xref: /dpdk/app/test-eventdev/test_perf_queue.c (revision f12c41bf4074efb438fc21ab7db13f011f5a1e84)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Cavium, Inc
3  */
4 
5 #include "test_perf_common.h"
6 
7 /* See http://doc.dpdk.org/guides/tools/testeventdev.html for test details */
8 
9 static inline int
10 perf_queue_nb_event_queues(struct evt_options *opt)
11 {
12 	/* nb_queues = number of producers * number of stages */
13 	uint8_t nb_prod = opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ?
14 		rte_eth_dev_count_avail() : evt_nr_active_lcores(opt->plcores);
15 	return nb_prod * opt->nb_stages;
16 }
17 
18 static __rte_always_inline void
19 mark_fwd_latency(struct rte_event *const ev,
20 		const uint8_t nb_stages)
21 {
22 	if (unlikely((ev->queue_id % nb_stages) == 0)) {
23 		struct perf_elt *const m = ev->event_ptr;
24 
25 		m->timestamp = rte_get_timer_cycles();
26 	}
27 }
28 
29 static __rte_always_inline void
30 fwd_event(struct rte_event *const ev, uint8_t *const sched_type_list,
31 		const uint8_t nb_stages)
32 {
33 	ev->queue_id++;
34 	ev->sched_type = sched_type_list[ev->queue_id % nb_stages];
35 	ev->op = RTE_EVENT_OP_FORWARD;
36 	ev->event_type = RTE_EVENT_TYPE_CPU;
37 }
38 
39 static int
40 perf_queue_worker(void *arg, const int enable_fwd_latency)
41 {
42 	uint16_t enq = 0, deq = 0;
43 	struct rte_event ev;
44 	PERF_WORKER_INIT;
45 
46 	while (t->done == false) {
47 		deq = rte_event_dequeue_burst(dev, port, &ev, 1, 0);
48 
49 		if (!deq) {
50 			rte_pause();
51 			continue;
52 		}
53 
54 		if (prod_crypto_type &&
55 		    (ev.event_type == RTE_EVENT_TYPE_CRYPTODEV)) {
56 			struct rte_crypto_op *op = ev.event_ptr;
57 
58 			if (op->status == RTE_CRYPTO_OP_STATUS_SUCCESS) {
59 				if (op->sym->m_dst == NULL)
60 					ev.event_ptr = op->sym->m_src;
61 				else
62 					ev.event_ptr = op->sym->m_dst;
63 				rte_crypto_op_free(op);
64 			} else {
65 				rte_crypto_op_free(op);
66 				continue;
67 			}
68 		}
69 
70 		if (enable_fwd_latency && !prod_timer_type)
71 		/* first q in pipeline, mark timestamp to compute fwd latency */
72 			mark_fwd_latency(&ev, nb_stages);
73 
74 		/* last stage in pipeline */
75 		if (unlikely((ev.queue_id % nb_stages) == laststage)) {
76 			if (enable_fwd_latency)
77 				cnt = perf_process_last_stage_latency(pool,
78 					&ev, w, bufs, sz, cnt);
79 			else
80 				cnt = perf_process_last_stage(pool,
81 					&ev, w, bufs, sz, cnt);
82 		} else {
83 			fwd_event(&ev, sched_type_list, nb_stages);
84 			do {
85 				enq = rte_event_enqueue_burst(dev, port, &ev,
86 							      1);
87 			} while (!enq && !t->done);
88 		}
89 	}
90 
91 	perf_worker_cleanup(pool, dev, port, &ev, enq, deq);
92 
93 	return 0;
94 }
95 
96 static int
97 perf_queue_worker_burst(void *arg, const int enable_fwd_latency)
98 {
99 	/* +1 to avoid prefetch out of array check */
100 	struct rte_event ev[BURST_SIZE + 1];
101 	uint16_t enq = 0, nb_rx = 0;
102 	PERF_WORKER_INIT;
103 	uint16_t i;
104 
105 	while (t->done == false) {
106 		nb_rx = rte_event_dequeue_burst(dev, port, ev, BURST_SIZE, 0);
107 
108 		if (!nb_rx) {
109 			rte_pause();
110 			continue;
111 		}
112 
113 		for (i = 0; i < nb_rx; i++) {
114 			if (prod_crypto_type &&
115 			    (ev[i].event_type == RTE_EVENT_TYPE_CRYPTODEV)) {
116 				struct rte_crypto_op *op = ev[i].event_ptr;
117 
118 				if (op->status ==
119 				    RTE_CRYPTO_OP_STATUS_SUCCESS) {
120 					if (op->sym->m_dst == NULL)
121 						ev[i].event_ptr =
122 							op->sym->m_src;
123 					else
124 						ev[i].event_ptr =
125 							op->sym->m_dst;
126 					rte_crypto_op_free(op);
127 				} else {
128 					rte_crypto_op_free(op);
129 					continue;
130 				}
131 			}
132 
133 			if (enable_fwd_latency && !prod_timer_type) {
134 				rte_prefetch0(ev[i+1].event_ptr);
135 				/* first queue in pipeline.
