xref: /dflybsd-src/usr.bin/top/m_dragonfly.c (revision dce2f7a6000be387deb4457887c74bbf9991eba0)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For DragonFly 2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for DragonFly 2.5.1
13  * Should work for:
14  *	DragonFly 2.x and above
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19  * This module has been put together from different sources and is based on the
20  * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
21  *
22  * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23  */
24 
25 #include <sys/user.h>
26 #include <sys/types.h>
27 #include <sys/time.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
30 
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/vmmeter.h>
42 #include <sys/resource.h>
43 #include <sys/rtprio.h>
44 
45 /* Swap */
46 #include <stdlib.h>
47 #include <string.h>
48 #include <sys/conf.h>
49 
50 #include <osreldate.h>		/* for changes in kernel structures */
51 
52 #include <sys/kinfo.h>
53 #include <kinfo.h>
54 #include "top.h"
55 #include "display.h"
56 #include "machine.h"
57 #include "screen.h"
58 #include "utils.h"
59 
60 int swapmode(int *retavail, int *retfree);
61 static int namelength;
62 static int cmdlength;
63 static int show_fullcmd;
64 
65 int n_cpus = 0;
66 
67 /* get_process_info passes back a handle.  This is what it looks like: */
68 
69 struct handle {
70 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
71 	int remaining;		/* number of pointers remaining */
72 };
73 
74 /* declarations for load_avg */
75 #include "loadavg.h"
76 
77 #define PP(pp, field) ((pp)->kp_ ## field)
78 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
79 #define VP(pp, field) ((pp)->kp_vm_ ## field)
80 
81 /* what we consider to be process size: */
82 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
83 
84 /*
85  * These definitions control the format of the per-process area
86  */
87 
88 static char smp_header[] =
89 "   PID %-*.*s NICE  SIZE    RES    STATE CPU  TIME   CTIME    CPU COMMAND";
90 
91 #define smp_Proc_format \
92 	"%6d %-*.*s %3d%7s %6s %8.8s %2d %6s %7s %5.2f%% %.*s"
93 
94 /* process state names for the "STATE" column of the display */
95 /*
96  * the extra nulls in the string "run" are for adding a slash and the
97  * processor number when needed
98  */
99 
100 const char *state_abbrev[] = {
101 	"", "RUN\0\0\0", "STOP", "SLEEP",
102 };
103 
104 
105 static kvm_t *kd;
106 
107 /* values that we stash away in _init and use in later routines */
108 
109 static long lastpid;
110 
111 /* these are for calculating cpu state percentages */
112 
113 static struct kinfo_cputime *cp_time, *cp_old;
114 
115 /* these are for detailing the process states */
116 
117 #define MAXPSTATES	6
118 
119 int process_states[MAXPSTATES];
120 
121 char *procstatenames[] = {
122 	" running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
123 	NULL
124 };
125 
126 /* these are for detailing the cpu states */
127 #define CPU_STATES 5
128 int *cpu_states;
129 int* cpu_averages;
130 char *cpustatenames[CPU_STATES + 1] = {
131 	"user", "nice", "system", "interrupt", "idle", NULL
132 };
133 
134 /* these are for detailing the memory statistics */
135 
136 long memory_stats[7];
137 char *memorynames[] = {
138 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
139 	NULL
140 };
141 
142 long swap_stats[7];
143 char *swapnames[] = {
144 	/* 0           1            2           3            4       5 */
145 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
146 	NULL
147 };
148 
149 
150 /* these are for keeping track of the proc array */
151 
152 static int nproc;
153 static int onproc = -1;
154 static int pref_len;
155 static struct kinfo_proc *pbase;
156 static struct kinfo_proc **pref;
157 
158 static uint64_t prev_pbase_time;	/* unit: us */
159 static struct kinfo_proc *prev_pbase;
160 static int prev_nproc = -1;
161 static int fscale;
162 
163 /* these are for getting the memory statistics */
164 
165 static int pageshift;		/* log base 2 of the pagesize */
166 
167 /* define pagetok in terms of pageshift */
168 
169 #define pagetok(size) ((size) << pageshift)
170 
171 /* sorting orders. first is default */
