xref: /dpdk/app/test-crypto-perf/cperf_test_verify.c (revision 945acb4a0d644d194f1823084a234f9c286dcf8c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 
10 #include "cperf_test_verify.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13 
14 struct cperf_verify_ctx {
15 	uint8_t dev_id;
16 	uint16_t qp_id;
17 	uint8_t lcore_id;
18 
19 	struct rte_mempool *pool;
20 
21 	struct rte_cryptodev_sym_session *sess;
22 
23 	cperf_populate_ops_t populate_ops;
24 
25 	uint32_t src_buf_offset;
26 	uint32_t dst_buf_offset;
27 
28 	const struct cperf_options *options;
29 	const struct cperf_test_vector *test_vector;
30 };
31 
32 struct cperf_op_result {
33 	enum rte_crypto_op_status status;
34 };
35 
36 static void
37 cperf_verify_test_free(struct cperf_verify_ctx *ctx)
38 {
39 	if (ctx) {
40 		if (ctx->sess) {
41 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
42 			rte_cryptodev_sym_session_free(ctx->sess);
43 		}
44 
45 		if (ctx->pool)
46 			rte_mempool_free(ctx->pool);
47 
48 		rte_free(ctx);
49 	}
50 }
51 
52 void *
53 cperf_verify_test_constructor(struct rte_mempool *sess_mp,
54 		uint8_t dev_id, uint16_t qp_id,
55 		const struct cperf_options *options,
56 		const struct cperf_test_vector *test_vector,
57 		const struct cperf_op_fns *op_fns)
58 {
59 	struct cperf_verify_ctx *ctx = NULL;
60 
61 	ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
62 	if (ctx == NULL)
63 		goto err;
64 
65 	ctx->dev_id = dev_id;
66 	ctx->qp_id = qp_id;
67 
68 	ctx->populate_ops = op_fns->populate_ops;
69 	ctx->options = options;
70 	ctx->test_vector = test_vector;
71 
72 	/* IV goes at the end of the crypto operation */
73 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
74 		sizeof(struct rte_crypto_sym_op);
75 
76 	ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
77 			iv_offset);
78 	if (ctx->sess == NULL)
79 		goto err;
80 
81 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
82 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
83 			&ctx->pool) < 0)
84 		goto err;
85 
86 	return ctx;
87 err:
88 	cperf_verify_test_free(ctx);
89 
90 	return NULL;
91 }
92 
93 static int
94 cperf_verify_op(struct rte_crypto_op *op,
95 		const struct cperf_options *options,
96 		const struct cperf_test_vector *vector)
97 {
98 	const struct rte_mbuf *m;
99 	uint32_t len;
100 	uint16_t nb_segs;
101 	uint8_t *data;
102 	uint32_t cipher_offset, auth_offset;
103 	uint8_t	cipher, auth;
104 	int res = 0;
105 
106 	if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
107 		return 1;
108 
109 	if (op->sym->m_dst)
110 		m = op->sym->m_dst;
111 	else
112 		m = op->sym->m_src;
113 	nb_segs = m->nb_segs;
114 	len = 0;
115 	while (m && nb_segs != 0) {
116 		len += m->data_len;
117 		m = m->next;
118 		nb_segs--;
119 	}
120 
121 	data = rte_malloc(NULL, len, 0);
122 	if (data == NULL)
123 		return 1;
124 
125 	if (op->sym->m_dst)
126 		m = op->sym->m_dst;
127 	else
128 		m = op->sym->m_src;
129 	nb_segs = m->nb_segs;
130 	len = 0;
131 	while (m && nb_segs != 0) {
132 		memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
133 				m->data_len);
134 		len += m->data_len;
135 		m = m->next;
136 		nb_segs--;
137 	}
138 
139 	switch (options->op_type) {
140 	case CPERF_CIPHER_ONLY:
141 		cipher = 1;
142 		cipher_offset = 0;
143 		auth = 0;
144 		auth_offset = 0;
145 		break;
146 	case CPERF_CIPHER_THEN_AUTH:
147 		cipher = 1;
148 		cipher_offset = 0;
149 		auth = 1;
150 		auth_offset = options->test_buffer_size;
151 		break;
152 	case CPERF_AUTH_ONLY:
153 		cipher = 0;
154 		cipher_offset = 0;
155 		auth = 1;
156 		auth_offset = options->test_buffer_size;
157 		break;
158 	case CPERF_AUTH_THEN_CIPHER:
159 		cipher = 1;
160 		cipher_offset = 0;
161 		auth = 1;
162 		auth_offset = options->test_buffer_size;
163 		break;
164 	case CPERF_AEAD:
165 		cipher = 1;
166 		cipher_offset = 0;
167 		auth = 1;
168 		auth_offset = options->test_buffer_size;
169 		break;
170 	default:
171 		res = 1;
172 		goto out;
173 	}
174 
