xref: /dpdk/app/test-crypto-perf/cperf_test_pmd_cyclecount.c (revision 1a4998dc4d9446c58e1813bb05b92b572edb381e)
1 /*-
2  *   BSD LICENSE
3  *
4  *   Copyright(c) 2017 Intel Corporation. All rights reserved.
5  *
6  *   Redistribution and use in source and binary forms, with or without
7  *   modification, are permitted provided that the following conditions
8  *   are met:
9  *
10  *     * Redistributions of source code must retain the above copyright
11  *       notice, this list of conditions and the following disclaimer.
12  *     * Redistributions in binary form must reproduce the above copyright
13  *       notice, this list of conditions and the following disclaimer in
14  *       the documentation and/or other materials provided with the
15  *       distribution.
16  *     * Neither the name of Intel Corporation nor the names of its
17  *       contributors may be used to endorse or promote products derived
18  *       from this software without specific prior written permission.
19  *
20  *   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21  *   "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22  *   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23  *   A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24  *   OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25  *   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26  *   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27  *   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28  *   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29  *   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30  *   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <stdbool.h>
34 
35 #include <rte_crypto.h>
36 #include <rte_cryptodev.h>
37 #include <rte_cycles.h>
38 #include <rte_malloc.h>
39 
40 #include "cperf_ops.h"
41 #include "cperf_test_pmd_cyclecount.h"
42 #include "cperf_test_common.h"
43 
44 #define PRETTY_HDR_FMT "%12s%12s%12s%12s%12s%12s%12s%12s%12s%12s\n\n"
45 #define PRETTY_LINE_FMT "%12u%12u%12u%12u%12u%12u%12u%12.0f%12.0f%12.0f\n"
46 #define CSV_HDR_FMT "%s,%s,%s,%s,%s,%s,%s,%s,%s,%s\n"
47 #define CSV_LINE_FMT "%10u;%10u;%u;%u;%u;%u;%u;%.f3;%.f3;%.f3\n"
48 
49 struct cperf_pmd_cyclecount_ctx {
50 	uint8_t dev_id;
51 	uint16_t qp_id;
52 	uint8_t lcore_id;
53 
54 	struct rte_mempool *pool;
55 	struct rte_crypto_op **ops;
56 	struct rte_crypto_op **ops_processed;
57 
58 	struct rte_cryptodev_sym_session *sess;
59 
60 	cperf_populate_ops_t populate_ops;
61 
62 	uint32_t src_buf_offset;
63 	uint32_t dst_buf_offset;
64 
65 	const struct cperf_options *options;
66 	const struct cperf_test_vector *test_vector;
67 };
68 
69 struct pmd_cyclecount_state {
70 	struct cperf_pmd_cyclecount_ctx *ctx;
71 	const struct cperf_options *opts;
72 	uint32_t lcore;
73 	uint64_t delay;
74 	int linearize;
75 	uint32_t ops_enqd;
76 	uint32_t ops_deqd;
77 	uint32_t ops_enq_retries;
78 	uint32_t ops_deq_retries;
79 	double cycles_per_build;
80 	double cycles_per_enq;
81 	double cycles_per_deq;
82 };
83 
84 static const uint16_t iv_offset =
85 		sizeof(struct rte_crypto_op) + sizeof(struct rte_crypto_sym_op);
86 
87 static void
88 cperf_pmd_cyclecount_test_free(struct cperf_pmd_cyclecount_ctx *ctx)
89 {
90 	if (ctx) {
91 		if (ctx->sess) {
92 			rte_cryptodev_sym_session_clear(ctx->dev_id, ctx->sess);
93 			rte_cryptodev_sym_session_free(ctx->sess);
94 		}
95 
96 		if (ctx->pool)
97 			rte_mempool_free(ctx->pool);
98 
99 		if (ctx->ops)
100 			rte_free(ctx->ops);