172 char *ordernames[] = {
173   "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime",  "pres", NULL
174 };
175 
176 /* compare routines */
177 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
178 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
179 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
180 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
181 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
182 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
183 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
184 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
185 int compare_pres(struct kinfo_proc **, struct kinfo_proc **);
186 
187 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
188 	proc_compare,
189 	compare_size,
190 	compare_res,
191 	compare_time,
192 	compare_prio,
193 	compare_thr,
194 	compare_pid,
195 	compare_ctime,
196 	compare_pres,
197 	NULL
198 };
199 
200 static void
201 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
202     struct kinfo_cputime *old)
203 {
204 	struct kinfo_cputime diffs;
205 	uint64_t total_change, half_total;
206 
207 	/* initialization */
208 	total_change = 0;
209 
210 	diffs.cp_user = new->cp_user - old->cp_user;
211 	diffs.cp_nice = new->cp_nice - old->cp_nice;
212 	diffs.cp_sys = new->cp_sys - old->cp_sys;
213 	diffs.cp_intr = new->cp_intr - old->cp_intr;
214 	diffs.cp_idle = new->cp_idle - old->cp_idle;
215 	total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
216 	    diffs.cp_intr + diffs.cp_idle;
217 	old->cp_user = new->cp_user;
218 	old->cp_nice = new->cp_nice;
219 	old->cp_sys = new->cp_sys;
220 	old->cp_intr = new->cp_intr;
221 	old->cp_idle = new->cp_idle;
222 
223 	/* avoid divide by zero potential */
224 	if (total_change == 0)
225 		total_change = 1;
226 
227 	/* calculate percentages based on overall change, rounding up */
228 	half_total = total_change >> 1;
229 
230 	out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
231 	out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
232 	out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
233 	out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
234 	out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
235 }
236 
237 int
238 machine_init(struct statics *statics)
239 {
240 	int pagesize;
241 	size_t modelen, prmlen;
242 	struct passwd *pw;
243 	struct timeval boottime;
244 
245 	if (n_cpus < 1) {
246 		if (kinfo_get_cpus(&n_cpus))
247 			err(1, "kinfo_get_cpus failed");
248 	}
249 	/* get boot time */
250 	modelen = sizeof(boottime);
251 	if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
252 		/* we have no boottime to report */
253 		boottime.tv_sec = -1;
254 	}
255 
256 	prmlen = sizeof(fscale);
257 	if (sysctlbyname("kern.fscale", &fscale, &prmlen, NULL, 0) == -1)
258 		fscale = 0;
259 
260 	while ((pw = getpwent()) != NULL) {
261 		if ((int)strlen(pw->pw_name) > namelength)
262 			namelength = strlen(pw->pw_name);
263 	}
264 	if (namelength < 8)
265 		namelength = 8;
266 	if (namelength > 13)
267 		namelength = 13;
268 
269 	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
270 		return -1;
271 
272 	pbase = NULL;
273 	pref = NULL;
274 	nproc = 0;
275 	onproc = -1;
276 	prev_pbase = NULL;
277 	prev_nproc = -1;
278 	/*
279 	 * get the page size with "getpagesize" and calculate pageshift from
280 	 * it
281 	 */
282 	pagesize = getpagesize();
283 	pageshift = 0;
284 	while (pagesize > 1) {
285 		pageshift++;
286 		pagesize >>= 1;
287 	}
288 
289 	/* we only need the amount of log(2)1024 for our conversion */
290 	pageshift -= LOG1024;
291 
292 	/* fill in the statics information */
293 	statics->procstate_names = procstatenames;
294 	statics->cpustate_names = cpustatenames;
295 	statics->memory_names = memorynames;
296 	statics->boottime = boottime.tv_sec;
297 	statics->swap_names = swapnames;
298 	statics->order_names = ordernames;
299 	/* we need kvm descriptor in order to show full commands */
300 	statics->flags.fullcmds = kd != NULL;
301 	statics->flags.threads = 1;
302 
303 	/* all done! */
304 	return (0);
305 }
306 
307 char *
308 format_header(char *uname_field)
309 {
