xref: /dpdk/app/test-compress-perf/comp_perf_test_common.c (revision 10b71caecbe1cddcbb65c050ca775fba575e88db)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2019 Intel Corporation
3  */
4 
5 #include <rte_malloc.h>
6 #include <rte_eal.h>
7 #include <rte_log.h>
8 #include <rte_compressdev.h>
9 
10 #include "comp_perf.h"
11 #include "comp_perf_options.h"
12 #include "comp_perf_test_throughput.h"
13 #include "comp_perf_test_cyclecount.h"
14 #include "comp_perf_test_common.h"
15 #include "comp_perf_test_verify.h"
16 
17 
18 #define DIV_CEIL(a, b)  ((a) / (b) + ((a) % (b) != 0))
19 
20 struct cperf_buffer_info {
21 	uint16_t total_segments;
22 	uint16_t segment_sz;
23 	uint16_t last_segment_sz;
24 	uint32_t total_buffs;	      /*number of buffers = number of ops*/
25 	uint16_t segments_per_buff;
26 	uint16_t segments_per_last_buff;
27 	size_t input_data_sz;
28 };
29 
30 static struct cperf_buffer_info buffer_info;
31 
32 int
33 param_range_check(uint16_t size, const struct rte_param_log2_range *range)
34 {
35 	unsigned int next_size;
36 
37 	/* Check lower/upper bounds */
38 	if (size < range->min)
39 		return -1;
40 
41 	if (size > range->max)
42 		return -1;
43 
44 	/* If range is actually only one value, size is correct */
45 	if (range->increment == 0)
46 		return 0;
47 
48 	/* Check if value is one of the supported sizes */
49 	for (next_size = range->min; next_size <= range->max;
50 			next_size += range->increment)
51 		if (size == next_size)
52 			return 0;
53 
54 	return -1;
55 }
56 
57 static uint32_t
58 find_buf_size(uint32_t input_size)
59 {
60 	uint32_t i;
61 
62 	/* From performance point of view the buffer size should be a
63 	 * power of 2 but also should be enough to store incompressible data
64 	 */
65 
66 	/* We're looking for nearest power of 2 buffer size, which is greater
67 	 * than input_size
68 	 */
69 	uint32_t size =
70 		!input_size ? MIN_COMPRESSED_BUF_SIZE : (input_size << 1);
71 
72 	for (i = UINT16_MAX + 1; !(i & size); i >>= 1)
73 		;
74 
75 	return i > ((UINT16_MAX + 1) >> 1)
76 			? (uint32_t)((float)input_size * EXPANSE_RATIO)
77 			: i;
78 }
79 
80 void
81 comp_perf_free_memory(struct comp_test_data *test_data,
82 		      struct cperf_mem_resources *mem)
83 {
84 	uint32_t i;
85 
86 	if (mem->decomp_bufs != NULL)
87 		for (i = 0; i < mem->total_bufs; i++)
88 			rte_pktmbuf_free(mem->decomp_bufs[i]);
89 
90 	if (mem->comp_bufs != NULL)
91 		for (i = 0; i < mem->total_bufs; i++)
92 			rte_pktmbuf_free(mem->comp_bufs[i]);
93 
94 	rte_free(mem->decomp_bufs);
95 	rte_free(mem->comp_bufs);
96 	rte_free(mem->decompressed_data);
97 	rte_free(mem->compressed_data);
98 	rte_mempool_free(mem->op_pool);
99 	rte_mempool_free(mem->decomp_buf_pool);
100 	rte_mempool_free(mem->comp_buf_pool);
101 
102 	/* external mbuf support */
103 	if (mem->decomp_memzones != NULL) {
104 		for (i = 0; i < test_data->total_segs; i++)
105 			rte_memzone_free(mem->decomp_memzones[i]);
106 		rte_free(mem->decomp_memzones);
