xref: /dpdk/app/test-crypto-perf/cperf_test_common.c (revision 25d11a86c56d50947af33d0b79ede622809bd8b9)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2017 Intel Corporation
3  */
4 
5 #include <rte_malloc.h>
6 #include <rte_mbuf_pool_ops.h>
7 
8 #include "cperf_test_common.h"
9 
10 struct obj_params {
11 	uint32_t src_buf_offset;
12 	uint32_t dst_buf_offset;
13 	uint16_t segment_sz;
14 	uint16_t headroom_sz;
15 	uint16_t data_len;
16 	uint16_t segments_nb;
17 };
18 
19 static void
20 fill_single_seg_mbuf(struct rte_mbuf *m, struct rte_mempool *mp,
21 		void *obj, uint32_t mbuf_offset, uint16_t segment_sz,
22 		uint16_t headroom, uint16_t data_len)
23 {
24 	uint32_t mbuf_hdr_size = sizeof(struct rte_mbuf);
25 
26 	/* start of buffer is after mbuf structure and priv data */
27 	m->priv_size = 0;
28 	m->buf_addr = (char *)m + mbuf_hdr_size;
29 	m->buf_iova = rte_mempool_virt2iova(obj) +
30 		mbuf_offset + mbuf_hdr_size;
31 	m->buf_len = segment_sz;
32 	m->data_len = data_len;
33 
34 	/* Use headroom specified for the buffer */
35 	m->data_off = headroom;
36 
37 	/* init some constant fields */
38 	m->pool = mp;
39 	m->nb_segs = 1;
40 	m->port = 0xff;
41 	rte_mbuf_refcnt_set(m, 1);
42 	m->next = NULL;
43 }
44 
45 static void
46 fill_multi_seg_mbuf(struct rte_mbuf *m, struct rte_mempool *mp,
47 		void *obj, uint32_t mbuf_offset, uint16_t segment_sz,
48 		uint16_t headroom, uint16_t data_len, uint16_t segments_nb)
49 {
50 	uint16_t mbuf_hdr_size = sizeof(struct rte_mbuf);
51 	uint16_t remaining_segments = segments_nb;
52 	struct rte_mbuf *next_mbuf;
53 	rte_iova_t next_seg_phys_addr = rte_mempool_virt2iova(obj) +
54 			 mbuf_offset + mbuf_hdr_size;
55 
56 	do {
57 		/* start of buffer is after mbuf structure and priv data */
58 		m->priv_size = 0;
59 		m->buf_addr = (char *)m + mbuf_hdr_size;
60 		m->buf_iova = next_seg_phys_addr;
61 		next_seg_phys_addr += mbuf_hdr_size + segment_sz;
62 		m->buf_len = segment_sz;
63 		m->data_len = data_len;
64 
65 		/* Use headroom specified for the buffer */
66 		m->data_off = headroom;
67 
68 		/* init some constant fields */
69 		m->pool = mp;
70 		m->nb_segs = segments_nb;
71 		m->port = 0xff;
72 		rte_mbuf_refcnt_set(m, 1);
73 		next_mbuf = (struct rte_mbuf *) ((uint8_t *) m +
74 					mbuf_hdr_size + segment_sz);
75 		m->next = next_mbuf;
76 		m = next_mbuf;
77 		remaining_segments--;
78 
79 	} while (remaining_segments > 0);
80 
81 	m->next = NULL;
82 }
83 
84 static void
85 mempool_obj_init(struct rte_mempool *mp,
86 		 void *opaque_arg,
87 		 void *obj,
88 		 __attribute__((unused)) unsigned int i)
89 {
90 	struct obj_params *params = opaque_arg;
91 	struct rte_crypto_op *op = obj;
92 	struct rte_mbuf *m = (struct rte_mbuf *) ((uint8_t *) obj +
93 					params->src_buf_offset);
94 	/* Set crypto operation */
95 	op->type = RTE_CRYPTO_OP_TYPE_SYMMETRIC;
96 	op->status = RTE_CRYPTO_OP_STATUS_NOT_PROCESSED;
97 	op->sess_type = RTE_CRYPTO_OP_WITH_SESSION;
98 	op->phys_addr = rte_mem_virt2iova(obj);
99 	op->mempool = mp;
100 
101 	/* Set source buffer */
102 	op->sym->m_src = m;
103 	if (params->segments_nb == 1)
104 		fill_single_seg_mbuf(m, mp, obj, params->src_buf_offset,
105 				params->segment_sz, params->headroom_sz,
106 				params->data_len);
107 	else
108 		fill_multi_seg_mbuf(m, mp, obj, params->src_buf_offset,
109 				params->segment_sz, params->headroom_sz,
110 				params->data_len, params->segments_nb);
111 
112 
113 	/* Set destination buffer */
114 	if (params->dst_buf_offset) {
115 		m = (struct rte_mbuf *) ((uint8_t *) obj +
116 				params->dst_buf_offset);
117 		fill_single_seg_mbuf(m, mp, obj, params->dst_buf_offset,
118 				params->segment_sz, params->headroom_sz,
119 				params->data_len);
120 		op->sym->m_dst = m;
121 	} else
122 		op->sym->m_dst = NULL;
123 }
124 
125 int
126 cperf_alloc_common_memory(const struct cperf_options *options,
127 			const struct cperf_test_vector *test_vector,
128 			uint8_t dev_id, uint16_t qp_id,
129 			size_t extra_op_priv_size,
130 			uint32_t *src_buf_offset,
131 			uint32_t *dst_buf_offset,
132 			struct rte_mempool **pool)
133 {
134 	const char *mp_ops_name;
135 	char pool_name[32] = "";
136 	int ret;
137 
138 	/* Calculate the object size */
139 	uint16_t crypto_op_size = sizeof(struct rte_crypto_op) +
140 		sizeof(struct rte_crypto_sym_op);
141 	uint16_t crypto_op_private_size;
142 	/*
143 	 * If doing AES-CCM, IV field needs to be 16 bytes long,
144 	 * and AAD field needs to be long enough to have 18 bytes,
145 	 * plus the length of the AAD, and all rounded to a
146 	 * multiple of 16 bytes.