310 	static char Header[128];
311 
312 	snprintf(Header, sizeof(Header), smp_header,
313 	    namelength, namelength, uname_field);
314 
315 	if (screen_width <= 79)
316 		cmdlength = 80;
317 	else
318 		cmdlength = screen_width;
319 
320 	cmdlength = cmdlength - strlen(Header) + 6;
321 
322 	return Header;
323 }
324 
325 static int swappgsin = -1;
326 static int swappgsout = -1;
327 extern struct timeval timeout;
328 
329 void
330 get_system_info(struct system_info *si)
331 {
332 	size_t len;
333 	int cpu;
334 
335 	if (cpu_states == NULL) {
336 		cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
337 		if (cpu_states == NULL)
338 			err(1, "malloc");
339 		bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
340 	}
341 	if (cp_time == NULL) {
342 		cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
343 		if (cp_time == NULL)
344 			err(1, "cp_time");
345 		cp_old = cp_time + n_cpus;
346 		len = n_cpus * sizeof(cp_old[0]);
347 		bzero(cp_time, len);
348 		if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
349 			err(1, "kern.cputime");
350 	}
351 	len = n_cpus * sizeof(cp_time[0]);
352 	bzero(cp_time, len);
353 	if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
354 		err(1, "kern.cputime");
355 
356 	getloadavg(si->load_avg, 3);
357 
358 	lastpid = 0;
359 
360 	/* convert cp_time counts to percentages */
361 	int combine_cpus = (enable_ncpus == 0 && n_cpus > 1);
362 	for (cpu = 0; cpu < n_cpus; ++cpu) {
363 		cputime_percentages(cpu_states + cpu * CPU_STATES,
364 		    &cp_time[cpu], &cp_old[cpu]);
365 	}
366 	if (combine_cpus) {
367 		if (cpu_averages == NULL) {
368 			cpu_averages = malloc(sizeof(*cpu_averages) * CPU_STATES);
369 			if (cpu_averages == NULL)
370 				err(1, "cpu_averages");
371 		}
372 		bzero(cpu_averages, sizeof(*cpu_averages) * CPU_STATES);
373 		for (cpu = 0; cpu < n_cpus; ++cpu) {
374 			int j = 0;
375 			cpu_averages[0] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
376 			cpu_averages[1] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
377 			cpu_averages[2] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
378 			cpu_averages[3] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
379 			cpu_averages[4] += *(cpu_states + ((cpu * CPU_STATES) + j++) );
380 		}
381 		for (int i = 0; i < CPU_STATES; ++i)
382 			cpu_averages[i] /= n_cpus;
383 	}
384 
385 	/* sum memory & swap statistics */
386 	{
387 		struct vmmeter vmm;
388 		struct vmstats vms;
389 		size_t vms_size = sizeof(vms);
390 		size_t vmm_size = sizeof(vmm);
391 		static unsigned int swap_delay = 0;
392 		static int swapavail = 0;
393 		static int swapfree = 0;
394 		static long bufspace = 0;
395 
396 		if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
397 			err(1, "sysctlbyname: vm.vmstats");
398 
399 		if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
400 			err(1, "sysctlbyname: vm.vmmeter");
401 
402 		if (kinfo_get_vfs_bufspace(&bufspace))
403 			err(1, "kinfo_get_vfs_bufspace");
404 
405 		/* convert memory stats to Kbytes */
406 		memory_stats[0] = pagetok(vms.v_active_count);
407 		memory_stats[1] = pagetok(vms.v_inactive_count);
408 		memory_stats[2] = pagetok(vms.v_wire_count);
409 		memory_stats[3] = pagetok(vms.v_cache_count);
410 		memory_stats[4] = bufspace / 1024;
411 		memory_stats[5] = pagetok(vms.v_free_count);
412 		memory_stats[6] = -1;
413 
414 		/* first interval */
415 		if (swappgsin < 0) {
416 			swap_stats[4] = 0;
417 			swap_stats[5] = 0;
418 		}
419 		/* compute differences between old and new swap statistic */
420 		else {
421 			swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
422 			swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
423 		}
424 
425 		swappgsin = vmm.v_swappgsin;
426 		swappgsout = vmm.v_swappgsout;
427 
428 		/* call CPU heavy swapmode() only for changes */
429 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
430 			swap_stats[3] = swapmode(&swapavail, &swapfree);
431 			swap_stats[0] = swapavail;
432 			swap_stats[1] = swapavail - swapfree;
433 			swap_stats[2] = swapfree;
434 		}
435 		swap_delay = 1;
436 		swap_stats[6] = -1;
437 	}
438 
439 	/* set arrays and strings */
440 	si->cpustates = combine_cpus == 1 ?
