1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Cavium, Inc 3 */ 4 5 #include "test_perf_common.h" 6 7 /* See http://doc.dpdk.org/guides/tools/testeventdev.html for test details */ 8 9 static inline int 10 perf_queue_nb_event_queues(struct evt_options *opt) 11 { 12 /* nb_queues = number of producers * number of stages */ 13 uint8_t nb_prod = opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ? 14 rte_eth_dev_count_avail() : evt_nr_active_lcores(opt->plcores); 15 return nb_prod * opt->nb_stages; 16 } 17 18 static inline __attribute__((always_inline)) void 19 mark_fwd_latency(struct rte_event *const ev, 20 const uint8_t nb_stages) 21 { 22 if (unlikely((ev->queue_id % nb_stages) == 0)) { 23 struct perf_elt *const m = ev->event_ptr; 24 25 m->timestamp = rte_get_timer_cycles(); 26 } 27 } 28 29 static inline __attribute__((always_inline)) void 30 fwd_event(struct rte_event *const ev, uint8_t *const sched_type_list, 31 const uint8_t nb_stages) 32 { 33 ev->queue_id++; 34 ev->sched_type = sched_type_list[ev->queue_id % nb_stages]; 35 ev->op = RTE_EVENT_OP_FORWARD; 36 ev->event_type = RTE_EVENT_TYPE_CPU; 37 } 38 39 static int 40 perf_queue_worker(void *arg, const int enable_fwd_latency) 41 { 42 PERF_WORKER_INIT; 43 struct rte_event ev; 44 45 while (t->done == false) { 46 uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0); 47 48 if (!event) { 49 rte_pause(); 50 continue; 51 } 52 if (enable_fwd_latency && !prod_timer_type) 53 /* first q in pipeline, mark timestamp to compute fwd latency */ 54 mark_fwd_latency(&ev, nb_stages); 55 56 /* last stage in pipeline */ 57 if (unlikely((ev.queue_id % nb_stages) == laststage)) { 58 if (enable_fwd_latency) 59 cnt = perf_process_last_stage_latency(pool, 60 &ev, w, bufs, sz, cnt); 61 else 62 cnt = perf_process_last_stage(pool, 63 &ev, w, bufs, sz, cnt); 64 } else { 65 fwd_event(&ev, sched_type_list, nb_stages); 66 while (rte_event_enqueue_burst(dev, port, &ev, 1) != 1) 67 rte_pause(); 68 } 69 } 70 return 0; 71 } 72 73 static int 74 perf_queue_worker_burst(void *arg, const int enable_fwd_latency) 75 { 76 PERF_WORKER_INIT; 77 uint16_t i; 78 /* +1 to avoid prefetch out of array check */ 79 struct rte_event ev[BURST_SIZE + 1]; 80 81 while (t->done == false) { 82 uint16_t const nb_rx = rte_event_dequeue_burst(dev, port, ev, 83 BURST_SIZE, 0); 84 85 if (!nb_rx) { 86 rte_pause(); 87 continue; 88 } 89 90 for (i = 0; i < nb_rx; i++) { 91 if (enable_fwd_latency && !prod_timer_type) { 92 rte_prefetch0(ev[i+1].event_ptr); 93 /* first queue in pipeline. 94 * mark time stamp to compute fwd latency 95 */ 96 mark_fwd_latency(&ev[i], nb_stages); 97 } 98 /* last stage in pipeline */ 99 if (unlikely((ev[i].queue_id % nb_stages) == 100 laststage)) { 101 if (enable_fwd_latency) 102 cnt = perf_process_last_stage_latency( 103 pool, &ev[i], w, bufs, sz, cnt); 104 else 105 cnt = perf_process_last_stage(pool, 106 &ev[i], w, bufs, sz, cnt); 107 108 ev[i].op = RTE_EVENT_OP_RELEASE; 109 } else { 110 fwd_event(&ev[i], sched_type_list, nb_stages); 111 } 112 } 113 114 uint16_t enq; 115 116 enq = rte_event_enqueue_burst(dev, port, ev, nb_rx); 117 while (enq < nb_rx) { 118 enq += rte_event_enqueue_burst(dev, port, 