xref: /dflybsd-src/usr.bin/top/m_dragonfly.c (revision 90ea502b8c5d21f908cedff6680ee2bc9e74ce74)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For DragonFly 2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for DragonFly 2.5.1
13  * Should work for:
14  *	DragonFly 2.x and above
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19  * This module has been put together from different sources and is based on the
20  * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
21  *
22  * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23  * $DragonFly: src/usr.bin/top/machine.c,v 1.26 2008/10/16 01:52:33 swildner Exp $
24  */
25 
26 #include <sys/time.h>
27 #include <sys/types.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
30 
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/time.h>
42 #include <sys/user.h>
43 #include <sys/vmmeter.h>
44 #include <sys/resource.h>
45 #include <sys/rtprio.h>
46 
47 /* Swap */
48 #include <stdlib.h>
49 #include <stdio.h>
50 #include <sys/conf.h>
51 
52 #include <osreldate.h>		/* for changes in kernel structures */
53 
54 #include <sys/kinfo.h>
55 #include <kinfo.h>
56 #include "top.h"
57 #include "display.h"
58 #include "machine.h"
59 #include "screen.h"
60 #include "utils.h"
61 
62 int swapmode(int *retavail, int *retfree);
63 static int smpmode;
64 static int namelength;
65 static int cmdlength;
66 static int show_fullcmd;
67 
68 int n_cpus = 0;
69 
70 /*
71  * needs to be a global symbol, so wrapper can be modified accordingly.
72  */
73 static int show_threads = 0;
74 
75 /* get_process_info passes back a handle.  This is what it looks like: */
76 
77 struct handle {
78 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
79 	int remaining;		/* number of pointers remaining */
80 };
81 
82 /* declarations for load_avg */
83 #include "loadavg.h"
84 
85 #define PP(pp, field) ((pp)->kp_ ## field)
86 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
87 #define VP(pp, field) ((pp)->kp_vm_ ## field)
88 
89 /* define what weighted cpu is.  */
90 #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \
91 			 ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu))))
92 
93 /* what we consider to be process size: */
94 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
95 
96 /*
97  * These definitions control the format of the per-process area
98  */
99 
100 static char smp_header[] =
101 "  PID %-*.*s PRI NICE  SIZE    RES STATE  C   TIME   WCPU    CPU COMMAND";
102 
103 #define smp_Proc_format \
104 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %5.2f%% %5.2f%% %.*s"
105 
106 static char up_header[] =
107 "  PID %-*.*s PRI NICE  SIZE    RES STATE    TIME   WCPU    CPU COMMAND";
108 
109 #define up_Proc_format \
110 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %5.2f%% %5.2f%% %.*s"
111 
112 
113 
114 /* process state names for the "STATE" column of the display */
115 /*
116  * the extra nulls in the string "run" are for adding a slash and the
117  * processor number when needed
118  */
119 
120 const char *state_abbrev[] = {
121 	"", "RUN\0\0\0", "STOP", "SLEEP",
122 };
123 
124 
125 static kvm_t *kd;
126 
127 /* values that we stash away in _init and use in later routines */
128 
129 static double logcpu;
130 
131 static long lastpid;
132 static int ccpu;
133 
134 /* these are for calculating cpu state percentages */
135 
136 static struct kinfo_cputime *cp_time, *cp_old;
137 
138 /* these are for detailing the process states */
139 
140 int process_states[6];
141 char *procstatenames[] = {
142 	"", " starting, ", " running, ", " sleeping, ", " stopped, ",
143 	" zombie, ",
144 	NULL
145 };
146 
147 /* these are for detailing the cpu states */
148 #define CPU_STATES 5
149 int *cpu_states;
150 char *cpustatenames[CPU_STATES + 1] = {
151 	"user", "nice", "system", "interrupt", "idle", NULL
152 };
153 
154 /* these are for detailing the memory statistics */
155 
156 long memory_stats[7];
157 char *memorynames[] = {
158 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
159 	NULL
160 };
161 
162 long swap_stats[7];
163 char *swapnames[] = {
164 	/* 0           1            2           3            4       5 */
165 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
166 	NULL
167 };
168 
169 
170 /* these are for keeping track of the proc array */
171 
172 static int nproc;
173 static int onproc = -1;
174 static int pref_len;
175 static struct kinfo_proc *pbase;
176 static struct kinfo_proc **pref;
177 
178 /* these are for getting the memory statistics */
179 
180 static int pageshift;		/* log base 2 of the pagesize */
181 
182 /* define pagetok in terms of pageshift */
