xref: /dpdk/app/test-crypto-perf/cperf_test_pmd_cyclecount.c (revision 30a1de105a5f40d77b344a891c4a68f79e815c43)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdbool.h>
6 
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 #include <rte_cycles.h>
10 #include <rte_malloc.h>
11 
12 #include "cperf_ops.h"
13 #include "cperf_test_pmd_cyclecount.h"
14 #include "cperf_test_common.h"
15 
16 #define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
17 #define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
18 #define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
19 #define CSV_LINE_FMT "%10u,%10u,%u,%u,%u,%u,%u,%.3f,%.3f,%.3f\n"
20 
21 struct cperf_pmd_cyclecount_ctx {
22 	uint8_t dev_id;
23 	uint16_t qp_id;
24 	uint8_t lcore_id;
25 
26 	struct rte_mempool *pool;
27 	struct rte_crypto_op **ops;
28 	struct rte_crypto_op **ops_processed;
29 
30 	struct rte_cryptodev_sym_session *sess;
31 
32 	cperf_populate_ops_t populate_ops;
33 
34 	uint32_t src_buf_offset;
35 	uint32_t dst_buf_offset;
36 
37 	const struct cperf_options *options;
38 	const struct cperf_test_vector *test_vector;
39 };
40 
41 struct pmd_cyclecount_state {
42 	struct cperf_pmd_cyclecount_ctx *ctx;
43 	const struct cperf_options *opts;
44 	uint32_t lcore;
45 	uint64_t delay;
46 	int linearize;
47 	uint32_t ops_enqd;
48 	uint32_t ops_deqd;
49 	uint32_t ops_enq_retries;
50 	uint32_t ops_deq_retries;
51 	double cycles_per_build;
52 	double cycles_per_enq;
53 	double cycles_per_deq;
54 };
55 
56 static const uint16_t iv_offset =
57 		sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
58 
59 static void
60 cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
61 {
62 	if (!ctx)
63 		return;
64 
65 	if (ctx->sess) {
66 #ifdef RTE_LIB_SECURITY
67 		if (ctx->options->op_type == CPERF_PDCP ||
68 				ctx->options->op_type == CPERF_DOCSIS) {
69 			struct rte_security_ctx *sec_ctx =
70 				(struct rte_security_ctx *)
71 				rte_cryptodev_get_sec_ctx(ctx->dev_id);
72 			rte_security_session_destroy(sec_ctx,
73 				(struct rte_security_session *)ctx->sess);
74 		} else
75 #endif
76 		{
77 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
78 			rte_cryptodev_sym_session_free(ctx->sess);
79 		}
80 	}
81 
82 	rte_mempool_free(ctx->pool);
83 
84 	rte_free(ctx->ops);
85 
86 	rte_free(ctx->ops_processed);
87 
88 	rte_free(ctx);
89 }
90 
91 void *
92 cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
93 		struct rte_mempool *sess_priv_mp,
94 		uint8_t dev_id, uint16_t qp_id,
95 		const struct cperf_options *options,
96 		const struct cperf_test_vector *test_vector,
97 		const struct cperf_op_fns *op_fns)
98 {
99 	struct cperf_pmd_cyclecount_ctx *ctx = NULL;
100 
101 	/* preallocate buffers for crypto ops as they can get quite big */
102 	size_t alloc_sz = sizeof(struct rte_crypto_op *) *
103 			options->nb_descriptors;
104 
105 	ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
106 	if (ctx == NULL)
107 		goto err;
108 
109 	ctx->dev_id = dev_id;
110 	ctx->qp_id = qp_id;
111 
112 	ctx->populate_ops = op_fns->populate_ops;
113 	ctx->options = options;
114 	ctx->test_vector = test_vector;
115 
116 	/* IV goes at the end of the crypto operation */
117 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
118 			sizeof(struct rte_crypto_sym_op);
119 
120 	ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
121 			test_vector, iv_offset);
122 	if (ctx->sess == NULL)
123 		goto err;
124 
125 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
126 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
127 			&ctx->pool) < 0)
128 		goto err;
129 
130 	ctx->ops = rte_malloc("ops", alloc_sz, 0);
131 	if (!ctx->ops)
132 		goto err;
133 
134 	ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
135 	if (!ctx->ops_processed)
