xref: /dpdk/app/test-crypto-perf/cperf_test_pmd_cyclecount.c (revision fd8c20aab4c2fe2c568455be4efab76db126791f)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdbool.h>
6 
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 #include <rte_cycles.h>
10 #include <rte_malloc.h>
11 
12 #include "cperf_ops.h"
13 #include "cperf_test_pmd_cyclecount.h"
14 #include "cperf_test_common.h"
15 
16 #define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
17 #define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
18 #define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
19 #define CSV_LINE_FMT "%10u;%10u;%u;%u;%u;%u;%u;%.f3;%.f3;%.f3\n"
20 
21 struct cperf_pmd_cyclecount_ctx {
22 	uint8_t dev_id;
23 	uint16_t qp_id;
24 	uint8_t lcore_id;
25 
26 	struct rte_mempool *pool;
27 	struct rte_crypto_op **ops;
28 	struct rte_crypto_op **ops_processed;
29 
30 	struct rte_cryptodev_sym_session *sess;
31 
32 	cperf_populate_ops_t populate_ops;
33 
34 	uint32_t src_buf_offset;
35 	uint32_t dst_buf_offset;
36 
37 	const struct cperf_options *options;
38 	const struct cperf_test_vector *test_vector;
39 };
40 
41 struct pmd_cyclecount_state {
42 	struct cperf_pmd_cyclecount_ctx *ctx;
43 	const struct cperf_options *opts;
44 	uint32_t lcore;
45 	uint64_t delay;
46 	int linearize;
47 	uint32_t ops_enqd;
48 	uint32_t ops_deqd;
49 	uint32_t ops_enq_retries;
50 	uint32_t ops_deq_retries;
51 	double cycles_per_build;
52 	double cycles_per_enq;
53 	double cycles_per_deq;
54 };
55 
56 static const uint16_t iv_offset =
57 		sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
58 
59 static void
60 cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
61 {
62 	if (ctx) {
63 		if (ctx->sess) {
64 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
65 			rte_cryptodev_sym_session_free(ctx->sess);
66 		}
67 
68 		if (ctx->pool)
69 			rte_mempool_free(ctx->pool);
70 
71 		if (ctx->ops)
72 			rte_free(ctx->ops);
73 
74 		if (ctx->ops_processed)
75 			rte_free(ctx->ops_processed);
76 
77 		rte_free(ctx);
78 	}
79 }
80 
81 void *
82 cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
83 		uint8_t dev_id, uint16_t qp_id,
84 		const struct cperf_options *options,
85 		const struct cperf_test_vector *test_vector,
86 		const struct cperf_op_fns *op_fns)
87 {
88 	struct cperf_pmd_cyclecount_ctx *ctx = NULL;
89 
90 	/* preallocate buffers for crypto ops as they can get quite big */
91 	size_t alloc_sz = sizeof(struct rte_crypto_op *) *
92 			options->nb_descriptors;
93 
94 	ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
95 	if (ctx == NULL)
96 		goto err;
97 
98 	ctx->dev_id = dev_id;
99 	ctx->qp_id = qp_id;
100 
101 	ctx->populate_ops = op_fns->populate_ops;
102 	ctx->options = options;
103 	ctx->test_vector = test_vector;
104 
105 	/* IV goes at the end of the crypto operation */
106 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
107 			sizeof(struct rte_crypto_sym_op);
108 
109 	ctx->sess = op_fns->sess_create(
110 			sess_mp, dev_id, options, test_vector, iv_offset);
111 	if (ctx->sess == NULL)
112 		goto err;
113 
114 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
115 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
116 			&ctx->pool) < 0)
117 		goto err;
118 
119 	ctx->ops = rte_malloc("ops", alloc_sz, 0);
120 	if (!ctx->ops)
121 		goto err;
122 
123 	ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
124 	if (!ctx->ops_processed)
125 		goto err;
126 
127 	return ctx;
128 
129 err:
130 	cperf_pmd_cyclecount_test_free(ctx);
131 
132 	return NULL;
133 }
134 
135 /* benchmark alloc-build-free of ops */
136 static inline int
