xref: /dpdk/app/test-crypto-perf/cperf_test_verify.c (revision 15b4beab8a300a5d74b4a0913a9f2faaa33f0ecf)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2016-2017 Intel Corporation. All rights reserved.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Intel Corporation nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <rte_malloc.h>
34 #include <rte_cycles.h>
35 #include <rte_crypto.h>
36 #include <rte_cryptodev.h>
37 
38 #include "cperf_test_verify.h"
39 #include "cperf_ops.h"
40 
41 struct cperf_verify_ctx {
42 	uint8_t dev_id;
43 	uint16_t qp_id;
44 	uint8_t lcore_id;
45 
46 	struct rte_mempool *pkt_mbuf_pool_in;
47 	struct rte_mempool *pkt_mbuf_pool_out;
48 	struct rte_mbuf **mbufs_in;
49 	struct rte_mbuf **mbufs_out;
50 
51 	struct rte_mempool *crypto_op_pool;
52 
53 	struct rte_cryptodev_sym_session *sess;
54 
55 	cperf_populate_ops_t populate_ops;
56 
57 	const struct cperf_options *options;
58 	const struct cperf_test_vector *test_vector;
59 };
60 
61 struct cperf_op_result {
62 	enum rte_crypto_op_status status;
63 };
64 
65 static void
66 cperf_verify_test_free(struct cperf_verify_ctx *ctx, uint32_t mbuf_nb)
67 {
68 	uint32_t i;
69 
70 	if (ctx) {
71 		if (ctx->sess) {
72 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
73 			rte_cryptodev_sym_session_free(ctx->sess);
74 		}
75 
76 		if (ctx->mbufs_in) {
77 			for (i = 0; i < mbuf_nb; i++)
78 				rte_pktmbuf_free(ctx->mbufs_in[i]);
79 
80 			rte_free(ctx->mbufs_in);
81 		}
82 
83 		if (ctx->mbufs_out) {
84 			for (i = 0; i < mbuf_nb; i++) {
85 				if (ctx->mbufs_out[i] != NULL)
86 					rte_pktmbuf_free(ctx->mbufs_out[i]);
87 			}
88 
89 			rte_free(ctx->mbufs_out);
90 		}
91 
92 		if (ctx->pkt_mbuf_pool_in)
93 			rte_mempool_free(ctx->pkt_mbuf_pool_in);
94 
95 		if (ctx->pkt_mbuf_pool_out)
96 			rte_mempool_free(ctx->pkt_mbuf_pool_out);
97 
98 		if (ctx->crypto_op_pool)
99 			rte_mempool_free(ctx->crypto_op_pool);
100 
101 		rte_free(ctx);
102 	}
103 }
104 
105 static struct rte_mbuf *
106 cperf_mbuf_create(struct rte_mempool *mempool,
107 		uint32_t segments_nb,
108 		const struct cperf_options *options,
109 		const struct cperf_test_vector *test_vector)
110 {
111 	struct rte_mbuf *mbuf;
112 	uint32_t segment_sz = options->max_buffer_size / segments_nb;
113 	uint32_t last_sz = options->max_buffer_size % segments_nb;
114 	uint8_t *mbuf_data;
115 	uint8_t *test_data =
116 			(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
117 					test_vector->plaintext.data :
118 					test_vector->ciphertext.data;
119 
120 	mbuf = rte_pktmbuf_alloc(mempool);
121 	if (mbuf == NULL)
122 		goto error;
123 
124 	mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
125 	if (mbuf_data == NULL)
126 		goto error;
127 
128 	memcpy(mbuf_data, test_data, segment_sz);
129 	test_data += segment_sz;
130 	segments_nb--;
131 
132 	while (segments_nb) {
133 		struct rte_mbuf *m;
134 
135 		m = rte_pktmbuf_alloc(mempool);
136 		if (m == NULL)
137 			goto error;
138 
139 		rte_pktmbuf_chain(mbuf, m);
140 
141 		mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, segment_sz);
142 		if (mbuf_data == NULL)
143 			goto error;
144 
145 		memcpy(mbuf_data, test_data, segment_sz);
