			),
460 			.map = &flow_actions[0],
461 			.map_idx = &actions_idx
462 		},
463 		{
464 			.str = "inc-tcp-ack",
465 			.mask = FLOW_ACTION_MASK(
466 				RTE_FLOW_ACTION_TYPE_INC_TCP_ACK
467 			),
468 			.map = &flow_actions[0],
469 			.map_idx = &actions_idx
470 		},
471 		{
472 			.str = "dec-tcp-ack",
473 			.mask = FLOW_ACTION_MASK(
474 				RTE_FLOW_ACTION_TYPE_DEC_TCP_ACK
475 			),
476 			.map = &flow_actions[0],
477 			.map_idx = &actions_idx
478 		},
479 		{
480 			.str = "inc-tcp-seq",
481 			.mask = FLOW_ACTION_MASK(
482 				RTE_FLOW_ACTION_TYPE_INC_TCP_SEQ
483 			),
484 			.map = &flow_actions[0],
485 			.map_idx = &actions_idx
486 		},
487 		{
488 			.str = "dec-tcp-seq",
489 			.mask = FLOW_ACTION_MASK(
490 				RTE_FLOW_ACTION_TYPE_DEC_TCP_SEQ
491 			),
492 			.map = &flow_actions[0],
493 			.map_idx = &actions_idx
494 		},
495 		{
496 			.str = "set-ttl",
497 			.mask = FLOW_ACTION_MASK(
498 				RTE_FLOW_ACTION_TYPE_SET_TTL
499 			),
500 			.map = &flow_actions[0],
501 			.map_idx = &actions_idx
502 		},
503 		{
504 			.str = "dec-ttl",
505 			.mask = FLOW_ACTION_MASK(
506 				RTE_FLOW_ACTION_TYPE_DEC_TTL
507 			),
508 			.map = &flow_actions[0],
509 			.map_idx = &actions_idx
510 		},
511 		{
512 			.str = "set-ipv4-dscp",
513 			.mask = FLOW_ACTION_MASK(
514 				RTE_FLOW_ACTION_TYPE_SET_IPV4_DSCP
515 			),
516 			.map = &flow_actions[0],
517 			.map_idx = &actions_idx
518 		},
519 		{
520 			.str = "set-ipv6-dscp",
521 			.mask = FLOW_ACTION_MASK(
522 				RTE_FLOW_ACTION_TYPE_SET_IPV6_DSCP
523 			),
524 			.map = &flow_actions[0],
525 			.map_idx = &actions_idx
526 		},
527 		{
528 			.str = "flag",
529 			.mask = FLOW_ACTION_MASK(
530 				RTE_FLOW_ACTION_TYPE_FLAG
531 			),
532 			.map = &flow_actions[0],
533 			.map_idx = &actions_idx
534 		},
535 		{
536 			.str = "meter",
537 			.mask = FLOW_ACTION_MASK(
538 				RTE_FLOW_ACTION_TYPE_METER
539 			),
540 			.map = &flow_actions[0],
541 			.map_idx = &actions_idx
542 		},
543 		{
544 			.str = "vxlan-encap",
545 			.mask = FLOW_ACTION_MASK(
546 				RTE_FLOW_ACTION_TYPE_VXLAN_ENCAP
547 			),
548 			.map = &flow_actions[0],
549 			.map_idx = &actions_idx
550 		},
551 		{
552 			.str = "vxlan-decap",
553 			.mask = FLOW_ACTION_MASK(
554 				RTE_FLOW_ACTION_TYPE_VXLAN_DECAP
555 			),
556 			.map = &flow_actions[0],
557 			.map_idx = &actions_idx
558 		},
559 	};
560 
561 	static const struct option lgopts[] = {
562 		/* Control */
563 		{ "help",                       0, 0, 0 },
564 		{ "rules-count",                1, 0, 0 },
565 		{ "rules-batch",                1, 0, 0 },
566 		{ "dump-iterations",            0, 0, 0 },
567 		{ "deletion-rate",              0, 0, 0 },
568 		{ "dump-socket-mem",            0, 0, 0 },
569 		{ "enable-fwd",                 0, 0, 0 },
570 		{ "portmask",                   1, 0, 0 },
571 		{ "cores",                      1, 0, 0 },
572 		/* Attributes */
573 		{ "ingress",                    0, 0, 0 },
574 		{ "egress",                     0, 0, 0 },
575 		{ "transfer",                   0, 0, 0 },
576 		{ "group",                      1, 0, 0 },
577 		/* Items */
578 		{ "ether",                      0, 0, 0 },
579 		{ "vlan",                       0, 0, 0 },
580 		{ "ipv4",                       0, 0, 0 },
581 		{ "ipv6",                       0, 0, 0 },
582 		{ "tcp",                        0, 0, 0 },
583 		{ "udp",                        0, 0, 0 },
584 		{ "vxlan",                      0, 0, 0 },
585 		{ "vxlan-gpe",                  0, 0, 0 },
586 		{ "gre",                        0, 0, 0 },
587 		{ "geneve",                     0, 0, 0 },
588 		{ "gtp",                        0, 0, 0 },
589 		{ "meta",                       0, 0, 0 },
590 		{ "tag",                        0, 0, 0 },
591 		{ "icmpv4",                     0, 0, 0 },
592 		{ "icmpv6",                     0, 0, 0 },
593 		/* Actions */
594 		{ "port-id",                    0, 0, 0 },
595 		{ "rss",                        0, 0, 0 },
596 		{ "queue",                      0, 0, 0 },
597 		{ "jump",                       0, 0, 0 },
598 		{ "mark",                       0, 0, 0 },
599 		{ "count",                      0, 0, 0 },
600 		{ "set-meta",                   0, 0, 0 },
601 		{ "set-tag",                    0, 0, 0 },
602 		{ "drop",                       0, 0, 0 },
603 		{ "hairpin-queue",              1, 0, 0 },
604 		{ "hairpin-rss",                1, 0, 0 },
605 		{ "set-src-mac",                0, 0, 0 },
606 		{ "set-dst-mac",                0, 0, 0 },
607 		{ "set-src-ipv4",               0, 0, 0 },
608 		{ "set-dst-ipv4",               0, 0, 0 },
609 		{ "set-src-ipv6",               0, 0, 0 },
610 		{ "set-dst-ipv6",               0, 0, 0 },
611 		{ "set-src-tp",                 0, 0, 0 },
612 		{ "set-dst-tp",                 0, 0, 0 },
613 		{ "inc-tcp-ack",                0, 0, 0 },
614 		{ "dec-tcp-ack",                0, 0, 0 },
615 		{ "inc-tcp-seq",                0, 0, 0 },
616 		{ "dec-tcp-seq",                0, 0, 0 },
617 		{ "set-ttl",                    0, 0, 0 },
618 		{ "dec-ttl",                    0, 0, 0 },
619 		{ "set-ipv4-dscp",              0, 0, 0 },
620 		{ "set-ipv6-dscp",              0, 0, 0 },
621 		{ "flag",                       0, 0, 0 },
622 		{ "meter",		        0, 0, 0 },
623 		{ "raw-encap",                  1, 0, 0 },
624 		{ "raw-decap",                  1, 0, 0 },
