1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Cavium, Inc 3 */ 4 5 #ifndef _EVT_COMMON_ 6 #define _EVT_COMMON_ 7 8 #include <rte_common.h> 9 #include <rte_crypto.h> 10 #include <rte_debug.h> 11 #include <rte_event_crypto_adapter.h> 12 #include <rte_eventdev.h> 13 #include <rte_service.h> 14 15 #define CLNRM "\x1b[0m" 16 #define CLRED "\x1b[31m" 17 #define CLGRN "\x1b[32m" 18 #define CLYEL "\x1b[33m" 19 20 #define evt_err(fmt, args...) \ 21 fprintf(stderr, CLRED"error: %s() "fmt CLNRM "\n", __func__, ## args) 22 23 #define evt_info(fmt, args...) \ 24 fprintf(stdout, CLYEL""fmt CLNRM "\n", ## args) 25 26 #define EVT_STR_FMT 20 27 28 #define evt_dump(str, fmt, val...) \ 29 printf("\t%-*s : "fmt"\n", EVT_STR_FMT, str, ## val) 30 31 #define evt_dump_begin(str) printf("\t%-*s : {", EVT_STR_FMT, str) 32 33 #define evt_dump_end printf("\b}\n") 34 35 #define EVT_MAX_STAGES 64 36 #define EVT_MAX_PORTS 256 37 #define EVT_MAX_QUEUES 256 38 39 enum evt_prod_type { 40 EVT_PROD_TYPE_NONE, 41 EVT_PROD_TYPE_SYNT, /* Producer type Synthetic i.e. CPU. */ 42 EVT_PROD_TYPE_ETH_RX_ADPTR, /* Producer type Eth Rx Adapter. */ 43 EVT_PROD_TYPE_EVENT_TIMER_ADPTR, /* Producer type Timer Adapter. */ 44 EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR, /* Producer type Crypto Adapter. */ 45 EVT_PROD_TYPE_MAX, 46 }; 47 48 struct evt_options { 49 #define EVT_TEST_NAME_MAX_LEN 32 50 char test_name[EVT_TEST_NAME_MAX_LEN]; 51 bool plcores[RTE_MAX_LCORE]; 52 bool wlcores[RTE_MAX_LCORE]; 53 int pool_sz; 54 int socket_id; 55 int nb_stages; 56 int verbose_level; 57 uint8_t dev_id; 58 uint8_t timdev_cnt; 59 uint8_t nb_timer_adptrs; 60 uint8_t timdev_use_burst; 61 uint8_t per_port_pool; 62 uint8_t sched_type_list[EVT_MAX_STAGES]; 63 uint16_t mbuf_sz; 64 uint16_t wkr_deq_dep; 65 uint16_t vector_size; 66 uint16_t eth_queues; 67 uint32_t nb_flows; 68 uint32_t tx_first; 69 uint32_t max_pkt_sz; 70 uint32_t prod_enq_burst_sz; 71 uint32_t deq_tmo_nsec; 72 uint32_t q_priority:1; 73 uint32_t fwd_latency:1; 74 uint32_t ena_vector : 1; 75 uint64_t nb_pkts; 76 uint64_t nb_timers; 77 uint64_t expiry_nsec; 78 uint64_t max_tmo_nsec; 79 uint64_t vector_tmo_nsec; 80 uint64_t timer_tick_nsec; 81 uint64_t optm_timer_tick_nsec; 82 enum evt_prod_type prod_type; 83 enum rte_event_crypto_adapter_mode crypto_adptr_mode; 84 enum rte_crypto_op_type crypto_op_type; 85 }; 86 87 static inline bool 88 evt_has_distributed_sched(uint8_t dev_id) 89 { 90 struct rte_event_dev_info dev_info; 91 92 rte_event_dev_info_get(dev_id, &dev_info); 93 return (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED) ? 94 true : false; 95 } 96 97 static inline bool 98 evt_has_burst_mode(uint8_t dev_id) 99 { 100 struct rte_event_dev_info dev_info; 101 102 rte_event_dev_info_get(dev_id, &dev_info); 103 return (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_BURST_MODE) ? 104 true : false; 105 } 106 107 108 static inline bool 109 evt_has_all_types_queue(uint8_t dev_id) 110 { 111 struct rte_event_dev_info dev_info; 112 113 rte_event_dev_info_get(dev_id, &dev_info); 114 return (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES) ? 115 true : false; 116 } 117 118 static inline bool 119 evt_has_flow_id(uint8_t dev_id) 120 { 121 struct rte_event_dev_info dev_info; 122 123 rte_event_dev_info_get(dev_id, &dev_info); 124 return (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_CARRY_FLOW_ID) ? 125 true : false; 126 } 127 128 static inline int 129 evt_service_setup(uint32_t service_id) 130 { 131 int32_t core_cnt; 132 unsigned int lcore = 0; 133 uint32_t core_array[RTE_MAX_LCORE]; 134 uint8_t cnt; 135 uint8_t min_cnt = UINT8_MAX; 136 137 if (!rte_service_lcore_count()) 138 return -ENOENT; 139 140 core_cnt = rte_service_lcore_list(core_array, 141 RTE_MAX_LCORE); 142 if (core_cnt < 0) 143 return -ENOENT; 144 /* Get the core which has least number of services running. */ 145 while (core_cnt--) { 146 /* Reset default mapping */ 147 rte_service_map_lcore_set(service_id, 148 core_array[core_cnt], 0); 149 cnt = rte_service_lcore_count_services( 150 core_array[core_cnt]); 151 if (cnt < min_cnt) { 152 lcore = core_array[core_cnt]; 153 min_cnt = cnt; 154 } 155 } 156 if (rte_service_map_lcore_set(service_id, lcore, 1)) 157 return -ENOENT; 158 159 return 0; 160 } 161 162 static inline int 163 evt_configure_eventdev(struct evt_options *opt, uint8_t nb_queues, 164 uint8_t nb_ports) 165 { 166 struct rte_event_dev_info info; 167 int ret; 168 169 memset(&info, 0, sizeof(struct rte_event_dev_info)); 170 ret = rte_event_dev_info_get(opt->dev_id, &info); 171 if (ret) { 172 evt_err("failed to get eventdev info %d", opt->dev_id); 173 return ret; 174 } 175 176 if (opt->deq_tmo_nsec) { 177 if (opt->deq_tmo_nsec < info.min_dequeue_timeout_ns) { 178 opt->deq_tmo_nsec = info.min_dequeue_timeout_ns; 179 evt_info("dequeue_timeout_ns too low, using %d", 180 opt->deq_tmo_nsec); 181 } 182 if (opt->deq_tmo_nsec > info.max_dequeue_timeout_ns) { 183 opt->deq_tmo_nsec = info.max_dequeue_timeout_ns; 184 evt_info("dequeue_timeout_ns too high, using %d", 185 opt->deq_tmo_nsec); 186 } 187 } 188 189 const struct rte_event_dev_config config = { 190 .dequeue_timeout_ns = opt->deq_tmo_nsec, 191 .nb_event_queues = nb_queues, 192 .nb_event_ports = nb_ports, 193 .nb_single_link_event_port_queues = 0, 194 .nb_events_limit = info.max_num_events, 195 .nb_event_queue_flows = opt->nb_flows, 196 .nb_event_port_dequeue_depth = 197 info.max_event_port_dequeue_depth, 198 .nb_event_port_enqueue_depth = 199 info.max_event_port_enqueue_depth, 200 }; 201 202 return rte_event_dev_configure(opt->dev_id, &config); 203 } 204 205 #endif /* _EVT_COMMON_*/ 206