107 	}
108 	if (mem->comp_memzones != NULL) {
109 		for (i = 0; i < test_data->total_segs; i++)
110 			rte_memzone_free(mem->comp_memzones[i]);
111 		rte_free(mem->comp_memzones);
112 	}
113 	rte_free(mem->decomp_buf_infos);
114 	rte_free(mem->comp_buf_infos);
115 }
116 
117 static void
118 comp_perf_extbuf_free_cb(void *addr __rte_unused, void *opaque __rte_unused)
119 {
120 }
121 
122 static const struct rte_memzone *
123 comp_perf_make_memzone(const char *name, struct cperf_mem_resources *mem,
124 		       unsigned int number, size_t size)
125 {
126 	unsigned int socket_id = rte_socket_id();
127 	char mz_name[RTE_MEMZONE_NAMESIZE];
128 	const struct rte_memzone *memzone;
129 
130 	snprintf(mz_name, RTE_MEMZONE_NAMESIZE, "%s_s%u_d%u_q%u_%d", name,
131 		 socket_id, mem->dev_id, mem->qp_id, number);
132 	memzone = rte_memzone_lookup(mz_name);
133 	if (memzone != NULL && memzone->len != size) {
134 		rte_memzone_free(memzone);
135 		memzone = NULL;
136 	}
137 	if (memzone == NULL) {
138 		memzone = rte_memzone_reserve_aligned(mz_name, size, socket_id,
139 				RTE_MEMZONE_IOVA_CONTIG, RTE_CACHE_LINE_SIZE);
140 		if (memzone == NULL)
141 			RTE_LOG(ERR, USER1, "Can't allocate memory zone %s\n",
142 				mz_name);
143 	}
144 	return memzone;
145 }
146 
147 static int
148 comp_perf_allocate_external_mbufs(struct comp_test_data *test_data,
149 				  struct cperf_mem_resources *mem)
150 {
151 	uint32_t i;
152 
153 	mem->comp_memzones = rte_zmalloc_socket(NULL,
154 		test_data->total_segs * sizeof(struct rte_memzone *),
155 		0, rte_socket_id());
156 
157 	if (mem->comp_memzones == NULL) {
158 		RTE_LOG(ERR, USER1,
159 			"Memory to hold the compression memzones could not be allocated\n");
160 		return -1;
161 	}
162 
163 	mem->decomp_memzones = rte_zmalloc_socket(NULL,
164 		test_data->total_segs * sizeof(struct rte_memzone *),
165 		0, rte_socket_id());
166 
167 	if (mem->decomp_memzones == NULL) {
168 		RTE_LOG(ERR, USER1,
169 			"Memory to hold the decompression memzones could not be allocated\n");
170 		return -1;
171 	}
172 
173 	mem->comp_buf_infos = rte_zmalloc_socket(NULL,
174 		test_data->total_segs * sizeof(struct rte_mbuf_ext_shared_info),
175 		0, rte_socket_id());
176 
177 	if (mem->comp_buf_infos == NULL) {
178 		RTE_LOG(ERR, USER1,
179 			"Memory to hold the compression buf infos could not be allocated\n");
180 		return -1;
181 	}
182 
183 	mem->decomp_buf_infos = rte_zmalloc_socket(NULL,
184 		test_data->total_segs * sizeof(struct rte_mbuf_ext_shared_info),
185 		0, rte_socket_id());
186 
187 	if (mem->decomp_buf_infos == NULL) {
188 		RTE_LOG(ERR, USER1,
189 			"Memory to hold the decompression buf infos could not be allocated\n");
190 		return -1;
191 	}
192 
193 	for (i = 0; i < test_data->total_segs; i++) {
194 		mem->comp_memzones[i] = comp_perf_make_memzone("comp", mem,
195 				i, test_data->out_seg_sz);
196 		if (mem->comp_memzones[i] == NULL) {
197 			RTE_LOG(ERR, USER1,
198 				"Memory to hold the compression memzone could not be allocated\n");
