1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2016-2017 Intel Corporation 3 */ 4 5 #include <rte_malloc.h> 6 #include <rte_cycles.h> 7 #include <rte_crypto.h> 8 #include <rte_cryptodev.h> 9 10 #include "cperf_test_verify.h" 11 #include "cperf_ops.h" 12 #include "cperf_test_common.h" 13 14 struct cperf_verify_ctx { 15 uint8_t dev_id; 16 uint16_t qp_id; 17 uint8_t lcore_id; 18 19 struct rte_mempool *pool; 20 21 struct rte_cryptodev_sym_session *sess; 22 23 cperf_populate_ops_t populate_ops; 24 25 uint32_t src_buf_offset; 26 uint32_t dst_buf_offset; 27 28 const struct cperf_options *options; 29 const struct cperf_test_vector *test_vector; 30 }; 31 32 struct cperf_op_result { 33 enum rte_crypto_op_status status; 34 }; 35 36 static void 37 cperf_verify_test_free(struct cperf_verify_ctx *ctx) 38 { 39 if (ctx) { 40 if (ctx->sess) { 41 rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess); 42 rte_cryptodev_sym_session_free(ctx->sess); 43 } 44 45 if (ctx->pool) 46 rte_mempool_free(ctx->pool); 47 48 rte_free(ctx); 49 } 50 } 51 52 void * 53 cperf_verify_test_constructor(struct rte_mempool *sess_mp, 54 struct rte_mempool *sess_priv_mp, 55 uint8_t dev_id, uint16_t qp_id, 56 const struct cperf_options *options, 57 const struct cperf_test_vector *test_vector, 58 const struct cperf_op_fns *op_fns) 59 { 60 struct cperf_verify_ctx *ctx = NULL; 61 62 ctx = rte_malloc(NULL, sizeof(struct cperf_verify_ctx), 0); 63 if (ctx == NULL) 64 goto err; 65 66 ctx->dev_id = dev_id; 67 ctx->qp_id = qp_id; 68 69 ctx->populate_ops = op_fns->populate_ops; 70 ctx->options = options; 71 ctx->test_vector = test_vector; 72 73 /* IV goes at the end of the crypto operation */ 74 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 75 sizeof(struct rte_crypto_sym_op); 76 77 ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options, 78 test_vector, iv_offset); 79 if (ctx->sess == NULL) 80 goto err; 81 82 if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0, 83 &ctx->src_buf_offset, &ctx->dst_buf_offset, 84 &ctx->pool) < 0) 85 goto err; 86 87 return ctx; 88 err: 89 cperf_verify_test_free(ctx); 90 91 return NULL; 92 } 93 94 static int 95 cperf_verify_op(struct rte_crypto_op *op, 96 const struct cperf_options *options, 97 const struct cperf_test_vector *vector) 98 { 99 const struct rte_mbuf *m; 100 uint32_t len; 101 uint16_t nb_segs; 102 uint8_t *data; 103 uint32_t cipher_offset, auth_offset; 104 uint8_t cipher, auth; 105 int res = 0; 106 107 if (op->status != RTE_CRYPTO_OP_STATUS_SUCCESS) 108 return 1; 109 110 if (op->sym->m_dst) 111 m = op->sym->m_dst; 112 else 113 m = op->sym->m_src; 114 nb_segs = m->nb_segs; 115 len = 0; 116 while (m && nb_segs != 0) { 117 len += m->data_len; 118 m = m->next; 119 nb_segs--; 120 } 121 122 data = rte_malloc(NULL, len, 0); 123 if (data == NULL) 124 return 1; 125 126 if (op->sym->m_dst) 127 m = op->sym->m_dst; 128 else 129 m = op->sym->m_src; 130 nb_segs = m->nb_segs; 131 len = 0; 132 while (m && nb_segs != 0) { 133 memcpy(data + len, rte_pktmbuf_mtod(m, uint8_t *), 134 m->data_len); 135 len += m->data_len; 136 m = m->next; 137 nb_segs--; 138 } 139 140 switch (options->op_type) { 141 case CPERF_CIPHER_ONLY: 142 cipher = 1; 143 cipher_offset = 0; 144 auth = 0; 145 auth_offset = 0; 146 break; 147 case CPERF_CIPHER_THEN_AUTH: 148 cipher = 1; 149 cipher_offset = 0; 150 auth = 1; 151 auth_offset = options->test_buffer_size; 152 break; 153 case CPERF_AUTH_ONLY: 154 cipher = 0; 155 cipher_offset = 0; 156 auth = 1; 157 auth_offset = options->test_buffer_size; 158 break; 159 case CPERF_AUTH_THEN_CIPHER: 160 cipher = 1; 161 cipher_offset = 0; 162 auth = 1; 163 auth_offset = options->test_buffer_size; 