146 		test_data += segment_sz;
147 		segments_nb--;
148 	}
149 
150 	if (last_sz) {
151 		mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf, last_sz);
152 		if (mbuf_data == NULL)
153 			goto error;
154 
155 		memcpy(mbuf_data, test_data, last_sz);
156 	}
157 
158 	if (options->op_type != CPERF_CIPHER_ONLY) {
159 		mbuf_data = (uint8_t *)rte_pktmbuf_append(mbuf,
160 				options->digest_sz);
161 		if (mbuf_data == NULL)
162 			goto error;
163 	}
164 
165 	if (options->op_type == CPERF_AEAD) {
166 		uint8_t *aead = (uint8_t *)rte_pktmbuf_prepend(mbuf,
167 			RTE_ALIGN_CEIL(options->aead_aad_sz, 16));
168 
169 		if (aead == NULL)
170 			goto error;
171 
172 		memcpy(aead, test_vector->aad.data, test_vector->aad.length);
173 	}
174 
175 	return mbuf;
176 error:
177 	if (mbuf != NULL)
178 		rte_pktmbuf_free(mbuf);
179 
180 	return NULL;
181 }
182 
183 void *
184 cperf_verify_test_constructor(struct rte_mempool *sess_mp,
185 		uint8_t dev_id, uint16_t qp_id,
186 		const struct cperf_options *options,
187 		const struct cperf_test_vector *test_vector,
188 		const struct cperf_op_fns *op_fns)
189 {
190 	struct cperf_verify_ctx *ctx = NULL;
191 	unsigned int mbuf_idx = 0;
192 	char pool_name[32] = "";
193 
194 	ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
195 	if (ctx == NULL)
196 		goto err;
197 
198 	ctx->dev_id = dev_id;
199 	ctx->qp_id = qp_id;
200 
201 	ctx->populate_ops = op_fns->populate_ops;
202 	ctx->options = options;
203 	ctx->test_vector = test_vector;
204 
205 	/* IV goes at the end of the cryptop operation */
206 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
207 		sizeof(struct rte_crypto_sym_op);
208 
209 	ctx->sess = op_fns->sess_create(sess_mp, dev_id, options, test_vector,
210 			iv_offset);
211 	if (ctx->sess == NULL)
212 		goto err;
213 
214 	snprintf(pool_name, sizeof(pool_name), "cperf_pool_in_cdev_%d",
215 			dev_id);
216 
217 	ctx->pkt_mbuf_pool_in = rte_pktmbuf_pool_create(pool_name,
218 			options->pool_sz * options->segments_nb, 0, 0,
219 			RTE_PKTMBUF_HEADROOM +
220 			RTE_CACHE_LINE_ROUNDUP(
221 				(options->max_buffer_size / options->segments_nb) +
222 				(options->max_buffer_size % options->segments_nb) +
223 					options->digest_sz),
224 			rte_socket_id());
225 
226 	if (ctx->pkt_mbuf_pool_in == NULL)
227 		goto err;
228 
229 	/* Generate mbufs_in with plaintext populated for test */
230 	ctx->mbufs_in = rte_malloc(NULL,
231 			(sizeof(struct rte_mbuf *) * ctx->options->pool_sz), 0);
232 
233 	for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
234 		ctx->mbufs_in[mbuf_idx] = cperf_mbuf_create(
235 				ctx->pkt_mbuf_pool_in, options->segments_nb,
236 				options, test_vector);
237 		if (ctx->mbufs_in[mbuf_idx] == NULL)
238 			goto err;
239 	}
240 
241 	if (options->out_of_place == 1)	{
242 
243 		snprintf(pool_name, sizeof(pool_name), "cperf_pool_out_cdev_%d",
244 				dev_id);
245 
246 		ctx->pkt_mbuf_pool_out = rte_pktmbuf_pool_create(
247 				pool_name, options->pool_sz, 0, 0,
248 				RTE_PKTMBUF_HEADROOM +
249 				RTE_CACHE_LINE_ROUNDUP(
250 					options->max_buffer_size +
251 					options->digest_sz),
252 				rte_socket_id());
253 