199 			return -1;
200 		}
201 
202 		mem->decomp_memzones[i] = comp_perf_make_memzone("decomp", mem,
203 				i, test_data->seg_sz);
204 		if (mem->decomp_memzones[i] == NULL) {
205 			RTE_LOG(ERR, USER1,
206 				"Memory to hold the decompression memzone could not be allocated\n");
207 			return -1;
208 		}
209 
210 		mem->comp_buf_infos[i].free_cb =
211 				comp_perf_extbuf_free_cb;
212 		mem->comp_buf_infos[i].fcb_opaque = NULL;
213 		rte_mbuf_ext_refcnt_set(&mem->comp_buf_infos[i], 1);
214 
215 		mem->decomp_buf_infos[i].free_cb =
216 				comp_perf_extbuf_free_cb;
217 		mem->decomp_buf_infos[i].fcb_opaque = NULL;
218 		rte_mbuf_ext_refcnt_set(&mem->decomp_buf_infos[i], 1);
219 	}
220 
221 	return 0;
222 }
223 
224 int
225 comp_perf_allocate_memory(struct comp_test_data *test_data,
226 			  struct cperf_mem_resources *mem)
227 {
228 	uint16_t comp_mbuf_size;
229 	uint16_t decomp_mbuf_size;
230 
231 	test_data->out_seg_sz = find_buf_size(test_data->seg_sz);
232 
233 	/* Number of segments for input and output
234 	 * (compression and decompression)
235 	 */
236 	test_data->total_segs = DIV_CEIL(test_data->input_data_sz,
237 			test_data->seg_sz);
238 
239 	if (test_data->use_external_mbufs != 0) {
240 		if (comp_perf_allocate_external_mbufs(test_data, mem) < 0)
241 			return -1;
242 		comp_mbuf_size = 0;
243 		decomp_mbuf_size = 0;
244 	} else {
245 		comp_mbuf_size = test_data->out_seg_sz + RTE_PKTMBUF_HEADROOM;
246 		decomp_mbuf_size = test_data->seg_sz + RTE_PKTMBUF_HEADROOM;
247 	}
248 
249 	char pool_name[32] = "";
250 
251 	snprintf(pool_name, sizeof(pool_name), "comp_buf_pool_%u_qp_%u",
252 			mem->dev_id, mem->qp_id);
253 	mem->comp_buf_pool = rte_pktmbuf_pool_create(pool_name,
254 				test_data->total_segs,
255 				0, 0,
256 				comp_mbuf_size,
257 				rte_socket_id());
258 	if (mem->comp_buf_pool == NULL) {
259 		RTE_LOG(ERR, USER1, "Mbuf mempool could not be created\n");
260 		return -1;
261 	}
262 
263 	snprintf(pool_name, sizeof(pool_name), "decomp_buf_pool_%u_qp_%u",
264 			mem->dev_id, mem->qp_id);
265 	mem->decomp_buf_pool = rte_pktmbuf_pool_create(pool_name,
266 				test_data->total_segs,
267 				0, 0,
268 				decomp_mbuf_size,
269 				rte_socket_id());
270 	if (mem->decomp_buf_pool == NULL) {
271 		RTE_LOG(ERR, USER1, "Mbuf mempool could not be created\n");
272 		return -1;
273 	}
274 
275 	mem->total_bufs = DIV_CEIL(test_data->total_segs,
276 				   test_data->max_sgl_segs);
277 
278 	snprintf(pool_name, sizeof(pool_name), "op_pool_%u_qp_%u",
279 			mem->dev_id, mem->qp_id);
280 
281 	/* one mempool for both src and dst mbufs */
282 	mem->op_pool = rte_comp_op_pool_create(pool_name,
283 				mem->total_bufs * 2,
284 				0, 0, rte_socket_id());
285 	if (mem->op_pool == NULL) {
286 		RTE_LOG(ERR, USER1, "Comp op mempool could not be created\n");
287 		return -1;
288 	}
289 
290 	/*
291 	 * Compressed data might be a bit larger than input data,
292 	 * if data cannot be compressed