101 
102 		if (ctx->ops_processed)
103 			rte_free(ctx->ops_processed);
104 
105 		rte_free(ctx);
106 	}
107 }
108 
109 void *
110 cperf_pmd_cyclecount_test_constructor(struct rte_mempool *sess_mp,
111 		uint8_t dev_id, uint16_t qp_id,
112 		const struct cperf_options *options,
113 		const struct cperf_test_vector *test_vector,
114 		const struct cperf_op_fns *op_fns)
115 {
116 	struct cperf_pmd_cyclecount_ctx *ctx = NULL;
117 
118 	/* preallocate buffers for crypto ops as they can get quite big */
119 	size_t alloc_sz = sizeof(struct rte_crypto_op *) *
120 			options->nb_descriptors;
121 
122 	ctx = rte_malloc(NULL, sizeof(struct cperf_pmd_cyclecount_ctx), 0);
123 	if (ctx == NULL)
124 		goto err;
125 
126 	ctx->dev_id = dev_id;
127 	ctx->qp_id = qp_id;
128 
129 	ctx->populate_ops = op_fns->populate_ops;
130 	ctx->options = options;
131 	ctx->test_vector = test_vector;
132 
133 	/* IV goes at the end of the crypto operation */
134 	uint16_t iv_offset = sizeof(struct rte_crypto_op) +
135 			sizeof(struct rte_crypto_sym_op);
136 
137 	ctx->sess = op_fns->sess_create(
138 			sess_mp, dev_id, options, test_vector, iv_offset);
139 	if (ctx->sess == NULL)
140 		goto err;
141 
142 	if (cperf_alloc_common_memory(options, test_vector, dev_id, qp_id, 0,
143 			&ctx->src_buf_offset, &ctx->dst_buf_offset,
144 			&ctx->pool) < 0)
145 		goto err;
146 
147 	ctx->ops = rte_malloc("ops", alloc_sz, 0);
148 	if (!ctx->ops)
149 		goto err;
150 
151 	ctx->ops_processed = rte_malloc("ops_processed", alloc_sz, 0);
152 	if (!ctx->ops_processed)
153 		goto err;
154 
155 	return ctx;
156 
157 err:
158 	cperf_pmd_cyclecount_test_free(ctx);
159 
160 	return NULL;
161 }
162 
163 /* benchmark alloc-build-free of ops */
164 static inline int
165 pmd_cyclecount_bench_ops(struct pmd_cyclecount_state *state, uint32_t cur_op,
166 		uint16_t test_burst_size)
167 {
168 	uint32_t iter_ops_left = state->opts->total_ops - cur_op;
169 	uint32_t iter_ops_needed =
170 			RTE_MIN(state->opts->nb_descriptors, iter_ops_left);
171 	uint32_t cur_iter_op;
172 
173 	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
174 			cur_iter_op += test_burst_size) {
175 		uint32_t burst_size = RTE_MIN(state->opts->total_ops - cur_op,
176 				test_burst_size);
177 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
178 
179 		/* Allocate objects containing crypto operations and mbufs */
180 		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
181 					burst_size) != 0) {
182 			RTE_LOG(ERR, USER1,
183 					"Failed to allocate more crypto operations "
184 					"from the the crypto operation pool.\n"
185 					"Consider increasing the pool size "
186 					"with --pool-sz\n");
187 				return -1;
188 		}
189 
190 		/* Setup crypto op, attach mbuf etc */
191 		(state->ctx->populate_ops)(ops,
192 				state->ctx->src_buf_offset,
193 				state->ctx->dst_buf_offset,
194 				burst_size,
195 				state->ctx->sess, state->opts,
196 				state->ctx->test_vector, iv_offset);
197 
198 #ifdef CPERF_LINEARIZATION_ENABLE
199 		/* Check if source mbufs require coalescing */
200 		if (state->linearize) {
201 			uint8_t i;
202 			for (i = 0; i < burst_size; i++) {
203 				struct rte_mbuf *src = ops[i]->sym->m_src;
204 				rte_pktmbuf_linearize(src);
205 			}
206 		}
207 #endif /* CPERF_LINEARIZATION_ENABLE */
208 		rte_mempool_put_bulk(state->ctx->pool, (void **)ops,
209 				burst_size);
210 	}
211 
212 	return 0;
213 }
214 
215 /* allocate and build ops (no free) */
216 static int