254 		if (ctx->pkt_mbuf_pool_out == NULL)
255 			goto err;
256 	}
257 
258 	ctx->mbufs_out = rte_malloc(NULL,
259 			(sizeof(struct rte_mbuf *) *
260 			ctx->options->pool_sz), 0);
261 
262 	for (mbuf_idx = 0; mbuf_idx < options->pool_sz; mbuf_idx++) {
263 		if (options->out_of_place == 1)	{
264 			ctx->mbufs_out[mbuf_idx] = cperf_mbuf_create(
265 					ctx->pkt_mbuf_pool_out, 1,
266 					options, test_vector);
267 			if (ctx->mbufs_out[mbuf_idx] == NULL)
268 				goto err;
269 		} else {
270 			ctx->mbufs_out[mbuf_idx] = NULL;
271 		}
272 	}
273 
274 	snprintf(pool_name, sizeof(pool_name), "cperf_op_pool_cdev_%d",
275 			dev_id);
276 
277 	uint16_t priv_size = test_vector->cipher_iv.length +
278 		test_vector->auth_iv.length;
279 	ctx->crypto_op_pool = rte_crypto_op_pool_create(pool_name,
280 			RTE_CRYPTO_OP_TYPE_SYMMETRIC, options->pool_sz,
281 			512, priv_size, rte_socket_id());
282 	if (ctx->crypto_op_pool == NULL)
283 		goto err;
284 
285 	return ctx;
286 err:
287 	cperf_verify_test_free(ctx, mbuf_idx);
288 
289 	return NULL;
290 }
291 
292 static int
293 cperf_verify_op(struct rte_crypto_op *op,
294 		const struct cperf_options *options,
295 		const struct cperf_test_vector *vector)
296 {
297 	const struct rte_mbuf *m;
298 	uint32_t len;
299 	uint16_t nb_segs;
300 	uint8_t *data;
301 	uint32_t cipher_offset, auth_offset;
302 	uint8_t	cipher, auth;
303 	int res = 0;
304 
305 	if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
306 		return 1;
307 
308 	if (op->sym->m_dst)
309 		m = op->sym->m_dst;
310 	else
311 		m = op->sym->m_src;
312 	nb_segs = m->nb_segs;
313 	len = 0;
314 	while (m && nb_segs != 0) {
315 		len += m->data_len;
316 		m = m->next;
317 		nb_segs--;
318 	}
319 
320 	data = rte_malloc(NULL, len, 0);
321 	if (data == NULL)
322 		return 1;
323 
324 	if (op->sym->m_dst)
325 		m = op->sym->m_dst;
326 	else
327 		m = op->sym->m_src;
328 	nb_segs = m->nb_segs;
329 	len = 0;
330 	while (m && nb_segs != 0) {
331 		memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
332 				m->data_len);
333 		len += m->data_len;
334 		m = m->next;
335 		nb_segs--;
336 	}
337 
338 	switch (options->op_type) {
339 	case CPERF_CIPHER_ONLY:
340 		cipher = 1;
341 		cipher_offset = 0;
342 		auth = 0;
343 		auth_offset = 0;
344 		break;
345 	case CPERF_CIPHER_THEN_AUTH:
346 		cipher = 1;
347 		cipher_offset = 0;
348 		auth = 1;
349 		auth_offset = options->test_buffer_size;
350 		break;
351 	case CPERF_AUTH_ONLY:
352 		cipher = 0;
353 		cipher_offset = 0;
354 		auth = 1;
355 		auth_offset = options->test_buffer_size;
356 		break;
357 	case CPERF_AUTH_THEN_CIPHER:
358 		cipher = 1;
359 		cipher_offset = 0;
360 		auth = 1;
361 		auth_offset = options->test_buffer_size;
362 		break;
363 	case CPERF_AEAD:
364 		cipher = 1;
365 		cipher_offset = vector->aad.length;
366 		auth = 1;
367 		auth_offset = vector->aad.length + options->test_buffer_size;
368 		break;
369 	}
370 
371 	if (cipher == 1) {
372 		if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
373 			res += memcmp(data + cipher_offset,
374 					vector->ciphertext.data,
375 					options->test_buffer_size);
376 		else
377 			res += memcmp(data + cipher_offset,