183 
184 #define pagetok(size) ((size) << pageshift)
185 
186 /* sorting orders. first is default */
187 char *ordernames[] = {
188 	"cpu", "size", "res", "time", "pri", "thr", "pid", NULL
189 };
190 
191 /* compare routines */
192 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
193 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
194 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
195 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
196 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
197 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
198 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
199 
200 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
201 	proc_compare,
202 	compare_size,
203 	compare_res,
204 	compare_time,
205 	compare_prio,
206 	compare_thr,
207 	compare_pid,
208 	NULL
209 };
210 
211 static void
212 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
213     struct kinfo_cputime *old)
214 {
215 	struct kinfo_cputime diffs;
216 	uint64_t total_change, half_total;
217 
218 	/* initialization */
219 	total_change = 0;
220 
221 	diffs.cp_user = new->cp_user - old->cp_user;
222 	diffs.cp_nice = new->cp_nice - old->cp_nice;
223 	diffs.cp_sys = new->cp_sys - old->cp_sys;
224 	diffs.cp_intr = new->cp_intr - old->cp_intr;
225 	diffs.cp_idle = new->cp_idle - old->cp_idle;
226 	total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
227 	    diffs.cp_intr + diffs.cp_idle;
228 	old->cp_user = new->cp_user;
229 	old->cp_nice = new->cp_nice;
230 	old->cp_sys = new->cp_sys;
231 	old->cp_intr = new->cp_intr;
232 	old->cp_idle = new->cp_idle;
233 
234 	/* avoid divide by zero potential */
235 	if (total_change == 0)
236 		total_change = 1;
237 
238 	/* calculate percentages based on overall change, rounding up */
239 	half_total = total_change >> 1;
240 
241 	out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
242 	out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
243 	out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
244 	out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
245 	out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
246 }
247 
248 int
249 machine_init(struct statics *statics)
250 {
251 	int pagesize;
252 	size_t modelen;
253 	struct passwd *pw;
254 	struct timeval boottime;
255 
256 	if (n_cpus < 1) {
257 		if (kinfo_get_cpus(&n_cpus))
258 			err(1, "kinfo_get_cpus failed");
259 	}
260 	/* get boot time */
261 	modelen = sizeof(boottime);
262 	if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
263 		/* we have no boottime to report */
264 		boottime.tv_sec = -1;
265 	}
266 	modelen = sizeof(smpmode);
267 	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
268 	    sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
269 	    modelen != sizeof(smpmode))
270 		smpmode = 0;
271 
272 	while ((pw = getpwent()) != NULL) {
273 		if ((int)strlen(pw->pw_name) > namelength)
274 			namelength = strlen(pw->pw_name);
275 	}
276 	if (namelength < 8)
277 		namelength = 8;
278 	if (smpmode && namelength > 13)
279 		namelength = 13;
280 	else if (namelength > 15)
281 		namelength = 15;
282 
283 	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
284 		return -1;
285 
286 	if (kinfo_get_sched_ccpu(&ccpu)) {
287 		fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
288 		return (-1);
289 	}
290 	/* this is used in calculating WCPU -- calculate it ahead of time */
291 	logcpu = log(loaddouble(ccpu));
292 
293 	pbase = NULL;
294 	pref = NULL;
295 	nproc = 0;
296 	onproc = -1;
297 	/*
298 	 * get the page size with "getpagesize" and calculate pageshift from
299 	 * it
300 	 */
301 	pagesize = getpagesize();
302 	pageshift = 0;
303 	while (pagesize > 1) {
304 		pageshift++;
305 		pagesize >>= 1;
306 	}
307 
308 	/* we only need the amount of log(2)1024 for our conversion */
309 	pageshift -= LOG1024;
310 
311 	/* fill in the statics information */
312 	statics->procstate_names = procstatenames;
313 	statics->cpustate_names = cpustatenames;
314 	statics->memory_names = memorynames;
315 	statics->boottime = boottime.tv_sec;
316 	statics->swap_names = swapnames;
317 	statics->order_names = ordernames;
318 	/* we need kvm descriptor in order to show full commands */
319 	statics->flags.fullcmds = kd != NULL;
320 
321 	/* all done! */
322 	return (0);
323 }
324 
325 char *
326 format_header(char *uname_field)
327 {
328 	static char Header[128];
329 
330 	snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
331 	    namelength, namelength, uname_field);
332 
333 	if (screen_width <= 79)
334 		cmdlength = 80;
335 	else
336 		cmdlength = screen_width;