441 	    cpu_averages : cpu_states;
442 	si->memory = memory_stats;
443 	si->swap = swap_stats;
444 
445 
446 	if (lastpid > 0) {
447 		si->last_pid = lastpid;
448 	} else {
449 		si->last_pid = -1;
450 	}
451 }
452 
453 
454 static struct handle handle;
455 
456 static void
457 fixup_system_pctcpu(struct kinfo_proc *fixit, uint64_t d)
458 {
459 	struct kinfo_proc *pp;
460 	int i, commlen;
461 
462 	/* Skip idle threads */
463 	if (strncmp(PP(fixit, comm), "idle_", 5) == 0)
464 		return;
465 
466 	commlen = strlen(PP(fixit, comm));
467 	for (pp = prev_pbase, i = 0; i < prev_nproc; pp++, i++) {
468 		int len;
469 
470 		if (LP(pp, pid) != -1)
471 			continue;
472 
473 		len = strlen(PP(pp, comm));
474 		if (len != commlen)
475 			continue;
476 		if (strcmp(PP(pp, comm), PP(fixit, comm)) == 0) {
477 			uint64_t ticks;
478 
479 			ticks = LP(fixit, iticks) - LP(pp, iticks);
480 			ticks += LP(fixit, sticks) - LP(pp, sticks);
481 			if (ticks > d)
482 				ticks = d;
483 			LP(fixit, pctcpu) = (ticks * (uint64_t)fscale) / d;
484 			break;
485 		}
486 	}
487 }
488 
489 caddr_t
490 get_process_info(struct system_info *si, struct process_select *sel,
491     int compare_index)
492 {
493 	int i;
494 	int total_procs;
495 	int active_procs;
496 	struct kinfo_proc **prefp;
497 	struct kinfo_proc *pp;
498 
499 	/* these are copied out of sel for speed */
500 	int show_idle;
501 	int show_system;
502 	int show_uid;
503 	int show_threads;
504 	char *match_command;
505 
506 	show_threads = sel->threads;
507 
508 
509 	pbase = kvm_getprocs(kd,
510 	    KERN_PROC_ALL | (show_threads ? KERN_PROC_FLAG_LWP : 0), 0, &nproc);
511 	if (nproc > onproc)
512 		pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
513 		    * (onproc = nproc));
514 	if (pref == NULL || pbase == NULL) {
515 		(void)fprintf(stderr, "top: Out of memory.\n");
516 		quit(23);
517 	}
518 	/* get a pointer to the states summary array */
519 	si->procstates = process_states;
520 
521 	/* set up flags which define what we are going to select */
522 	show_idle = sel->idle;
523 	show_system = sel->system;
524 	show_uid = sel->uid != -1;
525 	show_fullcmd = sel->fullcmd;
526 	match_command = sel->command;
527 
528 	/* count up process states and get pointers to interesting procs */
529 	total_procs = 0;
530 	active_procs = 0;
531 	memset((char *)process_states, 0, sizeof(process_states));
532 	prefp = pref;
533 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
534 		/*
535 		 * Place pointers to each valid proc structure in pref[].
536 		 * Process slots that are actually in use have a non-zero
537 		 * status field.  Processes with P_SYSTEM set are system
538 		 * processes---these get ignored unless show_sysprocs is set.
