1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Cavium, Inc 3 */ 4 5 #include "test_perf_common.h" 6 7 /* See http://dpdk.org/doc/guides/tools/testeventdev.html for test details */ 8 9 static inline int 10 perf_queue_nb_event_queues(struct evt_options *opt) 11 { 12 /* nb_queues = number of producers * number of stages */ 13 return evt_nr_active_lcores(opt->plcores) * opt->nb_stages; 14 } 15 16 static inline __attribute__((always_inline)) void 17 mark_fwd_latency(struct rte_event *const ev, 18 const uint8_t nb_stages) 19 { 20 if (unlikely((ev->queue_id % nb_stages) == 0)) { 21 struct perf_elt *const m = ev->event_ptr; 22 23 m->timestamp = rte_get_timer_cycles(); 24 } 25 } 26 27 static inline __attribute__((always_inline)) void 28 fwd_event(struct rte_event *const ev, uint8_t *const sched_type_list, 29 const uint8_t nb_stages) 30 { 31 ev->queue_id++; 32 ev->sched_type = sched_type_list[ev->queue_id % nb_stages]; 33 ev->op = RTE_EVENT_OP_FORWARD; 34 ev->event_type = RTE_EVENT_TYPE_CPU; 35 } 36 37 static int 38 perf_queue_worker(void *arg, const int enable_fwd_latency) 39 { 40 PERF_WORKER_INIT; 41 struct rte_event ev; 42 43 while (t->done == false) { 44 uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0); 45 46 if (!event) { 47 rte_pause(); 48 continue; 49 } 50 if (enable_fwd_latency) 51 /* first q in pipeline, mark timestamp to compute fwd latency */ 52 mark_fwd_latency(&ev, nb_stages); 53 54 /* last stage in pipeline */ 55 if (unlikely((ev.queue_id % nb_stages) == laststage)) { 56 if (enable_fwd_latency) 57 cnt = perf_process_last_stage_latency(pool, 58 &ev, w, bufs, sz, cnt); 59 else 60 cnt = perf_process_last_stage(pool, 61 &ev, w, bufs, sz, cnt); 62 } else { 63 fwd_event(&ev, sched_type_list, nb_stages); 64 while (rte_event_enqueue_burst(dev, port, &ev, 1) != 1) 65 rte_pause(); 66 } 67 } 68 return 0; 69 } 70 71 static int 72 perf_queue_worker_burst(void *arg, const int enable_fwd_latency) 73 { 74 PERF_WORKER_INIT; 75 uint16_t i; 76 /* +1 to avoid prefetch out of array check */ 77 struct rte_event ev[BURST_SIZE + 1]; 78 79 while (t->done == false) { 80 uint16_t const nb_rx = rte_event_dequeue_burst(dev, port, ev, 81 BURST_SIZE, 0); 82 83 if (!nb_rx) { 84 rte_pause(); 85 continue; 86 } 87 88 for (i = 0; i < nb_rx; i++) { 89 if (enable_fwd_latency) { 90 rte_prefetch0(ev[i+1].event_ptr); 91 /* first queue in pipeline. 92 * mark time stamp to compute fwd latency 93 */ 94 mark_fwd_latency(&ev[i], nb_stages); 95 } 96 /* last stage in pipeline */ 97 if (unlikely((ev[i].queue_id % nb_stages) == 98 laststage)) { 99 if (enable_fwd_latency) 100 cnt = perf_process_last_stage_latency( 101 pool, &ev[i], w, bufs, sz, cnt); 102 else 103 cnt = perf_process_last_stage(pool, 104 &ev[i], w, bufs, sz, cnt); 105 106 ev[i].op = RTE_EVENT_OP_RELEASE; 107 } else { 108 fwd_event(&ev[i], sched_type_list, nb_stages); 109 } 110 } 111 112 uint16_t enq; 113 114 enq = rte_event_enqueue_burst(dev, port, ev, nb_rx); 115 while (enq < nb_rx) { 116 enq += rte_event_enqueue_burst(dev, port, 117 ev + enq, nb_rx - enq); 118 } 119 } 120 return 0; 121 } 122 123 static int 124 worker_wrapper(void *arg) 125 { 126 struct worker_data *w = arg; 127 struct evt_options *opt = w->t->opt; 128 129 const bool burst = evt_has_burst_mode(w->dev_id); 130 const int fwd_latency = opt->fwd_latency; 131 132 /* allow compiler to optimize */ 133 if (!burst && !fwd_latency) 134 return perf_queue_worker(arg, 0); 135 else if (!burst && fwd_latency) 136 return perf_queue_worker(arg, 1); 137 else if (burst && !fwd_latency) 138 return perf_queue_worker_burst(arg, 0); 139 else if (burst && fwd_latency) 140 return perf_queue_worker_burst(arg, 1); 141 142 rte_panic("invalid worker\n"); 143 } 144 145 static int 146 perf_queue_launch_lcores(struct evt_test *test, struct evt_options *opt) 147 { 148 return perf_launch_lcores(test, opt, worker_wrapper); 149 } 150 151 static int 152 perf_queue_eventdev_setup(struct evt_test *test, struct evt_options *opt) 153 { 154 uint8_t queue; 155 int nb_stages = opt->nb_stages; 156 int ret; 157 int nb_ports; 158 int nb_queues; 159 160 nb_ports = evt_nr_active_lcores(opt->wlcores); 161 nb_ports += opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ? 