293 	 */
294 	mem->compressed_data = rte_zmalloc_socket(NULL,
295 				RTE_MAX(
296 				    (size_t) test_data->out_seg_sz *
297 							  test_data->total_segs,
298 				    (size_t) MIN_COMPRESSED_BUF_SIZE),
299 				0,
300 				rte_socket_id());
301 	if (mem->compressed_data == NULL) {
302 		RTE_LOG(ERR, USER1, "Memory to hold the data from the input "
303 				"file could not be allocated\n");
304 		return -1;
305 	}
306 
307 	mem->decompressed_data = rte_zmalloc_socket(NULL,
308 				test_data->input_data_sz, 0,
309 				rte_socket_id());
310 	if (mem->decompressed_data == NULL) {
311 		RTE_LOG(ERR, USER1, "Memory to hold the data from the input "
312 				"file could not be allocated\n");
313 		return -1;
314 	}
315 
316 	mem->comp_bufs = rte_zmalloc_socket(NULL,
317 			mem->total_bufs * sizeof(struct rte_mbuf *),
318 			0, rte_socket_id());
319 	if (mem->comp_bufs == NULL) {
320 		RTE_LOG(ERR, USER1, "Memory to hold the compression mbufs"
321 				" could not be allocated\n");
322 		return -1;
323 	}
324 
325 	mem->decomp_bufs = rte_zmalloc_socket(NULL,
326 			mem->total_bufs * sizeof(struct rte_mbuf *),
327 			0, rte_socket_id());
328 	if (mem->decomp_bufs == NULL) {
329 		RTE_LOG(ERR, USER1, "Memory to hold the decompression mbufs"
330 				" could not be allocated\n");
331 		return -1;
332 	}
333 
334 	buffer_info.total_segments = test_data->total_segs;
335 	buffer_info.segment_sz = test_data->seg_sz;
336 	buffer_info.total_buffs = mem->total_bufs;
337 	buffer_info.segments_per_buff = test_data->max_sgl_segs;
338 	buffer_info.input_data_sz = test_data->input_data_sz;
339 
340 	return 0;
341 }
342 
343 int
344 prepare_bufs(struct comp_test_data *test_data, struct cperf_mem_resources *mem)
345 {
346 	uint32_t remaining_data = test_data->input_data_sz;
347 	uint8_t *input_data_ptr = test_data->input_data;
348 	size_t data_sz = 0;
349 	uint8_t *data_addr;
350 	uint32_t i, j;
351 	uint16_t segs_per_mbuf = 0;
352 	uint32_t cmz = 0;
353 	uint32_t dmz = 0;
354 
355 	for (i = 0; i < mem->total_bufs; i++) {
356 		/* Allocate data in input mbuf and copy data from input file */
357 		mem->decomp_bufs[i] =
358 			rte_pktmbuf_alloc(mem->decomp_buf_pool);
359 		if (mem->decomp_bufs[i] == NULL) {
360 			RTE_LOG(ERR, USER1, "Could not allocate mbuf\n");
361 			return -1;
362 		}
363 
364 		data_sz = RTE_MIN(remaining_data, test_data->seg_sz);
365 
366 		if (test_data->use_external_mbufs != 0) {
367 			rte_pktmbuf_attach_extbuf(mem->decomp_bufs[i],
368 					mem->decomp_memzones[dmz]->addr,
369 					mem->decomp_memzones[dmz]->iova,
370 					test_data->seg_sz,
371 					&mem->decomp_buf_infos[dmz]);
372 			dmz++;
373 		}
374 
375 		data_addr = (uint8_t *) rte_pktmbuf_append(
376 					mem->decomp_bufs[i], data_sz);
377 		if (data_addr == NULL) {
378 			RTE_LOG(ERR, USER1, "Could not append data\n");
379 			return -1;
380 		}
381 		rte_memcpy(data_addr, input_data_ptr, data_sz);
382 
383 		input_data_ptr += data_sz;
384 		remaining_data -= data_sz;
