xref: /dpdk/app/test-crypto-perf/cperf_test_verify.c (revision 089e5ed727a15da2729cfee9b63533dd120bd04c)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2016-2017 Intel Corporation
3  */
4 
5 #include <rte_malloc.h>
6 #include <rte_cycles.h>
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 
10 #include "cperf_test_verify.h"
11 #include "cperf_ops.h"
12 #include "cperf_test_common.h"
13 
14 struct cperf_verify_ctx {
15 	uint8_t dev_id;
16 	uint16_t qp_id;
17 	uint8_t lcore_id;
18 
19 	struct rte_mempool *pool;
20 
21 	struct rte_cryptodev_sym_session *sess;
22 
23 	cperf_populate_ops_t populate_ops;
24 
25 	uint32_t src_buf_offset;
26 	uint32_t dst_buf_offset;
27 
28 	const struct cperf_options *options;
29 	const struct cperf_test_vector *test_vector;
30 };
31 
32 struct cperf_op_result {
33 	enum rte_crypto_op_status status;
34 };
35 
36 static void
37 cperf_verify_test_free(struct cperf_verify_ctx *ctx)
38 {
39 	if (ctx) {
40 		if (ctx->sess) {
41 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
42 			rte_cryptodev_sym_session_free(ctx->sess);
43 		}
44 
45 		if (ctx->pool)
46 			rte_mempool_free(ctx->pool);
47 
48 		rte_free(ctx);
49 	}
50 }
51 
52 void *
53 cperf_verify_test_constructor(struct rte_mempool *sess_mp,
54 		struct rte_mempool *sess_priv_mp,
55 		uint8_t dev_id, uint16_t qp_id,
56 		const struct cperf_options *options,
57 		const struct cperf_test_vector *test_vector,
58 		const struct cperf_op_fns *op_fns)
59 {
60 	struct cperf_verify_ctx *ctx = NULL;
61 
62 	ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0);
63 	if (ctx == NULL)
64 		goto err;
65 
66 	ctx->dev_id = dev_id;
67 	ctx->qp_id = qp_id;
68 
69 	ctx->populate_ops = op_fns->populate_ops;
70 	ctx->options = options;
71 	ctx->test_vector = test_vector;
72 
73 	/* IV goes at the end of the crypto operation */
74 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
75 		sizeof(struct rte_crypto_sym_op);
76 
77 	ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
78 			test_vector, iv_offset);
79 	if (ctx->sess == NULL)
80 		goto err;
81 
82 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
83 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
84 			&ctx->pool) < 0)
85 		goto err;
86 
87 	return ctx;
88 err:
89 	cperf_verify_test_free(ctx);
90 
91 	return NULL;
92 }
93 
94 static int
95 cperf_verify_op(struct rte_crypto_op *op,
96 		const struct cperf_options *options,
97 		const struct cperf_test_vector *vector)
98 {
99 	const struct rte_mbuf *m;
100 	uint32_t len;
101 	uint16_t nb_segs;
102 	uint8_t *data;
103 	uint32_t cipher_offset, auth_offset;
104 	uint8_t	cipher, auth;
105 	int res = 0;
106 
107 	if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS)
108 		return 1;
109 
110 	if (op->sym->m_dst)
111 		m = op->sym->m_dst;
112 	else
113 		m = op->sym->m_src;
114 	nb_segs = m->nb_segs;
115 	len = 0;
116 	while (m && nb_segs != 0) {
117 		len += m->data_len;
118 		m = m->next;
119 		nb_segs--;
120 	}
121 
122 	data = rte_malloc(NULL, len, 0);
123 	if (data == NULL)
124 		return 1;
125 
126 	if (op->sym->m_dst)
127 		m = op->sym->m_dst;
128 	else
129 		m = op->sym->m_src;
130 	nb_segs = m->nb_segs;
131 	len = 0;
132 	while (m && nb_segs != 0) {
133 		memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *),
134 				m->data_len);
135 		len += m->data_len;
136 		m = m->next;
137 		nb_segs--;
138 	}
139 
140 	switch (options->op_type) {
141 	case CPERF_CIPHER_ONLY:
142 		cipher = 1;
143 		cipher_offset = 0;
144 		auth = 0;
145 		auth_offset = 0;
146 		break;
147 	case CPERF_CIPHER_THEN_AUTH:
148 		cipher = 1;
149 		cipher_offset = 0;
150 		auth = 1;
151 		auth_offset = options->test_buffer_size;
152 		break;
153 	case CPERF_AUTH_ONLY:
154 		cipher = 0;
155 		cipher_offset = 0;
156 		auth = 1;
157 		auth_offset = options->test_buffer_size;
158 		break;
159 	case CPERF_AUTH_THEN_CIPHER:
160 		cipher = 1;
161 		cipher_offset = 0;
162 		auth = 1;
163 		auth_offset = options->test_buffer_size;
164 		break;
165 	case CPERF_AEAD:
166 		cipher = 1;
167 		cipher_offset = 0;
168 		auth = 1;
169 		auth_offset = options->test_buffer_size;
170 		break;
