xref: /dpdk/app/test-crypto-perf/cperf_test_pmd_cyclecount.c (revision b42f3e2f5be63ccaeb60066011bc8430ab06ca0d)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdbool.h>
6 #include <stdlib.h>
7 
8 #include <rte_crypto.h>
9 #include <rte_cryptodev.h>
10 #include <rte_cycles.h>
11 #include <rte_malloc.h>
12 
13 #include "cperf_ops.h"
14 #include "cperf_test_pmd_cyclecount.h"
15 #include "cperf_test_common.h"
16 
17 #define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
18 #define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
19 #define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
20 #define CSV_LINE_FMT "%10u,%10u,%u,%u,%u,%u,%u,%.3f,%.3f,%.3f\n"
21 
22 struct cperf_pmd_cyclecount_ctx {
23 	uint8_t dev_id;
24 	uint16_t qp_id;
25 	uint8_t lcore_id;
26 
27 	struct rte_mempool *pool;
28 	struct rte_crypto_op **ops;
29 	struct rte_crypto_op **ops_processed;
30 
31 	void *sess;
32 
33 	cperf_populate_ops_t populate_ops;
34 
35 	uint32_t src_buf_offset;
36 	uint32_t dst_buf_offset;
37 
38 	const struct cperf_options *options;
39 	const struct cperf_test_vector *test_vector;
40 };
41 
42 struct pmd_cyclecount_state {
43 	struct cperf_pmd_cyclecount_ctx *ctx;
44 	const struct cperf_options *opts;
45 	uint32_t lcore;
46 	uint64_t delay;
47 	int linearize;
48 	uint32_t ops_enqd;
49 	uint32_t ops_deqd;
50 	uint32_t ops_enq_retries;
51 	uint32_t ops_deq_retries;
52 	double cycles_per_build;
53 	double cycles_per_enq;
54 	double cycles_per_deq;
55 };
56 
57 static const uint16_t iv_offset =
58 		sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
59 
60 static void
61 cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
62 {
63 	if (!ctx)
64 		return;
65 
66 	if (ctx->sess) {
67 #ifdef RTE_LIB_SECURITY
68 		if (ctx->options->op_type == CPERF_PDCP ||
69 				ctx->options->op_type == CPERF_DOCSIS) {
70 			struct rte_security_ctx *sec_ctx =
71 				(struct rte_security_ctx *)
72 				rte_cryptodev_get_sec_ctx(ctx->dev_id);
73 			rte_security_session_destroy(sec_ctx,
74 				(void *)ctx->sess);
75 		} else
76 #endif
77 			rte_cryptodev_sym_session_free(ctx->dev_id, ctx->sess);
78 	}
79 
80 	rte_mempool_free(ctx->pool);
81 
82 	rte_free(ctx->ops);
83 
84 	rte_free(ctx->ops_processed);
85 
86 	rte_free(ctx);
87 }
88 
89 void *
90 cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
91 		uint8_t dev_id, uint16_t qp_id,
92 		const struct cperf_options *options,
93 		const struct cperf_test_vector *test_vector,
94 		const struct cperf_op_fns *op_fns)
95 {
96 	struct cperf_pmd_cyclecount_ctx *ctx = NULL;
97 
98 	/* preallocate buffers for crypto ops as they can get quite big */
99 	size_t alloc_sz = sizeof(struct rte_crypto_op *) *
100 			options->nb_descriptors;
101 
102 	ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
103 	if (ctx == NULL)
104 		goto err;
105 
106 	ctx->dev_id = dev_id;
107 	ctx->qp_id = qp_id;
108 
109 	ctx->populate_ops = op_fns->populate_ops;
110 	ctx->options = options;
111 	ctx->test_vector = test_vector;
112 
113 	/* IV goes at the end of the crypto operation */
114 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
115 			sizeof(struct rte_crypto_sym_op);
116 
117 	ctx->sess = op_fns->sess_create(sess_mp, dev_id, options,
118 			test_vector, iv_offset);
119 	if (ctx->sess == NULL)
120 		goto err;
121 
122 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
123 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
124 			&ctx->pool) < 0)
125 		goto err;
126 
127 	ctx->ops = rte_malloc("ops", alloc_sz, 0);
128 	if (!ctx->ops)
129 		goto err;
130 
131 	ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
132 	if (!ctx->ops_processed)
133 		goto err;
134 
135 	return ctx;
136 
137 err:
138 	cperf_pmd_cyclecount_test_free(ctx);
