xref: /dpdk/app/test-crypto-perf/cperf_test_pmd_cyclecount.c (revision 89f0711f9ddfb5822da9d34f384b92f72a61c4dc)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdbool.h>
6 
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 #include <rte_cycles.h>
10 #include <rte_malloc.h>
11 
12 #include "cperf_ops.h"
13 #include "cperf_test_pmd_cyclecount.h"
14 #include "cperf_test_common.h"
15 
16 #define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
17 #define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
18 #define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
19 #define CSV_LINE_FMT "%10u;%10u;%u;%u;%u;%u;%u;%.f3;%.f3;%.f3\n"
20 
21 struct cperf_pmd_cyclecount_ctx {
22 	uint8_t dev_id;
23 	uint16_t qp_id;
24 	uint8_t lcore_id;
25 
26 	struct rte_mempool *pool;
27 	struct rte_crypto_op **ops;
28 	struct rte_crypto_op **ops_processed;
29 
30 	struct rte_cryptodev_sym_session *sess;
31 
32 	cperf_populate_ops_t populate_ops;
33 
34 	uint32_t src_buf_offset;
35 	uint32_t dst_buf_offset;
36 
37 	const struct cperf_options *options;
38 	const struct cperf_test_vector *test_vector;
39 };
40 
41 struct pmd_cyclecount_state {
42 	struct cperf_pmd_cyclecount_ctx *ctx;
43 	const struct cperf_options *opts;
44 	uint32_t lcore;
45 	uint64_t delay;
46 	int linearize;
47 	uint32_t ops_enqd;
48 	uint32_t ops_deqd;
49 	uint32_t ops_enq_retries;
50 	uint32_t ops_deq_retries;
51 	double cycles_per_build;
52 	double cycles_per_enq;
53 	double cycles_per_deq;
54 };
55 
56 static const uint16_t iv_offset =
57 		sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
58 
59 static void
60 cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
61 {
62 	if (ctx) {
63 		if (ctx->sess) {
64 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
65 			rte_cryptodev_sym_session_free(ctx->sess);
66 		}
67 
68 		if (ctx->pool)
69 			rte_mempool_free(ctx->pool);
70 
71 		if (ctx->ops)
72 			rte_free(ctx->ops);
73 
74 		if (ctx->ops_processed)
75 			rte_free(ctx->ops_processed);
76 
77 		rte_free(ctx);
78 	}
79 }
80 
81 void *
82 cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
83 		uint8_t dev_id, uint16_t qp_id,
84 		const struct cperf_options *options,
85 		const struct cperf_test_vector *test_vector,
86 		const struct cperf_op_fns *op_fns)
87 {
88 	struct cperf_pmd_cyclecount_ctx *ctx = NULL;
89 
90 	/* preallocate buffers for crypto ops as they can get quite big */
91 	size_t alloc_sz = sizeof(struct rte_crypto_op *) *
92 			options->nb_descriptors;
93 
94 	ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
95 	if (ctx == NULL)
96 		goto err;
97 
98 	ctx->dev_id = dev_id;
99 	ctx->qp_id = qp_id;
100 
101 	ctx->populate_ops = op_fns->populate_ops;
102 	ctx->options = options;
103 	ctx->test_vector = test_vector;
104 
105 	/* IV goes at the end of the crypto operation */
106 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
107 			sizeof(struct rte_crypto_sym_op);
108 
109 	ctx->sess = op_fns->sess_create(
110 			sess_mp, dev_id, options, test_vector, iv_offset);
111 	if (ctx->sess == NULL)
112 		goto err;
113 
114 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
115 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
116 			&ctx->pool) < 0)
117 		goto err;
118 
119 	ctx->ops = rte_malloc("ops", alloc_sz, 0);
120 	if (!ctx->ops)
121 		goto err;
122 
123 	ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
124 	if (!ctx->ops_processed)
125 		goto err;
126 
127 	return ctx;
128 
129 err:
130 	cperf_pmd_cyclecount_test_free(ctx);
131 
132 	return NULL;
133 }
134 
135 /* benchmark alloc-build-free of ops */
136 static inline int
137 pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
