1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Cavium, Inc 3 */ 4 5 #ifndef _EVT_COMMON_ 6 #define _EVT_COMMON_ 7 8 #include <rte_common.h> 9 #include <rte_crypto.h> 10 #include <rte_debug.h> 11 #include <rte_event_crypto_adapter.h> 12 #include <rte_eventdev.h> 13 #include <rte_service.h> 14 15 #define CLNRM "\x1b[0m" 16 #define CLRED "\x1b[31m" 17 #define CLGRN "\x1b[32m" 18 #define CLYEL "\x1b[33m" 19 20 #define evt_err(fmt, args...) \ 21 fprintf(stderr, CLRED"error: %s() "fmt CLNRM "\n", __func__, ## args) 22 23 #define evt_info(fmt, args...) \ 24 fprintf(stdout, CLYEL""fmt CLNRM "\n", ## args) 25 26 #define EVT_STR_FMT 20 27 28 #define evt_dump(str, fmt, val...) \ 29 printf("\t%-*s : "fmt"\n", EVT_STR_FMT, str, ## val) 30 31 #define evt_dump_begin(str) printf("\t%-*s : {", EVT_STR_FMT, str) 32 33 #define evt_dump_end printf("\b}\n") 34 35 #define EVT_MAX_STAGES 64 36 #define EVT_MAX_PORTS 256 37 #define EVT_MAX_QUEUES 256 38 39 enum evt_prod_type { 40 EVT_PROD_TYPE_NONE, 41 EVT_PROD_TYPE_SYNT, /* Producer type Synthetic i.e. CPU. */ 42 EVT_PROD_TYPE_ETH_RX_ADPTR, /* Producer type Eth Rx Adapter. */ 43 EVT_PROD_TYPE_EVENT_TIMER_ADPTR, /* Producer type Timer Adapter. */ 44 EVT_PROD_TYPE_EVENT_CRYPTO_ADPTR, /* Producer type Crypto Adapter. */ 45 EVT_PROD_TYPE_MAX, 46 }; 47 48 struct evt_options { 49 #define EVT_TEST_NAME_MAX_LEN 32 50 char test_name[EVT_TEST_NAME_MAX_LEN]; 51 bool plcores[RTE_MAX_LCORE]; 52 bool wlcores[RTE_MAX_LCORE]; 53 int pool_sz; 54 int socket_id; 55 int nb_stages; 56 int verbose_level; 57 uint8_t dev_id; 58 uint8_t timdev_cnt; 59 uint8_t nb_timer_adptrs; 60 uint8_t timdev_use_burst; 61 uint8_t per_port_pool; 62 uint8_t sched_type_list[EVT_MAX_STAGES]; 63 uint16_t mbuf_sz; 64 uint16_t wkr_deq_dep; 65 uint16_t vector_size; 66 uint16_t eth_queues; 67 uint32_t nb_flows; 68 uint32_t tx_first; 69 uint16_t tx_pkt_sz; 70 uint32_t max_pkt_sz; 71 uint32_t prod_enq_burst_sz; 72 uint32_t deq_tmo_nsec; 73 uint32_t q_priority:1; 74 uint32_t fwd_latency:1; 75 uint32_t ena_vector : 1; 76 uint64_t nb_pkts; 77 uint64_t nb_timers; 78 uint64_t expiry_nsec; 79 uint64_t max_tmo_nsec; 80 uint64_t vector_tmo_nsec; 81 uint64_t timer_tick_nsec; 82 uint64_t optm_timer_tick_nsec; 83 enum evt_prod_type prod_type; 84 enum rte_event_crypto_adapter_mode crypto_adptr_mode; 85 enum rte_crypto_op_type crypto_op_type; 86 }; 87 88 static inline bool 89 evt_has_distributed_sched(uint8_t dev_id) 90 { 91 struct rte_event_dev_info dev_info; 92 93 rte_event_dev_info_get(dev_id, &dev_info); 94 return (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_DISTRIBUTED_SCHED) ? 95 true : false; 96 } 97 98 static inline bool 99 evt_has_burst_mode(uint8_t dev_id) 100 { 101 struct rte_event_dev_info dev_info; 102 103 rte_event_dev_info_get(dev_id, &dev_info); 104 return (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_BURST_MODE) ? 