171 	default:
172 		res = 1;
173 		goto out;
174 	}
175 
176 	if (cipher == 1) {
177 		if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT)
178 			res += memcmp(data + cipher_offset,
179 					vector->ciphertext.data,
180 					options->test_buffer_size);
181 		else
182 			res += memcmp(data + cipher_offset,
183 					vector->plaintext.data,
184 					options->test_buffer_size);
185 	}
186 
187 	if (auth == 1) {
188 		if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE)
189 			res += memcmp(data + auth_offset,
190 					vector->digest.data,
191 					options->digest_sz);
192 	}
193 
194 out:
195 	rte_free(data);
196 	return !!res;
197 }
198 
199 static void
200 cperf_mbuf_set(struct rte_mbuf *mbuf,
201 		const struct cperf_options *options,
202 		const struct cperf_test_vector *test_vector)
203 {
204 	uint32_t segment_sz = options->segment_sz;
205 	uint8_t *mbuf_data;
206 	uint8_t *test_data =
207 			(options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ?
208 					test_vector->plaintext.data :
209 					test_vector->ciphertext.data;
210 	uint32_t remaining_bytes = options->max_buffer_size;
211 
212 	while (remaining_bytes) {
213 		mbuf_data = rte_pktmbuf_mtod(mbuf, uint8_t *);
214 
215 		if (remaining_bytes <= segment_sz) {
216 			memcpy(mbuf_data, test_data, remaining_bytes);
217 			return;
218 		}
219 
220 		memcpy(mbuf_data, test_data, segment_sz);
221 		remaining_bytes -= segment_sz;
222 		test_data += segment_sz;
223 		mbuf = mbuf->next;
224 	}
225 }
226 
227 int
228 cperf_verify_test_runner(void *test_ctx)
229 {
230 	struct cperf_verify_ctx *ctx = test_ctx;
231 
232 	uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0;
233 	uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0;
234 	uint64_t ops_failed = 0;
235 
236 	static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0);
237 
238 	uint64_t i;
239 	uint16_t ops_unused = 0;
240 	uint32_t imix_idx = 0;
241 
242 	struct rte_crypto_op *ops[ctx->options->max_burst_size];
243 	struct rte_crypto_op *ops_processed[ctx->options->max_burst_size];
244 
245 	uint32_t lcore = rte_lcore_id();
246 
247 #ifdef CPERF_LINEARIZATION_ENABLE
248 	struct rte_cryptodev_info dev_info;
249 	int linearize = 0;
250 
251 	/* Check if source mbufs require coalescing */
252 	if (ctx->options->segment_sz < ctx->options->max_buffer_size) {
253 		rte_cryptodev_info_get(ctx->dev_id, &dev_info);
254 		if ((dev_info.feature_flags &
255 				RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0)
256 			linearize = 1;
257 	}
258 #endif /* CPERF_LINEARIZATION_ENABLE */
259 
260 	ctx->lcore_id = lcore;
261 
262 	if (!ctx->options->csv)
263 		printf("\n# Running verify test on device: %u, lcore: %u\n",
264 			ctx->dev_id, lcore);
265 
266 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
267 		sizeof(struct rte_crypto_sym_op);
268 
269 	while (ops_enqd_total < ctx->options->total_ops) {
270 
271 		uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size)
272 				<= ctx->options->total_ops) ?
273 						ctx->options->max_burst_size :
274 						ctx->options->total_ops -
275 						ops_enqd_total;
276 
277 		uint16_t ops_needed = burst_size - ops_unused;
278 
279 		/* Allocate objects containing crypto operations and mbufs */
280 		if (rte_mempool_get_bulk(ctx->pool, (void **)ops,
281 					ops_needed) != 0) {
282 			RTE_LOG(ERR, USER1,
283 				"Failed to allocate more crypto operations "
284 				"from the crypto operation pool.\n"
285 				"Consider increasing the pool size "
286 				"with --pool-sz\n");
287 			return -1;
288 		}
289 
290 		/* Setup crypto op, attach mbuf etc */
291 		(ctx->populate_ops)(ops, ctx->src_buf_offset,
292 				ctx->dst_buf_offset,
293 				ops_needed, ctx->sess, ctx->options,
294 				ctx->test_vector, iv_offset, &imix_idx);
295 
296 
297 		/* Populate the mbuf with the test vector, for verification */
298 		for (i = 0; i < ops_needed; i++)
299 			cperf_mbuf_set(ops[i]->sym->m_src,
300 					ctx->options,
301 					ctx->test_vector);
302 
303 #ifdef CPERF_LINEARIZATION_ENABLE
304 		if (linearize) {
305 			/* PMD doesn't support scatter-gather and source buffer
306 			 * is segmented.
