1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Cavium, Inc 3 */ 4 5 #include "test_perf_common.h" 6 7 /* See http://doc.dpdk.org/guides/tools/testeventdev.html for test details */ 8 9 static inline int 10 perf_queue_nb_event_queues(struct evt_options *opt) 11 { 12 /* nb_queues = number of producers * number of stages */ 13 uint8_t nb_prod = opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR ? 14 rte_eth_dev_count_avail() : evt_nr_active_lcores(opt->plcores); 15 return nb_prod * opt->nb_stages; 16 } 17 18 static inline __attribute__((always_inline)) void 19 mark_fwd_latency(struct rte_event *const ev, 20 const uint8_t nb_stages) 21 { 22 if (unlikely((ev->queue_id % nb_stages) == 0)) { 23 struct perf_elt *const m = ev->event_ptr; 24 25 m->timestamp = rte_get_timer_cycles(); 26 } 27 } 28 29 static inline __attribute__((always_inline)) void 30 fwd_event(struct rte_event *const ev, uint8_t *const sched_type_list, 31 const uint8_t nb_stages) 32 { 33 ev->queue_id++; 34 ev->sched_type = sched_type_list[ev->queue_id % nb_stages]; 35 ev->op = RTE_EVENT_OP_FORWARD; 36 ev->event_type = RTE_EVENT_TYPE_CPU; 37 } 38 39 static int 40 perf_queue_worker(void *arg, const int enable_fwd_latency) 41 { 42 PERF_WORKER_INIT; 43 struct rte_event ev; 44 45 while (t->done == false) { 46 uint16_t event = rte_event_dequeue_burst(dev, port, &ev, 1, 0); 47 48 if (!event) { 49 rte_pause(); 50 continue; 51 } 52 if (enable_fwd_latency && !prod_timer_type) 53 /* first q in pipeline, mark timestamp to compute fwd latency */ 54 mark_fwd_latency(&ev, nb_stages); 55 56 /* last stage in pipeline */ 57 if (unlikely((ev.queue_id % nb_stages) == laststage)) { 58 if (enable_fwd_latency) 59 cnt = perf_process_last_stage_latency(pool, 60 &ev, w, bufs, sz, cnt); 61 else 62 cnt = perf_process_last_stage(pool, 63 &ev, w, bufs, sz, cnt); 64 } else { 65 fwd_event(&ev, sched_type_list, nb_stages); 66 while (rte_event_enqueue_burst(dev, port, &ev, 1) != 1) 67 rte_pause(); 68 } 69 } 70 return 0; 71 } 72 73 static int 74 perf_queue_worker_burst(void *arg, const int enable_fwd_latency) 75 { 76 PERF_WORKER_INIT; 77 uint16_t i; 78 /* +1 to avoid prefetch out of array check */ 79 struct rte_event ev[BURST_SIZE + 1]; 80 81 while (t->done == false) { 82 uint16_t const nb_rx = rte_event_dequeue_burst(dev, port, ev, 83 BURST_SIZE, 0); 84 85 if (!nb_rx) { 86 rte_pause(); 87 continue; 88 } 89 90 for (i = 0; i < nb_rx; i++) { 91 if (enable_fwd_latency && !prod_timer_type) { 92 rte_prefetch0(ev[i+1].event_ptr); 93 /* first queue in pipeline. 94 * mark time stamp to compute fwd latency 95 */ 96 mark_fwd_latency(&ev[i], nb_stages); 97 } 98 /* last stage in pipeline */ 99 if (unlikely((ev[i].queue_id % nb_stages) == 100 laststage)) { 101 if (enable_fwd_latency) 102 cnt = perf_process_last_stage_latency( 103 pool, &ev[i], w, bufs, sz, cnt); 104 else 105 cnt = perf_process_last_stage(pool, 106 &ev[i], w, bufs, sz, cnt); 107 108 ev[i].op = RTE_EVENT_OP_RELEASE; 109 } else { 110 fwd_event(&ev[i], sched_type_list, nb_stages); 111 } 112 } 113 114 uint16_t enq; 115 