0 : 162 evt_nr_active_lcores(opt->plcores); 163 164 nb_queues = opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ? 165 rte_eth_dev_count() * nb_stages : 166 perf_queue_nb_event_queues(opt); 167 168 const struct rte_event_dev_config config = { 169 .nb_event_queues = nb_queues, 170 .nb_event_ports = nb_ports, 171 .nb_events_limit = 4096, 172 .nb_event_queue_flows = opt->nb_flows, 173 .nb_event_port_dequeue_depth = 128, 174 .nb_event_port_enqueue_depth = 128, 175 }; 176 177 ret = rte_event_dev_configure(opt->dev_id, &config); 178 if (ret) { 179 evt_err("failed to configure eventdev %d", opt->dev_id); 180 return ret; 181 } 182 183 struct rte_event_queue_conf q_conf = { 184 .priority = RTE_EVENT_DEV_PRIORITY_NORMAL, 185 .nb_atomic_flows = opt->nb_flows, 186 .nb_atomic_order_sequences = opt->nb_flows, 187 }; 188 /* queue configurations */ 189 for (queue = 0; queue < perf_queue_nb_event_queues(opt); queue++) { 190 q_conf.schedule_type = 191 (opt->sched_type_list[queue % nb_stages]); 192 193 if (opt->q_priority) { 194 uint8_t stage_pos = queue % nb_stages; 195 /* Configure event queues(stage 0 to stage n) with 196 * RTE_EVENT_DEV_PRIORITY_LOWEST to 197 * RTE_EVENT_DEV_PRIORITY_HIGHEST. 198 */ 199 uint8_t step = RTE_EVENT_DEV_PRIORITY_LOWEST / 200 (nb_stages - 1); 201 /* Higher prio for the queues closer to last stage */ 202 q_conf.priority = RTE_EVENT_DEV_PRIORITY_LOWEST - 203 (step * stage_pos); 204 } 205 ret = rte_event_queue_setup(opt->dev_id, queue, &q_conf); 206 if (ret) { 207 evt_err("failed to setup queue=%d", queue); 208 return ret; 209 } 210 } 211 212 ret = perf_event_dev_port_setup(test, opt, nb_stages /* stride */, 213 nb_queues); 214 if (ret) 215 return ret; 216 217 ret = evt_service_setup(opt->dev_id); 218 if (ret) { 219 evt_err("No service lcore found to run event dev."); 220 return ret; 221 } 222 223 ret = rte_event_dev_start(opt->dev_id); 224 if (ret) { 225 evt_err("failed to start eventdev %d", opt->dev_id); 226 return ret; 227 } 228 229 return 0; 230 } 231 232 static void 233 perf_queue_opt_dump(struct evt_options *opt) 234 { 235 evt_dump_fwd_latency(opt); 236 perf_opt_dump(opt, perf_queue_nb_event_queues(opt)); 237 } 238 239 static int 240 perf_queue_opt_check(struct evt_options *opt) 241 { 242 return perf_opt_check(opt, perf_queue_nb_event_queues(opt)); 243 } 244 245 static bool 246 perf_queue_capability_check(struct evt_options *opt) 247 { 248 struct rte_event_dev_info dev_info; 249 250 rte_event_dev_info_get(opt->dev_id, &dev_info); 251 if (dev_info.max_event_queues < perf_queue_nb_event_queues(opt) || 252 dev_info.max_event_ports < perf_nb_event_ports(opt)) { 253 evt_err("not enough eventdev queues=%d/%d or ports=%d/%d", 254 perf_queue_nb_event_queues(opt), 255 dev_info.max_event_queues, 256 perf_nb_event_ports(opt), dev_info.max_event_ports); 257 } 258 259 return true; 260 } 261 262 static const struct evt_test_ops perf_queue = { 263 .cap_check = perf_queue_capability_check, 264 .opt_check = perf_queue_opt_check, 265 .opt_dump = perf_queue_opt_dump, 266 .test_setup = perf_test_setup, 267 .mempool_setup = perf_mempool_setup, 268 .ethdev_setup = perf_ethdev_setup, 269 .eventdev_setup = perf_queue_eventdev_setup, 270 .launch_lcores = perf_queue_launch_lcores, 271 .eventdev_destroy = perf_eventdev_destroy, 272 .mempool_destroy = perf_mempool_destroy, 273 .ethdev_destroy = perf_ethdev_destroy, 274 .test_result = perf_test_result, 275 .test_destroy = perf_test_destroy, 276 }; 277 278 EVT_TEST_REGISTER(perf_queue); 279