164 break; 165 case CPERF_AEAD: 166 cipher = 1; 167 cipher_offset = 0; 168 auth = 1; 169 auth_offset = options->test_buffer_size; 170 break; 171 default: 172 res = 1; 173 goto out; 174 } 175 176 if (cipher == 1) { 177 if (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) 178 res += memcmp(data + cipher_offset, 179 vector->ciphertext.data, 180 options->test_buffer_size); 181 else 182 res += memcmp(data + cipher_offset, 183 vector->plaintext.data, 184 options->test_buffer_size); 185 } 186 187 if (auth == 1) { 188 if (options->auth_op == RTE_CRYPTO_AUTH_OP_GENERATE) 189 res += memcmp(data + auth_offset, 190 vector->digest.data, 191 options->digest_sz); 192 } 193 194 out: 195 rte_free(data); 196 return !!res; 197 } 198 199 static void 200 cperf_mbuf_set(struct rte_mbuf *mbuf, 201 const struct cperf_options *options, 202 const struct cperf_test_vector *test_vector) 203 { 204 uint32_t segment_sz = options->segment_sz; 205 uint8_t *mbuf_data; 206 uint8_t *test_data = 207 (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ? 208 test_vector->plaintext.data : 209 test_vector->ciphertext.data; 210 uint32_t remaining_bytes = options->max_buffer_size; 211 212 while (remaining_bytes) { 213 mbuf_data = rte_pktmbuf_mtod(mbuf, uint8_t *); 214 215 if (remaining_bytes <= segment_sz) { 216 memcpy(mbuf_data, test_data, remaining_bytes); 217 return; 218 } 219 220 memcpy(mbuf_data, test_data, segment_sz); 221 remaining_bytes -= segment_sz; 222 test_data += segment_sz; 223 mbuf = mbuf->next; 224 } 225 } 226 227 int 228 cperf_verify_test_runner(void *test_ctx) 229 { 230 struct cperf_verify_ctx *ctx = test_ctx; 231 232 uint64_t ops_enqd = 0, ops_enqd_total = 0, ops_enqd_failed = 0; 233 uint64_t ops_deqd = 0, ops_deqd_total = 0, ops_deqd_failed = 0; 234 uint64_t ops_failed = 0; 235 236 static rte_atomic16_t display_once = RTE_ATOMIC16_INIT(0); 237 238 uint64_t i; 239 uint16_t ops_unused = 0; 240 uint32_t imix_idx = 0; 241 242 struct rte_crypto_op *ops[ctx->options->max_burst_size]; 243 struct rte_crypto_op *ops_processed[ctx->options->max_burst_size]; 244 245 uint32_t lcore = rte_lcore_id(); 246 247 #ifdef CPERF_LINEARIZATION_ENABLE 248 struct rte_cryptodev_info dev_info; 249 int linearize = 0; 250 251 /* Check if source mbufs require coalescing */ 252 if (ctx->options->segment_sz < ctx->options->max_buffer_size) { 253 rte_cryptodev_info_get(ctx->dev_id, &dev_info); 254 if ((dev_info.feature_flags & 255 RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) == 0) 256 linearize = 1; 257 } 258 #endif /* CPERF_LINEARIZATION_ENABLE */ 259 260 ctx->lcore_id = lcore; 261 262 if (!ctx->options->csv) 263 printf("\n# Running verify test on device: %u, lcore: %u\n", 264 ctx->dev_id, lcore); 265 266 uint16_t iv_offset = sizeof(struct rte_crypto_op) + 267 sizeof(struct rte_crypto_sym_op); 268 269 while (ops_enqd_total < ctx->options->total_ops) { 270 271 uint16_t burst_size = ((ops_enqd_total + ctx->options->max_burst_size) 272 <= ctx->options->total_ops) ? 273 ctx->options->max_burst_size : 274 ctx->options->total_ops - 275 ops_enqd_total; 276 277 uint16_t ops_needed = burst_size - ops_unused; 278 279 /* Allocate objects containing crypto operations and mbufs */ 280 if (rte_mempool_get_bulk(ctx->pool, (void **)ops, 281 ops_needed) != 0) { 282 RTE_LOG(ERR, USER1, 283 "Failed to allocate more crypto operations " 284 "from the crypto operation pool.