139 
140 	return NULL;
141 }
142 
143 /* benchmark alloc-build-free of ops */
144 static inline int
145 pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
146 		uint16_t test_burst_size)
147 {
148 	uint32_t iter_ops_left = state->opts->total_ops - cur_op;
149 	uint32_t iter_ops_needed =
150 			RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
151 	uint32_t cur_iter_op;
152 	uint32_t imix_idx = 0;
153 
154 	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
155 			cur_iter_op += test_burst_size) {
156 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
157 				test_burst_size);
158 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
159 
160 		/* Allocate objects containing crypto operations and mbufs */
161 		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
162 					burst_size) != 0) {
163 			RTE_LOG(ERR, USER1,
164 					"Failed to allocate more crypto operations "
165 					"from the crypto operation pool.\n"
166 					"Consider increasing the pool size "
167 					"with --pool-sz\n");
168 				return -1;
169 		}
170 
171 		/* Setup crypto op, attach mbuf etc */
172 		(state->ctx->populate_ops)(ops,
173 				state->ctx->src_buf_offset,
174 				state->ctx->dst_buf_offset,
175 				burst_size,
176 				state->ctx->sess, state->opts,
177 				state->ctx->test_vector, iv_offset,
178 				&imix_idx, NULL);
179 
180 #ifdef CPERF_LINEARIZATION_ENABLE
181 		/* Check if source mbufs require coalescing */
182 		if (state->linearize) {
183 			uint8_t i;
184 			for (i = 0; i < burst_size; i++) {
185 				struct rte_mbuf *src = ops[i]->sym->m_src;
186 				rte_pktmbuf_linearize(src);
187 			}
188 		}
189 #endif /* CPERF_LINEARIZATION_ENABLE */
190 		rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
191 				burst_size);
192 	}
193 
194 	return 0;
195 }
196 
197 /* allocate and build ops (no free) */
198 static int
199 pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
200 		uint32_t iter_ops_needed, uint16_t test_burst_size)
201 {
202 	uint32_t cur_iter_op;
203 	uint32_t imix_idx = 0;
204 
205 	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
206 			cur_iter_op += test_burst_size) {
207 		uint32_t burst_size = RTE_MIN(
208 				iter_ops_needed - cur_iter_op, test_burst_size);
209 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
210 
211 		/* Allocate objects containing crypto operations and mbufs */
212 		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
213 					burst_size) != 0) {
214 			RTE_LOG(ERR, USER1,
215 					"Failed to allocate more crypto operations "
216 					"from the crypto operation pool.\n"
217 					"Consider increasing the pool size "
218 					"with --pool-sz\n");
219 				return -1;
220 		}
221 
222 		/* Setup crypto op, attach mbuf etc */
223 		(state->ctx->populate_ops)(ops,
224 				state->ctx->src_buf_offset,
225 				state->ctx->dst_buf_offset,
226 				burst_size,
227 				state->ctx->sess, state->opts,
228 				state->ctx->test_vector, iv_offset,
229 				&imix_idx, NULL);
230 	}
231 	return 0;
232 }
233 
234 /* benchmark enqueue, returns number of ops enqueued */
235 static uint32_t
236 pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
237 		uint32_t iter_ops_needed, uint16_t test_burst_size)
238 {
239 	/* Enqueue full descriptor ring of ops on crypto device */
240 	uint32_t cur_iter_op = 0;
241 	while (cur_iter_op < iter_ops_needed) {
242 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
243 				test_burst_size);
244 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
245 		uint32_t burst_enqd;
246 
247 		burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
248 				state->ctx->qp_id, ops, burst_size);
249 
250 		/* if we couldn't enqueue anything, the queue is full */