138 		uint16_t test_burst_size)
139 {
140 	uint32_t iter_ops_left = state->opts->total_ops - cur_op;
141 	uint32_t iter_ops_needed =
142 			RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
143 	uint32_t cur_iter_op;
144 	uint32_t imix_idx = 0;
145 
146 	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
147 			cur_iter_op += test_burst_size) {
148 		uint32_t burst_size = RTE_MIN(state->opts->total_ops - cur_op,
149 				test_burst_size);
150 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
151 
152 		/* Allocate objects containing crypto operations and mbufs */
153 		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
154 					burst_size) != 0) {
155 			RTE_LOG(ERR, USER1,
156 					"Failed to allocate more crypto operations "
157 					"from the crypto operation pool.\n"
158 					"Consider increasing the pool size "
159 					"with --pool-sz\n");
160 				return -1;
161 		}
162 
163 		/* Setup crypto op, attach mbuf etc */
164 		(state->ctx->populate_ops)(ops,
165 				state->ctx->src_buf_offset,
166 				state->ctx->dst_buf_offset,
167 				burst_size,
168 				state->ctx->sess, state->opts,
169 				state->ctx->test_vector, iv_offset,
170 				&imix_idx);
171 
172 #ifdef CPERF_LINEARIZATION_ENABLE
173 		/* Check if source mbufs require coalescing */
174 		if (state->linearize) {
175 			uint8_t i;
176 			for (i = 0; i < burst_size; i++) {
177 				struct rte_mbuf *src = ops[i]->sym->m_src;
178 				rte_pktmbuf_linearize(src);
179 			}
180 		}
181 #endif /* CPERF_LINEARIZATION_ENABLE */
182 		rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
183 				burst_size);
184 	}
185 
186 	return 0;
187 }
188 
189 /* allocate and build ops (no free) */
190 static int
191 pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
192 		uint32_t iter_ops_needed, uint16_t test_burst_size)
193 {
194 	uint32_t cur_iter_op;
195 	uint32_t imix_idx = 0;
196 
197 	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
198 			cur_iter_op += test_burst_size) {
199 		uint32_t burst_size = RTE_MIN(
200 				iter_ops_needed - cur_iter_op, test_burst_size);
201 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
202 
203 		/* Allocate objects containing crypto operations and mbufs */
204 		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
205 					burst_size) != 0) {
206 			RTE_LOG(ERR, USER1,
207 					"Failed to allocate more crypto operations "
208 					"from the crypto operation pool.\n"
209 					"Consider increasing the pool size "
210 					"with --pool-sz\n");
211 				return -1;
212 		}
213 
214 		/* Setup crypto op, attach mbuf etc */
215 		(state->ctx->populate_ops)(ops,
216 				state->ctx->src_buf_offset,
217 				state->ctx->dst_buf_offset,
218 				burst_size,
219 				state->ctx->sess, state->opts,
220 				state->ctx->test_vector, iv_offset,
221 				&imix_idx);
222 	}
223 	return 0;
224 }
225 
226 /* benchmark enqueue, returns number of ops enqueued */
227 static uint32_t
228 pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
229 		uint32_t iter_ops_needed, uint16_t test_burst_size)
230 {
231 	/* Enqueue full descriptor ring of ops on crypto device */
232 	uint32_t cur_iter_op = 0;
233 	while (cur_iter_op < iter_ops_needed) {
234 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
235 				test_burst_size);
236 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
237 		uint32_t burst_enqd;
238 
239 		burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
240 				state->ctx->qp_id, ops, burst_size);
241 
242 		/* if we couldn't enqueue anything, the queue is full */
243 		if (!burst_enqd) {
244 			/* don't try to dequeue anything we didn't enqueue */