116 enq = rte_event_enqueue_burst(dev, port, ev, nb_rx); 117 while (enq < nb_rx) { 118 enq += rte_event_enqueue_burst(dev, port, 119 ev + enq, nb_rx - enq); 120 } 121 } 122 return 0; 123 } 124 125 static int 126 worker_wrapper(void *arg) 127 { 128 struct worker_data *w = arg; 129 struct evt_options *opt = w->t->opt; 130 131 const bool burst = evt_has_burst_mode(w->dev_id); 132 const int fwd_latency = opt->fwd_latency; 133 134 /* allow compiler to optimize */ 135 if (!burst && !fwd_latency) 136 return perf_queue_worker(arg, 0); 137 else if (!burst && fwd_latency) 138 return perf_queue_worker(arg, 1); 139 else if (burst && !fwd_latency) 140 return perf_queue_worker_burst(arg, 0); 141 else if (burst && fwd_latency) 142 return perf_queue_worker_burst(arg, 1); 143 144 rte_panic("invalid worker\n"); 145 } 146 147 static int 148 perf_queue_launch_lcores(struct evt_test *test, struct evt_options *opt) 149 { 150 return perf_launch_lcores(test, opt, worker_wrapper); 151 } 152 153 static int 154 perf_queue_eventdev_setup(struct evt_test *test, struct evt_options *opt) 155 { 156 uint8_t queue; 157 int nb_stages = opt->nb_stages; 158 int ret; 159 int nb_ports; 160 int nb_queues; 161 uint16_t prod; 162 struct rte_event_dev_info dev_info; 163 struct test_perf *t = evt_test_priv(test); 164 165 nb_ports = evt_nr_active_lcores(opt->wlcores); 166 nb_ports += opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR || 167 opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR ? 0 : 168 evt_nr_active_lcores(opt->plcores); 169 170 nb_queues = perf_queue_nb_event_queues(opt); 171 172 memset(&dev_info, 0, sizeof(struct rte_event_dev_info)); 173 ret = rte_event_dev_info_get(opt->dev_id, &dev_info); 174 if (ret) { 175 evt_err("failed to get eventdev info %d", opt->dev_id); 176 return ret; 177 } 178 179 ret = evt_configure_eventdev(opt, nb_queues, nb_ports); 180 if (ret) { 181 evt_err("failed to configure eventdev %d", opt->dev_id); 182 return ret; 183 } 184 185 struct rte_event_queue_conf q_conf = { 186 .priority = RTE_EVENT_DEV_PRIORITY_NORMAL, 187 .nb_atomic_flows = opt->nb_flows, 188 .nb_atomic_order_sequences = opt->nb_flows, 189 }; 190 /* queue configurations */ 191 for (queue = 0; queue < nb_queues; queue++) { 192 q_conf.schedule_type = 193 (opt->sched_type_list[queue % nb_stages]); 194 195 if (opt->q_priority) { 196 uint8_t stage_pos = queue % nb_stages; 197 /* Configure event queues(stage 0 to stage n) with 198 * RTE_EVENT_DEV_PRIORITY_LOWEST to 199 * RTE_EVENT_DEV_PRIORITY_HIGHEST. 200 */ 201 uint8_t step = RTE_EVENT_DEV_PRIORITY_LOWEST / 202 (nb_stages - 1); 203 /* Higher prio for the queues closer to last stage */ 204 q_conf.priority = RTE_EVENT_DEV_PRIORITY_LOWEST - 205 (step * stage_pos); 206 } 207 ret = rte_event_queue_setup(opt->dev_id, queue, &q_conf); 208 if (ret) { 209 evt_err("failed to setup queue=%d", queue); 210 return ret; 211 } 212 } 213 214 if (opt->wkr_deq_dep > dev_info.max_event_port_dequeue_depth) 215 opt->wkr_deq_dep = dev_info.max_event_port_dequeue_depth; 216 217 /* port configuration */ 218 