xref: /dpdk/app/test-crypto-perf/cperf_test_verify.c (revision 89f0711f9ddfb5822da9d34f384b92f72a61c4dc)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 
10 #include "cperf_test_verify.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13 
14 struct cperf_verify_ctx {
15 	uint8_t dev_id;
16 	uint16_t qp_id;
17 	uint8_t lcore_id;
18 
19 	struct rte_mempool *pool;
20 
21 	struct rte_cryptodev_sym_session *sess;
22 
23 	cperf_populate_ops_t populate_ops;
24 
25 	uint32_t src_buf_offset;
26 	uint32_t dst_buf_offset;
27 
28 	const struct cperf_options *options;
29 	const struct cperf_test_vector *test_vector;
30 };
31 
32 struct cperf_op_result {
33 	enum rte_crypto_op_status status;
34 };
35 
36 static void
37 cperf_verify_test_free(struct cperf_verify_ctx *ctx)
38 {
39 	if (ctx) {
40 		if (ctx->sess) {
41 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
42 			rte_cryptodev_sym_session_free(ctx->sess);
43 		}
44 
45 		if (ctx->pool)
46 			rte_mempool_free(ctx->pool);
47 
48 		rte_free(ctx);
49 	}
50 }
51 
52 void *
53 cperf_verify_test_constructor(struct rte_mempool *sess_mp,
54 		uint8_t dev_id, uint16_t qp_id,
55 		const struct cperf_options *options,
56 		const struct cperf_test_vector *test_vector,
57 		const struct cperf_op_fns *op_fns)
58 {
59 	struct cperf_verify_ctx *ctx = NULL;
60 
61 	ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
62 	if (ctx == NULL)
63 		goto err;
64 
65 	ctx->dev_id = dev_id;
66 	ctx->qp_id = qp_id;
67 
68 	ctx->populate_ops = op_fns->populate_ops;
69 	ctx->options = options;
70 	ctx->test_vector = test_vector;
71 
72 	/* IV goes at the end of the crypto operation */
73 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
74 		sizeof(struct rte_crypto_sym_op);
75 
76 	ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
77 			iv_offset);
78 	if (ctx->sess == NULL)
79 		goto err;
80 
81 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
82 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
83 			&ctx->pool) < 0)
84 		goto err;
85 
86 	return ctx;
87 err:
88 	cperf_verify_test_free(ctx);
89 
90 	return NULL;
91 }
92 
93 static int
94 cperf_verify_op(struct rte_crypto_op *op,
95 		const struct cperf_options *options,
96 		const struct cperf_test_vector *vector)
97 {
98 	const struct rte_mbuf *m;
99 	uint32_t len;
100 	uint16_t nb_segs;
101 	uint8_t *data;
102 	uint32_t cipher_offset, auth_offset;
103 	uint8_t	cipher, auth;
104 	int res = 0;
105 
106 	if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
107 		return 1;
108 
109 	if (op->sym->m_dst)
110 		m = op->sym->m_dst;
111 	else
112 		m = op->sym->m_src;
113 	nb_segs = m->nb_segs;
114 	len = 0;
115 	while (m && nb_segs != 0) {
116 		len += m->data_len;
117 		m = m->next;
118 		nb_segs--;
119 	}
120 
121 	data = rte_malloc(NULL, len, 0);
122 	if (data == NULL)
123 		return 1;
124 
125 	if (op->sym->m_dst)
126 		m = op->sym->m_dst;
127 	else
128 		m = op->sym->m_src;
129 	nb_segs = m->nb_segs;
130 	len = 0;
131 	while (m && nb_segs != 0) {
132 		memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
133 				m->data_len);
134 		len += m->data_len;
135 		m = m->next;
136 		nb_segs--;
137 	}
138 
139 	switch (options->op_type) {
140 	case CPERF_CIPHER_ONLY:
141 		cipher = 1;
142 		cipher_offset = 0;
143 		auth = 0;
144 		auth_offset = 0;
145 		break;
146 	case CPERF_CIPHER_THEN_AUTH:
147 		cipher = 1;
148 		cipher_offset = 0;
149 		auth = 1;
150 		auth_offset = options->test_buffer_size;
151 		break;
152 	case CPERF_AUTH_ONLY:
153 		cipher = 0;
154 		cipher_offset = 0;
155 		auth = 1;
156 		auth_offset = options->test_buffer_size;
157 		break;
158 	case CPERF_AUTH_THEN_CIPHER:
159 		cipher = 1;
160 		cipher_offset = 0;
161 		auth = 1;
162 		auth_offset = options->test_buffer_size;
163 		break;
164 	case CPERF_AEAD:
165 		cipher = 1;
166 		cipher_offset = 0;
167 		auth = 1;
168 		auth_offset = options->test_buffer_size;
169 		break;
170 	default:
171 		res = 1;
172 		goto out;
173 	}
174 
175 	if (cipher == 1) {