385 
386 		/* Already one segment in the mbuf */
387 		segs_per_mbuf = 1;
388 
389 		/* Chain mbufs if needed for input mbufs */
390 		while (segs_per_mbuf < test_data->max_sgl_segs
391 				&& remaining_data > 0) {
392 			struct rte_mbuf *next_seg =
393 				rte_pktmbuf_alloc(mem->decomp_buf_pool);
394 
395 			if (next_seg == NULL) {
396 				RTE_LOG(ERR, USER1,
397 					"Could not allocate mbuf\n");
398 				return -1;
399 			}
400 
401 			data_sz = RTE_MIN(remaining_data, test_data->seg_sz);
402 
403 			if (test_data->use_external_mbufs != 0) {
404 				rte_pktmbuf_attach_extbuf(
405 					next_seg,
406 					mem->decomp_memzones[dmz]->addr,
407 					mem->decomp_memzones[dmz]->iova,
408 					test_data->seg_sz,
409 					&mem->decomp_buf_infos[dmz]);
410 				dmz++;
411 			}
412 
413 			data_addr = (uint8_t *)rte_pktmbuf_append(next_seg,
414 				data_sz);
415 
416 			if (data_addr == NULL) {
417 				RTE_LOG(ERR, USER1, "Could not append data\n");
418 				return -1;
419 			}
420 
421 			rte_memcpy(data_addr, input_data_ptr, data_sz);
422 			input_data_ptr += data_sz;
423 			remaining_data -= data_sz;
424 
425 			if (rte_pktmbuf_chain(mem->decomp_bufs[i],
426 					next_seg) < 0) {
427 				RTE_LOG(ERR, USER1, "Could not chain mbufs\n");
428 				return -1;
429 			}
430 			segs_per_mbuf++;
431 		}
432 
433 		/* Allocate data in output mbuf */
434 		mem->comp_bufs[i] =
435 			rte_pktmbuf_alloc(mem->comp_buf_pool);
436 		if (mem->comp_bufs[i] == NULL) {
437 			RTE_LOG(ERR, USER1, "Could not allocate mbuf\n");
438 			return -1;
439 		}
440 
441 		if (test_data->use_external_mbufs != 0) {
442 			rte_pktmbuf_attach_extbuf(mem->comp_bufs[i],
443 					mem->comp_memzones[cmz]->addr,
444 					mem->comp_memzones[cmz]->iova,
445 					test_data->out_seg_sz,
446 					&mem->comp_buf_infos[cmz]);
447 			cmz++;
448 		}
449 
450 		data_addr = (uint8_t *) rte_pktmbuf_append(
451 					mem->comp_bufs[i],
452 					test_data->out_seg_sz);
453 		if (data_addr == NULL) {
454 			RTE_LOG(ERR, USER1, "Could not append data\n");
455 			return -1;
456 		}
457 
458 		/* Chain mbufs if needed for output mbufs */
459 		for (j = 1; j < segs_per_mbuf; j++) {
460 			struct rte_mbuf *next_seg =
461 				rte_pktmbuf_alloc(mem->comp_buf_pool);
462 
463 			if (next_seg == NULL) {
464 				RTE_LOG(ERR, USER1,
465 					"Could not allocate mbuf\n");
466 				return -1;
467 			}
468 
469 			if (test_data->use_external_mbufs != 0) {
470 				rte_pktmbuf_attach_extbuf(
471 					next_seg,
472 					mem->comp_memzones[cmz]->addr,
473 					mem->comp_memzones[cmz]->iova,
474 					test_data->out_seg_sz,
475 					&mem->comp_buf_infos[cmz]);
476 				cmz++;
477 			}
478 
479 			data_addr = (uint8_t *)rte_pktmbuf_append(next_seg,
480 				test_data->out_seg_sz);
481 			if (data_addr == NULL) {
482 				RTE_LOG(ERR, USER1, "Could not append data\n");
483 				return -1;
484 			}
485 
486 			if (rte_pktmbuf_chain(mem->comp_bufs[i],
487 					next_seg) < 0) {
488 				RTE_LOG(ERR, USER1, "Could not chain mbufs\n");