119 ev + enq, nb_rx - enq); 120 } 121 } 122 return 0; 123 } 124 125 static int 126 worker_wrapper(void *arg) 127 { 128 struct worker_data *w = arg; 129 struct evt_options *opt = w->t->opt; 130 131 const bool burst = evt_has_burst_mode(w->dev_id); 132 const int fwd_latency = opt->fwd_latency; 133 134 /* allow compiler to optimize */ 135 if (!burst && !fwd_latency) 136 return perf_queue_worker(arg, 0); 137 else if (!burst && fwd_latency) 138 return perf_queue_worker(arg, 1); 139 else if (burst && !fwd_latency) 140 return perf_queue_worker_burst(arg, 0); 141 else if (burst && fwd_latency) 142 return perf_queue_worker_burst(arg, 1); 143 144 rte_panic("invalid worker\n"); 145 } 146 147 static int 148 perf_queue_launch_lcores(struct evt_test *test, struct evt_options *opt) 149 { 150 return perf_launch_lcores(test, opt, worker_wrapper); 151 } 152 153 static int 154 perf_queue_eventdev_setup(struct evt_test *test, struct evt_options *opt) 155 { 156 uint8_t queue; 157 int nb_stages = opt->nb_stages; 158 int ret; 159 int nb_ports; 160 int nb_queues; 161 uint16_t prod; 162 struct rte_event_dev_info dev_info; 163 struct test_perf *t = evt_test_priv(test); 164 165 nb_ports = evt_nr_active_lcores(opt->wlcores); 166 nb_ports += opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR || 167 opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR ? 0 : 168 evt_nr_active_lcores(opt->plcores); 169 170 nb_queues = perf_queue_nb_event_queues(opt); 171 172 memset(&dev_info, 0, sizeof(struct rte_event_dev_info)); 173 ret = rte_event_dev_info_get(opt->dev_id, &dev_info); 174 if (ret) { 175 evt_err("failed to get eventdev info %d", opt->dev_id); 176 return ret; 177 } 178 179 const struct rte_event_dev_config config = { 180 .nb_event_queues = nb_queues, 181 .nb_event_ports = nb_ports, 182 .nb_events_limit = dev_info.max_num_events, 183 .nb_event_queue_flows = opt->nb_flows, 184 .nb_event_port_dequeue_depth = 185 dev_info.max_event_port_dequeue_depth, 186 .nb_event_port_enqueue_depth = 187 dev_info.max_event_port_enqueue_depth, 188 }; 189 190 ret = rte_event_dev_configure(opt->dev_id, &config); 191 if (ret) { 192 evt_err("failed to configure eventdev %d", opt->dev_id); 193 return ret; 194 } 195 196 struct rte_event_queue_conf q_conf = { 197 .priority = RTE_EVENT_DEV_PRIORITY_NORMAL, 198 .nb_atomic_flows = opt->nb_flows, 199 .nb_atomic_order_sequences = opt->nb_flows, 200 }; 201 /* queue configurations */ 202 for (queue = 0; queue < nb_queues; queue++) { 203 q_conf.schedule_type = 204 (opt->sched_type_list[queue % nb_stages]); 205 206 if (opt->q_priority) { 207 uint8_t stage_pos = queue % nb_stages; 208 /* Configure event queues(stage 0 to stage n) with 209 * RTE_EVENT_DEV_PRIORITY_LOWEST to 210 * RTE_EVENT_DEV_PRIORITY_HIGHEST. 