307 			 * We need to linearize it before enqueuing.
308 			 */
309 			for (i = 0; i < burst_size; i++)
310 				rte_pktmbuf_linearize(ops[i]->sym->m_src);
311 		}
312 #endif /* CPERF_LINEARIZATION_ENABLE */
313 
314 		/* Enqueue burst of ops on crypto device */
315 		ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id,
316 				ops, burst_size);
317 		if (ops_enqd < burst_size)
318 			ops_enqd_failed++;
319 
320 		/**
321 		 * Calculate number of ops not enqueued (mainly for hw
322 		 * accelerators whose ingress queue can fill up).
323 		 */
324 		ops_unused = burst_size - ops_enqd;
325 		ops_enqd_total += ops_enqd;
326 
327 
328 		/* Dequeue processed burst of ops from crypto device */
329 		ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
330 				ops_processed, ctx->options->max_burst_size);
331 
332 		if (ops_deqd == 0) {
333 			/**
334 			 * Count dequeue polls which didn't return any
335 			 * processed operations. This statistic is mainly
336 			 * relevant to hw accelerators.
337 			 */
338 			ops_deqd_failed++;
339 			continue;
340 		}
341 
342 		for (i = 0; i < ops_deqd; i++) {
343 			if (cperf_verify_op(ops_processed[i], ctx->options,
344 						ctx->test_vector))
345 				ops_failed++;
346 		}
347 		/* Free crypto ops so they can be reused. */
348 		rte_mempool_put_bulk(ctx->pool,
349 					(void **)ops_processed, ops_deqd);
350 		ops_deqd_total += ops_deqd;
351 	}
352 
353 	/* Dequeue any operations still in the crypto device */
354 
355 	while (ops_deqd_total < ctx->options->total_ops) {
356 		/* Sending 0 length burst to flush sw crypto device */
357 		rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0);
358 
359 		/* dequeue burst */
360 		ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id,
361 				ops_processed, ctx->options->max_burst_size);
362 		if (ops_deqd == 0) {
363 			ops_deqd_failed++;
364 			continue;
365 		}
366 
367 		for (i = 0; i < ops_deqd; i++) {
368 			if (cperf_verify_op(ops_processed[i], ctx->options,
369 						ctx->test_vector))
370 				ops_failed++;
371 		}
372 		/* Free crypto ops so they can be reused. */
373 		rte_mempool_put_bulk(ctx->pool,
374 					(void **)ops_processed, ops_deqd);
375 		ops_deqd_total += ops_deqd;
376 	}
377 
378 	if (!ctx->options->csv) {
379 		if (rte_atomic16_test_and_set(&display_once))
380 			printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n",
381 				"lcore id", "Buf Size", "Burst size",
382 				"Enqueued", "Dequeued", "Failed Enq",
383 				"Failed Deq", "Failed Ops");
384 
385 		printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64
386 				"%12"PRIu64"%12"PRIu64"\n",
387 				ctx->lcore_id,
388 				ctx->options->max_buffer_size,
389 				ctx->options->max_burst_size,
390 				ops_enqd_total,
391 				ops_deqd_total,
392 				ops_enqd_failed,
393 				ops_deqd_failed,
394 				ops_failed);
395 	} else {
396 		if (rte_atomic16_test_and_set(&display_once))
397 			printf("\n# lcore id, Buffer Size(B), "
398 				"Burst Size,Enqueued,Dequeued,Failed Enq,"
399 				"Failed Deq,Failed Ops\n");
400 
401 		printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";"
402 				"%"PRIu64"\n",
403 				ctx->lcore_id,
404 				ctx->options->max_buffer_size,
405 				ctx->options->max_burst_size,
406 				ops_enqd_total,
407 				ops_deqd_total,
408 				ops_enqd_failed,
409 				ops_deqd_failed,
410 				ops_failed);
411 	}
412 
413 	return 0;
414 }
415 
416 
417 
418 void
419 cperf_verify_test_destructor(void *arg)
420 {
421 	struct cperf_verify_ctx *ctx = arg;
422 
423 	if (ctx == NULL)
424 		return;
425 
426 	cperf_verify_test_free(ctx);
427 }
428