136 		goto err;
137 
138 	return ctx;
139 
140 err:
141 	cperf_pmd_cyclecount_test_free(ctx);
142 
143 	return NULL;
144 }
145 
146 /* benchmark alloc-build-free of ops */
147 static inline int
148 pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
149 		uint16_t test_burst_size)
150 {
151 	uint32_t iter_ops_left = state->opts->total_ops - cur_op;
152 	uint32_t iter_ops_needed =
153 			RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
154 	uint32_t cur_iter_op;
155 	uint32_t imix_idx = 0;
156 
157 	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
158 			cur_iter_op += test_burst_size) {
159 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
160 				test_burst_size);
161 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
162 
163 		/* Allocate objects containing crypto operations and mbufs */
164 		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
165 					burst_size) != 0) {
166 			RTE_LOG(ERR, USER1,
167 					"Failed to allocate more crypto operations "
168 					"from the crypto operation pool.\n"
169 					"Consider increasing the pool size "
170 					"with --pool-sz\n");
171 				return -1;
172 		}
173 
174 		/* Setup crypto op, attach mbuf etc */
175 		(state->ctx->populate_ops)(ops,
176 				state->ctx->src_buf_offset,
177 				state->ctx->dst_buf_offset,
178 				burst_size,
179 				state->ctx->sess, state->opts,
180 				state->ctx->test_vector, iv_offset,
181 				&imix_idx, NULL);
182 
183 #ifdef CPERF_LINEARIZATION_ENABLE
184 		/* Check if source mbufs require coalescing */
185 		if (state->linearize) {
186 			uint8_t i;
187 			for (i = 0; i < burst_size; i++) {
188 				struct rte_mbuf *src = ops[i]->sym->m_src;
189 				rte_pktmbuf_linearize(src);
190 			}
191 		}
192 #endif /* CPERF_LINEARIZATION_ENABLE */
193 		rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
194 				burst_size);
195 	}
196 
197 	return 0;
198 }
199 
200 /* allocate and build ops (no free) */
201 static int
202 pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
203 		uint32_t iter_ops_needed, uint16_t test_burst_size)
204 {
205 	uint32_t cur_iter_op;
206 	uint32_t imix_idx = 0;
207 
208 	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
209 			cur_iter_op += test_burst_size) {
210 		uint32_t burst_size = RTE_MIN(
211 				iter_ops_needed - cur_iter_op, test_burst_size);
212 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
213 
214 		/* Allocate objects containing crypto operations and mbufs */
215 		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
216 					burst_size) != 0) {
217 			RTE_LOG(ERR, USER1,
218 					"Failed to allocate more crypto operations "
219 					"from the crypto operation pool.\n"
220 					"Consider increasing the pool size "
221 					"with --pool-sz\n");
222 				return -1;
223 		}
224 
225 		/* Setup crypto op, attach mbuf etc */
226 		(state->ctx->populate_ops)(ops,
227 				state->ctx->src_buf_offset,
228 				state->ctx->dst_buf_offset,
229 				burst_size,
230 				state->ctx->sess, state->opts,
231 				state->ctx->test_vector, iv_offset,
232 				&imix_idx, NULL);
233 	}
234 	return 0;
235 }
236 
237 /* benchmark enqueue, returns number of ops enqueued */
238 static uint32_t
239 pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
240 		uint32_t iter_ops_needed, uint16_t test_burst_size)
241 {
242 	/* Enqueue full descriptor ring of ops on crypto device */
243 	uint32_t cur_iter_op = 0;
244 	while (cur_iter_op < iter_ops_needed) {
245 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
246 				test_burst_size);
247 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
248 		uint32_t burst_enqd;
249 
250 		burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
251 				state->ctx->qp_id, ops, burst_size);
252 