251 		if (!burst_enqd) {
252 			/* don't try to dequeue anything we didn't enqueue */
253 			return cur_iter_op;
254 		}
255 
256 		if (burst_enqd < burst_size)
257 			state->ops_enq_retries++;
258 		state->ops_enqd += burst_enqd;
259 		cur_iter_op += burst_enqd;
260 	}
261 	return iter_ops_needed;
262 }
263 
264 /* benchmark dequeue */
265 static void
266 pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
267 		uint32_t iter_ops_needed, uint16_t test_burst_size)
268 {
269 	/* Dequeue full descriptor ring of ops on crypto device */
270 	uint32_t cur_iter_op = 0;
271 	while (cur_iter_op < iter_ops_needed) {
272 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
273 				test_burst_size);
274 		struct rte_crypto_op **ops_processed =
275 				&state->ctx->ops[cur_iter_op];
276 		uint32_t burst_deqd;
277 
278 		burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
279 				state->ctx->qp_id, ops_processed, burst_size);
280 
281 		if (burst_deqd < burst_size)
282 			state->ops_deq_retries++;
283 		state->ops_deqd += burst_deqd;
284 		cur_iter_op += burst_deqd;
285 	}
286 }
287 
288 /* run benchmark per burst size */
289 static inline int
290 pmd_cyclecount_bench_burst_sz(
291 		struct pmd_cyclecount_state *state, uint16_t test_burst_size)
292 {
293 	uint64_t tsc_start;
294 	uint64_t tsc_end;
295 	uint64_t tsc_op;
296 	uint64_t tsc_enq;
297 	uint64_t tsc_deq;
298 	uint32_t cur_op;
299 
300 	/* reset all counters */
301 	tsc_enq = 0;
302 	tsc_deq = 0;
303 	state->ops_enqd = 0;
304 	state->ops_enq_retries = 0;
305 	state->ops_deqd = 0;
306 	state->ops_deq_retries = 0;
307 
308 	/*
309 	 * Benchmark crypto op alloc-build-free separately.
310 	 */
311 	tsc_start = rte_rdtsc_precise();
312 
313 	for (cur_op = 0; cur_op < state->opts->total_ops;
314 			cur_op += state->opts->nb_descriptors) {
315 		if (unlikely(pmd_cyclecount_bench_ops(
316 				state, cur_op, test_burst_size)))
317 			return -1;
318 	}
319 
320 	tsc_end = rte_rdtsc_precise();
321 	tsc_op = tsc_end - tsc_start;
322 
323 
324 	/*
325 	 * Hardware acceleration cyclecount benchmarking loop.
326 	 *
327 	 * We're benchmarking raw enq/deq performance by filling up the device
328 	 * queue, so we never get any failed enqs unless the driver won't accept
329 	 * the exact number of descriptors we requested, or the driver won't
330 	 * wrap around the end of the TX ring. However, since we're only
331 	 * dequeuing once we've filled up the queue, we have to benchmark it
332 	 * piecemeal and then average out the results.
333 	 */
334 	cur_op = 0;
335 	while (cur_op < state->opts->total_ops) {
336 		uint32_t iter_ops_left = state->opts->total_ops - cur_op;
337 		uint32_t iter_ops_needed = RTE_MIN(
338 				state->opts->nb_descriptors, iter_ops_left);
339 		uint32_t iter_ops_allocd = iter_ops_needed;
340 
341 		/* allocate and build ops */
342 		if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
343 				test_burst_size)))
344 			return -1;
345 
346 		tsc_start = rte_rdtsc_precise();
347 
348 		/* fill up TX ring */
349 		iter_ops_needed = pmd_cyclecount_bench_enq(state,
350 				iter_ops_needed, test_burst_size);
351 
352 		tsc_end = rte_rdtsc_precise();
353 
354 		tsc_enq += tsc_end - tsc_start;
355 
356 		/* allow for HW to catch up */
357 		if (state->delay)
358 			rte_delay_us_block(state->delay);
359 
360 		tsc_start = rte_rdtsc_precise();
361 
362 		/* drain RX ring */
363 		pmd_cyclecount_bench_deq(state, iter_ops_needed,
364 				test_burst_size);
365 
366 		tsc_end = rte_rdtsc_precise();
367 
368 		tsc_deq += tsc_end - tsc_start;
369 
370 		cur_op += iter_ops_needed;
371 
372 		/*
373 		 * we may not have processed all ops that we allocated, so
374 		 * free everything we've allocated.