105 true : false; 106 } 107 108 109 static inline bool 110 evt_has_all_types_queue(uint8_t dev_id) 111 { 112 struct rte_event_dev_info dev_info; 113 114 rte_event_dev_info_get(dev_id, &dev_info); 115 return (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_QUEUE_ALL_TYPES) ? 116 true : false; 117 } 118 119 static inline bool 120 evt_has_flow_id(uint8_t dev_id) 121 { 122 struct rte_event_dev_info dev_info; 123 124 rte_event_dev_info_get(dev_id, &dev_info); 125 return (dev_info.event_dev_cap & RTE_EVENT_DEV_CAP_CARRY_FLOW_ID) ? 126 true : false; 127 } 128 129 static inline int 130 evt_service_setup(uint32_t service_id) 131 { 132 int32_t core_cnt; 133 unsigned int lcore = 0; 134 uint32_t core_array[RTE_MAX_LCORE]; 135 uint8_t cnt; 136 uint8_t min_cnt = UINT8_MAX; 137 138 if (!rte_service_lcore_count()) 139 return -ENOENT; 140 141 core_cnt = rte_service_lcore_list(core_array, 142 RTE_MAX_LCORE); 143 if (core_cnt < 0) 144 return -ENOENT; 145 /* Get the core which has least number of services running. */ 146 while (core_cnt--) { 147 /* Reset default mapping */ 148 rte_service_map_lcore_set(service_id, 149 core_array[core_cnt], 0); 150 cnt = rte_service_lcore_count_services( 151 core_array[core_cnt]); 152 if (cnt < min_cnt) { 153 lcore = core_array[core_cnt]; 154 min_cnt = cnt; 155 } 156 } 157 if (rte_service_map_lcore_set(service_id, lcore, 1)) 158 return -ENOENT; 159 160 return 0; 161 } 162 163 static inline int 164 evt_configure_eventdev(struct evt_options *opt, uint8_t nb_queues, 165 uint8_t nb_ports) 166 { 167 struct rte_event_dev_info info; 168 int ret; 169 170 memset(&info, 0, sizeof(struct rte_event_dev_info)); 171 ret = rte_event_dev_info_get(opt->dev_id, &info); 172 if (ret) { 173 evt_err("failed to get eventdev info %d", opt->dev_id); 174 return ret; 175 } 176 177 if (opt->deq_tmo_nsec) { 178 if (opt->deq_tmo_nsec < info.min_dequeue_timeout_ns) { 179 opt->deq_tmo_nsec = info.min_dequeue_timeout_ns; 180 evt_info("dequeue_timeout_ns too low, using %d", 181 opt->deq_tmo_nsec); 182 } 183 if (opt->deq_tmo_nsec > info.max_dequeue_timeout_ns) { 184 opt->deq_tmo_nsec = info.max_dequeue_timeout_ns; 185 evt_info("dequeue_timeout_ns too high, using %d", 186 opt->deq_tmo_nsec); 187 } 188 } 189 190 const struct rte_event_dev_config config = { 191 .dequeue_timeout_ns = opt->deq_tmo_nsec, 192 .nb_event_queues = nb_queues, 193 .nb_event_ports = nb_ports, 194 .nb_single_link_event_port_queues = 0, 195 .nb_events_limit = info.max_num_events, 196 .nb_event_queue_flows = opt->nb_flows, 197 .nb_event_port_dequeue_depth = 198 info.max_event_port_dequeue_depth, 199 .nb_event_port_enqueue_depth = 200 info.max_event_port_enqueue_depth, 201 }; 202 203 return rte_event_dev_configure(opt->dev_id, &config); 204 } 205 206 #endif /* _EVT_COMMON_*/ 207