337 
338 	cmdlength = cmdlength - strlen(Header) + 6;
339 
340 	return Header;
341 }
342 
343 static int swappgsin = -1;
344 static int swappgsout = -1;
345 extern struct timeval timeout;
346 
347 void
348 get_system_info(struct system_info *si)
349 {
350 	size_t len;
351 	int cpu;
352 
353 	if (cpu_states == NULL) {
354 		cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
355 		if (cpu_states == NULL)
356 			err(1, "malloc");
357 		bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
358 	}
359 	if (cp_time == NULL) {
360 		cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
361 		if (cp_time == NULL)
362 			err(1, "cp_time");
363 		cp_old = cp_time + n_cpus;
364 
365 		len = n_cpus * sizeof(cp_old[0]);
366 		bzero(cp_time, len);
367 		if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
368 			err(1, "kern.cputime");
369 	}
370 	len = n_cpus * sizeof(cp_time[0]);
371 	bzero(cp_time, len);
372 	if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
373 		err(1, "kern.cputime");
374 
375 	getloadavg(si->load_avg, 3);
376 
377 	lastpid = 0;
378 
379 	/* convert cp_time counts to percentages */
380 	for (cpu = 0; cpu < n_cpus; ++cpu) {
381 		cputime_percentages(cpu_states + cpu * CPU_STATES,
382 		    &cp_time[cpu], &cp_old[cpu]);
383 	}
384 
385 	/* sum memory & swap statistics */
386 	{
387 		struct vmmeter vmm;
388 		struct vmstats vms;
389 		size_t vms_size = sizeof(vms);
390 		size_t vmm_size = sizeof(vmm);
391 		static unsigned int swap_delay = 0;
392 		static int swapavail = 0;
393 		static int swapfree = 0;
394 		static int bufspace = 0;
395 
396 		if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
397 			err(1, "sysctlbyname: vm.vmstats");
398 
399 		if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
400 			err(1, "sysctlbyname: vm.vmmeter");
401 
402 		if (kinfo_get_vfs_bufspace(&bufspace))
403 			err(1, "kinfo_get_vfs_bufspace");
404 
405 		/* convert memory stats to Kbytes */
406 		memory_stats[0] = pagetok(vms.v_active_count);
407 		memory_stats[1] = pagetok(vms.v_inactive_count);
408 		memory_stats[2] = pagetok(vms.v_wire_count);
409 		memory_stats[3] = pagetok(vms.v_cache_count);
410 		memory_stats[4] = bufspace / 1024;
411 		memory_stats[5] = pagetok(vms.v_free_count);
412 		memory_stats[6] = -1;
413 
414 		/* first interval */
415 		if (swappgsin < 0) {
416 			swap_stats[4] = 0;
417 			swap_stats[5] = 0;
418 		}
419 		/* compute differences between old and new swap statistic */
420 		else {
421 			swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
422 			swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
423 		}
424 
425 		swappgsin = vmm.v_swappgsin;
426 		swappgsout = vmm.v_swappgsout;
427 
428 		/* call CPU heavy swapmode() only for changes */
429 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
430 			swap_stats[3] = swapmode(&swapavail, &swapfree);
431 			swap_stats[0] = swapavail;
432 			swap_stats[1] = swapavail - swapfree;
433 			swap_stats[2] = swapfree;
434 		}
435 		swap_delay = 1;
436 		swap_stats[6] = -1;
437 	}
438 
439 	/* set arrays and strings */
440 	si->cpustates = cpu_states;
441 	si->memory = memory_stats;
442 	si->swap = swap_stats;
443 
444 
445 	if (lastpid > 0) {
446 		si->last_pid = lastpid;
447 	} else {
448 		si->last_pid = -1;
449 	}
450 }
451 
452 
453 static struct handle handle;
454 
455 caddr_t
456 get_process_info(struct system_info *si, struct process_select *sel,
457     int compare_index)
458 {
459 	int i;
460 	int total_procs;
461 	int active_procs;
462 	struct kinfo_proc **prefp;
463 	struct kinfo_proc *pp;
464 
465 	/* these are copied out of sel for speed */
466 	int show_idle;
467 	int show_system;
468 	int show_uid;
469 
470 
471 	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
472 	if (nproc > onproc)
473 		pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
474 		    * (onproc = nproc));
475 	if (pref == NULL || pbase == NULL) {
476 		(void)fprintf(stderr, "top: Out of memory.\n");
477 		quit(23);
478 	}
479 	/* get a pointer to the states summary array */
480 	si->procstates = process_states;
481 
482 	/* set up flags which define what we are going to select */
483 	show_idle = sel->idle;
484 	show_system = sel->system;
485 	show_uid = sel->uid != -1;
486 	show_fullcmd = sel->fullcmd;
487 
488 	/* count up process states and get pointers to interesting procs */
489 	total_procs = 0;
490 	active_procs = 0;
491 	memset((char *)process_states, 0, sizeof(process_states));
492 	prefp = pref;
493 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
494 		/*
495 		 * Place pointers to each valid proc structure in pref[].