625 		{ "vxlan-encap",                0, 0, 0 },
626 		{ "vxlan-decap",                0, 0, 0 },
627 	};
628 
629 	RTE_ETH_FOREACH_DEV(i)
630 		ports_mask |= 1 << i;
631 
632 	hairpin_queues_num = 0;
633 	argvopt = argv;
634 
635 	printf(":: Flow -> ");
636 	while ((opt = getopt_long(argc, argvopt, "",
637 				lgopts, &opt_idx)) != EOF) {
638 		switch (opt) {
639 		case 0:
640 			if (strcmp(lgopts[opt_idx].name, "help") == 0) {
641 				usage(argv[0]);
642 				exit(EXIT_SUCCESS);
643 			}
644 
645 			if (strcmp(lgopts[opt_idx].name, "group") == 0) {
646 				n = atoi(optarg);
647 				if (n >= 0)
648 					flow_group = n;
649 				else
650 					rte_exit(EXIT_FAILURE,
651 						"flow group should be >= 0\n");
652 				printf("group %d / ", flow_group);
653 			}
654 
655 			for (i = 0; i < RTE_DIM(flow_options); i++)
656 				if (strcmp(lgopts[opt_idx].name,
657 						flow_options[i].str) == 0) {
658 					flow_options[i].map[
659 					(*flow_options[i].map_idx)++] =
660 						flow_options[i].mask;
661 					printf("%s / ", flow_options[i].str);
662 				}
663 
664 			if (strcmp(lgopts[opt_idx].name,
665 					"hairpin-rss") == 0) {
666 				n = atoi(optarg);
667 				if (n > 0)
668 					hairpin_queues_num = n;
669 				else
670 					rte_exit(EXIT_FAILURE,
671 						"Hairpin queues should be > 0\n");
672 
673 				flow_actions[actions_idx++] =
674 					HAIRPIN_RSS_ACTION;
675 				printf("hairpin-rss / ");
676 			}
677 			if (strcmp(lgopts[opt_idx].name,
678 					"hairpin-queue") == 0) {
679 				n = atoi(optarg);
680 				if (n > 0)
681 					hairpin_queues_num = n;
682 				else
683 					rte_exit(EXIT_FAILURE,
684 						"Hairpin queues should be > 0\n");
685 
686 				flow_actions[actions_idx++] =
687 					HAIRPIN_QUEUE_ACTION;
688 				printf("hairpin-queue / ");
689 			}
690 
691 			if (strcmp(lgopts[opt_idx].name, "raw-encap") == 0) {
692 				printf("raw-encap ");
693 				flow_actions[actions_idx++] =
694 					FLOW_ITEM_MASK(
695 						RTE_FLOW_ACTION_TYPE_RAW_ENCAP
696 					);
697 
698 				token = strtok(optarg, ",");
699 				while (token != NULL) {
700 					for (i = 0; i < RTE_DIM(flow_options); i++) {
701 						if (strcmp(flow_options[i].str, token) == 0) {
702 							printf("%s,", token);
703 							encap_data |= flow_options[i].mask;
704 							break;
705 						}
706 						/* Reached last item with no match */
707 						if (i == (RTE_DIM(flow_options) - 1))
708 							rte_exit(EXIT_FAILURE,
709 								"Invalid encap item: %s\n", token);
710 					}
711 					token = strtok(NULL, ",");
712 				}
713 				printf(" / ");
714 			}
715 			if (strcmp(lgopts[opt_idx].name, "raw-decap") == 0) {
716 				printf("raw-decap ");
717 				flow_actions[actions_idx++] =
718 					FLOW_ITEM_MASK(
719 						RTE_FLOW_ACTION_TYPE_RAW_DECAP
720 					);
721 
722 				token = strtok(optarg, ",");
723 				while (token != NULL) {
724 					for (i = 0; i < RTE_DIM(flow_options); i++) {
725 						if (strcmp(flow_options[i].str, token) == 0) {
726 							printf("%s,", token);
727 							encap_data |= flow_options[i].mask;
728 							break;
729 						}
730 						/* Reached last item with no match */
731 						if (i == (RTE_DIM(flow_options) - 1))
732 							rte_exit(EXIT_FAILURE,
733 								"Invalid decap item %s\n", token);
734 					}
735 					token = strtok(NULL, ",");
736 				}
737 				printf(" / ");
738 			}
739 			/* Control */
740 			if (strcmp(lgopts[opt_idx].name,
741 					"rules-batch") == 0) {
742 				n = atoi(optarg);
743 				if (n >= DEFAULT_RULES_BATCH)
744 					rules_batch = n;
745 				else {
746 					rte_exit(EXIT_FAILURE,
747 						"rules_batch should be >= %d\n",
748 						DEFAULT_RULES_BATCH);
749 				}
750 			}
751 			if (strcmp(lgopts[opt_idx].name,
752 					"rules-count") == 0) {
753 				n = atoi(optarg);
754 				if (n >= (int) rules_batch)
755 					rules_count = n;
756 				else {
757 					rte_exit(EXIT_FAILURE,
758 						"rules_count should be >= %d\n",
759 						rules_batch);
760 				}
761 			}
762 			if (strcmp(lgopts[opt_idx].name,
763 					"dump-iterations") == 0)
764 				dump_iterations = true;
765 			if (strcmp(lgopts[opt_idx].name,
766 					"deletion-rate") == 0)
767 				delete_flag = true;
768 			if (strcmp(lgopts[opt_idx].name,
769 					"dump-socket-mem") == 0)
770 				dump_socket_mem_flag = true;
771 			if (strcmp(lgopts[opt_idx].name,
772 					"enable-fwd") == 0)
773 				enable_fwd = true;
774 			if (strcmp(lgopts[opt_idx].name,
775 					"portmask") == 0) {
776 				/* parse hexadecimal string */
777 				end = NULL;
778 				pm = strtoull(optarg, &end, 16);
779 				if ((optarg[0] == '\0') || (end == NULL) || (*end != '\0'))
780 					rte_exit(EXIT_FAILURE, "Invalid fwd port mask\n");
781 				ports_mask = pm;
782 			}
783 			if (strcmp(lgopts[opt_idx].name, "cores") == 0) {
784 				n = atoi(optarg);
785 				if ((int) rte_lcore_count() <= n) {
786 					rte_exit(EXIT_FAILURE,
787 						"Error: you need %d cores to run on multi-cores\n"
788 						"Existing cores are: %d\n", n, rte_lcore_count());
789 				}
790 				if (n <= RTE_MAX_LCORE && n > 0)
791 					mc_pool.cores_count = n;
792 				else {
793 					rte_exit(EXIT_FAILURE,
794 						"Error: cores count must be > 0 and < %d\n",
795 						RTE_MAX_LCORE);
796 				}
797 			}
798 			break;
799 		default:
800 			usage(argv[0]);
801 			rte_exit(EXIT_FAILURE, "Invalid option: %s\n",
802 					argv[optind]);
803 			break;
804 		}
805 	}
806 	printf("end_flow\n");