const struct rte_event_port_conf p_conf = { 219 .dequeue_depth = opt->wkr_deq_dep, 220 .enqueue_depth = dev_info.max_event_port_dequeue_depth, 221 .new_event_threshold = dev_info.max_num_events, 222 }; 223 224 ret = perf_event_dev_port_setup(test, opt, nb_stages /* stride */, 225 nb_queues, &p_conf); 226 if (ret) 227 return ret; 228 229 if (!evt_has_distributed_sched(opt->dev_id)) { 230 uint32_t service_id; 231 rte_event_dev_service_id_get(opt->dev_id, &service_id); 232 ret = evt_service_setup(service_id); 233 if (ret) { 234 evt_err("No service lcore found to run event dev."); 235 return ret; 236 } 237 } 238 239 ret = rte_event_dev_start(opt->dev_id); 240 if (ret) { 241 evt_err("failed to start eventdev %d", opt->dev_id); 242 return ret; 243 } 244 245 if (opt->prod_type == EVT_PROD_TYPE_ETH_RX_ADPTR) { 246 RTE_ETH_FOREACH_DEV(prod) { 247 ret = rte_eth_dev_start(prod); 248 if (ret) { 249 evt_err("Ethernet dev [%d] failed to start. Using synthetic producer", 250 prod); 251 return ret; 252 } 253 254 ret = rte_event_eth_rx_adapter_start(prod); 255 if (ret) { 256 evt_err("Rx adapter[%d] start failed", prod); 257 return ret; 258 } 259 printf("%s: Port[%d] using Rx adapter[%d] started\n", 260 __func__, prod, prod); 261 } 262 } else if (opt->prod_type == EVT_PROD_TYPE_EVENT_TIMER_ADPTR) { 263 for (prod = 0; prod < opt->nb_timer_adptrs; prod++) { 264 ret = rte_event_timer_adapter_start( 265 t->timer_adptr[prod]); 266 if (ret) { 267 evt_err("failed to Start event timer adapter %d" 268 , prod); 269 return ret; 270 } 271 } 272 } 273 274 return 0; 275 } 276 277 static void 278 perf_queue_opt_dump(struct evt_options *opt) 279 { 280 evt_dump_fwd_latency(opt); 281 perf_opt_dump(opt, perf_queue_nb_event_queues(opt)); 282 } 283 284 static int 285 perf_queue_opt_check(struct evt_options *opt) 286 { 287 return perf_opt_check(opt, perf_queue_nb_event_queues(opt)); 288 } 289 290 static bool 291 perf_queue_capability_check(struct evt_options *opt) 292 { 293 struct rte_event_dev_info dev_info; 294 295 rte_event_dev_info_get(opt->dev_id, &dev_info); 296 if (dev_info.max_event_queues < perf_queue_nb_event_queues(opt) || 297 dev_info.max_event_ports < perf_nb_event_ports(opt)) { 298 evt_err("not enough eventdev queues=%d/%d or ports=%d/%d", 299 perf_queue_nb_event_queues(opt), 300 dev_info.max_event_queues, 301 perf_nb_event_ports(opt), dev_info.max_event_ports); 302 } 303 304 return true; 305 } 306 307 static const struct evt_test_ops perf_queue = { 308 .cap_check = perf_queue_capability_check, 309 .opt_check = perf_queue_opt_check, 310 .opt_dump = perf_queue_opt_dump, 311 .test_setup = perf_test_setup, 312 .mempool_setup = perf_mempool_setup, 313 .ethdev_setup = perf_ethdev_setup, 314 .eventdev_setup = perf_queue_eventdev_setup, 315 .launch_lcores = perf_queue_launch_lcores, 316 .eventdev_destroy = perf_eventdev_destroy, 317 .mempool_destroy = perf_mempool_destroy, 318 .ethdev_destroy = perf_ethdev_destroy, 319 .test_result = perf_test_result, 320 .test_destroy = perf_test_destroy, 321 }; 322 323 EVT_TEST_REGISTER(perf_queue); 324