1 /* SPDX-License-Identifier: BSD-3-Clause 2 * Copyright(c) 2017 Intel Corporation 3 */ 4 5 #include <rte_malloc.h> 6 #include <rte_mbuf_pool_ops.h> 7 8 #include "cperf_test_common.h" 9 10 struct obj_params { 11 uint32_t src_buf_offset; 12 uint32_t dst_buf_offset; 13 uint16_t segment_sz; 14 uint16_t headroom_sz; 15 uint16_t data_len; 16 uint16_t segments_nb; 17 }; 18 19 static void 20 fill_single_seg_mbuf(struct rte_mbuf *m, struct rte_mempool *mp, 21 void *obj, uint32_t mbuf_offset, uint16_t segment_sz, 22 uint16_t headroom, uint16_t data_len) 23 { 24 uint32_t mbuf_hdr_size = sizeof(struct rte_mbuf); 25 26 /* start of buffer is after mbuf structure and priv data */ 27 m->priv_size = 0; 28 m->buf_addr = (char *)m + mbuf_hdr_size; 29 rte_mbuf_iova_set(m, rte_mempool_virt2iova(obj) + mbuf_offset + mbuf_hdr_size); 30 m->buf_len = segment_sz; 31 m->data_len = data_len; 32 m->pkt_len = data_len; 33 34 /* Use headroom specified for the buffer */ 35 m->data_off = headroom; 36 37 /* init some constant fields */ 38 m->pool = mp; 39 m->nb_segs = 1; 40 m->port = 0xff; 41 rte_mbuf_refcnt_set(m, 1); 42 m->next = NULL; 43 } 44 45 static void 46 fill_multi_seg_mbuf(struct rte_mbuf *m, struct rte_mempool *mp, 47 void *obj, uint32_t mbuf_offset, uint16_t segment_sz, 48 uint16_t headroom, uint16_t data_len, uint16_t segments_nb) 49 { 50 uint16_t mbuf_hdr_size = sizeof(struct rte_mbuf); 51 uint16_t remaining_segments = segments_nb; 52 struct rte_mbuf *next_mbuf; 53 rte_iova_t next_seg_phys_addr = rte_mempool_virt2iova(obj) + 54 mbuf_offset + mbuf_hdr_size; 55 56 do { 57 /* start of buffer is after mbuf structure and priv data */ 58 m->priv_size = 0; 59 m->buf_addr = (char *)m + mbuf_hdr_size; 60 rte_mbuf_iova_set(m, next_seg_phys_addr); 61 next_seg_phys_addr += mbuf_hdr_size + segment_sz; 62 m->buf_len = segment_sz; 63 m->data_len = data_len; 64 65 /* Use headroom specified for the buffer */ 66 m->data_off = headroom; 67 68 /* init some constant fields */ 69 m->pool = mp; 70 m->nb_segs = segments_nb; 71 m->port = 0xff; 72 rte_mbuf_refcnt_set(m, 1); 73 next_mbuf = (struct rte_mbuf *) ((uint8_t *) m + 74 mbuf_hdr_size + segment_sz); 75 m->next = next_mbuf; 76 m = next_mbuf; 77 remaining_segments--; 78 79 } while (remaining_segments > 0); 80 81 m->next = NULL; 82 } 83 84 static void 85 mempool_asym_obj_init(struct rte_mempool *mp, __rte_unused void *opaque_arg, 86 void *obj, __rte_unused unsigned int i) 87 { 88 struct rte_crypto_op *op = obj; 89 90 /* Set crypto operation */ 91 op->type = RTE_CRYPTO_OP_TYPE_ASYMMETRIC; 92 op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 93 op->sess_type = RTE_CRYPTO_OP_WITH_SESSION; 94 op->phys_addr = rte_mem_virt2iova(obj); 95 op->mempool = mp; 96 } 97 98 static void 99 mempool_obj_init(struct rte_mempool *mp, 100 void *opaque_arg, 101 void *obj, 102 __rte_unused unsigned int i) 103 { 104 struct obj_params *params = opaque_arg; 105 struct rte_crypto_op *op = obj; 106 struct rte_mbuf *m = (struct rte_mbuf *) ((uint8_t *) obj + 107 params->src_buf_offset); 108 /* Set crypto operation */ 109 op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC; 110 op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED; 111 op->sess_type = RTE_CRYPTO_OP_WITH_SESSION; 112 op->phys_addr = rte_mem_virt2iova(obj); 113 op->mempool = mp; 114 115 /* Set source buffer */ 116 op->sym->m_src = m; 117 if (params->segments_nb == 1) 118 fill_single_seg_mbuf(m, mp, obj, params->src_buf_offset, 119 params->segment_sz, params->headroom_sz, 120 params->data_len); 121 else 122 fill_multi_seg_mbuf(m, mp, obj, params->src_buf_offset, 123 params->segment_sz, params->headroom_sz, 124 params->data_len, params->segments_nb); 125 126 127 /* Set destination buffer */ 128 if (params->dst_buf_offset) { 129 m = (struct rte_mbuf *) ((uint8_t *) obj + 130 params->dst_buf_offset); 131 fill_single_seg_mbuf(m, mp, obj, params->dst_buf_offset, 132 params->segment_sz, params->headroom_sz, 133 params->data_len); 134 op->sym->m_dst = m; 135 } else 136 op->sym->m_dst = NULL; 137 } 138 139 int 140 cperf_alloc_common_memory(const struct cperf_options *options, 141 const struct cperf_test_vector *test_vector, 142 uint8_t dev_id, uint16_t qp_id, 143 size_t extra_op_priv_size, 144 uint32_t *src_buf_offset, 145 uint32_t *dst_buf_offset, 146 struct rte_mempool **pool) 147 { 148 const char *mp_ops_name; 149 char pool_name[32] = ""; 150 int ret; 151 152 /* Calculate the object size */ 153 uint16_t crypto_op_size = sizeof(struct rte_crypto_op) + 154 sizeof(struct rte_crypto_sym_op); 155 uint16_t crypto_op_private_size; 156 157 if (options->op_type == CPERF_ASYM_MODEX) { 158 snprintf(pool_name, RTE_MEMPOOL_NAMESIZE, "perf_asym_op_pool%u", 159 rte_socket_id()); 160 *pool = rte_crypto_op_pool_create( 161 pool_name, RTE_CRYPTO_OP_TYPE_ASYMMETRIC, 162 options->pool_sz, RTE_MEMPOOL_CACHE_MAX_SIZE, 0, 163 rte_socket_id()); 164 if (*pool == NULL) { 165 RTE_LOG(ERR, USER1, 166 "Cannot allocate mempool for device %u\n", 167 dev_id); 168 return -1; 169 } 170 rte_mempool_obj_iter(*pool, mempool_asym_obj_init, NULL); 171 return 0; 172 } 173 174 /* 175 * If doing AES-CCM, IV field needs to be 16 bytes long, 176 * and AAD field needs to be long enough to have 18 bytes, 177 * plus the length of the AAD, and all rounded to a 178 * multiple of 16 bytes. 179 */ 180 if (options->aead_algo == RTE_CRYPTO_AEAD_AES_CCM) { 181 crypto_op_private_size = extra_op_priv_size + 182 test_vector->cipher_iv.length + 183 test_vector->auth_iv.length + 184 RTE_ALIGN_CEIL(test_vector->aead_iv.length, 16) + 185 RTE_ALIGN_CEIL(options->aead_aad_sz + 18, 16); 186 } else { 187 crypto_op_private_size = extra_op_priv_size + 188 test_vector->cipher_iv.length + 189 test_vector->auth_iv.length + 190 test_vector->aead_iv.length + 191 options->aead_aad_sz; 192 } 193 194 uint16_t crypto_op_total_size = crypto_op_size + 195 crypto_op_private_size; 196 uint16_t crypto_op_total_size_padded = 197 RTE_CACHE_LINE_ROUNDUP(crypto_op_total_size); 198 uint32_t mbuf_size = sizeof(struct rte_mbuf) + options->segment_sz; 199 uint32_t max_size = options->max_buffer_size + options->digest_sz; 200 uint16_t segments_nb = (max_size % options->segment_sz) ? 