147 	 */
148 	if (options->aead_algo == RTE_CRYPTO_AEAD_AES_CCM) {
149 		crypto_op_private_size = extra_op_priv_size +
150 			test_vector->cipher_iv.length +
151 			test_vector->auth_iv.length +
152 			RTE_ALIGN_CEIL(test_vector->aead_iv.length, 16) +
153 			RTE_ALIGN_CEIL(options->aead_aad_sz + 18, 16);
154 	} else {
155 		crypto_op_private_size = extra_op_priv_size +
156 			test_vector->cipher_iv.length +
157 			test_vector->auth_iv.length +
158 			test_vector->aead_iv.length +
159 			options->aead_aad_sz;
160 	}
161 
162 	uint16_t crypto_op_total_size = crypto_op_size +
163 				crypto_op_private_size;
164 	uint16_t crypto_op_total_size_padded =
165 				RTE_CACHE_LINE_ROUNDUP(crypto_op_total_size);
166 	uint32_t mbuf_size = sizeof(struct rte_mbuf) + options->segment_sz;
167 	uint32_t max_size = options->max_buffer_size + options->digest_sz;
168 	uint16_t segments_nb = (max_size % options->segment_sz) ?
169 			(max_size / options->segment_sz) + 1 :
170 			max_size / options->segment_sz;
171 	uint32_t obj_size = crypto_op_total_size_padded +
172 				(mbuf_size * segments_nb);
173 
174 	snprintf(pool_name, sizeof(pool_name), "pool_cdev_%u_qp_%u",
175 			dev_id, qp_id);
176 
177 	*src_buf_offset = crypto_op_total_size_padded;
178 
179 	struct obj_params params = {
180 		.segment_sz = options->segment_sz,
181 		.headroom_sz = options->headroom_sz,
182 		/* Data len = segment size - (headroom + tailroom) */
183 		.data_len = options->segment_sz -
184 			    options->headroom_sz -
185 			    options->tailroom_sz,
186 		.segments_nb = segments_nb,
187 		.src_buf_offset = crypto_op_total_size_padded,
188 		.dst_buf_offset = 0
189 	};
190 
191 	if (options->out_of_place) {
192 		*dst_buf_offset = *src_buf_offset +
193 				(mbuf_size * segments_nb);
194 		params.dst_buf_offset = *dst_buf_offset;
195 		/* Destination buffer will be one segment only */
196 		obj_size += max_size;
197 	}
198 
199 	*pool = rte_mempool_create_empty(pool_name,
200 			options->pool_sz, obj_size, 512, 0,
201 			rte_socket_id(), 0);
202 	if (*pool == NULL) {
203 		RTE_LOG(ERR, USER1,
204 			"Cannot allocate mempool for device %u\n",
205 			dev_id);
206 		return -1;
207 	}
208 
209 	mp_ops_name = rte_mbuf_best_mempool_ops();
210 
211 	ret = rte_mempool_set_ops_byname(*pool,
212 		mp_ops_name, NULL);
213 	if (ret != 0) {
214 		RTE_LOG(ERR, USER1,
215 			 "Error setting mempool handler for device %u\n",
216 			 dev_id);
217 		return -1;
218 	}
219 
220 	ret = rte_mempool_populate_default(*pool);
221 	if (ret < 0) {
222 		RTE_LOG(ERR, USER1,
223 			 "Error populating mempool for device %u\n",
224 			 dev_id);
225 		return -1;
226 	}
227 
228 	rte_mempool_obj_iter(*pool, mempool_obj_init, (void *)&params);
229 
230 	return 0;
231 }
232