539 		 */
540 		if ((show_system && (LP(pp, pid) == -1)) ||
541 		    (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
542 			int lpstate = LP(pp, stat);
543 			int pstate = PP(pp, stat);
544 
545 			total_procs++;
546 			if (lpstate == LSRUN)
547 				process_states[0]++;
548 			if (pstate >= 0 && pstate < MAXPSTATES - 1)
549 				process_states[pstate]++;
550 			if (((show_system && (LP(pp, pid) == -1)) ||
551 			     (show_idle || (LP(pp, pctcpu) != 0) ||
552 			      (lpstate == LSRUN))) &&
553 			    (match_command == NULL ||
554 			     strstr(PP(pp, comm), match_command)) &&
555 			    (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
556 				*prefp++ = pp;
557 				active_procs++;
558 			}
559 		}
560 	}
561 
562 	if (show_system && fscale > 0) {
563 		struct timespec tv;
564 		uint64_t t;
565 
566 		clock_gettime(CLOCK_MONOTONIC_PRECISE, &tv);
567 		t = (tv.tv_sec * 1000000ULL) + (tv.tv_nsec / 1000ULL);
568 
569 		if (prev_pbase != NULL && prev_nproc > 0 &&
570 		    t > prev_pbase_time) {
571 			uint64_t d;
572 
573 			d = t - prev_pbase_time;
574 			for (pp = pbase, i = 0; i < nproc; pp++, i++) {
575 				if (LP(pp, pid) != -1)
576 					continue;
577 				fixup_system_pctcpu(pp, d);
578 			}
579 		}
580 
581 		if (prev_nproc != nproc) {
582 			prev_nproc = nproc;
583 			prev_pbase = realloc(prev_pbase,
584 			    prev_nproc * sizeof(struct kinfo_proc));
585 			if (prev_pbase == NULL) {
586 				fprintf(stderr, "top: Out of memory.\n");
587 				quit(23);
588 			}
589 		}
590 		prev_pbase_time = t;
591 		memcpy(prev_pbase, pbase, nproc * sizeof(struct kinfo_proc));
592 	}
593 
594 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
595 	    (int (*)(const void *, const void *))proc_compares[compare_index]);
596 
597 	/* remember active and total counts */
598 	si->p_total = total_procs;
599 	si->p_active = pref_len = active_procs;
600 
601 	/* pass back a handle */
602 	handle.next_proc = pref;
603 	handle.remaining = active_procs;
604 	return ((caddr_t) & handle);
605 }
606 
607 char fmt[MAX_COLS];		/* static area where result is built */
608 
609 char *
610 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
611 {
612 	struct kinfo_proc *pp;
613 	long cputime;
614 	long ccputime;
615 	double pct;
616 	struct handle *hp;
617 	char status[16];
618 	int state;
619 	int xnice;
620 	char *comm;
621 	char cputime_fmt[10], ccputime_fmt[10];
622 
623 	/* find and remember the next proc structure */
624 	hp = (struct handle *)xhandle;
625 	pp = *(hp->next_proc++);
626 	hp->remaining--;
627 
628 	/* get the process's command name */
629 	if (show_fullcmd) {
630 		char **comm_full = kvm_getargv(kd, pp, 0);
631 		if (comm_full != 0)
632 			comm = *comm_full;
633 		else
634 			comm = PP(pp, comm);
635 	}
636 	else {
637 		comm = PP(pp, comm);
638 	}
639 
640 	/* the actual field to display */
641 	char cmdfield[MAX_COLS];
642 
643 	if (PP(pp, flags) & P_SYSTEM) {
644 		/* system process */
645 		snprintf(cmdfield, sizeof cmdfield, "[%s]", comm);
646 	} else if (LP(pp, tid) > 0) {
647 		/* display it as a thread */
648 		snprintf(cmdfield, sizeof cmdfield, "%s{%d}", comm, LP(pp, tid));
649 	} else {
650 		snprintf(cmdfield, sizeof cmdfield, "%s", comm);
651 	}
652 
653 	/*
654 	 * Convert the process's runtime from microseconds to seconds.  This
655 	 * time includes the interrupt time to be in compliance with ps output.