807 }
808 
809 /* Dump the socket memory statistics on console */
810 static size_t
811 dump_socket_mem(FILE *f)
812 {
813 	struct rte_malloc_socket_stats socket_stats;
814 	unsigned int i = 0;
815 	size_t total = 0;
816 	size_t alloc = 0;
817 	size_t free = 0;
818 	unsigned int n_alloc = 0;
819 	unsigned int n_free = 0;
820 	bool active_nodes = false;
821 
822 
823 	for (i = 0; i < RTE_MAX_NUMA_NODES; i++) {
824 		if (rte_malloc_get_socket_stats(i, &socket_stats) ||
825 		    !socket_stats.heap_totalsz_bytes)
826 			continue;
827 		active_nodes = true;
828 		total += socket_stats.heap_totalsz_bytes;
829 		alloc += socket_stats.heap_allocsz_bytes;
830 		free += socket_stats.heap_freesz_bytes;
831 		n_alloc += socket_stats.alloc_count;
832 		n_free += socket_stats.free_count;
833 		if (dump_socket_mem_flag) {
834 			fprintf(f, "::::::::::::::::::::::::::::::::::::::::");
835 			fprintf(f,
836 				"\nSocket %u:\nsize(M) total: %.6lf\nalloc:"
837 				" %.6lf(%.3lf%%)\nfree: %.6lf"
838 				"\nmax: %.6lf"
839 				"\ncount alloc: %u\nfree: %u\n",
840 				i,
841 				socket_stats.heap_totalsz_bytes / 1.0e6,
842 				socket_stats.heap_allocsz_bytes / 1.0e6,
843 				(double)socket_stats.heap_allocsz_bytes * 100 /
844 				(double)socket_stats.heap_totalsz_bytes,
845 				socket_stats.heap_freesz_bytes / 1.0e6,
846 				socket_stats.greatest_free_size / 1.0e6,
847 				socket_stats.alloc_count,
848 				socket_stats.free_count);
849 				fprintf(f, "::::::::::::::::::::::::::::::::::::::::");
850 		}
851 	}
852 	if (dump_socket_mem_flag && active_nodes) {
853 		fprintf(f,
854 			"\nTotal: size(M)\ntotal: %.6lf"
855 			"\nalloc: %.6lf(%.3lf%%)\nfree: %.6lf"
856 			"\ncount alloc: %u\nfree: %u\n",
857 			total / 1.0e6, alloc / 1.0e6,
858 			(double)alloc * 100 / (double)total, free / 1.0e6,
859 			n_alloc, n_free);
860 		fprintf(f, "::::::::::::::::::::::::::::::::::::::::\n");
861 	}
862 	return alloc;
863 }
864 
865 static void
866 print_flow_error(struct rte_flow_error error)
867 {
868 	printf("Flow can't be created %d message: %s\n",
869 		error.type,
870 		error.message ? error.message : "(no stated reason)");
871 }
872 
873 static inline void
874 print_rules_batches(double *cpu_time_per_batch)
875 {
876 	uint8_t idx;
877 	double delta;
878 	double rate;
879 
880 	for (idx = 0; idx < MAX_BATCHES_COUNT; idx++) {
881 		if (!cpu_time_per_batch[idx])
882 			break;
883 		delta = (double)(rules_batch / cpu_time_per_batch[idx]);
884 		rate = delta / 1000; /* Save rate in K unit. */
885 		printf(":: Rules batch #%d: %d rules "
886 			"in %f sec[ Rate = %f K Rule/Sec ]\n",
887 			idx, rules_batch,
888 			cpu_time_per_batch[idx], rate);
889 	}
890 }
891 
892 
893 static inline int
894 has_meter(void)
895 {
896 	int i;
897 
898 	for (i = 0; i < MAX_ACTIONS_NUM; i++) {
899 		if (flow_actions[i] == 0)
900 			break;
901 		if (flow_actions[i]
902 				& FLOW_ACTION_MASK(RTE_FLOW_ACTION_TYPE_METER))
903 			return 1;
904 	}
905 	return 0;
906 }
907 
908 static void
909 create_meter_rule(int port_id, uint32_t counter)
910 {
911 	int ret;
912 	struct rte_mtr_params params;
913 	uint32_t default_prof_id = 100;
914 	struct rte_mtr_error error;
915 
916 	memset(&params, 0, sizeof(struct rte_mtr_params));
917 	params.meter_enable = 1;
918 	params.stats_mask = 0xffff;
919 	params.use_prev_mtr_color = 0;
920 	params.dscp_table = NULL;
921 
922 	/*create meter*/
923 	params.meter_profile_id = default_prof_id;
924 	params.action[RTE_COLOR_GREEN] =
925 		MTR_POLICER_ACTION_COLOR_GREEN;
926 	params.action[RTE_COLOR_YELLOW] =
927 		MTR_POLICER_ACTION_COLOR_YELLOW;
928 	params.action[RTE_COLOR_RED] =
929 		MTR_POLICER_ACTION_DROP;
930 
931 	ret = rte_mtr_create(port_id, counter, &params, 1, &error);
932 	if (ret != 0) {
933 		printf("Port %u create meter idx(%d) error(%d) message: %s\n",
934 			port_id, counter, error.type,
935 			error.message ? error.message : "(no stated reason)");
936 		rte_exit(EXIT_FAILURE, "Error in creating meter\n");
937 	}
938 }
939 
940 static void
941 destroy_meter_rule(int port_id, uint32_t counter)
942 {
943 	struct rte_mtr_error error;
944 
945 	if (rte_mtr_destroy(port_id, counter, &error)) {
946 		printf("Port %u destroy meter(%d) error(%d) message: %s\n",
947 			port_id, counter, error.type,
948 			error.message ? error.message : "(no stated reason)");
949 		rte_exit(EXIT_FAILURE, "Error in deleting meter rule\n");
950 	}
951 }
952 
953 static void
954 meters_handler(int port_id, uint8_t core_id, uint8_t ops)
955 {
956 	uint64_t start_batch;
957 	double cpu_time_used, insertion_rate;
958 	int rules_count_per_core, rules_batch_idx;
959 	uint32_t counter, start_counter = 0, end_counter;
960 	double cpu_time_per_batch[MAX_BATCHES_COUNT] = { 0 };
961 
962 	rules_count_per_core = rules_count / mc_pool.cores_count;
963 
964 	if (core_id)
965 		start_counter = core_id * rules_count_per_core;
966 	end_counter = (core_id + 1) * rules_count_per_core;
967 
968 	cpu_time_used = 0;
969 	start_batch = rte_rdtsc();
970 	for (counter = start_counter; counter < end_counter; counter++) {
971 		if (ops == METER_CREATE)
972 			create_meter_rule(port_id, counter);
973 		else
974 			destroy_meter_rule(port_id, counter);
975 		/*
976 		 * Save the insertion rate for rules batch.
977 		 * Check if the insertion reached the rules
978 		 * patch counter, then save the insertion rate
979 		 * for this batch.