201 (max_size / options->segment_sz) + 1 : 202 max_size / options->segment_sz; 203 uint32_t obj_size = crypto_op_total_size_padded + 204 (mbuf_size * segments_nb); 205 206 snprintf(pool_name, sizeof(pool_name), "pool_cdev_%u_qp_%u", 207 dev_id, qp_id); 208 209 *src_buf_offset = crypto_op_total_size_padded; 210 211 struct obj_params params = { 212 .segment_sz = options->segment_sz, 213 .headroom_sz = options->headroom_sz, 214 /* Data len = segment size - (headroom + tailroom) */ 215 .data_len = options->segment_sz - 216 options->headroom_sz - 217 options->tailroom_sz, 218 .segments_nb = segments_nb, 219 .src_buf_offset = crypto_op_total_size_padded, 220 .dst_buf_offset = 0 221 }; 222 223 if (options->out_of_place) { 224 *dst_buf_offset = *src_buf_offset + 225 (mbuf_size * segments_nb); 226 params.dst_buf_offset = *dst_buf_offset; 227 /* Destination buffer will be one segment only */ 228 obj_size += max_size + sizeof(struct rte_mbuf); 229 } 230 231 *pool = rte_mempool_create_empty(pool_name, 232 options->pool_sz, obj_size, 512, 0, 233 rte_socket_id(), 0); 234 if (*pool == NULL) { 235 RTE_LOG(ERR, USER1, 236 "Cannot allocate mempool for device %u\n", 237 dev_id); 238 return -1; 239 } 240 241 mp_ops_name = rte_mbuf_best_mempool_ops(); 242 243 ret = rte_mempool_set_ops_byname(*pool, 244 mp_ops_name, NULL); 245 if (ret != 0) { 246 RTE_LOG(ERR, USER1, 247 "Error setting mempool handler for device %u\n", 248 dev_id); 249 return -1; 250 } 251 252 ret = rte_mempool_populate_default(*pool); 253 if (ret < 0) { 254 RTE_LOG(ERR, USER1, 255 "Error populating mempool for device %u\n", 256 dev_id); 257 return -1; 258 } 259 260 rte_mempool_obj_iter(*pool, mempool_obj_init, (void *)¶ms); 261 262 return 0; 263 } 264 265 void 266 cperf_mbuf_set(struct rte_mbuf *mbuf, 267 const struct cperf_options *options, 268 const struct cperf_test_vector *test_vector) 269 { 270 uint32_t segment_sz = options->segment_sz; 271 uint8_t *mbuf_data; 272 uint8_t *test_data; 273 uint32_t remaining_bytes = options->max_buffer_size; 274 275 if (options->op_type == CPERF_AEAD) { 276 test_data = (options->aead_op == RTE_CRYPTO_AEAD_OP_ENCRYPT) ? 277 test_vector->plaintext.data : 278 test_vector->ciphertext.data; 279 } else { 280 test_data = 281 (options->cipher_op == RTE_CRYPTO_CIPHER_OP_ENCRYPT) ? 282 test_vector->plaintext.data : 283 test_vector->ciphertext.data; 284 } 285 286 while (remaining_bytes) { 287 mbuf_data = rte_pktmbuf_mtod(mbuf, uint8_t *); 288 289 if (remaining_bytes <= segment_sz) { 290 memcpy(mbuf_data, test_data, remaining_bytes); 291 return; 292 } 293 294 memcpy(mbuf_data, test_data, segment_sz); 295 remaining_bytes -= segment_sz; 296 test_data += segment_sz; 297 mbuf = mbuf->next; 298 } 299 } 300