656 	 */
657 	cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
658 	ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
659 	format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
660 	format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
661 
662 	/* calculate the base for cpu percentages */
663 	pct = pctdouble(LP(pp, pctcpu));
664 
665 	/* generate "STATE" field */
666 	switch (state = LP(pp, stat)) {
667 	case LSRUN:
668 		if (LP(pp, tdflags) & TDF_RUNNING)
669 			sprintf(status, "CPU%d", LP(pp, cpuid));
670 		else
671 			strcpy(status, "RUN");
672 		break;
673 	case LSSLEEP:
674 		if (LP(pp, wmesg) != NULL) {
675 			sprintf(status, "%.8s", LP(pp, wmesg)); /* WMESGLEN */
676 			break;
677 		}
678 		/* fall through */
679 	default:
680 
681 		if (state >= 0 &&
682 		    (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
683 			sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
684 		else
685 			sprintf(status, "?%5d", state);
686 		break;
687 	}
688 
689 	if (PP(pp, stat) == SZOMB)
690 		strcpy(status, "ZOMB");
691 
692 	/*
693 	 * idle time 0 - 31 -> nice value +21 - +52 normal time      -> nice
694 	 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
695 	 * 0 - 31 -> nice value -53 -
696 	 */
697 	switch (LP(pp, rtprio.type)) {
698 	case RTP_PRIO_REALTIME:
699 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
700 		break;
701 	case RTP_PRIO_IDLE:
702 		xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
703 		break;
704 	case RTP_PRIO_THREAD:
705 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
706 		break;
707 	default:
708 		xnice = PP(pp, nice);
709 		break;
710 	}
711 
712 	/* format this entry */
713 	snprintf(fmt, sizeof(fmt),
714 	    smp_Proc_format,
715 	    (int)PP(pp, pid),
716 	    namelength, namelength,
717 	    get_userid(PP(pp, ruid)),
718 	    (int)xnice,
719 	    format_k(PROCSIZE(pp)),
720 	    format_k(pagetok(VP(pp, rssize))),
721 	    status,
722 	    LP(pp, cpuid),
723 	    cputime_fmt,
724 	    ccputime_fmt,
725 	    100.0 * pct,
726 	    cmdlength,
727 	    cmdfield);
728 
729 	/* return the result */
730 	return (fmt);
731 }
732 
733 /* comparison routines for qsort */
734 
735 /*
736  *  proc_compare - comparison function for "qsort"
737  *	Compares the resource consumption of two processes using five
738  *  	distinct keys.  The keys (in descending order of importance) are:
739  *  	percent cpu, cpu ticks, state, resident set size, total virtual
740  *  	memory usage.  The process states are ordered as follows (from least
741  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
742  *  	array declaration below maps a process state index into a number
743  *  	that reflects this ordering.
744  */
745 
746 static unsigned char sorted_state[] =
747 {
748 	0,			/* not used		 */
749 	3,			/* sleep		 */
750 	1,			/* ABANDONED (WAIT)	 */
751 	6,			/* run			 */
752 	5,			/* start		 */
753 	2,			/* zombie		 */
754 	4			/* stop			 */
755 };
756 
757 
758 #define ORDERKEY_PCTCPU \
759   if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
760      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
761 
762 #define CPTICKS(p)	(LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
763 
764 #define ORDERKEY_CPTICKS \
765   if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
766 		CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
767 
768 #define CTIME(p)	(((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
769   PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
770 
771 #define ORDERKEY_CTIME \
772    if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
773 		CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