980 		 */
981 		if (!((counter + 1) % rules_batch)) {
982 			rules_batch_idx = ((counter + 1) / rules_batch) - 1;
983 			cpu_time_per_batch[rules_batch_idx] =
984 				((double)(rte_rdtsc() - start_batch))
985 				/ rte_get_tsc_hz();
986 			cpu_time_used += cpu_time_per_batch[rules_batch_idx];
987 			start_batch = rte_rdtsc();
988 		}
989 	}
990 
991 	/* Print insertion rates for all batches */
992 	if (dump_iterations)
993 		print_rules_batches(cpu_time_per_batch);
994 
995 	insertion_rate =
996 		((double) (rules_count_per_core / cpu_time_used) / 1000);
997 
998 	/* Insertion rate for all rules in one core */
999 	printf(":: Port %d :: Core %d Meter %s :: start @[%d] - end @[%d],"
1000 		" use:%.02fs, rate:%.02fk Rule/Sec\n",
1001 		port_id, core_id, ops == METER_CREATE ? "create" : "delete",
1002 		start_counter, end_counter - 1,
1003 		cpu_time_used, insertion_rate);
1004 
1005 	if (ops == METER_CREATE)
1006 		mc_pool.create_meter.insertion[port_id][core_id]
1007 			= cpu_time_used;
1008 	else
1009 		mc_pool.create_meter.deletion[port_id][core_id]
1010 			= cpu_time_used;
1011 }
1012 
1013 static void
1014 destroy_meter_profile(void)
1015 {
1016 	struct rte_mtr_error error;
1017 	uint16_t nr_ports;
1018 	int port_id;
1019 
1020 	nr_ports = rte_eth_dev_count_avail();
1021 	for (port_id = 0; port_id < nr_ports; port_id++) {
1022 		/* If port outside portmask */
1023 		if (!((ports_mask >> port_id) & 0x1))
1024 			continue;
1025 
1026 		if (rte_mtr_meter_profile_delete
1027 			(port_id, DEFAULT_METER_PROF_ID, &error)) {
1028 			printf("Port %u del profile error(%d) message: %s\n",
1029 				port_id, error.type,
1030 				error.message ? error.message : "(no stated reason)");
1031 			rte_exit(EXIT_FAILURE, "Error: Destroy meter profile Failed!\n");
1032 		}
1033 	}
1034 }
1035 
1036 static void
1037 create_meter_profile(void)
1038 {
1039 	uint16_t nr_ports;
1040 	int ret, port_id;
1041 	struct rte_mtr_meter_profile mp;
1042 	struct rte_mtr_error error;
1043 
1044 	/*
1045 	 *currently , only create one meter file for one port
1046 	 *1 meter profile -> N meter rules -> N rte flows
1047 	 */
1048 	memset(&mp, 0, sizeof(struct rte_mtr_meter_profile));
1049 	nr_ports = rte_eth_dev_count_avail();
1050 	for (port_id = 0; port_id < nr_ports; port_id++) {
1051 		/* If port outside portmask */
1052 		if (!((ports_mask >> port_id) & 0x1))
1053 			continue;
1054 
1055 		mp.alg = RTE_MTR_SRTCM_RFC2697;
1056 		mp.srtcm_rfc2697.cir = METER_CIR;
1057 		mp.srtcm_rfc2697.cbs = METER_CIR / 8;
1058 		mp.srtcm_rfc2697.ebs = 0;
1059 
1060 		ret = rte_mtr_meter_profile_add
1061 			(port_id, DEFAULT_METER_PROF_ID, &mp, &error);
1062 		if (ret != 0) {
1063 			printf("Port %u create Profile error(%d) message: %s\n",
1064 				port_id, error.type,
1065 				error.message ? error.message : "(no stated reason)");
1066 			rte_exit(EXIT_FAILURE, "Error: Creation meter profile Failed!\n");
1067 		}
1068 	}
1069 }
1070 
1071 static inline void
1072 destroy_flows(int port_id, uint8_t core_id, struct rte_flow **flows_list)
1073 {
1074 	struct rte_flow_error error;
1075 	clock_t start_batch, end_batch;
1076 	double cpu_time_used = 0;
1077 	double deletion_rate;
1078 	double cpu_time_per_batch[MAX_BATCHES_COUNT] = { 0 };
1079 	double delta;
1080 	uint32_t i;
1081 	int rules_batch_idx;
1082 	int rules_count_per_core;
1083 
1084 	rules_count_per_core = rules_count / mc_pool.cores_count;
1085 	/* If group > 0 , should add 1 flow which created in group 0 */
1086 	if (flow_group > 0 && core_id == 0)
1087 		rules_count_per_core++;
1088 
1089 	start_batch = rte_rdtsc();
1090 	for (i = 0; i < (uint32_t) rules_count_per_core; i++) {
1091 		if (flows_list[i] == 0)
1092 			break;
1093 
1094 		memset(&error, 0x33, sizeof(error));
1095 		if (rte_flow_destroy(port_id, flows_list[i], &error)) {
1096 			print_flow_error(error);
1097 			rte_exit(EXIT_FAILURE, "Error in deleting flow\n");
1098 		}
1099 
1100 		/*
1101 		 * Save the deletion rate for rules batch.
1102 		 * Check if the deletion reached the rules
1103 		 * patch counter, then save the deletion rate
1104 		 * for this batch.
1105 		 */
1106 		if (!((i + 1) % rules_batch)) {
1107 			end_batch = rte_rdtsc();
1108 			delta = (double) (end_batch - start_batch);
1109 			rules_batch_idx = ((i + 1) / rules_batch) - 1;
1110 			cpu_time_per_batch[rules_batch_idx] = delta / rte_get_tsc_hz();
1111 			cpu_time_used += cpu_time_per_batch[rules_batch_idx];
1112 			start_batch = rte_rdtsc();
1113 		}
1114 	}
1115 
1116 	/* Print deletion rates for all batches */
1117 	if (dump_iterations)
1118 		print_rules_batches(cpu_time_per_batch);
1119 
1120 	/* Deletion rate for all rules */
1121 	deletion_rate = ((double) (rules_count_per_core / cpu_time_used) / 1000);
1122 	printf(":: Port %d :: Core %d :: Rules deletion rate -> %f K Rule/Sec\n",
1123 		port_id, core_id, deletion_rate);
1124 	printf(":: Port %d :: Core %d :: The time for deleting %d rules is %f seconds\n",
1125 		port_id, core_id, rules_count_per_core, cpu_time_used);
1126 
1127 	mc_pool.create_flow.deletion[port_id][core_id] = cpu_time_used;
1128 }
1129 
1130 static struct rte_flow **
1131 insert_flows(int port_id, uint8_t core_id)
1132 {
1133 	struct rte_flow **flows_list;
1134 	struct rte_flow_error error;
1135 	clock_t start_batch, end_batch;
1136 	double cpu_time_used;
1137 	double insertion_rate;
1138 	double cpu_time_per_batch[MAX_BATCHES_COUNT] = { 0 };
1139 	double delta;
1140 	uint32_t flow_index;
1141 	uint32_t counter, start_counter = 0, end_counter;
1142 	uint64_t global_items[MAX_ITEMS_NUM] = { 0 };
1143 	uint64_t global_actions[MAX_ACTIONS_NUM] = { 0 };
1144 	int rules_batch_idx;
1145 	int rules_count_per_core;
1146 
1147 	rules_count_per_core = rules_count / mc_pool.cores_count;
1148 
1149 	/* Set boundaries of rules for each core. */
1150 	if (core_id)
1151 		start_counter = core_id * rules_count_per_core;
1152 	end_counter = (core_id + 1) * rules_count_per_core;
1153 
1154 	global_items[0] = FLOW_ITEM_MASK(RTE_FLOW_ITEM_TYPE_ETH);
1155 	global_actions[0] = FLOW_ITEM_MASK(RTE_FLOW_ACTION_TYPE_JUMP);
1156 
1157 	flows_list = rte_zmalloc("flows_list",
1158 		(sizeof(struct rte_flow *) * rules_count_per_core) + 1, 0);
1159 	if (flows_list == NULL)
1160 		rte_exit(EXIT_FAILURE, "No Memory available!\n");
1161 
1162 	cpu_time_used = 0;
1163 	flow_index = 0;
1164 	if (flow_group > 0 && core_id == 0) {
1165 		/*
1166 		 * Create global rule to jump into flow_group,
1167 		 * this way the app will avoid the default rules.
1168 		 *
1169 		 * This rule will be created only once.