217 pmd_cyclecount_build_ops(struct pmd_cyclecount_state *state,
218 		uint32_t iter_ops_needed, uint16_t test_burst_size)
219 {
220 	uint32_t cur_iter_op;
221 
222 	for (cur_iter_op = 0; cur_iter_op < iter_ops_needed;
223 			cur_iter_op += test_burst_size) {
224 		uint32_t burst_size = RTE_MIN(
225 				iter_ops_needed - cur_iter_op, test_burst_size);
226 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
227 
228 		/* Allocate objects containing crypto operations and mbufs */
229 		if (rte_mempool_get_bulk(state->ctx->pool, (void **)ops,
230 					burst_size) != 0) {
231 			RTE_LOG(ERR, USER1,
232 					"Failed to allocate more crypto operations "
233 					"from the the crypto operation pool.\n"
234 					"Consider increasing the pool size "
235 					"with --pool-sz\n");
236 				return -1;
237 		}
238 
239 		/* Setup crypto op, attach mbuf etc */
240 		(state->ctx->populate_ops)(ops,
241 				state->ctx->src_buf_offset,
242 				state->ctx->dst_buf_offset,
243 				burst_size,
244 				state->ctx->sess, state->opts,
245 				state->ctx->test_vector, iv_offset);
246 	}
247 	return 0;
248 }
249 
250 /* benchmark enqueue, returns number of ops enqueued */
251 static uint32_t
252 pmd_cyclecount_bench_enq(struct pmd_cyclecount_state *state,
253 		uint32_t iter_ops_needed, uint16_t test_burst_size)
254 {
255 	/* Enqueue full descriptor ring of ops on crypto device */
256 	uint32_t cur_iter_op = 0;
257 	while (cur_iter_op < iter_ops_needed) {
258 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
259 				test_burst_size);
260 		struct rte_crypto_op **ops = &state->ctx->ops[cur_iter_op];
261 		uint32_t burst_enqd;
262 
263 		burst_enqd = rte_cryptodev_enqueue_burst(state->ctx->dev_id,
264 				state->ctx->qp_id, ops, burst_size);
265 
266 		/* if we couldn't enqueue anything, the queue is full */
267 		if (!burst_enqd) {
268 			/* don't try to dequeue anything we didn't enqueue */
269 			return cur_iter_op;
270 		}
271 
272 		if (burst_enqd < burst_size)
273 			state->ops_enq_retries++;
274 		state->ops_enqd += burst_enqd;
275 		cur_iter_op += burst_enqd;
276 	}
277 	return iter_ops_needed;
278 }
279 
280 /* benchmark dequeue */
281 static void
282 pmd_cyclecount_bench_deq(struct pmd_cyclecount_state *state,
283 		uint32_t iter_ops_needed, uint16_t test_burst_size)
284 {
285 	/* Dequeue full descriptor ring of ops on crypto device */
286 	uint32_t cur_iter_op = 0;
287 	while (cur_iter_op < iter_ops_needed) {
288 		uint32_t burst_size = RTE_MIN(iter_ops_needed - cur_iter_op,
289 				test_burst_size);
290 		struct rte_crypto_op **ops_processed =
291 				&state->ctx->ops[cur_iter_op];
292 		uint32_t burst_deqd;
293 
294 		burst_deqd = rte_cryptodev_dequeue_burst(state->ctx->dev_id,
295 				state->ctx->qp_id, ops_processed, burst_size);
296 
297 		if (burst_deqd < burst_size)
298 			state->ops_deq_retries++;
299 		state->ops_deqd += burst_deqd;
300 		cur_iter_op += burst_deqd;
301 	}
302 }
303 
304 /* run benchmark per burst size */
305 static inline int
306 pmd_cyclecount_bench_burst_sz(
307 		struct pmd_cyclecount_state *state, uint16_t test_burst_size)
308 {
309 	uint64_t tsc_start;
310 	uint64_t tsc_end;
311 	uint64_t tsc_op;
312 	uint64_t tsc_enq;
313 	uint64_t tsc_deq;
314 	uint32_t cur_op;
315 
316 	/* reset all counters */
317 	tsc_enq = 0;
318 	tsc_deq = 0;
319 	state->ops_enqd = 0;
320 	state->ops_enq_retries = 0;
321 	state->ops_deqd = 0;
322 	state->ops_deq_retries = 0;
323 
324 	/*
325 	 * Benchmark crypto op alloc-build-free separately.