496 		 * Process slots that are actually in use have a non-zero
497 		 * status field.  Processes with P_SYSTEM set are system
498 		 * processes---these get ignored unless show_sysprocs is set.
499 		 */
500 		if ((show_threads && (LP(pp, pid) == -1)) ||
501 		    (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
502 			total_procs++;
503 			process_states[(unsigned char)PP(pp, stat)]++;
504 			if ((show_threads && (LP(pp, pid) == -1)) ||
505 			    (show_idle || (LP(pp, pctcpu) != 0) ||
506 			    (LP(pp, stat) == LSRUN)) &&
507 			    (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
508 				*prefp++ = pp;
509 				active_procs++;
510 			}
511 		}
512 	}
513 
514 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
515 	    (int (*)(const void *, const void *))proc_compares[compare_index]);
516 
517 	/* remember active and total counts */
518 	si->p_total = total_procs;
519 	si->p_active = pref_len = active_procs;
520 
521 	/* pass back a handle */
522 	handle.next_proc = pref;
523 	handle.remaining = active_procs;
524 	return ((caddr_t) & handle);
525 }
526 
527 char fmt[128];			/* static area where result is built */
528 
529 char *
530 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
531 {
532 	struct kinfo_proc *pp;
533 	long cputime;
534 	double pct;
535 	struct handle *hp;
536 	char status[16];
537 	int state;
538 	int xnice;
539 	char **comm_full;
540 	char *comm;
541 
542 	/* find and remember the next proc structure */
543 	hp = (struct handle *)xhandle;
544 	pp = *(hp->next_proc++);
545 	hp->remaining--;
546 
547 	/* get the process's command name */
548 	if (show_fullcmd) {
549 		if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) {
550 			return (fmt);
551 		}
552 	}
553 	else {
554 		comm = PP(pp, comm);
555 	}
556 
557 	/*
558 	 * Convert the process's runtime from microseconds to seconds.  This
559 	 * time includes the interrupt time although that is not wanted here.
560 	 * ps(1) is similarly sloppy.
561 	 */
562 	cputime = (LP(pp, uticks) + LP(pp, sticks)) / 1000000;
563 
564 	/* calculate the base for cpu percentages */
565 	pct = pctdouble(LP(pp, pctcpu));
566 
567 	/* generate "STATE" field */
568 	switch (state = LP(pp, stat)) {
569 	case LSRUN:
570 		if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
571 			sprintf(status, "CPU%d", LP(pp, cpuid));
572 		else
573 			strcpy(status, "RUN");
574 		break;
575 	case LSSLEEP:
576 		if (LP(pp, wmesg) != NULL) {
577 			sprintf(status, "%.6s", LP(pp, wmesg));
578 			break;
579 		}
580 		/* fall through */
581 	default:
582 
583 		if (state >= 0 &&
584 		    (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
585 			sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
586 		else
587 			sprintf(status, "?%5d", state);
588 		break;
589 	}
590 
591 	if (PP(pp, stat) == SZOMB)
592 		strcpy(status, "ZOMB");
593 
594 	/*
595 	 * idle time 0 - 31 -> nice value +21 - +52 normal time      -> nice
596 	 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
597 	 * 0 - 31 -> nice value -53 -
598 	 */
599 	switch (LP(pp, rtprio.type)) {
600 	case RTP_PRIO_REALTIME:
601 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
602 		break;
603 	case RTP_PRIO_IDLE:
604 		xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
605 		break;
606 	case RTP_PRIO_THREAD:
607 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
608 		break;
609 	default:
610 		xnice = PP(pp, nice);
611 		break;
612 	}
613 
614 	/* format this entry */
615 	snprintf(fmt, sizeof(fmt),
616 	    smpmode ? smp_Proc_format : up_Proc_format,
617 	    (int)PP(pp, pid),
618 	    namelength, namelength,
619 	    get_userid(PP(pp, ruid)),
620 	    (int)((show_threads && (LP(pp, pid) == -1)) ?