245 			return cur_iter_op;
246 		}
247 
248 		if (burst_enqd < burst_size)
249 			state->ops_enq_retries++;
250 		state->ops_enqd += burst_enqd;
251 		cur_iter_op += burst_enqd;
252 	}
253 	return iter_ops_needed;
254 }
255 
256 /* benchmark dequeue */
257 static void
258 pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
259 		uint32_t iter_ops_needed, uint16_t test_burst_size)
260 {
261 	/* Dequeue full descriptor ring of ops on crypto device */
262 	uint32_t cur_iter_op = 0;
263 	while (cur_iter_op < iter_ops_needed) {
264 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
265 				test_burst_size);
266 		struct rte_crypto_op **ops_processed =
267 				&state->ctx->ops[cur_iter_op];
268 		uint32_t burst_deqd;
269 
270 		burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
271 				state->ctx->qp_id, ops_processed, burst_size);
272 
273 		if (burst_deqd < burst_size)
274 			state->ops_deq_retries++;
275 		state->ops_deqd += burst_deqd;
276 		cur_iter_op += burst_deqd;
277 	}
278 }
279 
280 /* run benchmark per burst size */
281 static inline int
282 pmd_cyclecount_bench_burst_sz(
283 		struct pmd_cyclecount_state *state, uint16_t test_burst_size)
284 {
285 	uint64_t tsc_start;
286 	uint64_t tsc_end;
287 	uint64_t tsc_op;
288 	uint64_t tsc_enq;
289 	uint64_t tsc_deq;
290 	uint32_t cur_op;
291 
292 	/* reset all counters */
293 	tsc_enq = 0;
294 	tsc_deq = 0;
295 	state->ops_enqd = 0;
296 	state->ops_enq_retries = 0;
297 	state->ops_deqd = 0;
298 	state->ops_deq_retries = 0;
299 
300 	/*
301 	 * Benchmark crypto op alloc-build-free separately.
302 	 */
303 	tsc_start = rte_rdtsc_precise();
304 
305 	for (cur_op = 0; cur_op < state->opts->total_ops;
306 			cur_op += state->opts->nb_descriptors) {
307 		if (unlikely(pmd_cyclecount_bench_ops(
308 				state, cur_op, test_burst_size)))
309 			return -1;
310 	}
311 
312 	tsc_end = rte_rdtsc_precise();
313 	tsc_op = tsc_end - tsc_start;
314 
315 
316 	/*
317 	 * Hardware acceleration cyclecount benchmarking loop.
318 	 *
319 	 * We're benchmarking raw enq/deq performance by filling up the device
320 	 * queue, so we never get any failed enqs unless the driver won't accept
321 	 * the exact number of descriptors we requested, or the driver won't
322 	 * wrap around the end of the TX ring. However, since we're only
323 	 * dequeueing once we've filled up the queue, we have to benchmark it
324 	 * piecemeal and then average out the results.
325 	 */
326 	cur_op = 0;
327 	while (cur_op < state->opts->total_ops) {
328 		uint32_t iter_ops_left = state->opts->total_ops - cur_op;
329 		uint32_t iter_ops_needed = RTE_MIN(
330 				state->opts->nb_descriptors, iter_ops_left);
331 		uint32_t iter_ops_allocd = iter_ops_needed;
332 
333 		/* allocate and build ops */
334 		if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
335 				test_burst_size)))
336 			return -1;
337 
338 		tsc_start = rte_rdtsc_precise();
339 
340 		/* fill up TX ring */
341 		iter_ops_needed = pmd_cyclecount_bench_enq(state,
342 				iter_ops_needed, test_burst_size);
343 
344 		tsc_end = rte_rdtsc_precise();
345 
346 		tsc_enq += tsc_end - tsc_start;
347 
348 		/* allow for HW to catch up */
349 		if (state->delay)
350 			rte_delay_us_block(state->delay);
351 
352 		tsc_start = rte_rdtsc_precise();
353 
354 		/* drain RX ring */
355 		pmd_cyclecount_bench_deq(state, iter_ops_needed,
356 				test_burst_size);
357 
358 		tsc_end = rte_rdtsc_precise();
359 
360 		tsc_deq += tsc_end - tsc_start;
361 
362 		cur_op += iter_ops_needed;
363 
364 		/*
365 		 * we may not have processed all ops that we allocated, so
366 		 * free everything we've allocated.