176 		if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
177 			res += memcmp(data + cipher_offset,
178 					vector->ciphertext.data,
179 					options->test_buffer_size);
180 		else
181 			res += memcmp(data + cipher_offset,
182 					vector->plaintext.data,
183 					options->test_buffer_size);
184 	}
185 
186 	if (auth == 1) {
187 		if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
188 			res += memcmp(data + auth_offset,
189 					vector->digest.data,
190 					options->digest_sz);
191 	}
192 
193 out:
194 	rte_free(data);
195 	return !!res;
196 }
197 
198 static void
199 cperf_mbuf_set(struct rte_mbuf *mbuf,
200 		const struct cperf_options *options,
201 		const struct cperf_test_vector *test_vector)
202 {
203 	uint32_t segment_sz = options->segment_sz;
204 	uint8_t *mbuf_data;
205 	uint8_t *test_data =
206 			(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
207 					test_vector->plaintext.data :
208 					test_vector->ciphertext.data;
209 	uint32_t remaining_bytes = options->max_buffer_size;
210 
211 	while (remaining_bytes) {
212 		mbuf_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
213 
214 		if (remaining_bytes <= segment_sz) {
215 			memcpy(mbuf_data, test_data, remaining_bytes);
216 			return;
217 		}
218 
219 		memcpy(mbuf_data, test_data, segment_sz);
220 		remaining_bytes -= segment_sz;
221 		test_data += segment_sz;
222 		mbuf = mbuf->next;
223 	}
224 }
225 
226 int
227 cperf_verify_test_runner(void *test_ctx)
228 {
229 	struct cperf_verify_ctx *ctx = test_ctx;
230 
231 	uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
232 	uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
233 	uint64_t ops_failed = 0;
234 
235 	static int only_once;
236 
237 	uint64_t i;
238 	uint16_t ops_unused = 0;
239 	uint32_t imix_idx = 0;
240 
241 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
242 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
243 
244 	uint32_t lcore = rte_lcore_id();
245 
246 #ifdef CPERF_LINEARIZATION_ENABLE
247 	struct rte_cryptodev_info dev_info;
248 	int linearize = 0;
249 
250 	/* Check if source mbufs require coalescing */
251 	if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
252 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
253 		if ((dev_info.feature_flags &
254 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
255 			linearize = 1;
256 	}
257 #endif /* CPERF_LINEARIZATION_ENABLE */
258 
259 	ctx->lcore_id = lcore;
260 
261 	if (!ctx->options->csv)
262 		printf("\n# Running verify test on device: %u, lcore: %u\n",
263 			ctx->dev_id, lcore);
264 
265 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
266 		sizeof(struct rte_crypto_sym_op);
267 
268 	while (ops_enqd_total < ctx->options->total_ops) {
269 
270 		uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size)
271 				<= ctx->options->total_ops) ?
272 						ctx->options->max_burst_size :
273 						ctx->options->total_ops -
274 						ops_enqd_total;
275 
276 		uint16_t ops_needed = burst_size - ops_unused;
277 
278 		/* Allocate objects containing crypto operations and mbufs */
279 		if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
280 					ops_needed) != 0) {
281 			RTE_LOG(ERR, USER1,
282 				"Failed to allocate more crypto operations "
283 				"from the crypto operation pool.\n"
284 				"Consider increasing the pool size "
285 				"with --pool-sz\n");
286 			return -1;
287 		}
288 
289 		/* Setup crypto op, attach mbuf etc */
290 		(ctx->populate_ops)(ops, ctx->src_buf_offset,
291 				ctx->dst_buf_offset,
292 				ops_needed, ctx->sess, ctx->options,
293 				ctx->test_vector, iv_offset, &imix_idx);
294 
295 
296 		/* Populate the mbuf with the test vector, for verification */
297 		for (i = 0; i < ops_needed; i++)
298 			cperf_mbuf_set(ops[i]->sym->m_src,
299 					ctx->options,
300 					ctx->test_vector);
301 
302 #ifdef CPERF_LINEARIZATION_ENABLE
303 		if (linearize) {
304 			/* PMD doesn't support scatter-gather and source buffer
305 			 * is segmented.