1170 		 *
1171 		 * Global rule:
1172 		 * group 0 eth / end actions jump group <flow_group>
1173 		 */
1174 		flow = generate_flow(port_id, 0, flow_attrs,
1175 			global_items, global_actions,
1176 			flow_group, 0, 0, 0, 0, core_id, &error);
1177 
1178 		if (flow == NULL) {
1179 			print_flow_error(error);
1180 			rte_exit(EXIT_FAILURE, "Error in creating flow\n");
1181 		}
1182 		flows_list[flow_index++] = flow;
1183 	}
1184 
1185 	start_batch = rte_rdtsc();
1186 	for (counter = start_counter; counter < end_counter; counter++) {
1187 		flow = generate_flow(port_id, flow_group,
1188 			flow_attrs, flow_items, flow_actions,
1189 			JUMP_ACTION_TABLE, counter,
1190 			hairpin_queues_num,
1191 			encap_data, decap_data,
1192 			core_id, &error);
1193 
1194 		if (force_quit)
1195 			counter = end_counter;
1196 
1197 		if (!flow) {
1198 			print_flow_error(error);
1199 			rte_exit(EXIT_FAILURE, "Error in creating flow\n");
1200 		}
1201 
1202 		flows_list[flow_index++] = flow;
1203 
1204 		/*
1205 		 * Save the insertion rate for rules batch.
1206 		 * Check if the insertion reached the rules
1207 		 * patch counter, then save the insertion rate
1208 		 * for this batch.
1209 		 */
1210 		if (!((counter + 1) % rules_batch)) {
1211 			end_batch = rte_rdtsc();
1212 			delta = (double) (end_batch - start_batch);
1213 			rules_batch_idx = ((counter + 1) / rules_batch) - 1;
1214 			cpu_time_per_batch[rules_batch_idx] = delta / rte_get_tsc_hz();
1215 			cpu_time_used += cpu_time_per_batch[rules_batch_idx];
1216 			start_batch = rte_rdtsc();
1217 		}
1218 	}
1219 
1220 	/* Print insertion rates for all batches */
1221 	if (dump_iterations)
1222 		print_rules_batches(cpu_time_per_batch);
1223 
1224 	printf(":: Port %d :: Core %d boundaries :: start @[%d] - end @[%d]\n",
1225 		port_id, core_id, start_counter, end_counter - 1);
1226 
1227 	/* Insertion rate for all rules in one core */
1228 	insertion_rate = ((double) (rules_count_per_core / cpu_time_used) / 1000);
1229 	printf(":: Port %d :: Core %d :: Rules insertion rate -> %f K Rule/Sec\n",
1230 		port_id, core_id, insertion_rate);
1231 	printf(":: Port %d :: Core %d :: The time for creating %d in rules %f seconds\n",
1232 		port_id, core_id, rules_count_per_core, cpu_time_used);
1233 
1234 	mc_pool.create_flow.insertion[port_id][core_id] = cpu_time_used;
1235 	return flows_list;
1236 }
1237 
1238 static void
1239 flows_handler(uint8_t core_id)
1240 {
1241 	struct rte_flow **flows_list;
1242 	uint16_t nr_ports;
1243 	int port_id;
1244 
1245 	nr_ports = rte_eth_dev_count_avail();
1246 
1247 	if (rules_batch > rules_count)
1248 		rules_batch = rules_count;
1249 
1250 	printf(":: Rules Count per port: %d\n\n", rules_count);
1251 
1252 	for (port_id = 0; port_id < nr_ports; port_id++) {
1253 		/* If port outside portmask */
1254 		if (!((ports_mask >> port_id) & 0x1))
1255 			continue;
1256 
1257 		/* Insertion part. */
1258 		mc_pool.last_alloc[core_id] = (int64_t)dump_socket_mem(stdout);
1259 		if (has_meter())
1260 			meters_handler(port_id, core_id, METER_CREATE);
1261 		flows_list = insert_flows(port_id, core_id);
1262 		if (flows_list == NULL)
1263 			rte_exit(EXIT_FAILURE, "Error: Insertion Failed!\n");
1264 		mc_pool.current_alloc[core_id] = (int64_t)dump_socket_mem(stdout);
1265 
1266 		/* Deletion part. */
1267 		if (delete_flag) {
1268 			destroy_flows(port_id, core_id, flows_list);
1269 			if (has_meter())
1270 				meters_handler(port_id, core_id, METER_DELETE);
1271 		}
1272 	}
1273 }
1274 
1275 static void
1276 dump_used_cpu_time(const char *item,
1277 		uint16_t port, struct used_cpu_time *used_time)
1278 {
1279 	uint32_t i;
1280 	/* Latency: total count of rte rules divided
1281 	 * over max time used by thread between all
1282 	 * threads time.
1283 	 *
1284 	 * Throughput: total count of rte rules divided
1285 	 * over the average of the time cosumed by all
1286 	 * threads time.
1287 	 */
1288 	double insertion_latency_time;
1289 	double insertion_throughput_time;
1290 	double deletion_latency_time;
1291 	double deletion_throughput_time;
1292 	double insertion_latency, insertion_throughput;
1293 	double deletion_latency, deletion_throughput;
1294 
1295 	/* Save first insertion/deletion rates from first thread.
1296 	 * Start comparing with all threads, if any thread used
1297 	 * time more than current saved, replace it.
1298 	 *
1299 	 * Thus in the end we will have the max time used for
1300 	 * insertion/deletion by one thread.
1301 	 *
1302 	 * As for memory consumption, save the min of all threads
1303 	 * of last alloc, and save the max for all threads for
1304 	 * current alloc.
1305 	 */
1306 
1307 	insertion_latency_time = used_time->insertion[port][0];
1308 	deletion_latency_time = used_time->deletion[port][0];
1309 	insertion_throughput_time = used_time->insertion[port][0];
1310 	deletion_throughput_time = used_time->deletion[port][0];
1311 
1312 	i = mc_pool.cores_count;
1313 	while (i-- > 1) {
1314 		insertion_throughput_time += used_time->insertion[port][i];
1315 		deletion_throughput_time += used_time->deletion[port][i];
1316 		if (insertion_latency_time < used_time->insertion[port][i])
1317 			insertion_latency_time = used_time->insertion[port][i];
1318 		if (deletion_latency_time < used_time->deletion[port][i])
1319 			deletion_latency_time = used_time->deletion[port][i];
1320 	}
1321 
1322 	insertion_latency = ((double) (mc_pool.rules_count
1323 				/ insertion_latency_time) / 1000);
1324 	deletion_latency = ((double) (mc_pool.rules_count
1325 				/ deletion_latency_time) / 1000);
1326 
1327 	insertion_throughput_time /= mc_pool.cores_count;
1328 	deletion_throughput_time /= mc_pool.cores_count;
1329 	insertion_throughput = ((double) (mc_pool.rules_count
1330 				/ insertion_throughput_time) / 1000);
1331 	deletion_throughput = ((double) (mc_pool.rules_count
