xref: /dpdk/app/test-crypto-perf/cperf_test_pmd_cyclecount.c (revision 2a7bb4fdf61e9edfb7adbaecb50e728b82da9e23)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <stdbool.h>
6 
7 #include <rte_crypto.h>
8 #include <rte_cryptodev.h>
9 #include <rte_cycles.h>
10 #include <rte_malloc.h>
11 
12 #include "cperf_ops.h"
13 #include "cperf_test_pmd_cyclecount.h"
14 #include "cperf_test_common.h"
15 
16 #define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
17 #define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
18 #define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
19 #define CSV_LINE_FMT "%10u;%10u;%u;%u;%u;%u;%u;%.f3;%.f3;%.f3\n"
20 
21 struct cperf_pmd_cyclecount_ctx {
22 	uint8_t dev_id;
23 	uint16_t qp_id;
24 	uint8_t lcore_id;
25 
26 	struct rte_mempool *pool;
27 	struct rte_crypto_op **ops;
28 	struct rte_crypto_op **ops_processed;
29 
30 	struct rte_cryptodev_sym_session *sess;
31 
32 	cperf_populate_ops_t populate_ops;
33 
34 	uint32_t src_buf_offset;
35 	uint32_t dst_buf_offset;
36 
37 	const struct cperf_options *options;
38 	const struct cperf_test_vector *test_vector;
39 };
40 
41 struct pmd_cyclecount_state {
42 	struct cperf_pmd_cyclecount_ctx *ctx;
43 	const struct cperf_options *opts;
44 	uint32_t lcore;
45 	uint64_t delay;
46 	int linearize;
47 	uint32_t ops_enqd;
48 	uint32_t ops_deqd;
49 	uint32_t ops_enq_retries;
50 	uint32_t ops_deq_retries;
51 	double cycles_per_build;
52 	double cycles_per_enq;
53 	double cycles_per_deq;
54 };
55 
56 static const uint16_t iv_offset =
57 		sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
58 
59 static void
60 cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
61 {
62 	if (ctx) {
63 		if (ctx->sess) {
64 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
65 			rte_cryptodev_sym_session_free(ctx->sess);
66 		}
67 
68 		if (ctx->pool)
69 			rte_mempool_free(ctx->pool);
70 
71 		if (ctx->ops)
72 			rte_free(ctx->ops);
73 
74 		if (ctx->ops_processed)
75 			rte_free(ctx->ops_processed);
76 
77 		rte_free(ctx);
78 	}
79 }
80 
81 void *
82 cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
83 		struct rte_mempool *sess_priv_mp,
84 		uint8_t dev_id, uint16_t qp_id,
85 		const struct cperf_options *options,
86 		const struct cperf_test_vector *test_vector,
87 		const struct cperf_op_fns *op_fns)
88 {
89 	struct cperf_pmd_cyclecount_ctx *ctx = NULL;
90 
91 	/* preallocate buffers for crypto ops as they can get quite big */
92 	size_t alloc_sz = sizeof(struct rte_crypto_op *) *
93 			options->nb_descriptors;
94 
95 	ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
96 	if (ctx == NULL)
97 		goto err;
98 
99 	ctx->dev_id = dev_id;
100 	ctx->qp_id = qp_id;
101 
102 	ctx->populate_ops = op_fns->populate_ops;
103 	ctx->options = options;
104 	ctx->test_vector = test_vector;
105 
106 	/* IV goes at the end of the crypto operation */
107 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
108 			sizeof(struct rte_crypto_sym_op);
109 
110 	ctx->sess = op_fns->sess_create(sess_mp, sess_priv_mp, dev_id, options,
111 			test_vector, iv_offset);
112 	if (ctx->sess == NULL)
113 		goto err;
114 
115 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
116 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
117 			&ctx->pool) < 0)
118 		goto err;
119 
120 	ctx->ops = rte_malloc("ops", alloc_sz, 0);
121 	if (!ctx->ops)
122 		goto err;
123 
124 	ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
125 	if (!ctx->ops_processed)
126 		goto err;
127 
128 	return ctx;
129 
130 err:
131 	cperf_pmd_cyclecount_test_free(ctx);
132 
133 	return NULL;
134 }
135 
136 /* benchmark alloc-build-free of ops */
137 static inline int
