xref: /dpdk/app/test-eventdev/evt_common.h (revision 8809f78c7dd9f33a44a4f89c58fc91ded34296ed)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Cavium, Inc
3  */
4 
5 #ifndef _EVT_COMMON_
6 #define _EVT_COMMON_
7 
8 #include <rte_common.h>
9 #include <rte_debug.h>
10 #include <rte_eventdev.h>
11 #include <rte_service.h>
12 
13 #define CLNRM  "\x1b[0m"
14 #define CLRED  "\x1b[31m"
15 #define CLGRN  "\x1b[32m"
16 #define CLYEL  "\x1b[33m"
17 
18 #define evt_err(fmt, args...) \
19 	fprintf(stderr, CLRED"error: %s() "fmt CLNRM "\n", __func__, ## args)
20 
21 #define evt_info(fmt, args...) \
22 	fprintf(stdout, CLYEL""fmt CLNRM "\n", ## args)
23 
24 #define EVT_STR_FMT 20
25 
26 #define evt_dump(str, fmt, val...) \
27 	printf("\t%-*s : "fmt"\n", EVT_STR_FMT, str, ## val)
28 
29 #define evt_dump_begin(str) printf("\t%-*s : {", EVT_STR_FMT, str)
30 
31 #define evt_dump_end printf("\b}\n")
32 
33 #define EVT_MAX_STAGES           64
34 #define EVT_MAX_PORTS            256
35 #define EVT_MAX_QUEUES           256
36 
37 enum evt_prod_type {
38 	EVT_PROD_TYPE_NONE,
39 	EVT_PROD_TYPE_SYNT,          /* Producer type Synthetic i.e. CPU. */
40 	EVT_PROD_TYPE_ETH_RX_ADPTR,  /* Producer type Eth Rx Adapter. */
41 	EVT_PROD_TYPE_EVENT_TIMER_ADPTR,  /* Producer type Timer Adapter. */
42 	EVT_PROD_TYPE_MAX,
43 };
44 
45 struct evt_options {
46 #define EVT_TEST_NAME_MAX_LEN     32
47 	char test_name[EVT_TEST_NAME_MAX_LEN];
48 	bool plcores[RTE_MAX_LCORE];
49 	bool wlcores[RTE_MAX_LCORE];
50 	int pool_sz;
51 	int socket_id;
52 	int nb_stages;
53 	int verbose_level;
54 	uint8_t dev_id;
55 	uint8_t timdev_cnt;
56 	uint8_t nb_timer_adptrs;
57 	uint8_t timdev_use_burst;
58 	uint8_t sched_type_list[EVT_MAX_STAGES];
59 	uint16_t mbuf_sz;
60 	uint16_t wkr_deq_dep;
61 	uint32_t nb_flows;
62 	uint32_t tx_first;
63 	uint32_t max_pkt_sz;
64 	uint32_t deq_tmo_nsec;
65 	uint32_t q_priority:1;
66 	uint32_t fwd_latency:1;
67 	uint64_t nb_pkts;
68 	uint64_t nb_timers;
69 	uint64_t expiry_nsec;
70 	uint64_t max_tmo_nsec;
71 	uint64_t timer_tick_nsec;
72 	uint64_t optm_timer_tick_nsec;
73 	enum evt_prod_type prod_type;
74 };
75 
76 static inline bool
77 evt_has_distributed_sched(uint8_t dev_id)
78 {
79 	struct rte_event_dev_info dev_info;
80 
81 	rte_event_dev_info_get(dev_id, &dev_info);
82 	return (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED) ?
83 			true : false;
84 }
85 
86 static inline bool
87 evt_has_burst_mode(uint8_t dev_id)
88 {
89 	struct rte_event_dev_info dev_info;
90 
91 	rte_event_dev_info_get(dev_id, &dev_info);
92 	return (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_BURST_MODE) ?
93 			true : false;
94 }
95 
96 
97 static inline bool
98 evt_has_all_types_queue(uint8_t dev_id)
99 {
100 	struct rte_event_dev_info dev_info;
101 
102 	rte_event_dev_info_get(dev_id, &dev_info);
103 	return (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES) ?
104 			true : false;
105 }
106 
107 static inline bool
108 evt_has_flow_id(uint8_t dev_id)
109 {
110 	struct rte_event_dev_info dev_info;
111 
112 	rte_event_dev_info_get(dev_id, &dev_info);
113 	return (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_CARRY_FLOW_ID) ?
114 			true : false;
115 }
116 
117 static inline int
118 evt_service_setup(uint32_t service_id)
119 {
120 	int32_t core_cnt;
121 	unsigned int lcore = 0;
122 	uint32_t core_array[RTE_MAX_LCORE];
123 	uint8_t cnt;
124 	uint8_t min_cnt = UINT8_MAX;
125 
126 	if (!rte_service_lcore_count())
127 		return -ENOENT;
128 
129 	core_cnt = rte_service_lcore_list(core_array,
130 			RTE_MAX_LCORE);
131 	if (core_cnt < 0)
132 		return -ENOENT;
133 	/* Get the core which has least number of services running. */
134 	while (core_cnt--) {
135 		/* Reset default mapping */
136 		rte_service_map_lcore_set(service_id,
137 				core_array[core_cnt], 0);
138 		cnt = rte_service_lcore_count_services(
139 				core_array[core_cnt]);
140 		if (cnt < min_cnt) {
141 			lcore = core_array[core_cnt];
142 			min_cnt = cnt;
143 		}
144 	}
145 	if (rte_service_map_lcore_set(service_id, lcore, 1))
146 		return -ENOENT;
147 
148 	return 0;
149 }
150 
151 static inline int
152 evt_configure_eventdev(struct evt_options *opt, uint8_t nb_queues,
153 		uint8_t nb_ports)
154 {
155 	struct rte_event_dev_info info;
156 	int ret;
157 
158 	memset(&info, 0, sizeof(struct rte_event_dev_info));
159 	ret = rte_event_dev_info_get(opt->dev_id, &info);
160 	if (ret) {
161 		evt_err("failed to get eventdev info %d", opt->dev_id);
162 		return ret;
163 	}
164 
165 	if (opt->deq_tmo_nsec) {
166 		if (opt->deq_tmo_nsec < info.min_dequeue_timeout_ns) {
167 			opt->deq_tmo_nsec = info.min_dequeue_timeout_ns;
168 			evt_info("dequeue_timeout_ns too low, using %d",
169 					opt->deq_tmo_nsec);
170 		}
171 		if (opt->deq_tmo_nsec > info.max_dequeue_timeout_ns) {
172 			opt->deq_tmo_nsec = info.max_dequeue_timeout_ns;
173 			evt_info("dequeue_timeout_ns too high, using %d",
174 					opt->deq_tmo_nsec);
175 		}
176 	}
177 
178 	const struct rte_event_dev_config config = {
179 			.dequeue_timeout_ns = opt->deq_tmo_nsec,
180 			.nb_event_queues = nb_queues,
181 			.nb_event_ports = nb_ports,
182 			.nb_single_link_event_port_queues = 0,
183 			.nb_events_limit  = info.max_num_events,
184 			.nb_event_queue_flows = opt->nb_flows,
185 			.nb_event_port_dequeue_depth =
186 				info.max_event_port_dequeue_depth,
187 			.nb_event_port_enqueue_depth =
188 				info.max_event_port_enqueue_depth,
189 	};
190 
191 	return rte_event_dev_configure(opt->dev_id, &config);
192 }
193 
194 #endif /*  _EVT_COMMON_*/
195