774 
775 #define ORDERKEY_STATE \
776   if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
777                 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
778 
779 #define ORDERKEY_PRIO \
780   if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
781 
782 #define ORDERKEY_KTHREADS \
783   if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
784 
785 #define ORDERKEY_KTHREADS_PRIO \
786   if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
787 
788 #define ORDERKEY_RSSIZE \
789   if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
790 
791 #define ORDERKEY_MEM \
792   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
793 
794 #define ORDERKEY_PID \
795   if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
796 
797 #define ORDERKEY_PRSSIZE \
798   if((result = VP(p2, prssize) - VP(p1, prssize)) == 0)
799 
800 /* compare_cpu - the comparison function for sorting by cpu percentage */
801 
802 int
803 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
804 {
805 	struct kinfo_proc *p1;
806 	struct kinfo_proc *p2;
807 	int result;
808 	pctcpu lresult;
809 
810 	/* remove one level of indirection */
811 	p1 = *(struct kinfo_proc **) pp1;
812 	p2 = *(struct kinfo_proc **) pp2;
813 
814 	ORDERKEY_PCTCPU
815 	ORDERKEY_CPTICKS
816 	ORDERKEY_STATE
817 	ORDERKEY_PRIO
818 	ORDERKEY_RSSIZE
819 	ORDERKEY_MEM
820 	{}
821 
822 	return (result);
823 }
824 
825 /* compare_size - the comparison function for sorting by total memory usage */
826 
827 int
828 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
829 {
830 	struct kinfo_proc *p1;
831 	struct kinfo_proc *p2;
832 	int result;
833 	pctcpu lresult;
834 
835 	/* remove one level of indirection */
836 	p1 = *(struct kinfo_proc **) pp1;
837 	p2 = *(struct kinfo_proc **) pp2;
838 
839 	ORDERKEY_MEM
840 	ORDERKEY_RSSIZE
841 	ORDERKEY_PCTCPU
842 	ORDERKEY_CPTICKS
843 	ORDERKEY_STATE
844 	ORDERKEY_PRIO
845 	{}
846 
847 	return (result);
848 }
849 
850 /* compare_res - the comparison function for sorting by resident set size */
851 
852 int
853 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
854 {
855 	struct kinfo_proc *p1;
856 	struct kinfo_proc *p2;
857 	int result;
858 	pctcpu lresult;
859 
860 	/* remove one level of indirection */
861 	p1 = *(struct kinfo_proc **) pp1;
862 	p2 = *(struct kinfo_proc **) pp2;
863 
864 	ORDERKEY_RSSIZE
865 	ORDERKEY_MEM
866 	ORDERKEY_PCTCPU
867 	ORDERKEY_CPTICKS
868 	ORDERKEY_STATE
869 	ORDERKEY_PRIO
870 	{}
871 
872 	return (result);
873 }
874 
875 /* compare_pres - the comparison function for sorting by proportional resident set size */
876 
877 int
878 compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
879 {
880 	struct kinfo_proc *p1;
881 	struct kinfo_proc *p2;
882 	int result;
883 	pctcpu lresult;
884 
885 	/* remove one level of indirection */
886 	p1 = *(struct kinfo_proc **) pp1;
887 	p2 = *(struct kinfo_proc **) pp2;
888 
889 	ORDERKEY_PRSSIZE
890 	ORDERKEY_RSSIZE
891 	ORDERKEY_MEM
892 	ORDERKEY_PCTCPU
893 	ORDERKEY_CPTICKS
894 	ORDERKEY_STATE
895 	ORDERKEY_PRIO
896 	{}
897 
898 	return (result);
899 }
900 
901 /* compare_time - the comparison function for sorting by total cpu time */
902 
903 int
904 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
905 {
906 	struct kinfo_proc *p1;
907 	struct kinfo_proc *p2;
908 	int result;
909 	pctcpu lresult;
910 
911 	/* remove one level of indirection */
912 	p1 = *(struct kinfo_proc **) pp1;
913 	p2 = *(struct kinfo_proc **) pp2;
914 
915 	ORDERKEY_CPTICKS
916 	ORDERKEY_PCTCPU
917 	ORDERKEY_KTHREADS
918 	ORDERKEY_KTHREADS_PRIO
919 	ORDERKEY_STATE
920 	ORDERKEY_PRIO