1332 				/ deletion_throughput_time) / 1000);
1333 
1334 	/* Latency stats */
1335 	printf("\n%s\n:: [Latency | Insertion] All Cores :: Port %d :: ",
1336 		item, port);
1337 	printf("Total flows insertion rate -> %f K Rules/Sec\n",
1338 		insertion_latency);
1339 	printf(":: [Latency | Insertion] All Cores :: Port %d :: ", port);
1340 	printf("The time for creating %d rules is %f seconds\n",
1341 		mc_pool.rules_count, insertion_latency_time);
1342 
1343 	/* Throughput stats */
1344 	printf(":: [Throughput | Insertion] All Cores :: Port %d :: ", port);
1345 	printf("Total flows insertion rate -> %f K Rules/Sec\n",
1346 		insertion_throughput);
1347 	printf(":: [Throughput | Insertion] All Cores :: Port %d :: ", port);
1348 	printf("The average time for creating %d rules is %f seconds\n",
1349 		mc_pool.rules_count, insertion_throughput_time);
1350 
1351 	if (delete_flag) {
1352 	/* Latency stats */
1353 		printf(":: [Latency | Deletion] All Cores :: Port %d :: Total "
1354 			"deletion rate -> %f K Rules/Sec\n",
1355 			port, deletion_latency);
1356 		printf(":: [Latency | Deletion] All Cores :: Port %d :: ",
1357 			port);
1358 		printf("The time for deleting %d rules is %f seconds\n",
1359 			mc_pool.rules_count, deletion_latency_time);
1360 
1361 		/* Throughput stats */
1362 		printf(":: [Throughput | Deletion] All Cores :: Port %d :: Total "
1363 			"deletion rate -> %f K Rules/Sec\n",
1364 			port, deletion_throughput);
1365 		printf(":: [Throughput | Deletion] All Cores :: Port %d :: ",
1366 			port);
1367 		printf("The average time for deleting %d rules is %f seconds\n",
1368 			mc_pool.rules_count, deletion_throughput_time);
1369 	}
1370 }
1371 
1372 static void
1373 dump_used_mem(uint16_t port)
1374 {
1375 	uint32_t i;
1376 	int64_t last_alloc, current_alloc;
1377 	int flow_size_in_bytes;
1378 
1379 	last_alloc = mc_pool.last_alloc[0];
1380 	current_alloc = mc_pool.current_alloc[0];
1381 
1382 	i = mc_pool.cores_count;
1383 	while (i-- > 1) {
1384 		if (last_alloc > mc_pool.last_alloc[i])
1385 			last_alloc = mc_pool.last_alloc[i];
1386 		if (current_alloc < mc_pool.current_alloc[i])
1387 			current_alloc = mc_pool.current_alloc[i];
1388 	}
1389 
1390 	flow_size_in_bytes = (current_alloc - last_alloc) / mc_pool.rules_count;
1391 	printf("\n:: Port %d :: rte_flow size in DPDK layer: %d Bytes\n",
1392 		port, flow_size_in_bytes);
1393 }
1394 
1395 static int
1396 run_rte_flow_handler_cores(void *data __rte_unused)
1397 {
1398 	uint16_t port;
1399 	int lcore_counter = 0;
1400 	int lcore_id = rte_lcore_id();
1401 	int i;
1402 
1403 	RTE_LCORE_FOREACH(i) {
1404 		/*  If core not needed return. */
1405 		if (lcore_id == i) {
1406 			printf(":: lcore %d mapped with index %d\n", lcore_id, lcore_counter);
1407 			if (lcore_counter >= (int) mc_pool.cores_count)
1408 				return 0;
1409 			break;
1410 		}
1411 		lcore_counter++;
1412 	}
1413 	lcore_id = lcore_counter;
1414 
1415 	if (lcore_id >= (int) mc_pool.cores_count)
1416 		return 0;
1417 
1418 	mc_pool.rules_count = rules_count;
1419 
1420 	flows_handler(lcore_id);
1421 
1422 	/* Only main core to print total results. */
1423 	if (lcore_id != 0)
1424 		return 0;
1425 
1426 	/* Make sure all cores finished insertion/deletion process. */
1427 	rte_eal_mp_wait_lcore();
1428 
1429 	RTE_ETH_FOREACH_DEV(port) {
1430 		if (has_meter())
1431 			dump_used_cpu_time("Meters:",
1432 				port, &mc_pool.create_meter);
1433 		dump_used_cpu_time("Flows:",
1434 			port, &mc_pool.create_flow);
1435 		dump_used_mem(port);
1436 	}
1437 
1438 	return 0;
1439 }
1440 
1441 static void
1442 signal_handler(int signum)
1443 {
1444 	if (signum == SIGINT || signum == SIGTERM) {
1445 		printf("\n\nSignal %d received, preparing to exit...\n",
1446 					signum);
1447 		printf("Error: Stats are wrong due to sudden signal!\n\n");
1448 		force_quit = true;
1449 	}
1450 }
1451 
1452 static inline uint16_t
1453 do_rx(struct lcore_info *li, uint16_t rx_port, uint16_t rx_queue)
1454 {
1455 	uint16_t cnt = 0;
1456 	cnt = rte_eth_rx_burst(rx_port, rx_queue, li->pkts, MAX_PKT_BURST);
1457 	li->rx_pkts += cnt;
1458 	return cnt;
1459 }
1460 
1461 static inline void
1462 do_tx(struct lcore_info *li, uint16_t cnt, uint16_t tx_port,
1463 			uint16_t tx_queue)
1464 {
1465 	uint16_t nr_tx = 0;
1466 	uint16_t i;
1467 
1468 	nr_tx = rte_eth_tx_burst(tx_port, tx_queue, li->pkts, cnt);
1469 	li->tx_pkts  += nr_tx;
1470 	li->tx_drops += cnt - nr_tx;
1471 
1472 	for (i = nr_tx; i < cnt; i++)
1473 		rte_pktmbuf_free(li->pkts[i]);
1474 }
1475 
1476 /*
1477  * Method to convert numbers into pretty numbers that easy
1478  * to read. The design here is to add comma after each three
1479  * digits and set all of this inside buffer.
1480  *
1481  * For example if n = 1799321, the output will be
1482  * 1,799,321 after this method which is easier to read.
1483  */
1484 static char *
1485 pretty_number(uint64_t n, char *buf)
1486 {
1487 	char p[6][4];
1488 	int i = 0;
1489 	int off = 0;
1490 
1491 	while (n > 1000) {
1492 		sprintf(p[i], "%03d", (int)(n % 1000));
1493 		n /= 1000;
1494 		i += 1;
1495 	}
1496 
1497 	sprintf(p[i++], "%d", (int)n);
1498 
1499 	while (i--)
1500 		off += sprintf(buf + off, "%s,", p[i]);
1501 	buf[strlen(buf) - 1] = '\0';
1502 
1503 	return buf;
1504 }
1505 
1506 static void
1507 packet_per_second_stats(void)
1508 {
1509 	struct lcore_info *old;
1510 	struct lcore_info *li, *oli;
1511 	int nr_lines = 0;
1512 	int i;
1513 
1514 	old = rte_zmalloc("old",
1515 		sizeof(struct lcore_info) * RTE_MAX_LCORE, 0);
1516 	if (old == NULL)
1517 		rte_exit(EXIT_FAILURE, "No Memory available!\n");
1518 
1519 	memcpy(old, lcore_infos,
1520 		sizeof(struct lcore_info) * RTE_MAX_LCORE);
1521 
1522 	while (!force_quit) {
1523 		uint64_t total_tx_pkts = 0;
1524 		uint64_t total_rx_pkts = 0;
1525 		uint64_t total_tx_drops = 0;
1526 		uint64_t tx_delta, rx_delta, drops_delta;