138 pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
139 		uint16_t test_burst_size)
140 {
141 	uint32_t iter_ops_left = state->opts->total_ops - cur_op;
142 	uint32_t iter_ops_needed =
143 			RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
144 	uint32_t cur_iter_op;
145 	uint32_t imix_idx = 0;
146 
147 	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
148 			cur_iter_op += test_burst_size) {
149 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
150 				test_burst_size);
151 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
152 
153 		/* Allocate objects containing crypto operations and mbufs */
154 		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
155 					burst_size) != 0) {
156 			RTE_LOG(ERR, USER1,
157 					"Failed to allocate more crypto operations "
158 					"from the crypto operation pool.\n"
159 					"Consider increasing the pool size "
160 					"with --pool-sz\n");
161 				return -1;
162 		}
163 
164 		/* Setup crypto op, attach mbuf etc */
165 		(state->ctx->populate_ops)(ops,
166 				state->ctx->src_buf_offset,
167 				state->ctx->dst_buf_offset,
168 				burst_size,
169 				state->ctx->sess, state->opts,
170 				state->ctx->test_vector, iv_offset,
171 				&imix_idx);
172 
173 #ifdef CPERF_LINEARIZATION_ENABLE
174 		/* Check if source mbufs require coalescing */
175 		if (state->linearize) {
176 			uint8_t i;
177 			for (i = 0; i < burst_size; i++) {
178 				struct rte_mbuf *src = ops[i]->sym->m_src;
179 				rte_pktmbuf_linearize(src);
180 			}
181 		}
182 #endif /* CPERF_LINEARIZATION_ENABLE */
183 		rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
184 				burst_size);
185 	}
186 
187 	return 0;
188 }
189 
190 /* allocate and build ops (no free) */
191 static int
192 pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
193 		uint32_t iter_ops_needed, uint16_t test_burst_size)
194 {
195 	uint32_t cur_iter_op;
196 	uint32_t imix_idx = 0;
197 
198 	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
199 			cur_iter_op += test_burst_size) {
200 		uint32_t burst_size = RTE_MIN(
201 				iter_ops_needed - cur_iter_op, test_burst_size);
202 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
203 
204 		/* Allocate objects containing crypto operations and mbufs */
205 		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
206 					burst_size) != 0) {
207 			RTE_LOG(ERR, USER1,
208 					"Failed to allocate more crypto operations "
209 					"from the crypto operation pool.\n"
210 					"Consider increasing the pool size "
211 					"with --pool-sz\n");
212 				return -1;
213 		}
214 
215 		/* Setup crypto op, attach mbuf etc */
216 		(state->ctx->populate_ops)(ops,
217 				state->ctx->src_buf_offset,
218 				state->ctx->dst_buf_offset,
219 				burst_size,
220 				state->ctx->sess, state->opts,
221 				state->ctx->test_vector, iv_offset,
222 				&imix_idx);
223 	}
224 	return 0;
225 }
226 
227 /* benchmark enqueue, returns number of ops enqueued */
228 static uint32_t
229 pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
230 		uint32_t iter_ops_needed, uint16_t test_burst_size)
231 {
232 	/* Enqueue full descriptor ring of ops on crypto device */
233 	uint32_t cur_iter_op = 0;
234 	while (cur_iter_op < iter_ops_needed) {
235 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
236 				test_burst_size);
237 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
238 		uint32_t burst_enqd;
239 
240 		burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
241 				state->ctx->qp_id, ops, burst_size);
242 
243 		/* if we couldn't enqueue anything, the queue is full */
244 		if (!burst_enqd) {
245 			/* don't try to dequeue anything we didn't enqueue */