137 pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
138 		uint16_t test_burst_size)
139 {
140 	uint32_t iter_ops_left = state->opts->total_ops - cur_op;
141 	uint32_t iter_ops_needed =
142 			RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
143 	uint32_t cur_iter_op;
144 
145 	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
146 			cur_iter_op += test_burst_size) {
147 		uint32_t burst_size = RTE_MIN(state->opts->total_ops - cur_op,
148 				test_burst_size);
149 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
150 
151 		/* Allocate objects containing crypto operations and mbufs */
152 		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
153 					burst_size) != 0) {
154 			RTE_LOG(ERR, USER1,
155 					"Failed to allocate more crypto operations "
156 					"from the crypto operation pool.\n"
157 					"Consider increasing the pool size "
158 					"with --pool-sz\n");
159 				return -1;
160 		}
161 
162 		/* Setup crypto op, attach mbuf etc */
163 		(state->ctx->populate_ops)(ops,
164 				state->ctx->src_buf_offset,
165 				state->ctx->dst_buf_offset,
166 				burst_size,
167 				state->ctx->sess, state->opts,
168 				state->ctx->test_vector, iv_offset);
169 
170 #ifdef CPERF_LINEARIZATION_ENABLE
171 		/* Check if source mbufs require coalescing */
172 		if (state->linearize) {
173 			uint8_t i;
174 			for (i = 0; i < burst_size; i++) {
175 				struct rte_mbuf *src = ops[i]->sym->m_src;
176 				rte_pktmbuf_linearize(src);
177 			}
178 		}
179 #endif /* CPERF_LINEARIZATION_ENABLE */
180 		rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
181 				burst_size);
182 	}
183 
184 	return 0;
185 }
186 
187 /* allocate and build ops (no free) */
188 static int
189 pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
190 		uint32_t iter_ops_needed, uint16_t test_burst_size)
191 {
192 	uint32_t cur_iter_op;
193 
194 	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
195 			cur_iter_op += test_burst_size) {
196 		uint32_t burst_size = RTE_MIN(
197 				iter_ops_needed - cur_iter_op, test_burst_size);
198 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
199 
200 		/* Allocate objects containing crypto operations and mbufs */
201 		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
202 					burst_size) != 0) {
203 			RTE_LOG(ERR, USER1,
204 					"Failed to allocate more crypto operations "
205 					"from the crypto operation pool.\n"
206 					"Consider increasing the pool size "
207 					"with --pool-sz\n");
208 				return -1;
209 		}
210 
211 		/* Setup crypto op, attach mbuf etc */
212 		(state->ctx->populate_ops)(ops,
213 				state->ctx->src_buf_offset,
214 				state->ctx->dst_buf_offset,
215 				burst_size,
216 				state->ctx->sess, state->opts,
217 				state->ctx->test_vector, iv_offset);
218 	}
219 	return 0;
220 }
221 
222 /* benchmark enqueue, returns number of ops enqueued */
223 static uint32_t
224 pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
225 		uint32_t iter_ops_needed, uint16_t test_burst_size)
226 {
227 	/* Enqueue full descriptor ring of ops on crypto device */
228 	uint32_t cur_iter_op = 0;
229 	while (cur_iter_op < iter_ops_needed) {
230 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
231 				test_burst_size);
232 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
233 		uint32_t burst_enqd;
234 
235 		burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
236 				state->ctx->qp_id, ops, burst_size);
237 
238 		/* if we couldn't enqueue anything, the queue is full */
239 		if (!burst_enqd) {
240 			/* don't try to dequeue anything we didn't enqueue */
241 			return cur_iter_op;