306 			 * We need to linearize it before enqueuing.
307 			 */
308 			for (i = 0; i < burst_size; i++)
309 				rte_pktmbuf_linearize(ops[i]->sym->m_src);
310 		}
311 #endif /* CPERF_LINEARIZATION_ENABLE */
312 
313 		/* Enqueue burst of ops on crypto device */
314 		ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
315 				ops, burst_size);
316 		if (ops_enqd < burst_size)
317 			ops_enqd_failed++;
318 
319 		/**
320 		 * Calculate number of ops not enqueued (mainly for hw
321 		 * accelerators whose ingress queue can fill up).
322 		 */
323 		ops_unused = burst_size - ops_enqd;
324 		ops_enqd_total += ops_enqd;
325 
326 
327 		/* Dequeue processed burst of ops from crypto device */
328 		ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
329 				ops_processed, ctx->options->max_burst_size);
330 
331 		if (ops_deqd == 0) {
332 			/**
333 			 * Count dequeue polls which didn't return any
334 			 * processed operations. This statistic is mainly
335 			 * relevant to hw accelerators.
336 			 */
337 			ops_deqd_failed++;
338 			continue;
339 		}
340 
341 		for (i = 0; i < ops_deqd; i++) {
342 			if (cperf_verify_op(ops_processed[i], ctx->options,
343 						ctx->test_vector))
344 				ops_failed++;
345 		}
346 		/* Free crypto ops so they can be reused. */
347 		rte_mempool_put_bulk(ctx->pool,
348 					(void **)ops_processed, ops_deqd);
349 		ops_deqd_total += ops_deqd;
350 	}
351 
352 	/* Dequeue any operations still in the crypto device */
353 
354 	while (ops_deqd_total < ctx->options->total_ops) {
355 		/* Sending 0 length burst to flush sw crypto device */
356 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
357 
358 		/* dequeue burst */
359 		ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
360 				ops_processed, ctx->options->max_burst_size);
361 		if (ops_deqd == 0) {
362 			ops_deqd_failed++;
363 			continue;
364 		}
365 
366 		for (i = 0; i < ops_deqd; i++) {
367 			if (cperf_verify_op(ops_processed[i], ctx->options,
368 						ctx->test_vector))
369 				ops_failed++;
370 		}
371 		/* Free crypto ops so they can be reused. */
372 		rte_mempool_put_bulk(ctx->pool,
373 					(void **)ops_processed, ops_deqd);
374 		ops_deqd_total += ops_deqd;
375 	}
376 
377 	if (!ctx->options->csv) {
378 		if (!only_once)
379 			printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
380 				"lcore id", "Buf Size", "Burst size",
381 				"Enqueued", "Dequeued", "Failed Enq",
382 				"Failed Deq", "Failed Ops");
383 		only_once = 1;
384 
385 		printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
386 				"%12"PRIu64"%12"PRIu64"\n",
387 				ctx->lcore_id,
388 				ctx->options->max_buffer_size,
389 				ctx->options->max_burst_size,
390 				ops_enqd_total,
391 				ops_deqd_total,
392 				ops_enqd_failed,
393 				ops_deqd_failed,
394 				ops_failed);
395 	} else {
396 		if (!only_once)
397 			printf("\n# lcore id, Buffer Size(B), "
398 				"Burst Size,Enqueued,Dequeued,Failed Enq,"
399 				"Failed Deq,Failed Ops\n");
400 		only_once = 1;
401 
402 		printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
403 				"%"PRIu64"\n",
404 				ctx->lcore_id,
405 				ctx->options->max_buffer_size,
406 				ctx->options->max_burst_size,
407 				ops_enqd_total,
408 				ops_deqd_total,
409 				ops_enqd_failed,
410 				ops_deqd_failed,
411 				ops_failed);
412 	}
413 
414 	return 0;
415 }
416 
417 
418 
419 void
420 cperf_verify_test_destructor(void *arg)
421 {
422 	struct cperf_verify_ctx *ctx = arg;
423 
424 	if (ctx == NULL)
425 		return;
426 
427 	cperf_verify_test_free(ctx);
428 }
429