136 				 * mark time stamp to compute fwd latency
137 				 */
138 				mark_fwd_latency(&ev[i], nb_stages);
139 			}
140 			/* last stage in pipeline */
141 			if (unlikely((ev[i].queue_id % nb_stages) ==
142 						 laststage)) {
143 				if (enable_fwd_latency)
144 					cnt = perf_process_last_stage_latency(
145 						pool, &ev[i], w, bufs, sz, cnt);
146 				else
147 					cnt = perf_process_last_stage(pool,
148 						&ev[i], w, bufs, sz, cnt);
149 
150 				ev[i].op = RTE_EVENT_OP_RELEASE;
151 			} else {
152 				fwd_event(&ev[i], sched_type_list, nb_stages);
153 			}
154 		}
155 
156 
157 		enq = rte_event_enqueue_burst(dev, port, ev, nb_rx);
158 		while (enq < nb_rx && !t->done) {
159 			enq += rte_event_enqueue_burst(dev, port,
160 							ev + enq, nb_rx - enq);
161 		}
162 	}
163 
164 	perf_worker_cleanup(pool, dev, port, ev, enq, nb_rx);
165 
166 	return 0;
167 }
168 
169 static int
170 worker_wrapper(void *arg)
171 {
172 	struct worker_data *w  = arg;
173 	struct evt_options *opt = w->t->opt;
174 
175 	const bool burst = evt_has_burst_mode(w->dev_id);
176 	const int fwd_latency = opt->fwd_latency;
177 
178 	/* allow compiler to optimize */
179 	if (!burst && !fwd_latency)
180 		return perf_queue_worker(arg, 0);
181 	else if (!burst && fwd_latency)
182 		return perf_queue_worker(arg, 1);
183 	else if (burst && !fwd_latency)
184 		return perf_queue_worker_burst(arg, 0);
185 	else if (burst && fwd_latency)
186 		return perf_queue_worker_burst(arg, 1);
187 
188 	rte_panic("invalid worker\n");
189 }
190 
191 static int
192 perf_queue_launch_lcores(struct evt_test *test, struct evt_options *opt)
193 {
194 	return perf_launch_lcores(test, opt, worker_wrapper);
195 }
196 
197 static int
198 perf_queue_eventdev_setup(struct evt_test *test, struct evt_options *opt)
199 {
200 	uint8_t queue;
201 	int nb_stages = opt->nb_stages;
202 	int ret;
203 	int nb_ports;
204 	int nb_queues;
205 	uint16_t prod;
206 	struct rte_event_dev_info dev_info;
207 	struct test_perf *t = evt_test_priv(test);
208 
209 	nb_ports = evt_nr_active_lcores(opt->wlcores);
210 	nb_ports += opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ||
211 		opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR ? 0 :
212 		evt_nr_active_lcores(opt->plcores);
213 
214 	nb_queues = perf_queue_nb_event_queues(opt);
215 
216 	memset(&dev_info, 0, sizeof(struct rte_event_dev_info));
217 	ret = rte_event_dev_info_get(opt->dev_id, &dev_info);
218 	if (ret) {
219 		evt_err("failed to get eventdev info %d", opt->dev_id);
220 		return ret;
221 	}
222 
223 	ret = evt_configure_eventdev(opt, nb_queues, nb_ports);
224 	if (ret) {
225 		evt_err("failed to configure eventdev %d", opt->dev_id);
226 		return ret;
227 	}
228 
229 	struct rte_event_queue_conf q_conf = {
230 			.priority = RTE_EVENT_DEV_PRIORITY_NORMAL,
231 			.nb_atomic_flows = opt->nb_flows,
232 			.nb_atomic_order_sequences = opt->nb_flows,
233 	};
234 	/* queue configurations */
235 	for (queue = 0; queue < nb_queues; queue++) {
236 		q_conf.schedule_type =
237 			(opt->sched_type_list[queue % nb_stages]);
238 
239 		if (opt->q_priority) {
240 			uint8_t stage_pos = queue % nb_stages;
241 			/* Configure event queues(stage 0 to stage n) with
242 			 * RTE_EVENT_DEV_PRIORITY_LOWEST to
243 			 * RTE_EVENT_DEV_PRIORITY_HIGHEST.