253 		/* if we couldn't enqueue anything, the queue is full */
254 		if (!burst_enqd) {
255 			/* don't try to dequeue anything we didn't enqueue */
256 			return cur_iter_op;
257 		}
258 
259 		if (burst_enqd < burst_size)
260 			state->ops_enq_retries++;
261 		state->ops_enqd += burst_enqd;
262 		cur_iter_op += burst_enqd;
263 	}
264 	return iter_ops_needed;
265 }
266 
267 /* benchmark dequeue */
268 static void
269 pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
270 		uint32_t iter_ops_needed, uint16_t test_burst_size)
271 {
272 	/* Dequeue full descriptor ring of ops on crypto device */
273 	uint32_t cur_iter_op = 0;
274 	while (cur_iter_op < iter_ops_needed) {
275 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
276 				test_burst_size);
277 		struct rte_crypto_op **ops_processed =
278 				&state->ctx->ops[cur_iter_op];
279 		uint32_t burst_deqd;
280 
281 		burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
282 				state->ctx->qp_id, ops_processed, burst_size);
283 
284 		if (burst_deqd < burst_size)
285 			state->ops_deq_retries++;
286 		state->ops_deqd += burst_deqd;
287 		cur_iter_op += burst_deqd;
288 	}
289 }
290 
291 /* run benchmark per burst size */
292 static inline int
293 pmd_cyclecount_bench_burst_sz(
294 		struct pmd_cyclecount_state *state, uint16_t test_burst_size)
295 {
296 	uint64_t tsc_start;
297 	uint64_t tsc_end;
298 	uint64_t tsc_op;
299 	uint64_t tsc_enq;
300 	uint64_t tsc_deq;
301 	uint32_t cur_op;
302 
303 	/* reset all counters */
304 	tsc_enq = 0;
305 	tsc_deq = 0;
306 	state->ops_enqd = 0;
307 	state->ops_enq_retries = 0;
308 	state->ops_deqd = 0;
309 	state->ops_deq_retries = 0;
310 
311 	/*
312 	 * Benchmark crypto op alloc-build-free separately.
313 	 */
314 	tsc_start = rte_rdtsc_precise();
315 
316 	for (cur_op = 0; cur_op < state->opts->total_ops;
317 			cur_op += state->opts->nb_descriptors) {
318 		if (unlikely(pmd_cyclecount_bench_ops(
319 				state, cur_op, test_burst_size)))
320 			return -1;
321 	}
322 
323 	tsc_end = rte_rdtsc_precise();
324 	tsc_op = tsc_end - tsc_start;
325 
326 
327 	/*
328 	 * Hardware acceleration cyclecount benchmarking loop.
329 	 *
330 	 * We're benchmarking raw enq/deq performance by filling up the device
331 	 * queue, so we never get any failed enqs unless the driver won't accept
332 	 * the exact number of descriptors we requested, or the driver won't
333 	 * wrap around the end of the TX ring. However, since we're only
334 	 * dequeuing once we've filled up the queue, we have to benchmark it
335 	 * piecemeal and then average out the results.
336 	 */
337 	cur_op = 0;
338 	while (cur_op < state->opts->total_ops) {
339 		uint32_t iter_ops_left = state->opts->total_ops - cur_op;
340 		uint32_t iter_ops_needed = RTE_MIN(
341 				state->opts->nb_descriptors, iter_ops_left);
342 		uint32_t iter_ops_allocd = iter_ops_needed;
343 
344 		/* allocate and build ops */
345 		if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
346 				test_burst_size)))
347 			return -1;
348 
349 		tsc_start = rte_rdtsc_precise();
350 
351 		/* fill up TX ring */
352 		iter_ops_needed = pmd_cyclecount_bench_enq(state,
353 				iter_ops_needed, test_burst_size);
354 
355 		tsc_end = rte_rdtsc_precise();
356 
357 		tsc_enq += tsc_end - tsc_start;
358 
359 		/* allow for HW to catch up */
360 		if (state->delay)
361 			rte_delay_us_block(state->delay);
362 
363 		tsc_start = rte_rdtsc_precise();
364 
365 		/* drain RX ring */
366 		pmd_cyclecount_bench_deq(state, iter_ops_needed,
367 				test_burst_size);
368 
369 		tsc_end = rte_rdtsc_precise();
370 
371 		tsc_deq += tsc_end - tsc_start;
372 
373 		cur_op += iter_ops_needed;
374 
375 		/*
376 		 * we may not have processed all ops that we allocated, so
377 		 * free everything we've allocated.