621 	    LP(pp, tdprio) : LP(pp, prio)),
622 	    (int)xnice,
623 	    format_k(PROCSIZE(pp)),
624 	    format_k(pagetok(VP(pp, rssize))),
625 	    status,
626 	    (int)(smpmode ? LP(pp, cpuid) : 0),
627 	    format_time(cputime),
628 	    100.0 * weighted_cpu(pct, pp),
629 	    100.0 * pct,
630 	    cmdlength,
631 	    show_fullcmd ? *comm_full : comm);
632 
633 	/* return the result */
634 	return (fmt);
635 }
636 
637 /* comparison routines for qsort */
638 
639 /*
640  *  proc_compare - comparison function for "qsort"
641  *	Compares the resource consumption of two processes using five
642  *  	distinct keys.  The keys (in descending order of importance) are:
643  *  	percent cpu, cpu ticks, state, resident set size, total virtual
644  *  	memory usage.  The process states are ordered as follows (from least
645  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
646  *  	array declaration below maps a process state index into a number
647  *  	that reflects this ordering.
648  */
649 
650 static unsigned char sorted_state[] =
651 {
652 	0,			/* not used		 */
653 	3,			/* sleep		 */
654 	1,			/* ABANDONED (WAIT)	 */
655 	6,			/* run			 */
656 	5,			/* start		 */
657 	2,			/* zombie		 */
658 	4			/* stop			 */
659 };
660 
661 
662 #define ORDERKEY_PCTCPU \
663   if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
664      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
665 
666 #define CPTICKS(p)	(LP(p, uticks) + LP(p, sticks))
667 
668 #define ORDERKEY_CPTICKS \
669   if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
670 		CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
671 
672 #define ORDERKEY_STATE \
673   if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
674                 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
675 
676 #define ORDERKEY_PRIO \
677   if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
678 
679 #define ORDERKEY_KTHREADS \
680   if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
681 
682 #define ORDERKEY_KTHREADS_PRIO \
683   if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
684 
685 #define ORDERKEY_RSSIZE \
686   if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
687 
688 #define ORDERKEY_MEM \
689   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
690 
691 #define ORDERKEY_PID \
692   if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
693 
694 /* compare_cpu - the comparison function for sorting by cpu percentage */
695 
696 int
697 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
698 {
699 	struct kinfo_proc *p1;
700 	struct kinfo_proc *p2;
701 	int result;
702 	pctcpu lresult;
703 
704 	/* remove one level of indirection */
705 	p1 = *(struct kinfo_proc **) pp1;
706 	p2 = *(struct kinfo_proc **) pp2;
707 
708 	ORDERKEY_PCTCPU
709 	ORDERKEY_CPTICKS
710 	ORDERKEY_STATE
711 	ORDERKEY_PRIO
712 	ORDERKEY_RSSIZE
713 	ORDERKEY_MEM
714 	{}
715 
716 	return (result);
717 }
718 
719 /* compare_size - the comparison function for sorting by total memory usage */
720 
721 int
722 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
723 {
724 	struct kinfo_proc *p1;
725 	struct kinfo_proc *p2;
726 	int result;
727 	pctcpu lresult;
728 
729 	/* remove one level of indirection */
730 	p1 = *(struct kinfo_proc **) pp1;
731 	p2 = *(struct kinfo_proc **) pp2;
732 
733 	ORDERKEY_MEM
734 	ORDERKEY_RSSIZE
735 	ORDERKEY_PCTCPU
736 	ORDERKEY_CPTICKS
737 	ORDERKEY_STATE
738 	ORDERKEY_PRIO
739 	{}
740 
741 	return (result);
742 }
743 
744 /* compare_res - the comparison function for sorting by resident set size */
745 
746 int
747 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
748 {
749 	struct kinfo_proc *p1;
750 	struct kinfo_proc *p2;
751 	int result;
752 	pctcpu lresult;
753 
754 	/* remove one level of indirection */
755 	p1 = *(struct kinfo_proc **) pp1;