246 			return cur_iter_op;
247 		}
248 
249 		if (burst_enqd < burst_size)
250 			state->ops_enq_retries++;
251 		state->ops_enqd += burst_enqd;
252 		cur_iter_op += burst_enqd;
253 	}
254 	return iter_ops_needed;
255 }
256 
257 /* benchmark dequeue */
258 static void
259 pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
260 		uint32_t iter_ops_needed, uint16_t test_burst_size)
261 {
262 	/* Dequeue full descriptor ring of ops on crypto device */
263 	uint32_t cur_iter_op = 0;
264 	while (cur_iter_op < iter_ops_needed) {
265 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
266 				test_burst_size);
267 		struct rte_crypto_op **ops_processed =
268 				&state->ctx->ops[cur_iter_op];
269 		uint32_t burst_deqd;
270 
271 		burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
272 				state->ctx->qp_id, ops_processed, burst_size);
273 
274 		if (burst_deqd < burst_size)
275 			state->ops_deq_retries++;
276 		state->ops_deqd += burst_deqd;
277 		cur_iter_op += burst_deqd;
278 	}
279 }
280 
281 /* run benchmark per burst size */
282 static inline int
283 pmd_cyclecount_bench_burst_sz(
284 		struct pmd_cyclecount_state *state, uint16_t test_burst_size)
285 {
286 	uint64_t tsc_start;
287 	uint64_t tsc_end;
288 	uint64_t tsc_op;
289 	uint64_t tsc_enq;
290 	uint64_t tsc_deq;
291 	uint32_t cur_op;
292 
293 	/* reset all counters */
294 	tsc_enq = 0;
295 	tsc_deq = 0;
296 	state->ops_enqd = 0;
297 	state->ops_enq_retries = 0;
298 	state->ops_deqd = 0;
299 	state->ops_deq_retries = 0;
300 
301 	/*
302 	 * Benchmark crypto op alloc-build-free separately.
303 	 */
304 	tsc_start = rte_rdtsc_precise();
305 
306 	for (cur_op = 0; cur_op < state->opts->total_ops;
307 			cur_op += state->opts->nb_descriptors) {
308 		if (unlikely(pmd_cyclecount_bench_ops(
309 				state, cur_op, test_burst_size)))
310 			return -1;
311 	}
312 
313 	tsc_end = rte_rdtsc_precise();
314 	tsc_op = tsc_end - tsc_start;
315 
316 
317 	/*
318 	 * Hardware acceleration cyclecount benchmarking loop.
319 	 *
320 	 * We're benchmarking raw enq/deq performance by filling up the device
321 	 * queue, so we never get any failed enqs unless the driver won't accept
322 	 * the exact number of descriptors we requested, or the driver won't
323 	 * wrap around the end of the TX ring. However, since we're only
324 	 * dequeueing once we've filled up the queue, we have to benchmark it
325 	 * piecemeal and then average out the results.
326 	 */
327 	cur_op = 0;
328 	while (cur_op < state->opts->total_ops) {
329 		uint32_t iter_ops_left = state->opts->total_ops - cur_op;
330 		uint32_t iter_ops_needed = RTE_MIN(
331 				state->opts->nb_descriptors, iter_ops_left);
332 		uint32_t iter_ops_allocd = iter_ops_needed;
333 
334 		/* allocate and build ops */
335 		if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
336 				test_burst_size)))
337 			return -1;
338 
339 		tsc_start = rte_rdtsc_precise();
340 
341 		/* fill up TX ring */
342 		iter_ops_needed = pmd_cyclecount_bench_enq(state,
343 				iter_ops_needed, test_burst_size);
344 
345 		tsc_end = rte_rdtsc_precise();
346 
347 		tsc_enq += tsc_end - tsc_start;
348 
349 		/* allow for HW to catch up */
350 		if (state->delay)
351 			rte_delay_us_block(state->delay);
352 
353 		tsc_start = rte_rdtsc_precise();
354 
355 		/* drain RX ring */
356 		pmd_cyclecount_bench_deq(state, iter_ops_needed,
357 				test_burst_size);
358 
359 		tsc_end = rte_rdtsc_precise();
360 
361 		tsc_deq += tsc_end - tsc_start;
362 
363 		cur_op += iter_ops_needed;
364 
365 		/*
366 		 * we may not have processed all ops that we allocated, so
367 		 * free everything we've allocated.