378 					vector->plaintext.data,
379 					options->test_buffer_size);
380 	}
381 
382 	if (auth == 1) {
383 		if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
384 			res += memcmp(data + auth_offset,
385 					vector->digest.data,
386 					options->digest_sz);
387 	}
388 
389 	return !!res;
390 }
391 
392 int
393 cperf_verify_test_runner(void *test_ctx)
394 {
395 	struct cperf_verify_ctx *ctx = test_ctx;
396 
397 	uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
398 	uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
399 	uint64_t ops_failed = 0;
400 
401 	static int only_once;
402 
403 	uint64_t i, m_idx = 0;
404 	uint16_t ops_unused = 0;
405 
406 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
407 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
408 
409 	uint32_t lcore = rte_lcore_id();
410 
411 #ifdef CPERF_LINEARIZATION_ENABLE
412 	struct rte_cryptodev_info dev_info;
413 	int linearize = 0;
414 
415 	/* Check if source mbufs require coalescing */
416 	if (ctx->options->segments_nb > 1) {
417 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
418 		if ((dev_info.feature_flags &
419 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
420 			linearize = 1;
421 	}
422 #endif /* CPERF_LINEARIZATION_ENABLE */
423 
424 	ctx->lcore_id = lcore;
425 
426 	if (!ctx->options->csv)
427 		printf("\n# Running verify test on device: %u, lcore: %u\n",
428 			ctx->dev_id, lcore);
429 
430 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
431 		sizeof(struct rte_crypto_sym_op);
432 
433 	while (ops_enqd_total < ctx->options->total_ops) {
434 
435 		uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size)
436 				<= ctx->options->total_ops) ?
437 						ctx->options->max_burst_size :
438 						ctx->options->total_ops -
439 						ops_enqd_total;
440 
441 		uint16_t ops_needed = burst_size - ops_unused;
442 
443 		/* Allocate crypto ops from pool */
444 		if (ops_needed != rte_crypto_op_bulk_alloc(
445 				ctx->crypto_op_pool,
446 				RTE_CRYPTO_OP_TYPE_SYMMETRIC,
447 				ops, ops_needed)) {
448 			RTE_LOG(ERR, USER1,
449 				"Failed to allocate more crypto operations "
450 				"from the the crypto operation pool.\n"
451 				"Consider increasing the pool size "
452 				"with --pool-sz\n");
453 			return -1;
454 		}
455 
456 		/* Setup crypto op, attach mbuf etc */
457 		(ctx->populate_ops)(ops, &ctx->mbufs_in[m_idx],
458 				&ctx->mbufs_out[m_idx],
459 				ops_needed, ctx->sess, ctx->options,
460 				ctx->test_vector, iv_offset);
461 
462 #ifdef CPERF_LINEARIZATION_ENABLE
463 		if (linearize) {
464 			/* PMD doesn't support scatter-gather and source buffer
465 			 * is segmented.
466 			 * We need to linearize it before enqueuing.
467 			 */
468 			for (i = 0; i < burst_size; i++)
469 				rte_pktmbuf_linearize(ops[i]->sym->m_src);
470 		}
471 #endif /* CPERF_LINEARIZATION_ENABLE */
472 
473 		/* Enqueue burst of ops on crypto device */
474 		ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
475 				ops, burst_size);
476 		if (ops_enqd < burst_size)
477 			ops_enqd_failed++;
478 
479 		/**
480 		 * Calculate number of ops not enqueued (mainly for hw
481 		 * accelerators whose ingress queue can fill up).