244 			 */
245 			uint8_t step = RTE_EVENT_DEV_PRIORITY_LOWEST /
246 					(nb_stages - 1);
247 			/* Higher prio for the queues closer to last stage */
248 			q_conf.priority = RTE_EVENT_DEV_PRIORITY_LOWEST -
249 					(step * stage_pos);
250 		}
251 		ret = rte_event_queue_setup(opt->dev_id, queue, &q_conf);
252 		if (ret) {
253 			evt_err("failed to setup queue=%d", queue);
254 			return ret;
255 		}
256 	}
257 
258 	if (opt->wkr_deq_dep > dev_info.max_event_port_dequeue_depth)
259 		opt->wkr_deq_dep = dev_info.max_event_port_dequeue_depth;
260 
261 	/* port configuration */
262 	const struct rte_event_port_conf p_conf = {
263 			.dequeue_depth = opt->wkr_deq_dep,
264 			.enqueue_depth = dev_info.max_event_port_dequeue_depth,
265 			.new_event_threshold = dev_info.max_num_events,
266 	};
267 
268 	ret = perf_event_dev_port_setup(test, opt, nb_stages /* stride */,
269 					nb_queues, &p_conf);
270 	if (ret)
271 		return ret;
272 
273 	if (!evt_has_distributed_sched(opt->dev_id)) {
274 		uint32_t service_id;
275 		rte_event_dev_service_id_get(opt->dev_id, &service_id);
276 		ret = evt_service_setup(service_id);
277 		if (ret) {
278 			evt_err("No service lcore found to run event dev.");
279 			return ret;
280 		}
281 	}
282 
283 	ret = rte_event_dev_start(opt->dev_id);
284 	if (ret) {
285 		evt_err("failed to start eventdev %d", opt->dev_id);
286 		return ret;
287 	}
288 
289 	if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) {
290 		RTE_ETH_FOREACH_DEV(prod) {
291 			ret = rte_eth_dev_start(prod);
292 			if (ret) {
293 				evt_err("Ethernet dev [%d] failed to start. Using synthetic producer",
294 						prod);
295 				return ret;
296 			}
297 
298 			ret = rte_event_eth_rx_adapter_start(prod);
299 			if (ret) {
300 				evt_err("Rx adapter[%d] start failed", prod);
301 				return ret;
302 			}
303 			printf("%s: Port[%d] using Rx adapter[%d] started\n",
304 					__func__, prod, prod);
305 		}
306 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) {
307 		for (prod = 0; prod < opt->nb_timer_adptrs; prod++) {
308 			ret = rte_event_timer_adapter_start(
309 					t->timer_adptr[prod]);
310 			if (ret) {
311 				evt_err("failed to Start event timer adapter %d"
312 						, prod);
313 				return ret;
314 			}
315 		}
316 	} else if (opt->prod_type == EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR) {
317 		uint8_t cdev_id, cdev_count;
318 
319 		cdev_count = rte_cryptodev_count();
320 		for (cdev_id = 0; cdev_id < cdev_count; cdev_id++) {
321 			ret = rte_cryptodev_start(cdev_id);
322 			if (ret) {
323 				evt_err("Failed to start cryptodev %u",
324 					cdev_id);
325 				return ret;
326 			}
327 		}
328 	}
329 
330 	return 0;
331 }
332 
333 static void
334 perf_queue_opt_dump(struct evt_options *opt)
335 {
336 	evt_dump_fwd_latency(opt);
337 	perf_opt_dump(opt, perf_queue_nb_event_queues(opt));
338 }
339 
340 static int
341 perf_queue_opt_check(struct evt_options *opt)
342 {
343 	return perf_opt_check(opt, perf_queue_nb_event_queues(opt));
344 }
345 
346 static bool
347 perf_queue_capability_check(struct evt_options *opt)
348 {
349 	struct rte_event_dev_info dev_info;
350 
351 	rte_event_dev_info_get(opt->dev_id, &dev_info);
352 	if (dev_info.max_event_queues < perf_queue_nb_event_queues(opt) ||
353 			dev_info.max_event_ports < perf_nb_event_ports(opt)) {
354 		evt_err("not enough eventdev queues=%d/%d or ports=%d/%d",
355 			perf_queue_nb_event_queues(opt),
356 			dev_info.max_event_queues,
357 			perf_nb_event_ports(opt), dev_info.max_event_ports);
358 	}
359 
360 	return true;
361 }
362 
363 static const struct evt_test_ops perf_queue =  {
364 	.cap_check          = perf_queue_capability_check,
365 	.opt_check          = perf_queue_opt_check,
366 	.opt_dump           = perf_queue_opt_dump,
367 	.test_setup         = perf_test_setup,
368 	.mempool_setup      = perf_mempool_setup,
369 	.ethdev_setup	    = perf_ethdev_setup,
370 	.cryptodev_setup    = perf_cryptodev_setup,
371 	.ethdev_rx_stop     = perf_ethdev_rx_stop,
372 	.eventdev_setup     = perf_queue_eventdev_setup,
373 	.launch_lcores      = perf_queue_launch_lcores,
374 	.eventdev_destroy   = perf_eventdev_destroy,
375 	.mempool_destroy    = perf_mempool_destroy,
376 	.ethdev_destroy	    = perf_ethdev_destroy,
377 	.cryptodev_destroy  = perf_cryptodev_destroy,
378 	.test_result        = perf_test_result,
379 	.test_destroy       = perf_test_destroy,
380 };
381 
382 EVT_TEST_REGISTER(perf_queue);
383