242 		}
243 
244 		if (burst_enqd < burst_size)
245 			state->ops_enq_retries++;
246 		state->ops_enqd += burst_enqd;
247 		cur_iter_op += burst_enqd;
248 	}
249 	return iter_ops_needed;
250 }
251 
252 /* benchmark dequeue */
253 static void
254 pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
255 		uint32_t iter_ops_needed, uint16_t test_burst_size)
256 {
257 	/* Dequeue full descriptor ring of ops on crypto device */
258 	uint32_t cur_iter_op = 0;
259 	while (cur_iter_op < iter_ops_needed) {
260 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
261 				test_burst_size);
262 		struct rte_crypto_op **ops_processed =
263 				&state->ctx->ops[cur_iter_op];
264 		uint32_t burst_deqd;
265 
266 		burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
267 				state->ctx->qp_id, ops_processed, burst_size);
268 
269 		if (burst_deqd < burst_size)
270 			state->ops_deq_retries++;
271 		state->ops_deqd += burst_deqd;
272 		cur_iter_op += burst_deqd;
273 	}
274 }
275 
276 /* run benchmark per burst size */
277 static inline int
278 pmd_cyclecount_bench_burst_sz(
279 		struct pmd_cyclecount_state *state, uint16_t test_burst_size)
280 {
281 	uint64_t tsc_start;
282 	uint64_t tsc_end;
283 	uint64_t tsc_op;
284 	uint64_t tsc_enq;
285 	uint64_t tsc_deq;
286 	uint32_t cur_op;
287 
288 	/* reset all counters */
289 	tsc_enq = 0;
290 	tsc_deq = 0;
291 	state->ops_enqd = 0;
292 	state->ops_enq_retries = 0;
293 	state->ops_deqd = 0;
294 	state->ops_deq_retries = 0;
295 
296 	/*
297 	 * Benchmark crypto op alloc-build-free separately.
298 	 */
299 	tsc_start = rte_rdtsc_precise();
300 
301 	for (cur_op = 0; cur_op < state->opts->total_ops;
302 			cur_op += state->opts->nb_descriptors) {
303 		if (unlikely(pmd_cyclecount_bench_ops(
304 				state, cur_op, test_burst_size)))
305 			return -1;
306 	}
307 
308 	tsc_end = rte_rdtsc_precise();
309 	tsc_op = tsc_end - tsc_start;
310 
311 
312 	/*
313 	 * Hardware acceleration cyclecount benchmarking loop.
314 	 *
315 	 * We're benchmarking raw enq/deq performance by filling up the device
316 	 * queue, so we never get any failed enqs unless the driver won't accept
317 	 * the exact number of descriptors we requested, or the driver won't
318 	 * wrap around the end of the TX ring. However, since we're only
319 	 * dequeueing once we've filled up the queue, we have to benchmark it
320 	 * piecemeal and then average out the results.
321 	 */
322 	cur_op = 0;
323 	while (cur_op < state->opts->total_ops) {
324 		uint32_t iter_ops_left = state->opts->total_ops - cur_op;
325 		uint32_t iter_ops_needed = RTE_MIN(
326 				state->opts->nb_descriptors, iter_ops_left);
327 		uint32_t iter_ops_allocd = iter_ops_needed;
328 
329 		/* allocate and build ops */
330 		if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
331 				test_burst_size)))
332 			return -1;
333 
334 		tsc_start = rte_rdtsc_precise();
335 
336 		/* fill up TX ring */
337 		iter_ops_needed = pmd_cyclecount_bench_enq(state,
338 				iter_ops_needed, test_burst_size);
339 
340 		tsc_end = rte_rdtsc_precise();
341 
342 		tsc_enq += tsc_end - tsc_start;
343 
344 		/* allow for HW to catch up */
345 		if (state->delay)
346 			rte_delay_us_block(state->delay);
347 
348 		tsc_start = rte_rdtsc_precise();
349 
350 		/* drain RX ring */
351 		pmd_cyclecount_bench_deq(state, iter_ops_needed,
352 				test_burst_size);
353 
354 		tsc_end = rte_rdtsc_precise();
355 
356 		tsc_deq += tsc_end - tsc_start;
357 
358 		cur_op += iter_ops_needed;
359 
360 		/*
361 		 * we may not have processed all ops that we allocated, so
362 		 * free everything we've allocated.