326 	 */
327 	tsc_start = rte_rdtsc_precise();
328 
329 	for (cur_op = 0; cur_op < state->opts->total_ops;
330 			cur_op += state->opts->nb_descriptors) {
331 		if (unlikely(pmd_cyclecount_bench_ops(
332 				state, cur_op, test_burst_size)))
333 			return -1;
334 	}
335 
336 	tsc_end = rte_rdtsc_precise();
337 	tsc_op = tsc_end - tsc_start;
338 
339 
340 	/*
341 	 * Hardware acceleration cyclecount benchmarking loop.
342 	 *
343 	 * We're benchmarking raw enq/deq performance by filling up the device
344 	 * queue, so we never get any failed enqs unless the driver won't accept
345 	 * the exact number of descriptors we requested, or the driver won't
346 	 * wrap around the end of the TX ring. However, since we're only
347 	 * dequeueing once we've filled up the queue, we have to benchmark it
348 	 * piecemeal and then average out the results.
349 	 */
350 	cur_op = 0;
351 	while (cur_op < state->opts->total_ops) {
352 		uint32_t iter_ops_left = state->opts->total_ops - cur_op;
353 		uint32_t iter_ops_needed = RTE_MIN(
354 				state->opts->nb_descriptors, iter_ops_left);
355 		uint32_t iter_ops_allocd = iter_ops_needed;
356 
357 		/* allocate and build ops */
358 		if (unlikely(pmd_cyclecount_build_ops(state, iter_ops_needed,
359 				test_burst_size)))
360 			return -1;
361 
362 		tsc_start = rte_rdtsc_precise();
363 
364 		/* fill up TX ring */
365 		iter_ops_needed = pmd_cyclecount_bench_enq(state,
366 				iter_ops_needed, test_burst_size);
367 
368 		tsc_end = rte_rdtsc_precise();
369 
370 		tsc_enq += tsc_end - tsc_start;
371 
372 		/* allow for HW to catch up */
373 		if (state->delay)
374 			rte_delay_us_block(state->delay);
375 
376 		tsc_start = rte_rdtsc_precise();
377 
378 		/* drain RX ring */
379 		pmd_cyclecount_bench_deq(state, iter_ops_needed,
380 				test_burst_size);
381 
382 		tsc_end = rte_rdtsc_precise();
383 
384 		tsc_deq += tsc_end - tsc_start;
385 
386 		cur_op += iter_ops_needed;
387 
388 		/*
389 		 * we may not have processed all ops that we allocated, so
390 		 * free everything we've allocated.
391 		 */
392 		rte_mempool_put_bulk(state->ctx->pool,
393 				(void **)state->ctx->ops, iter_ops_allocd);
394 	}
395 
396 	state->cycles_per_build = (double)tsc_op / state->opts->total_ops;
397 	state->cycles_per_enq = (double)tsc_enq / state->ops_enqd;
398 	state->cycles_per_deq = (double)tsc_deq / state->ops_deqd;
399 
400 	return 0;
401 }
402 
403 int
404 cperf_pmd_cyclecount_test_runner(void *test_ctx)
405 {
406 	struct pmd_cyclecount_state state = {0};
407 	const struct cperf_options *opts;
408 	uint16_t test_burst_size;
409 	uint8_t burst_size_idx = 0;
410 
411 	state.ctx = test_ctx;
412 	opts = state.ctx->options;
413 	state.opts = opts;
414 	state.lcore = rte_lcore_id();
415 	state.linearize = 0;
416 
417 	static int only_once;
418 	static bool warmup = true;
419 
420 	/*
421 	 * We need a small delay to allow for hardware to process all the crypto
422 	 * operations. We can't automatically figure out what the delay should
423 	 * be, so we leave it up to the user (by default it's 0).