1527 		char buf[3][32];
1528 		int nr_valid_core = 0;
1529 
1530 		sleep(1);
1531 
1532 		if (nr_lines) {
1533 			char go_up_nr_lines[16];
1534 
1535 			sprintf(go_up_nr_lines, "%c[%dA\r", 27, nr_lines);
1536 			printf("%s\r", go_up_nr_lines);
1537 		}
1538 
1539 		printf("\n%6s %16s %16s %16s\n", "core", "tx", "tx drops", "rx");
1540 		printf("%6s %16s %16s %16s\n", "------", "----------------",
1541 			"----------------", "----------------");
1542 		nr_lines = 3;
1543 		for (i = 0; i < RTE_MAX_LCORE; i++) {
1544 			li  = &lcore_infos[i];
1545 			oli = &old[i];
1546 			if (li->mode != LCORE_MODE_PKT)
1547 				continue;
1548 
1549 			tx_delta    = li->tx_pkts  - oli->tx_pkts;
1550 			rx_delta    = li->rx_pkts  - oli->rx_pkts;
1551 			drops_delta = li->tx_drops - oli->tx_drops;
1552 			printf("%6d %16s %16s %16s\n", i,
1553 				pretty_number(tx_delta,    buf[0]),
1554 				pretty_number(drops_delta, buf[1]),
1555 				pretty_number(rx_delta,    buf[2]));
1556 
1557 			total_tx_pkts  += tx_delta;
1558 			total_rx_pkts  += rx_delta;
1559 			total_tx_drops += drops_delta;
1560 
1561 			nr_valid_core++;
1562 			nr_lines += 1;
1563 		}
1564 
1565 		if (nr_valid_core > 1) {
1566 			printf("%6s %16s %16s %16s\n", "total",
1567 				pretty_number(total_tx_pkts,  buf[0]),
1568 				pretty_number(total_tx_drops, buf[1]),
1569 				pretty_number(total_rx_pkts,  buf[2]));
1570 			nr_lines += 1;
1571 		}
1572 
1573 		memcpy(old, lcore_infos,
1574 			sizeof(struct lcore_info) * RTE_MAX_LCORE);
1575 	}
1576 }
1577 
1578 static int
1579 start_forwarding(void *data __rte_unused)
1580 {
1581 	int lcore = rte_lcore_id();
1582 	int stream_id;
1583 	uint16_t cnt;
1584 	struct lcore_info *li = &lcore_infos[lcore];
1585 
1586 	if (!li->mode)
1587 		return 0;
1588 
1589 	if (li->mode == LCORE_MODE_STATS) {
1590 		printf(":: started stats on lcore %u\n", lcore);
1591 		packet_per_second_stats();
1592 		return 0;
1593 	}
1594 
1595 	while (!force_quit)
1596 		for (stream_id = 0; stream_id < MAX_STREAMS; stream_id++) {
1597 			if (li->streams[stream_id].rx_port == -1)
1598 				continue;
1599 
1600 			cnt = do_rx(li,
1601 					li->streams[stream_id].rx_port,
1602 					li->streams[stream_id].rx_queue);
1603 			if (cnt)
1604 				do_tx(li, cnt,
1605 					li->streams[stream_id].tx_port,
1606 					li->streams[stream_id].tx_queue);
1607 		}
1608 	return 0;
1609 }
1610 
1611 static void
1612 init_lcore_info(void)
1613 {
1614 	int i, j;
1615 	unsigned int lcore;
1616 	uint16_t nr_port;
1617 	uint16_t queue;
1618 	int port;
1619 	int stream_id = 0;
1620 	int streams_per_core;
1621 	int unassigned_streams;
1622 	int nb_fwd_streams;
1623 	nr_port = rte_eth_dev_count_avail();
1624 
1625 	/* First logical core is reserved for stats printing */
1626 	lcore = rte_get_next_lcore(-1, 0, 0);
1627 	lcore_infos[lcore].mode = LCORE_MODE_STATS;
1628 
1629 	/*
1630 	 * Initialize all cores
1631 	 * All cores at first must have -1 value in all streams
1632 	 * This means that this stream is not used, or not set
1633 	 * yet.
1634 	 */
1635 	for (i = 0; i < RTE_MAX_LCORE; i++)
1636 		for (j = 0; j < MAX_STREAMS; j++) {
1637 			lcore_infos[i].streams[j].tx_port = -1;
1638 			lcore_infos[i].streams[j].rx_port = -1;
1639 			lcore_infos[i].streams[j].tx_queue = -1;
1640 			lcore_infos[i].streams[j].rx_queue = -1;
1641 			lcore_infos[i].streams_nb = 0;
1642 		}
1643 
1644 	/*
1645 	 * Calculate the total streams count.
1646 	 * Also distribute those streams count between the available
1647 	 * logical cores except first core, since it's reserved for
1648 	 * stats prints.
1649 	 */
1650 	nb_fwd_streams = nr_port * RXQ_NUM;
1651 	if ((int)(nb_lcores - 1) >= nb_fwd_streams)
1652 		for (i = 0; i < (int)(nb_lcores - 1); i++) {
1653 			lcore = rte_get_next_lcore(lcore, 0, 0);
1654 			lcore_infos[lcore].streams_nb = 1;
1655 		}
1656 	else {
1657 		streams_per_core = nb_fwd_streams / (nb_lcores - 1);
1658 		unassigned_streams = nb_fwd_streams % (nb_lcores - 1);
1659 		for (i = 0; i < (int)(nb_lcores - 1); i++) {
1660 			lcore = rte_get_next_lcore(lcore, 0, 0);
1661 			lcore_infos[lcore].streams_nb = streams_per_core;
1662 			if (unassigned_streams) {
1663 				lcore_infos[lcore].streams_nb++;
1664 				unassigned_streams--;
1665 			}
1666 		}
1667 	}
1668 
1669 	/*
1670 	 * Set the streams for the cores according to each logical
1671 	 * core stream count.
1672 	 * The streams is built on the design of what received should
1673 	 * forward as well, this means that if you received packets on
1674 	 * port 0 queue 0 then the same queue should forward the
1675 	 * packets, using the same logical core.
1676 	 */
1677 	lcore = rte_get_next_lcore(-1, 0, 0);
1678 	for (port = 0; port < nr_port; port++) {
1679 		/* Create FWD stream */
1680 		for (queue = 0; queue < RXQ_NUM; queue++) {
1681 			if (!lcore_infos[lcore].streams_nb ||
1682 				!(stream_id % lcore_infos[lcore].streams_nb)) {
1683 				lcore = rte_get_next_lcore(lcore, 0, 0);
1684 				lcore_infos[lcore].mode = LCORE_MODE_PKT;
1685 				stream_id = 0;
1686 			}
1687 			lcore_infos[lcore].streams[stream_id].rx_queue = queue;
1688 			lcore_infos[lcore].streams[stream_id].tx_queue = queue;
1689 			lcore_infos[lcore].streams[stream_id].rx_port = port;
1690 			lcore_infos[lcore].streams[stream_id].tx_port = port;
1691 			stream_id++;
1692 		}
1693 	}
1694 
1695 	/* Print all streams */
1696 	printf(":: Stream -> core id[N]: (rx_port, rx_queue)->(tx_port, tx_queue)\n");
1697 	for (i = 0; i < RTE_MAX_LCORE; i++)
1698 		for (j = 0; j < MAX_STREAMS; j++) {
1699 			/* No streams for this core */
1700 			if (lcore_infos[i].streams[j].tx_port == -1)
1701 				break;
1702 			printf("Stream -> core id[%d]: (%d,%d)->(%d,%d)\n",
1703 				i,
1704 				lcore_infos[i].streams[j].rx_port,
1705 				lcore_infos[i].streams[j].rx_queue,
1706 				lcore_infos[i].streams[j].tx_port,