363 		 */
364 		rte_mempool_put_bulk(state->ctx->pool,
365 				(void **)state->ctx->ops, iter_ops_allocd);
366 	}
367 
368 	state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
369 	state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
370 	state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
371 
372 	return 0;
373 }
374 
375 int
376 cperf_pmd_cyclecount_test_runner(void *test_ctx)
377 {
378 	struct pmd_cyclecount_state state = {0};
379 	const struct cperf_options *opts;
380 	uint16_t test_burst_size;
381 	uint8_t burst_size_idx = 0;
382 
383 	state.ctx = test_ctx;
384 	opts = state.ctx->options;
385 	state.opts = opts;
386 	state.lcore = rte_lcore_id();
387 	state.linearize = 0;
388 
389 	static int only_once;
390 	static bool warmup = true;
391 
392 	/*
393 	 * We need a small delay to allow for hardware to process all the crypto
394 	 * operations. We can't automatically figure out what the delay should
395 	 * be, so we leave it up to the user (by default it's 0).
396 	 */
397 	state.delay = 1000 * opts->pmdcc_delay;
398 
399 #ifdef CPERF_LINEARIZATION_ENABLE
400 	struct rte_cryptodev_info dev_info;
401 
402 	/* Check if source mbufs require coalescing */
403 	if (opts->segments_sz < ctx->options->max_buffer_size) {
404 		rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
405 		if ((dev_info.feature_flags &
406 				    RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
407 				0) {
408 			state.linearize = 1;
409 		}
410 	}
411 #endif /* CPERF_LINEARIZATION_ENABLE */
412 
413 	state.ctx->lcore_id = state.lcore;
414 
415 	/* Get first size from range or list */
416 	if (opts->inc_burst_size != 0)
417 		test_burst_size = opts->min_burst_size;
418 	else
419 		test_burst_size = opts->burst_size_list[0];
420 
421 	while (test_burst_size <= opts->max_burst_size) {
422 		/* do a benchmark run */
423 		if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
424 			return -1;
425 
426 		/*
427 		 * First run is always a warm up run.
428 		 */
429 		if (warmup) {
430 			warmup = false;
431 			continue;
432 		}
433 
434 		if (!opts->csv) {
435 			if (!only_once)
436 				printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
437 						"Burst Size", "Enqueued",
438 						"Dequeued", "Enq Retries",
439 						"Deq Retries", "Cycles/Op",
440 						"Cycles/Enq", "Cycles/Deq");
441 			only_once = 1;
442 
443 			printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
444 					opts->test_buffer_size, test_burst_size,
445 					state.ops_enqd, state.ops_deqd,
446 					state.ops_enq_retries,
447 					state.ops_deq_retries,
448 					state.cycles_per_build,
449 					state.cycles_per_enq,
450 					state.cycles_per_deq);
451 		} else {
452 			if (!only_once)
453 				printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
454 						"Burst Size", "Enqueued",
455 						"Dequeued", "Enq Retries",
456 						"Deq Retries", "Cycles/Op",
457 						"Cycles/Enq", "Cycles/Deq");
458 			only_once = 1;
459 
460 			printf(CSV_LINE_FMT, state.ctx->lcore_id,
461 					opts->test_buffer_size, test_burst_size,
462 					state.ops_enqd, state.ops_deqd,
463 					state.ops_enq_retries,
464 					state.ops_deq_retries,
465 					state.cycles_per_build,
466 					state.cycles_per_enq,
467 					state.cycles_per_deq);
468 		}
469 
470 		/* Get next size from range or list */
471 		if (opts->inc_burst_size != 0)
472 			test_burst_size += opts->inc_burst_size;
473 		else {
474 			if (++burst_size_idx == opts->burst_size_count)
475 				break;
476 			test_burst_size = opts->burst_size_list[burst_size_idx];
477 		}
478 	}
479 
480 	return 0;
481 }
482 
483 void
484 cperf_pmd_cyclecount_test_destructor(void *arg)
485 {
486 	struct cperf_pmd_cyclecount_ctx *ctx = arg;
487 
488 	if (ctx == NULL)
489 		return;
490 
491 	cperf_pmd_cyclecount_test_free(ctx);
492 }
493