424 	 */
425 	state.delay = 1000 * opts->pmdcc_delay;
426 
427 #ifdef CPERF_LINEARIZATION_ENABLE
428 	struct rte_cryptodev_info dev_info;
429 
430 	/* Check if source mbufs require coalescing */
431 	if (opts->segments_sz < ctx->options->max_buffer_size) {
432 		rte_cryptodev_info_get(state.ctx->dev_id, &dev_info);
433 		if ((dev_info.feature_flags &
434 				    RTE_CRYPTODEV_FF_MBUF_SCATTER_GATHER) ==
435 				0) {
436 			state.linearize = 1;
437 		}
438 	}
439 #endif /* CPERF_LINEARIZATION_ENABLE */
440 
441 	state.ctx->lcore_id = state.lcore;
442 
443 	/* Get first size from range or list */
444 	if (opts->inc_burst_size != 0)
445 		test_burst_size = opts->min_burst_size;
446 	else
447 		test_burst_size = opts->burst_size_list[0];
448 
449 	while (test_burst_size <= opts->max_burst_size) {
450 		/* do a benchmark run */
451 		if (pmd_cyclecount_bench_burst_sz(&state, test_burst_size))
452 			return -1;
453 
454 		/*
455 		 * First run is always a warm up run.
456 		 */
457 		if (warmup) {
458 			warmup = false;
459 			continue;
460 		}
461 
462 		if (!opts->csv) {
463 			if (!only_once)
464 				printf(PRETTY_HDR_FMT, "lcore id", "Buf Size",
465 						"Burst Size", "Enqueued",
466 						"Dequeued", "Enq Retries",
467 						"Deq Retries", "Cycles/Op",
468 						"Cycles/Enq", "Cycles/Deq");
469 			only_once = 1;
470 
471 			printf(PRETTY_LINE_FMT, state.ctx->lcore_id,
472 					opts->test_buffer_size, test_burst_size,
473 					state.ops_enqd, state.ops_deqd,
474 					state.ops_enq_retries,
475 					state.ops_deq_retries,
476 					state.cycles_per_build,
477 					state.cycles_per_enq,
478 					state.cycles_per_deq);
479 		} else {
480 			if (!only_once)
481 				printf(CSV_HDR_FMT, "# lcore id", "Buf Size",
482 						"Burst Size", "Enqueued",
483 						"Dequeued", "Enq Retries",
484 						"Deq Retries", "Cycles/Op",
485 						"Cycles/Enq", "Cycles/Deq");
486 			only_once = 1;
487 
488 			printf(CSV_LINE_FMT, state.ctx->lcore_id,
489 					opts->test_buffer_size, test_burst_size,
490 					state.ops_enqd, state.ops_deqd,
491 					state.ops_enq_retries,
492 					state.ops_deq_retries,
493 					state.cycles_per_build,
494 					state.cycles_per_enq,
495 					state.cycles_per_deq);
496 		}
497 
498 		/* Get next size from range or list */
499 		if (opts->inc_burst_size != 0)
500 			test_burst_size += opts->inc_burst_size;
501 		else {
502 			if (++burst_size_idx == opts->burst_size_count)
503 				break;
504 			test_burst_size = opts->burst_size_list[burst_size_idx];
505 		}
506 	}
507 
508 	return 0;
509 }
510 
511 void
512 cperf_pmd_cyclecount_test_destructor(void *arg)
513 {
514 	struct cperf_pmd_cyclecount_ctx *ctx = arg;
515 
516 	if (ctx == NULL)
517 		return;
518 
519 	cperf_pmd_cyclecount_test_free(ctx);
520 }
521