368 		 */
369 		rte_mempool_put_bulk(state->ctx->pool,
370 				(void **)state->ctx->ops, iter_ops_allocd);
371 	}
372 
373 	state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
374 	state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
375 	state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
376 
377 	return 0;
378 }
379 
380 int
381 cperf_pmd_cyclecount_test_runner(void *test_ctx)
382 {
383 	struct pmd_cyclecount_state state = {0};
384 	const struct cperf_options *opts;
385 	uint16_t test_burst_size;
386 	uint8_t burst_size_idx = 0;
387 
388 	state.ctx = test_ctx;
389 	opts = state.ctx->options;
390 	state.opts = opts;
391 	state.lcore = rte_lcore_id();
392 	state.linearize = 0;
393 
394 	static int only_once;
395 	static bool warmup = true;
396 
397 	/*
398 	 * We need a small delay to allow for hardware to process all the crypto
399 	 * operations. We can't automatically figure out what the delay should
400 	 * be, so we leave it up to the user (by default it's 0).
401 	 */
402 	state.delay = 1000 * opts->pmdcc_delay;
403 
404 #ifdef CPERF_LINEARIZATION_ENABLE
405 	struct rte_cryptodev_info dev_info;
406 
407 	/* Check if source mbufs require coalescing */
408 	if (opts->segments_sz < ctx->options->max_buffer_size) {
409 		rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
410 		if ((dev_info.feature_flags &
411 				    RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
412 				0) {
413 			state.linearize = 1;
414 		}
415 	}
416 #endif /* CPERF_LINEARIZATION_ENABLE */
417 
418 	state.ctx->lcore_id = state.lcore;
419 
420 	/* Get first size from range or list */
421 	if (opts->inc_burst_size != 0)
422 		test_burst_size = opts->min_burst_size;
423 	else
424 		test_burst_size = opts->burst_size_list[0];
425 
426 	while (test_burst_size <= opts->max_burst_size) {
427 		/* do a benchmark run */
428 		if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
429 			return -1;
430 
431 		/*
432 		 * First run is always a warm up run.
433 		 */
434 		if (warmup) {
435 			warmup = false;
436 			continue;
437 		}
438 
439 		if (!opts->csv) {
440 			if (!only_once)
441 				printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
442 						"Burst Size", "Enqueued",
443 						"Dequeued", "Enq Retries",
444 						"Deq Retries", "Cycles/Op",
445 						"Cycles/Enq", "Cycles/Deq");
446 			only_once = 1;
447 
448 			printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
449 					opts->test_buffer_size, test_burst_size,
450 					state.ops_enqd, state.ops_deqd,
451 					state.ops_enq_retries,
452 					state.ops_deq_retries,
453 					state.cycles_per_build,
454 					state.cycles_per_enq,
455 					state.cycles_per_deq);
456 		} else {
457 			if (!only_once)
458 				printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
459 						"Burst Size", "Enqueued",
460 						"Dequeued", "Enq Retries",
461 						"Deq Retries", "Cycles/Op",
462 						"Cycles/Enq", "Cycles/Deq");
463 			only_once = 1;
464 
465 			printf(CSV_LINE_FMT, state.ctx->lcore_id,
466 					opts->test_buffer_size, test_burst_size,
467 					state.ops_enqd, state.ops_deqd,
468 					state.ops_enq_retries,
469 					state.ops_deq_retries,
470 					state.cycles_per_build,
471 					state.cycles_per_enq,
472 					state.cycles_per_deq);
473 		}
474 
475 		/* Get next size from range or list */
476 		if (opts->inc_burst_size != 0)
477 			test_burst_size += opts->inc_burst_size;
478 		else {
479 			if (++burst_size_idx == opts->burst_size_count)
480 				break;
481 			test_burst_size = opts->burst_size_list[burst_size_idx];
482 		}
483 	}
484 
485 	return 0;
486 }
487 
488 void
489 cperf_pmd_cyclecount_test_destructor(void *arg)
490 {
491 	struct cperf_pmd_cyclecount_ctx *ctx = arg;
492 
493 	if (ctx == NULL)
494 		return;
495 
496 	cperf_pmd_cyclecount_test_free(ctx);
497 }
498