211 */ 212 uint8_t step = RTE_EVENT_DEV_PRIORITY_LOWEST / 213 (nb_stages - 1); 214 /* Higher prio for the queues closer to last stage */ 215 q_conf.priority = RTE_EVENT_DEV_PRIORITY_LOWEST - 216 (step * stage_pos); 217 } 218 ret = rte_event_queue_setup(opt->dev_id, queue, &q_conf); 219 if (ret) { 220 evt_err("failed to setup queue=%d", queue); 221 return ret; 222 } 223 } 224 225 if (opt->wkr_deq_dep > dev_info.max_event_port_dequeue_depth) 226 opt->wkr_deq_dep = dev_info.max_event_port_dequeue_depth; 227 228 /* port configuration */ 229 const struct rte_event_port_conf p_conf = { 230 .dequeue_depth = opt->wkr_deq_dep, 231 .enqueue_depth = dev_info.max_event_port_dequeue_depth, 232 .new_event_threshold = dev_info.max_num_events, 233 }; 234 235 ret = perf_event_dev_port_setup(test, opt, nb_stages /* stride */, 236 nb_queues, &p_conf); 237 if (ret) 238 return ret; 239 240 if (!evt_has_distributed_sched(opt->dev_id)) { 241 uint32_t service_id; 242 rte_event_dev_service_id_get(opt->dev_id, &service_id); 243 ret = evt_service_setup(service_id); 244 if (ret) { 245 evt_err("No service lcore found to run event dev."); 246 return ret; 247 } 248 } 249 250 ret = rte_event_dev_start(opt->dev_id); 251 if (ret) { 252 evt_err("failed to start eventdev %d", opt->dev_id); 253 return ret; 254 } 255 256 if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) { 257 RTE_ETH_FOREACH_DEV(prod) { 258 ret = rte_eth_dev_start(prod); 259 if (ret) { 260 evt_err("Ethernet dev [%d] failed to start. Using synthetic producer", 261 prod); 262 return ret; 263 } 264 265 ret = rte_event_eth_rx_adapter_start(prod); 266 if (ret) { 267 evt_err("Rx adapter[%d] start failed", prod); 268 return ret; 269 } 270 printf("%s: Port[%d] using Rx adapter[%d] started\n", 271 __func__, prod, prod); 272 } 273 } else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) { 274 for (prod = 0; prod < opt->nb_timer_adptrs; prod++) { 275 ret = rte_event_timer_adapter_start( 276 t->timer_adptr[prod]); 277 if (ret) { 278 evt_err("failed to Start event timer adapter %d" 279 , prod); 280 return ret; 281 } 282 } 283 } 284 285 return 0; 286 } 287 288 static void 289 perf_queue_opt_dump(struct evt_options *opt) 290 { 291 evt_dump_fwd_latency(opt); 292 perf_opt_dump(opt, perf_queue_nb_event_queues(opt)); 293 } 294 295 static int 296 perf_queue_opt_check(struct evt_options *opt) 297 { 298 return perf_opt_check(opt, perf_queue_nb_event_queues(opt)); 299 } 300 301 static bool 302 perf_queue_capability_check(struct evt_options *opt) 303 { 304 struct rte_event_dev_info dev_info; 305 306 rte_event_dev_info_get(opt->dev_id, &dev_info); 307 if (dev_info.max_event_queues < perf_queue_nb_event_queues(opt) || 308 dev_info.max_event_ports < perf_nb_event_ports(opt)) { 309 evt_err("not enough eventdev queues=%d/%d or ports=%d/%d", 310 perf_queue_nb_event_queues(opt), 311 dev_info.max_event_queues, 312 perf_nb_event_ports(opt), dev_info.max_event_ports); 313 } 314 315 return true; 316 } 317 318 static const struct evt_test_ops perf_queue = { 319 .cap_check = perf_queue_capability_check, 320 .opt_check = perf_queue_opt_check, 321 .opt_dump = perf_queue_opt_dump, 322 .test_setup = perf_test_setup, 323 .mempool_setup = perf_mempool_setup, 324 .ethdev_setup = perf_ethdev_setup, 325 .eventdev_setup = perf_queue_eventdev_setup, 326 .launch_lcores = perf_queue_launch_lcores, 327 .eventdev_destroy = perf_eventdev_destroy, 328 .mempool_destroy = perf_mempool_destroy, 329 .ethdev_destroy = perf_ethdev_destroy, 330 .test_result = perf_test_result, 331 .test_destroy = perf_test_destroy, 332 }; 333 334 EVT_TEST_REGISTER(perf_queue); 335