756 	p2 = *(struct kinfo_proc **) pp2;
757 
758 	ORDERKEY_RSSIZE
759 	ORDERKEY_MEM
760 	ORDERKEY_PCTCPU
761 	ORDERKEY_CPTICKS
762 	ORDERKEY_STATE
763 	ORDERKEY_PRIO
764 	{}
765 
766 	return (result);
767 }
768 
769 /* compare_time - the comparison function for sorting by total cpu time */
770 
771 int
772 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
773 {
774 	struct kinfo_proc *p1;
775 	struct kinfo_proc *p2;
776 	int result;
777 	pctcpu lresult;
778 
779 	/* remove one level of indirection */
780 	p1 = *(struct kinfo_proc **) pp1;
781 	p2 = *(struct kinfo_proc **) pp2;
782 
783 	ORDERKEY_CPTICKS
784 	ORDERKEY_PCTCPU
785 	ORDERKEY_KTHREADS
786 	ORDERKEY_KTHREADS_PRIO
787 	ORDERKEY_STATE
788 	ORDERKEY_PRIO
789 	ORDERKEY_RSSIZE
790 	ORDERKEY_MEM
791 	{}
792 
793 	return (result);
794 }
795 
796 /* compare_prio - the comparison function for sorting by cpu percentage */
797 
798 int
799 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
800 {
801 	struct kinfo_proc *p1;
802 	struct kinfo_proc *p2;
803 	int result;
804 	pctcpu lresult;
805 
806 	/* remove one level of indirection */
807 	p1 = *(struct kinfo_proc **) pp1;
808 	p2 = *(struct kinfo_proc **) pp2;
809 
810 	ORDERKEY_KTHREADS
811 	ORDERKEY_KTHREADS_PRIO
812 	ORDERKEY_PRIO
813 	ORDERKEY_CPTICKS
814 	ORDERKEY_PCTCPU
815 	ORDERKEY_STATE
816 	ORDERKEY_RSSIZE
817 	ORDERKEY_MEM
818 	{}
819 
820 	return (result);
821 }
822 
823 int
824 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
825 {
826 	struct kinfo_proc *p1;
827 	struct kinfo_proc *p2;
828 	int result;
829 	pctcpu lresult;
830 
831 	/* remove one level of indirection */
832 	p1 = *(struct kinfo_proc **)pp1;
833 	p2 = *(struct kinfo_proc **)pp2;
834 
835 	ORDERKEY_KTHREADS
836 	ORDERKEY_KTHREADS_PRIO
837 	ORDERKEY_CPTICKS
838 	ORDERKEY_PCTCPU
839 	ORDERKEY_STATE
840 	ORDERKEY_RSSIZE
841 	ORDERKEY_MEM
842 	{}
843 
844 	return (result);
845 }
846 
847 /* compare_pid - the comparison function for sorting by process id */
848 
849 int
850 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
851 {
852 	struct kinfo_proc *p1;
853 	struct kinfo_proc *p2;
854 	int result;
855 
856 	/* remove one level of indirection */
857 	p1 = *(struct kinfo_proc **) pp1;
858 	p2 = *(struct kinfo_proc **) pp2;
859 
860 	ORDERKEY_PID
861 	;
862 
863 	return(result);
864 }
865 
866 /*
867  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
868  *		the process does not exist.
869  *		It is EXTREMLY IMPORTANT that this function work correctly.
870  *		If top runs setuid root (as in SVR4), then this function
871  *		is the only thing that stands in the way of a serious
872  *		security problem.  It validates requests for the "kill"
873  *		and "renice" commands.
874  */
875 
876 int
877 proc_owner(int pid)
878 {
879 	int xcnt;
880 	struct kinfo_proc **prefp;
881 	struct kinfo_proc *pp;
882 
883 	prefp = pref;
884 	xcnt = pref_len;
885 	while (--xcnt >= 0) {
886 		pp = *prefp++;
887 		if (PP(pp, pid) == (pid_t) pid) {
888 			return ((int)PP(pp, ruid));
889 		}
890 	}
891 	return (-1);
892 }
893 
894 
895 /*
896  * swapmode is based on a program called swapinfo written
897  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
898  */
899 int
900 swapmode(int *retavail, int *retfree)
901 {
902 	int n;
903 	int pagesize = getpagesize();
904 	struct kvm_swap swapary[1];
905 
906 	*retavail = 0;
907 	*retfree = 0;
908 
909 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
910 
911 	n = kvm_getswapinfo(kd, swapary, 1, 0);
912 	if (n < 0 || swapary[0].ksw_total == 0)
913 		return (0);
914 
915 	*retavail = CONVERT(swapary[0].ksw_total);
916 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
917 
918 	n = (int)((double)swapary[0].ksw_used * 100.0 /
919 	    (double)swapary[0].ksw_total);
920 	return (n);
921 }
922