1707 				lcore_infos[i].streams[j].tx_queue);
1708 		}
1709 }
1710 
1711 static void
1712 init_port(void)
1713 {
1714 	int ret;
1715 	uint16_t std_queue;
1716 	uint16_t hairpin_queue;
1717 	uint16_t port_id;
1718 	uint16_t nr_ports;
1719 	uint16_t nr_queues;
1720 	struct rte_eth_hairpin_conf hairpin_conf = {
1721 		.peer_count = 1,
1722 	};
1723 	struct rte_eth_conf port_conf = {
1724 		.rx_adv_conf = {
1725 			.rss_conf.rss_hf =
1726 				GET_RSS_HF(),
1727 		}
1728 	};
1729 	struct rte_eth_txconf txq_conf;
1730 	struct rte_eth_rxconf rxq_conf;
1731 	struct rte_eth_dev_info dev_info;
1732 
1733 	nr_queues = RXQ_NUM;
1734 	if (hairpin_queues_num != 0)
1735 		nr_queues = RXQ_NUM + hairpin_queues_num;
1736 
1737 	nr_ports = rte_eth_dev_count_avail();
1738 	if (nr_ports == 0)
1739 		rte_exit(EXIT_FAILURE, "Error: no port detected\n");
1740 
1741 	mbuf_mp = rte_pktmbuf_pool_create("mbuf_pool",
1742 					TOTAL_MBUF_NUM, MBUF_CACHE_SIZE,
1743 					0, MBUF_SIZE,
1744 					rte_socket_id());
1745 	if (mbuf_mp == NULL)
1746 		rte_exit(EXIT_FAILURE, "Error: can't init mbuf pool\n");
1747 
1748 	for (port_id = 0; port_id < nr_ports; port_id++) {
1749 		ret = rte_eth_dev_info_get(port_id, &dev_info);
1750 		if (ret != 0)
1751 			rte_exit(EXIT_FAILURE,
1752 				"Error during getting device"
1753 				" (port %u) info: %s\n",
1754 				port_id, strerror(-ret));
1755 
1756 		port_conf.txmode.offloads &= dev_info.tx_offload_capa;
1757 		port_conf.rxmode.offloads &= dev_info.rx_offload_capa;
1758 
1759 		printf(":: initializing port: %d\n", port_id);
1760 
1761 		ret = rte_eth_dev_configure(port_id, nr_queues,
1762 				nr_queues, &port_conf);
1763 		if (ret < 0)
1764 			rte_exit(EXIT_FAILURE,
1765 				":: cannot configure device: err=%d, port=%u\n",
1766 				ret, port_id);
1767 
1768 		rxq_conf = dev_info.default_rxconf;
1769 		for (std_queue = 0; std_queue < RXQ_NUM; std_queue++) {
1770 			ret = rte_eth_rx_queue_setup(port_id, std_queue, NR_RXD,
1771 					rte_eth_dev_socket_id(port_id),
1772 					&rxq_conf,
1773 					mbuf_mp);
1774 			if (ret < 0)
1775 				rte_exit(EXIT_FAILURE,
1776 					":: Rx queue setup failed: err=%d, port=%u\n",
1777 					ret, port_id);
1778 		}
1779 
1780 		txq_conf = dev_info.default_txconf;
1781 		for (std_queue = 0; std_queue < TXQ_NUM; std_queue++) {
1782 			ret = rte_eth_tx_queue_setup(port_id, std_queue, NR_TXD,
1783 					rte_eth_dev_socket_id(port_id),
1784 					&txq_conf);
1785 			if (ret < 0)
1786 				rte_exit(EXIT_FAILURE,
1787 					":: Tx queue setup failed: err=%d, port=%u\n",
1788 					ret, port_id);
1789 		}
1790 
1791 		/* Catch all packets from traffic generator. */
1792 		ret = rte_eth_promiscuous_enable(port_id);
1793 		if (ret != 0)
1794 			rte_exit(EXIT_FAILURE,
1795 				":: promiscuous mode enable failed: err=%s, port=%u\n",
1796 				rte_strerror(-ret), port_id);
1797 
1798 		if (hairpin_queues_num != 0) {
1799 			/*
1800 			 * Configure peer which represents hairpin Tx.
1801 			 * Hairpin queue numbers start after standard queues
1802 			 * (RXQ_NUM and TXQ_NUM).
1803 			 */
1804 			for (hairpin_queue = RXQ_NUM, std_queue = 0;
1805 					hairpin_queue < nr_queues;
1806 					hairpin_queue++, std_queue++) {
1807 				hairpin_conf.peers[0].port = port_id;
1808 				hairpin_conf.peers[0].queue =
1809 					std_queue + TXQ_NUM;
1810 				ret = rte_eth_rx_hairpin_queue_setup(
1811 						port_id, hairpin_queue,
1812 						NR_RXD, &hairpin_conf);
1813 				if (ret != 0)
1814 					rte_exit(EXIT_FAILURE,
1815 						":: Hairpin rx queue setup failed: err=%d, port=%u\n",
1816 						ret, port_id);
1817 			}
1818 
1819 			for (hairpin_queue = TXQ_NUM, std_queue = 0;
1820 					hairpin_queue < nr_queues;
1821 					hairpin_queue++, std_queue++) {
1822 				hairpin_conf.peers[0].port = port_id;
1823 				hairpin_conf.peers[0].queue =
1824 					std_queue + RXQ_NUM;
1825 				ret = rte_eth_tx_hairpin_queue_setup(
1826 						port_id, hairpin_queue,
1827 						NR_TXD, &hairpin_conf);
1828 				if (ret != 0)
1829 					rte_exit(EXIT_FAILURE,
1830 						":: Hairpin tx queue setup failed: err=%d, port=%u\n",
1831 						ret, port_id);
1832 			}
1833 		}
1834 
1835 		ret = rte_eth_dev_start(port_id);
1836 		if (ret < 0)
1837 			rte_exit(EXIT_FAILURE,
1838 				"rte_eth_dev_start:err=%d, port=%u\n",
1839 				ret, port_id);
1840 
1841 		printf(":: initializing port: %d done\n", port_id);
1842 	}
1843 }
1844 
1845 int
1846 main(int argc, char **argv)
1847 {
1848 	int ret;
1849 	uint16_t port;
1850 	struct rte_flow_error error;
1851 
1852 	ret = rte_eal_init(argc, argv);
1853 	if (ret < 0)
1854 		rte_exit(EXIT_FAILURE, "EAL init failed\n");
1855 
1856 	force_quit = false;
1857 	dump_iterations = false;
1858 	rules_count = DEFAULT_RULES_COUNT;
1859 	rules_batch = DEFAULT_RULES_BATCH;
1860 	delete_flag = false;
1861 	dump_socket_mem_flag = false;
1862 	flow_group = DEFAULT_GROUP;
1863 
1864 	signal(SIGINT, signal_handler);
1865 	signal(SIGTERM, signal_handler);
1866 
1867 	argc -= ret;
1868 	argv += ret;
1869 	if (argc > 1)
1870 		args_parse(argc, argv);
1871 
1872 	init_port();
1873 
1874 	nb_lcores = rte_lcore_count();
1875 	if (nb_lcores <= 1)
1876 		rte_exit(EXIT_FAILURE, "This app needs at least two cores\n");
1877 
1878 
1879 	printf(":: Flows Count per port: %d\n\n", rules_count);
1880 
1881 	if (has_meter())
1882 		create_meter_profile();
1883 	rte_eal_mp_remote_launch(run_rte_flow_handler_cores, NULL, CALL_MAIN);
1884 
1885 	if (enable_fwd) {
1886 		init_lcore_info();
1887 		rte_eal_mp_remote_launch(start_forwarding, NULL, CALL_MAIN);
1888 	}
1889 	if (has_meter() && delete_flag)
1890 		destroy_meter_profile();
1891 
1892 	RTE_ETH_FOREACH_DEV(port) {
1893 		rte_flow_flush(port, &error);
1894 		if (rte_eth_dev_stop(port) != 0)
1895 			printf("Failed to stop device on port %u\n", port);
1896 		rte_eth_dev_close(port);
1897 	}
1898 	printf("\nBye ...\n");
1899 	return 0;
1900 }
1901