\n" 285 "Consider increasing the pool size " 286 "with --pool-sz\n"); 287 return -1; 288 } 289 290 /* Setup crypto op, attach mbuf etc */ 291 (ctx->populate_ops)(ops, ctx->src_buf_offset, 292 ctx->dst_buf_offset, 293 ops_needed, ctx->sess, ctx->options, 294 ctx->test_vector, iv_offset, &imix_idx); 295 296 297 /* Populate the mbuf with the test vector, for verification */ 298 for (i = 0; i < ops_needed; i++) 299 cperf_mbuf_set(ops[i]->sym->m_src, 300 ctx->options, 301 ctx->test_vector); 302 303 #ifdef CPERF_LINEARIZATION_ENABLE 304 if (linearize) { 305 /* PMD doesn't support scatter-gather and source buffer 306 * is segmented. 307 * We need to linearize it before enqueuing. 308 */ 309 for (i = 0; i < burst_size; i++) 310 rte_pktmbuf_linearize(ops[i]->sym->m_src); 311 } 312 #endif /* CPERF_LINEARIZATION_ENABLE */ 313 314 /* Enqueue burst of ops on crypto device */ 315 ops_enqd = rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, 316 ops, burst_size); 317 if (ops_enqd < burst_size) 318 ops_enqd_failed++; 319 320 /** 321 * Calculate number of ops not enqueued (mainly for hw 322 * accelerators whose ingress queue can fill up). 323 */ 324 ops_unused = burst_size - ops_enqd; 325 ops_enqd_total += ops_enqd; 326 327 328 /* Dequeue processed burst of ops from crypto device */ 329 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 330 ops_processed, ctx->options->max_burst_size); 331 332 if (ops_deqd == 0) { 333 /** 334 * Count dequeue polls which didn't return any 335 * processed operations. This statistic is mainly 336 * relevant to hw accelerators. 337 */ 338 ops_deqd_failed++; 339 continue; 340 } 341 342 for (i = 0; i < ops_deqd; i++) { 343 if (cperf_verify_op(ops_processed[i], ctx->options, 344 ctx->test_vector)) 345 ops_failed++; 346 } 347 /* Free crypto ops so they can be reused. */ 348 rte_mempool_put_bulk(ctx->pool, 349 (void **)ops_processed, ops_deqd); 350 ops_deqd_total += ops_deqd; 351 } 352 353 /* Dequeue any operations still in the crypto device */ 354 355 while (ops_deqd_total < ctx->options->total_ops) { 356 /* Sending 0 length burst to flush sw crypto device */ 357 rte_cryptodev_enqueue_burst(ctx->dev_id, ctx->qp_id, NULL, 0); 358 359 /* dequeue burst */ 360 ops_deqd = rte_cryptodev_dequeue_burst(ctx->dev_id, ctx->qp_id, 361 ops_processed, ctx->options->max_burst_size); 362 if (ops_deqd == 0) { 363 ops_deqd_failed++; 364 continue; 365 } 366 367 for (i = 0; i < ops_deqd; i++) { 368 if (cperf_verify_op(ops_processed[i], ctx->options, 369 ctx->test_vector)) 370 ops_failed++; 371 } 372 /* Free crypto ops so they can be reused. */ 373 rte_mempool_put_bulk(ctx->pool, 374 (void **)ops_processed, ops_deqd); 375 ops_deqd_total += ops_deqd; 376 } 377 378 if (!ctx->options->csv) { 379 if (rte_atomic16_test_and_set(&display_once)) 380 printf("%12s%12s%12s%12s%12s%12s%12s%12s\n\n", 381 "lcore id", "Buf Size", "Burst size", 382 "Enqueued", "Dequeued", "Failed Enq", 383 "Failed Deq", "Failed Ops"); 384 385 printf("%12u%12u%12u%12"PRIu64"%12"PRIu64"%12"PRIu64 386 "%12"PRIu64"%12"PRIu64"\n", 387 ctx->lcore_id, 388 ctx->options->max_buffer_size, 389 ctx->options->max_burst_size, 390 ops_enqd_total, 391 ops_deqd_total, 392 ops_enqd_failed, 393 ops_deqd_failed, 394 ops_failed); 395 } else { 396 if (rte_atomic16_test_and_set(&display_once)) 397 printf("\n# lcore id, Buffer Size(B), " 398 "Burst Size,Enqueued,Dequeued,Failed Enq," 399 "Failed Deq,Failed Ops\n"); 400 401 printf("%10u;%10u;%u;%"PRIu64";%"PRIu64";%"PRIu64";%"PRIu64";" 402 "%"PRIu64"\n", 403 ctx->lcore_id, 404 ctx->options->max_buffer_size, 405 ctx->options->max_burst_size, 406 ops_enqd_total, 407 ops_deqd_total, 408 ops_enqd_failed, 409 ops_deqd_failed, 410 ops_failed); 411 } 412 413 return 0; 414 } 415 416 417 418 void 419 cperf_verify_test_destructor(void *arg) 420 { 421 struct cperf_verify_ctx *ctx = arg; 422 423 if (ctx == NULL) 424 return; 425 426 cperf_verify_test_free(ctx); 427 } 428