175 	if (cipher == 1) {
176 		if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
177 			res += memcmp(data + cipher_offset,
178 					vector->ciphertext.data,
179 					options->test_buffer_size);
180 		else
181 			res += memcmp(data + cipher_offset,
182 					vector->plaintext.data,
183 					options->test_buffer_size);
184 	}
185 
186 	if (auth == 1) {
187 		if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
188 			res += memcmp(data + auth_offset,
189 					vector->digest.data,
190 					options->digest_sz);
191 	}
192 
193 out:
194 	rte_free(data);
195 	return !!res;
196 }
197 
198 static void
199 cperf_mbuf_set(struct rte_mbuf *mbuf,
200 		const struct cperf_options *options,
201 		const struct cperf_test_vector *test_vector)
202 {
203 	uint32_t segment_sz = options->segment_sz;
204 	uint8_t *mbuf_data;
205 	uint8_t *test_data =
206 			(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
207 					test_vector->plaintext.data :
208 					test_vector->ciphertext.data;
209 	uint32_t remaining_bytes = options->max_buffer_size;
210 
211 	while (remaining_bytes) {
212 		mbuf_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
213 
214 		if (remaining_bytes <= segment_sz) {
215 			memcpy(mbuf_data, test_data, remaining_bytes);
216 			return;
217 		}
218 
219 		memcpy(mbuf_data, test_data, segment_sz);
220 		remaining_bytes -= segment_sz;
221 		test_data += segment_sz;
222 		mbuf = mbuf->next;
223 	}
224 }
225 
226 int
227 cperf_verify_test_runner(void *test_ctx)
228 {
229 	struct cperf_verify_ctx *ctx = test_ctx;
230 
231 	uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
232 	uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
233 	uint64_t ops_failed = 0;
234 
235 	static int only_once;
236 
237 	uint64_t i;
238 	uint16_t ops_unused = 0;
239 
240 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
241 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
242 
243 	uint32_t lcore = rte_lcore_id();
244 
245 #ifdef CPERF_LINEARIZATION_ENABLE
246 	struct rte_cryptodev_info dev_info;
247 	int linearize = 0;
248 
249 	/* Check if source mbufs require coalescing */
250 	if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
251 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
252 		if ((dev_info.feature_flags &
253 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
254 			linearize = 1;
255 	}
256 #endif /* CPERF_LINEARIZATION_ENABLE */
257 
258 	ctx->lcore_id = lcore;
259 
260 	if (!ctx->options->csv)
261 		printf("\n# Running verify test on device: %u, lcore: %u\n",
262 			ctx->dev_id, lcore);
263 
264 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
265 		sizeof(struct rte_crypto_sym_op);
266 
267 	while (ops_enqd_total < ctx->options->total_ops) {
268 
269 		uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size)
270 				<= ctx->options->total_ops) ?
271 						ctx->options->max_burst_size :
272 						ctx->options->total_ops -
273 						ops_enqd_total;
274 
275 		uint16_t ops_needed = burst_size - ops_unused;
276 
277 		/* Allocate objects containing crypto operations and mbufs */
278 		if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
279 					ops_needed) != 0) {
280 			RTE_LOG(ERR, USER1,
281 				"Failed to allocate more crypto operations "
282 				"from the crypto operation pool.\n"
283 				"Consider increasing the pool size "
284 				"with --pool-sz\n");
285 			return -1;
286 		}
287 
288 		/* Setup crypto op, attach mbuf etc */
289 		(ctx->populate_ops)(ops, ctx->src_buf_offset,
290 				ctx->dst_buf_offset,
291 				ops_needed, ctx->sess, ctx->options,
292 				ctx->test_vector, iv_offset);
293 
294 
295 		/* Populate the mbuf with the test vector, for verification */
296 		for (i = 0; i < ops_needed; i++)
297 			cperf_mbuf_set(ops[i]->sym->m_src,
298 					ctx->options,
299 					ctx->test_vector);
300 
301 #ifdef CPERF_LINEARIZATION_ENABLE
302 		if (linearize) {
303 			/* PMD doesn't support scatter-gather and source buffer
304 			 * is segmented.