367 		 */
368 		rte_mempool_put_bulk(state->ctx->pool,
369 				(void **)state->ctx->ops, iter_ops_allocd);
370 	}
371 
372 	state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
373 	state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
374 	state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
375 
376 	return 0;
377 }
378 
379 int
380 cperf_pmd_cyclecount_test_runner(void *test_ctx)
381 {
382 	struct pmd_cyclecount_state state = {0};
383 	const struct cperf_options *opts;
384 	uint16_t test_burst_size;
385 	uint8_t burst_size_idx = 0;
386 
387 	state.ctx = test_ctx;
388 	opts = state.ctx->options;
389 	state.opts = opts;
390 	state.lcore = rte_lcore_id();
391 	state.linearize = 0;
392 
393 	static int only_once;
394 	static bool warmup = true;
395 
396 	/*
397 	 * We need a small delay to allow for hardware to process all the crypto
398 	 * operations. We can't automatically figure out what the delay should
399 	 * be, so we leave it up to the user (by default it's 0).
400 	 */
401 	state.delay = 1000 * opts->pmdcc_delay;
402 
403 #ifdef CPERF_LINEARIZATION_ENABLE
404 	struct rte_cryptodev_info dev_info;
405 
406 	/* Check if source mbufs require coalescing */
407 	if (opts->segments_sz < ctx->options->max_buffer_size) {
408 		rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
409 		if ((dev_info.feature_flags &
410 				    RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
411 				0) {
412 			state.linearize = 1;
413 		}
414 	}
415 #endif /* CPERF_LINEARIZATION_ENABLE */
416 
417 	state.ctx->lcore_id = state.lcore;
418 
419 	/* Get first size from range or list */
420 	if (opts->inc_burst_size != 0)
421 		test_burst_size = opts->min_burst_size;
422 	else
423 		test_burst_size = opts->burst_size_list[0];
424 
425 	while (test_burst_size <= opts->max_burst_size) {
426 		/* do a benchmark run */
427 		if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
428 			return -1;
429 
430 		/*
431 		 * First run is always a warm up run.
432 		 */
433 		if (warmup) {
434 			warmup = false;
435 			continue;
436 		}
437 
438 		if (!opts->csv) {
439 			if (!only_once)
440 				printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
441 						"Burst Size", "Enqueued",
442 						"Dequeued", "Enq Retries",
443 						"Deq Retries", "Cycles/Op",
444 						"Cycles/Enq", "Cycles/Deq");
445 			only_once = 1;
446 
447 			printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
448 					opts->test_buffer_size, test_burst_size,
449 					state.ops_enqd, state.ops_deqd,
450 					state.ops_enq_retries,
451 					state.ops_deq_retries,
452 					state.cycles_per_build,
453 					state.cycles_per_enq,
454 					state.cycles_per_deq);
455 		} else {
456 			if (!only_once)
457 				printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
458 						"Burst Size", "Enqueued",
459 						"Dequeued", "Enq Retries",
460 						"Deq Retries", "Cycles/Op",
461 						"Cycles/Enq", "Cycles/Deq");
462 			only_once = 1;
463 
464 			printf(CSV_LINE_FMT, state.ctx->lcore_id,
465 					opts->test_buffer_size, test_burst_size,
466 					state.ops_enqd, state.ops_deqd,
467 					state.ops_enq_retries,
468 					state.ops_deq_retries,
469 					state.cycles_per_build,
470 					state.cycles_per_enq,
471 					state.cycles_per_deq);
472 		}
473 
474 		/* Get next size from range or list */
475 		if (opts->inc_burst_size != 0)
476 			test_burst_size += opts->inc_burst_size;
477 		else {
478 			if (++burst_size_idx == opts->burst_size_count)
479 				break;
480 			test_burst_size = opts->burst_size_list[burst_size_idx];
481 		}
482 	}
483 
484 	return 0;
485 }
486 
487 void
488 cperf_pmd_cyclecount_test_destructor(void *arg)
489 {
490 	struct cperf_pmd_cyclecount_ctx *ctx = arg;
491 
492 	if (ctx == NULL)
493 		return;
494 
495 	cperf_pmd_cyclecount_test_free(ctx);
496 }
497