921 	ORDERKEY_RSSIZE
922 	ORDERKEY_MEM
923 	{}
924 
925 	return (result);
926 }
927 
928 int
929 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
930 {
931 	struct kinfo_proc *p1;
932 	struct kinfo_proc *p2;
933 	int result;
934 	pctcpu lresult;
935 
936 	/* remove one level of indirection */
937 	p1 = *(struct kinfo_proc **) pp1;
938 	p2 = *(struct kinfo_proc **) pp2;
939 
940 	ORDERKEY_CTIME
941 	ORDERKEY_PCTCPU
942 	ORDERKEY_KTHREADS
943 	ORDERKEY_KTHREADS_PRIO
944 	ORDERKEY_STATE
945 	ORDERKEY_PRIO
946 	ORDERKEY_RSSIZE
947 	ORDERKEY_MEM
948 	{}
949 
950 	return (result);
951 }
952 
953 /* compare_prio - the comparison function for sorting by cpu percentage */
954 
955 int
956 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
957 {
958 	struct kinfo_proc *p1;
959 	struct kinfo_proc *p2;
960 	int result;
961 	pctcpu lresult;
962 
963 	/* remove one level of indirection */
964 	p1 = *(struct kinfo_proc **) pp1;
965 	p2 = *(struct kinfo_proc **) pp2;
966 
967 	ORDERKEY_KTHREADS
968 	ORDERKEY_KTHREADS_PRIO
969 	ORDERKEY_PRIO
970 	ORDERKEY_CPTICKS
971 	ORDERKEY_PCTCPU
972 	ORDERKEY_STATE
973 	ORDERKEY_RSSIZE
974 	ORDERKEY_MEM
975 	{}
976 
977 	return (result);
978 }
979 
980 int
981 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
982 {
983 	struct kinfo_proc *p1;
984 	struct kinfo_proc *p2;
985 	int result;
986 	pctcpu lresult;
987 
988 	/* remove one level of indirection */
989 	p1 = *(struct kinfo_proc **)pp1;
990 	p2 = *(struct kinfo_proc **)pp2;
991 
992 	ORDERKEY_KTHREADS
993 	ORDERKEY_KTHREADS_PRIO
994 	ORDERKEY_CPTICKS
995 	ORDERKEY_PCTCPU
996 	ORDERKEY_STATE
997 	ORDERKEY_RSSIZE
998 	ORDERKEY_MEM
999 	{}
1000 
1001 	return (result);
1002 }
1003 
1004 /* compare_pid - the comparison function for sorting by process id */
1005 
1006 int
1007 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
1008 {
1009 	struct kinfo_proc *p1;
1010 	struct kinfo_proc *p2;
1011 	int result;
1012 
1013 	/* remove one level of indirection */
1014 	p1 = *(struct kinfo_proc **) pp1;
1015 	p2 = *(struct kinfo_proc **) pp2;
1016 
1017 	ORDERKEY_PID
1018 	;
1019 
1020 	return(result);
1021 }
1022 
1023 /*
1024  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
1025  *		the process does not exist.
1026  *		It is EXTREMLY IMPORTANT that this function work correctly.
1027  *		If top runs setuid root (as in SVR4), then this function
1028  *		is the only thing that stands in the way of a serious
1029  *		security problem.  It validates requests for the "kill"
1030  *		and "renice" commands.
1031  */
1032 
1033 int
1034 proc_owner(int pid)
1035 {
1036 	int xcnt;
1037 	struct kinfo_proc **prefp;
1038 	struct kinfo_proc *pp;
1039 
1040 	prefp = pref;
1041 	xcnt = pref_len;
1042 	while (--xcnt >= 0) {
1043 		pp = *prefp++;
1044 		if (PP(pp, pid) == (pid_t) pid) {
1045 			return ((int)PP(pp, ruid));
1046 		}
1047 	}
1048 	return (-1);
1049 }
1050 
1051 
1052 /*
1053  * swapmode is based on a program called swapinfo written
1054  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
1055  */
1056 int
1057 swapmode(int *retavail, int *retfree)
1058 {
1059 	int n;
1060 	int pagesize = getpagesize();
1061 	struct kvm_swap swapary[1];
1062 
1063 	*retavail = 0;
1064 	*retfree = 0;
1065 
1066 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
1067 
1068 	n = kvm_getswapinfo(kd, swapary, 1, 0);
1069 	if (n < 0 || swapary[0].ksw_total == 0)
1070 		return (0);
1071 
1072 	*retavail = CONVERT(swapary[0].ksw_total);
1073 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
1074 
1075 	n = (int)((double)swapary[0].ksw_used * 100.0 /
1076 	    (double)swapary[0].ksw_total);
1077 	return (n);
1078 }
1079