305 			 * We need to linearize it before enqueuing.
306 			 */
307 			for (i = 0; i < burst_size; i++)
308 				rte_pktmbuf_linearize(ops[i]->sym->m_src);
309 		}
310 #endif /* CPERF_LINEARIZATION_ENABLE */
311 
312 		/* Enqueue burst of ops on crypto device */
313 		ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
314 				ops, burst_size);
315 		if (ops_enqd < burst_size)
316 			ops_enqd_failed++;
317 
318 		/**
319 		 * Calculate number of ops not enqueued (mainly for hw
320 		 * accelerators whose ingress queue can fill up).
321 		 */
322 		ops_unused = burst_size - ops_enqd;
323 		ops_enqd_total += ops_enqd;
324 
325 
326 		/* Dequeue processed burst of ops from crypto device */
327 		ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
328 				ops_processed, ctx->options->max_burst_size);
329 
330 		if (ops_deqd == 0) {
331 			/**
332 			 * Count dequeue polls which didn't return any
333 			 * processed operations. This statistic is mainly
334 			 * relevant to hw accelerators.
335 			 */
336 			ops_deqd_failed++;
337 			continue;
338 		}
339 
340 		for (i = 0; i < ops_deqd; i++) {
341 			if (cperf_verify_op(ops_processed[i], ctx->options,
342 						ctx->test_vector))
343 				ops_failed++;
344 		}
345 		/* Free crypto ops so they can be reused. */
346 		rte_mempool_put_bulk(ctx->pool,
347 					(void **)ops_processed, ops_deqd);
348 		ops_deqd_total += ops_deqd;
349 	}
350 
351 	/* Dequeue any operations still in the crypto device */
352 
353 	while (ops_deqd_total < ctx->options->total_ops) {
354 		/* Sending 0 length burst to flush sw crypto device */
355 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
356 
357 		/* dequeue burst */
358 		ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
359 				ops_processed, ctx->options->max_burst_size);
360 		if (ops_deqd == 0) {
361 			ops_deqd_failed++;
362 			continue;
363 		}
364 
365 		for (i = 0; i < ops_deqd; i++) {
366 			if (cperf_verify_op(ops_processed[i], ctx->options,
367 						ctx->test_vector))
368 				ops_failed++;
369 		}
370 		/* Free crypto ops so they can be reused. */
371 		rte_mempool_put_bulk(ctx->pool,
372 					(void **)ops_processed, ops_deqd);
373 		ops_deqd_total += ops_deqd;
374 	}
375 
376 	if (!ctx->options->csv) {
377 		if (!only_once)
378 			printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
379 				"lcore id", "Buf Size", "Burst size",
380 				"Enqueued", "Dequeued", "Failed Enq",
381 				"Failed Deq", "Failed Ops");
382 		only_once = 1;
383 
384 		printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
385 				"%12"PRIu64"%12"PRIu64"\n",
386 				ctx->lcore_id,
387 				ctx->options->max_buffer_size,
388 				ctx->options->max_burst_size,
389 				ops_enqd_total,
390 				ops_deqd_total,
391 				ops_enqd_failed,
392 				ops_deqd_failed,
393 				ops_failed);
394 	} else {
395 		if (!only_once)
396 			printf("\n# lcore id, Buffer Size(B), "
397 				"Burst Size,Enqueued,Dequeued,Failed Enq,"
398 				"Failed Deq,Failed Ops\n");
399 		only_once = 1;
400 
401 		printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
402 				"%"PRIu64"\n",
403 				ctx->lcore_id,
404 				ctx->options->max_buffer_size,
405 				ctx->options->max_burst_size,
406 				ops_enqd_total,
407 				ops_deqd_total,
408 				ops_enqd_failed,
409 				ops_deqd_failed,
410 				ops_failed);
411 	}
412 
413 	return 0;
414 }
415 
416 
417 
418 void
419 cperf_verify_test_destructor(void *arg)
420 {
421 	struct cperf_verify_ctx *ctx = arg;
422 
423 	if (ctx == NULL)
424 		return;
425 
426 	cperf_verify_test_free(ctx);
427 }
428