375 		 */
376 		rte_mempool_put_bulk(state->ctx->pool,
377 				(void **)state->ctx->ops, iter_ops_allocd);
378 	}
379 
380 	state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
381 	state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
382 	state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
383 
384 	return 0;
385 }
386 
387 int
388 cperf_pmd_cyclecount_test_runner(void *test_ctx)
389 {
390 	struct pmd_cyclecount_state state = {0};
391 	const struct cperf_options *opts;
392 	uint16_t test_burst_size;
393 	uint8_t burst_size_idx = 0;
394 
395 	state.ctx = test_ctx;
396 	opts = state.ctx->options;
397 	state.opts = opts;
398 	state.lcore = rte_lcore_id();
399 	state.linearize = 0;
400 
401 	static uint16_t display_once;
402 	static bool warmup = true;
403 
404 	/*
405 	 * We need a small delay to allow for hardware to process all the crypto
406 	 * operations. We can't automatically figure out what the delay should
407 	 * be, so we leave it up to the user (by default it's 0).
408 	 */
409 	state.delay = 1000 * opts->pmdcc_delay;
410 
411 #ifdef CPERF_LINEARIZATION_ENABLE
412 	struct rte_cryptodev_info dev_info;
413 
414 	/* Check if source mbufs require coalescing */
415 	if (opts->segments_sz < ctx->options->max_buffer_size) {
416 		rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
417 		if ((dev_info.feature_flags &
418 				    RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
419 				0) {
420 			state.linearize = 1;
421 		}
422 	}
423 #endif /* CPERF_LINEARIZATION_ENABLE */
424 
425 	state.ctx->lcore_id = state.lcore;
426 
427 	/* Get first size from range or list */
428 	if (opts->inc_burst_size != 0)
429 		test_burst_size = opts->min_burst_size;
430 	else
431 		test_burst_size = opts->burst_size_list[0];
432 
433 	while (test_burst_size <= opts->max_burst_size) {
434 		/* do a benchmark run */
435 		if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
436 			return -1;
437 
438 		/*
439 		 * First run is always a warm up run.
440 		 */
441 		if (warmup) {
442 			warmup = false;
443 			continue;
444 		}
445 
446 		uint16_t exp = 0;
447 		if (!opts->csv) {
448 			if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
449 					__ATOMIC_RELAXED, __ATOMIC_RELAXED))
450 				printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
451 						"Burst Size", "Enqueued",
452 						"Dequeued", "Enq Retries",
453 						"Deq Retries", "Cycles/Op",
454 						"Cycles/Enq", "Cycles/Deq");
455 
456 			printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
457 					opts->test_buffer_size, test_burst_size,
458 					state.ops_enqd, state.ops_deqd,
459 					state.ops_enq_retries,
460 					state.ops_deq_retries,
461 					state.cycles_per_build,
462 					state.cycles_per_enq,
463 					state.cycles_per_deq);
464 		} else {
465 			if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
466 					__ATOMIC_RELAXED, __ATOMIC_RELAXED))
467 				printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
468 						"Burst Size", "Enqueued",
469 						"Dequeued", "Enq Retries",
470 						"Deq Retries", "Cycles/Op",
471 						"Cycles/Enq", "Cycles/Deq");
472 
473 			printf(CSV_LINE_FMT, state.ctx->lcore_id,
474 					opts->test_buffer_size, test_burst_size,
475 					state.ops_enqd, state.ops_deqd,
476 					state.ops_enq_retries,
477 					state.ops_deq_retries,
478 					state.cycles_per_build,
479 					state.cycles_per_enq,
480 					state.cycles_per_deq);
481 		}
482 
483 		/* Get next size from range or list */
484 		if (opts->inc_burst_size != 0)
485 			test_burst_size += opts->inc_burst_size;
486 		else {
487 			if (++burst_size_idx == opts->burst_size_count)
488 				break;
489 			test_burst_size = opts->burst_size_list[burst_size_idx];
490 		}
491 	}
492 
493 	return 0;
494 }
495 
496 void
497 cperf_pmd_cyclecount_test_destructor(void *arg)
498 {
499 	struct cperf_pmd_cyclecount_ctx *ctx = arg;
500 
501 	if (ctx == NULL)
502 		return;
503 
504 	cperf_pmd_cyclecount_test_free(ctx);
505 }
506