482 		 */
483 		ops_unused = burst_size - ops_enqd;
484 		ops_enqd_total += ops_enqd;
485 
486 
487 		/* Dequeue processed burst of ops from crypto device */
488 		ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
489 				ops_processed, ctx->options->max_burst_size);
490 
491 		m_idx += ops_needed;
492 		if (m_idx + ctx->options->max_burst_size > ctx->options->pool_sz)
493 			m_idx = 0;
494 
495 		if (ops_deqd == 0) {
496 			/**
497 			 * Count dequeue polls which didn't return any
498 			 * processed operations. This statistic is mainly
499 			 * relevant to hw accelerators.
500 			 */
501 			ops_deqd_failed++;
502 			continue;
503 		}
504 
505 		for (i = 0; i < ops_deqd; i++) {
506 			if (cperf_verify_op(ops_processed[i], ctx->options,
507 						ctx->test_vector))
508 				ops_failed++;
509 			/* free crypto ops so they can be reused. We don't free
510 			 * the mbufs here as we don't want to reuse them as
511 			 * the crypto operation will change the data and cause
512 			 * failures.
513 			 */
514 			rte_crypto_op_free(ops_processed[i]);
515 		}
516 		ops_deqd_total += ops_deqd;
517 	}
518 
519 	/* Dequeue any operations still in the crypto device */
520 
521 	while (ops_deqd_total < ctx->options->total_ops) {
522 		/* Sending 0 length burst to flush sw crypto device */
523 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
524 
525 		/* dequeue burst */
526 		ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
527 				ops_processed, ctx->options->max_burst_size);
528 		if (ops_deqd == 0) {
529 			ops_deqd_failed++;
530 			continue;
531 		}
532 
533 		for (i = 0; i < ops_deqd; i++) {
534 			if (cperf_verify_op(ops_processed[i], ctx->options,
535 						ctx->test_vector))
536 				ops_failed++;
537 			/* free crypto ops so they can be reused. We don't free
538 			 * the mbufs here as we don't want to reuse them as
539 			 * the crypto operation will change the data and cause
540 			 * failures.
541 			 */
542 			rte_crypto_op_free(ops_processed[i]);
543 		}
544 		ops_deqd_total += ops_deqd;
545 	}
546 
547 	if (!ctx->options->csv) {
548 		if (!only_once)
549 			printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
550 				"lcore id", "Buf Size", "Burst size",
551 				"Enqueued", "Dequeued", "Failed Enq",
552 				"Failed Deq", "Failed Ops");
553 		only_once = 1;
554 
555 		printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
556 				"%12"PRIu64"%12"PRIu64"\n",
557 				ctx->lcore_id,
558 				ctx->options->max_buffer_size,
559 				ctx->options->max_burst_size,
560 				ops_enqd_total,
561 				ops_deqd_total,
562 				ops_enqd_failed,
563 				ops_deqd_failed,
564 				ops_failed);
565 	} else {
566 		if (!only_once)
567 			printf("\n# lcore id, Buffer Size(B), "
568 				"Burst Size,Enqueued,Dequeued,Failed Enq,"
569 				"Failed Deq,Failed Ops\n");
570 		only_once = 1;
571 
572 		printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
573 				"%"PRIu64"\n",
574 				ctx->lcore_id,
575 				ctx->options->max_buffer_size,
576 				ctx->options->max_burst_size,
577 				ops_enqd_total,
578 				ops_deqd_total,
579 				ops_enqd_failed,
580 				ops_deqd_failed,
581 				ops_failed);
582 	}
583 
584 	return 0;
585 }
586 
587 
588 
589 void
590 cperf_verify_test_destructor(void *arg)
591 {
592 	struct cperf_verify_ctx *ctx = arg;
593 
594 	if (ctx == NULL)
595 		return;
596 
597 	rte_cryptodev_stop(ctx->dev_id);
598 
599 	cperf_verify_test_free(ctx, ctx->options->pool_sz);
600 }
601