489 				return -1;
490 			}
491 		}
492 	}
493 
494 	buffer_info.segments_per_last_buff = segs_per_mbuf;
495 	buffer_info.last_segment_sz = data_sz;
496 
497 	return 0;
498 }
499 
500 void
501 print_test_dynamics(const struct comp_test_data *test_data)
502 {
503 	uint32_t opt_total_segs = DIV_CEIL(buffer_info.input_data_sz,
504 			MAX_SEG_SIZE);
505 
506 	if (buffer_info.total_buffs > 1) {
507 		if (test_data->test == CPERF_TEST_TYPE_THROUGHPUT) {
508 			printf("\nWarning: for the current input parameters, number"
509 				" of ops is higher than one, which may result"
510 				" in sub-optimal performance.\n");
511 			printf("To improve the performance (for the current"
512 				" input data) following parameters are"
513 				" suggested:\n");
514 			printf("	* Segment size: %d\n",
515 			       MAX_SEG_SIZE);
516 			printf("	* Number of segments: %u\n",
517 			       opt_total_segs);
518 		}
519 	} else if (buffer_info.total_buffs == 1) {
520 		printf("\nInfo: there is only one op with %u segments -"
521 				" the compression ratio is the best.\n",
522 			buffer_info.segments_per_last_buff);
523 		if (buffer_info.segment_sz < MAX_SEG_SIZE)
524 			printf("To reduce compression time, please use"
525 					" bigger segment size: %d.\n",
526 				MAX_SEG_SIZE);
527 		else if (buffer_info.segment_sz == MAX_SEG_SIZE)
528 			printf("Segment size is optimal for the best"
529 					" performance.\n");
530 	} else
531 		printf("Warning: something wrong happened!!\n");
532 
533 	printf("\nFor the current input parameters (segment size = %u,"
534 			" maximum segments per SGL = %u):\n",
535 		buffer_info.segment_sz,
536 		buffer_info.segments_per_buff);
537 	printf("	* Total number of buffers: %d\n",
538 		buffer_info.total_segments);
539 	printf("	* %u buffer(s) %u bytes long, last buffer %u"
540 			" byte(s) long\n",
541 		buffer_info.total_segments - 1,
542 		buffer_info.segment_sz,
543 		buffer_info.last_segment_sz);
544 	printf("	* Number of ops: %u\n", buffer_info.total_buffs);
545 	printf("	* Total memory allocation: %u\n",
546 		(buffer_info.total_segments - 1) * buffer_info.segment_sz
547 		+ buffer_info.last_segment_sz);
548 	if (buffer_info.total_buffs > 1)
549 		printf("	* %u ops: %u segment(s) in each,"
550 				" segment size %u\n",
551 			buffer_info.total_buffs - 1,
552 			buffer_info.segments_per_buff,
553 			buffer_info.segment_sz);
554 	if (buffer_info.segments_per_last_buff > 1) {
555 		printf("	* 1 op %u segments:\n",
556 				buffer_info.segments_per_last_buff);
557 		printf("		o %u segment size %u\n",
558 			buffer_info.segments_per_last_buff - 1,
559 			buffer_info.segment_sz);
560 		printf("		o last segment size %u\n",
561 			buffer_info.last_segment_sz);
562 	} else if (buffer_info.segments_per_last_buff == 1) {
563 		printf("	* 1 op (the last one): %u segment %u"
564 				" byte(s) long\n\n",
565 			buffer_info.segments_per_last_buff,
566 			buffer_info.last_segment_sz);
567 	}
568 	printf("\n");
569 }
570