378 		 */
379 		rte_mempool_put_bulk(state->ctx->pool,
380 				(void **)state->ctx->ops, iter_ops_allocd);
381 	}
382 
383 	state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
384 	state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
385 	state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
386 
387 	return 0;
388 }
389 
390 int
391 cperf_pmd_cyclecount_test_runner(void *test_ctx)
392 {
393 	struct pmd_cyclecount_state state = {0};
394 	const struct cperf_options *opts;
395 	uint16_t test_burst_size;
396 	uint8_t burst_size_idx = 0;
397 
398 	state.ctx = test_ctx;
399 	opts = state.ctx->options;
400 	state.opts = opts;
401 	state.lcore = rte_lcore_id();
402 	state.linearize = 0;
403 
404 	static uint16_t display_once;
405 	static bool warmup = true;
406 
407 	/*
408 	 * We need a small delay to allow for hardware to process all the crypto
409 	 * operations. We can't automatically figure out what the delay should
410 	 * be, so we leave it up to the user (by default it's 0).
411 	 */
412 	state.delay = 1000 * opts->pmdcc_delay;
413 
414 #ifdef CPERF_LINEARIZATION_ENABLE
415 	struct rte_cryptodev_info dev_info;
416 
417 	/* Check if source mbufs require coalescing */
418 	if (opts->segments_sz < ctx->options->max_buffer_size) {
419 		rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
420 		if ((dev_info.feature_flags &
421 				    RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
422 				0) {
423 			state.linearize = 1;
424 		}
425 	}
426 #endif /* CPERF_LINEARIZATION_ENABLE */
427 
428 	state.ctx->lcore_id = state.lcore;
429 
430 	/* Get first size from range or list */
431 	if (opts->inc_burst_size != 0)
432 		test_burst_size = opts->min_burst_size;
433 	else
434 		test_burst_size = opts->burst_size_list[0];
435 
436 	while (test_burst_size <= opts->max_burst_size) {
437 		/* do a benchmark run */
438 		if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
439 			return -1;
440 
441 		/*
442 		 * First run is always a warm up run.
443 		 */
444 		if (warmup) {
445 			warmup = false;
446 			continue;
447 		}
448 
449 		uint16_t exp = 0;
450 		if (!opts->csv) {
451 			if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
452 					__ATOMIC_RELAXED, __ATOMIC_RELAXED))
453 				printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
454 						"Burst Size", "Enqueued",
455 						"Dequeued", "Enq Retries",
456 						"Deq Retries", "Cycles/Op",
457 						"Cycles/Enq", "Cycles/Deq");
458 
459 			printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
460 					opts->test_buffer_size, test_burst_size,
461 					state.ops_enqd, state.ops_deqd,
462 					state.ops_enq_retries,
463 					state.ops_deq_retries,
464 					state.cycles_per_build,
465 					state.cycles_per_enq,
466 					state.cycles_per_deq);
467 		} else {
468 			if (__atomic_compare_exchange_n(&display_once, &exp, 1, 0,
469 					__ATOMIC_RELAXED, __ATOMIC_RELAXED))
470 				printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
471 						"Burst Size", "Enqueued",
472 						"Dequeued", "Enq Retries",
473 						"Deq Retries", "Cycles/Op",
474 						"Cycles/Enq", "Cycles/Deq");
475 
476 			printf(CSV_LINE_FMT, state.ctx->lcore_id,
477 					opts->test_buffer_size, test_burst_size,
478 					state.ops_enqd, state.ops_deqd,
479 					state.ops_enq_retries,
480 					state.ops_deq_retries,
481 					state.cycles_per_build,
482 					state.cycles_per_enq,
483 					state.cycles_per_deq);
484 		}
485 
486 		/* Get next size from range or list */
487 		if (opts->inc_burst_size != 0)
488 			test_burst_size += opts->inc_burst_size;
489 		else {
490 			if (++burst_size_idx == opts->burst_size_count)
491 				break;
492 			test_burst_size = opts->burst_size_list[burst_size_idx];
493 		}
494 	}
495 
496 	return 0;
497 }
498 
499 void
500 cperf_pmd_cyclecount_test_destructor(void *arg)
501 {
502 	struct cperf_pmd_cyclecount_ctx *ctx = arg;
503 
504 	if (ctx == NULL)
505 		return;
506 
507 	cperf_pmd_cyclecount_test_free(ctx);
508 }
509