1 /* 2 * top - a top users display for Unix 3 * 4 * SYNOPSIS: For DragonFly 2.x and later 5 * 6 * DESCRIPTION: 7 * Originally written for BSD4.4 system by Christos Zoulas. 8 * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider 9 * Order support hacked in from top-3.5beta6/machine/m_aix41.c 10 * by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/) 11 * 12 * This is the machine-dependent module for DragonFly 2.5.1 13 * Should work for: 14 * DragonFly 2.x and above 15 * 16 * LIBS: -lkvm 17 * 18 * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de> 19 * This module has been put together from different sources and is based on the 20 * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev. 21 * 22 * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $ 23 * $DragonFly: src/usr.bin/top/machine.c,v 1.26 2008/10/16 01:52:33 swildner Exp $ 24 */ 25 26 #include <sys/time.h> 27 #include <sys/types.h> 28 #include <sys/signal.h> 29 #include <sys/param.h> 30 31 #include "os.h" 32 #include <err.h> 33 #include <kvm.h> 34 #include <stdio.h> 35 #include <unistd.h> 36 #include <math.h> 37 #include <pwd.h> 38 #include <sys/errno.h> 39 #include <sys/sysctl.h> 40 #include <sys/file.h> 41 #include <sys/time.h> 42 #include <sys/user.h> 43 #include <sys/vmmeter.h> 44 #include <sys/resource.h> 45 #include <sys/rtprio.h> 46 47 /* Swap */ 48 #include <stdlib.h> 49 #include <stdio.h> 50 #include <sys/conf.h> 51 52 #include <osreldate.h> /* for changes in kernel structures */ 53 54 #include <sys/kinfo.h> 55 #include <kinfo.h> 56 #include "top.h" 57 #include "display.h" 58 #include "machine.h" 59 #include "screen.h" 60 #include "utils.h" 61 62 int swapmode(int *retavail, int *retfree); 63 static int smpmode; 64 static int namelength; 65 static int cmdlength; 66 static int show_fullcmd; 67 68 int n_cpus = 0; 69 70 /* 71 * needs to be a global symbol, so wrapper can be modified accordingly. 72 */ 73 static int show_threads = 0; 74 75 /* get_process_info passes back a handle. This is what it looks like: */ 76 77 struct handle { 78 struct kinfo_proc **next_proc; /* points to next valid proc pointer */ 79 int remaining; /* number of pointers remaining */ 80 }; 81 82 /* declarations for load_avg */ 83 #include "loadavg.h" 84 85 #define PP(pp, field) ((pp)->kp_ ## field) 86 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field) 87 #define VP(pp, field) ((pp)->kp_vm_ ## field) 88 89 /* define what weighted cpu is. */ 90 #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \ 91 ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu)))) 92 93 /* what we consider to be process size: */ 94 #define PROCSIZE(pp) (VP((pp), map_size) / 1024) 95 96 /* 97 * These definitions control the format of the per-process area 98 */ 99 100 static char smp_header[] = 101 " PID %-*.*s PRI NICE SIZE RES STATE C TIME CTIME CPU COMMAND"; 102 103 #define smp_Proc_format \ 104 "%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %7s %5.2f%% %.*s" 105 106 static char up_header[] = 107 " PID %-*.*s PRI NICE SIZE RES STATE TIME CTIME CPU COMMAND"; 108 109 #define up_Proc_format \ 110 "%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %7s %5.2f%% %.*s" 111 112 113 114 /* process state names for the "STATE" column of the display */ 115 /* 116 * the extra nulls in the string "run" are for adding a slash and the 117 * processor number when needed 118 */ 119 120 const char *state_abbrev[] = { 121 "", "RUN\0\0\0", "STOP", "SLEEP", 122 }; 123 124 125 static kvm_t *kd; 126 127 /* values that we stash away in _init and use in later routines */ 128 129 static double logcpu; 130 131 static long lastpid; 132 static int ccpu; 133 134 /* these are for calculating cpu state percentages */ 135 136 static struct kinfo_cputime *cp_time, *cp_old; 137 138 /* these are for detailing the process states */ 139 140 int process_states[6]; 141 char *procstatenames[] = { 142 " running, ", " idle, ", " active, ", " stopped, ", " zombie, ", 143 NULL 144 }; 145 146 /* these are for detailing the cpu states */ 147 #define CPU_STATES 5 148 int *cpu_states; 149 char *cpustatenames[CPU_STATES + 1] = { 150 "user", "nice", "system", "interrupt", "idle", NULL 151 }; 152 153 /* these are for detailing the memory statistics */ 154 155 long memory_stats[7]; 156 char *memorynames[] = { 157 "K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free", 158 NULL 159 }; 160 161 long swap_stats[7]; 162 char *swapnames[] = { 163 /* 0 1 2 3 4 5 */ 164 "K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out", 165 NULL 166 }; 167 168 169 /* these are for keeping track of the proc array */ 170 171 static int nproc; 172 static int onproc = -1; 173 static int pref_len; 174 static struct kinfo_proc *pbase; 175 static struct kinfo_proc **pref; 176 177 /* these are for getting the memory statistics */ 178 179 static int pageshift; /* log base 2 of the pagesize */ 180 181 /* define pagetok in terms of pageshift */ 182 183 #define pagetok(size) ((size) << pageshift) 184 185 /* sorting orders. first is default */ 186 char *ordernames[] = { 187 "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime", NULL 188 }; 189 190 /* compare routines */ 191 int proc_compare (struct kinfo_proc **, struct kinfo_proc **); 192 int compare_size (struct kinfo_proc **, struct kinfo_proc **); 193 int compare_res (struct kinfo_proc **, struct kinfo_proc **); 194 int compare_time (struct kinfo_proc **, struct kinfo_proc **); 195 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **); 196 int compare_prio(struct kinfo_proc **, struct kinfo_proc **); 197 int compare_thr (struct kinfo_proc **, struct kinfo_proc **); 198 int compare_pid (struct kinfo_proc **, struct kinfo_proc **); 199 200 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = { 201 proc_compare, 202 compare_size, 203 compare_res, 204 compare_time, 205 compare_prio, 206 compare_thr, 207 compare_pid, 208 compare_ctime, 209 NULL 210 }; 211 212 static void 213 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new, 214 struct kinfo_cputime *old) 215 { 216 struct kinfo_cputime diffs; 217 uint64_t total_change, half_total; 218 219 /* initialization */ 220 total_change = 0; 221 222 diffs.cp_user = new->cp_user - old->cp_user; 223 diffs.cp_nice = new->cp_nice - old->cp_nice; 224 diffs.cp_sys = new->cp_sys - old->cp_sys; 225 diffs.cp_intr = new->cp_intr - old->cp_intr; 226 diffs.cp_idle = new->cp_idle - old->cp_idle; 227 total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys + 228 diffs.cp_intr + diffs.cp_idle; 229 old->cp_user = new->cp_user; 230 old->cp_nice = new->cp_nice; 231 old->cp_sys = new->cp_sys; 232 old->cp_intr = new->cp_intr; 233 old->cp_idle = new->cp_idle; 234 235 /* avoid divide by zero potential */ 236 if (total_change == 0) 237 total_change = 1; 238 239 /* calculate percentages based on overall change, rounding up */ 240 half_total = total_change >> 1; 241 242 out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change); 243 out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change); 244 out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change); 245 out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change); 246 out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change); 247 } 248 249 int 250 machine_init(struct statics *statics) 251 { 252 int pagesize; 253 size_t modelen; 254 struct passwd *pw; 255 struct timeval boottime; 256 257 if (n_cpus < 1) { 258 if (kinfo_get_cpus(&n_cpus)) 259 err(1, "kinfo_get_cpus failed"); 260 } 261 /* get boot time */ 262 modelen = sizeof(boottime); 263 if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) { 264 /* we have no boottime to report */ 265 boottime.tv_sec = -1; 266 } 267 modelen = sizeof(smpmode); 268 if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 && 269 sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) || 270 modelen != sizeof(smpmode)) 271 smpmode = 0; 272 273 while ((pw = getpwent()) != NULL) { 274 if ((int)strlen(pw->pw_name) > namelength) 275 namelength = strlen(pw->pw_name); 276 } 277 if (namelength < 8) 278 namelength = 8; 279 if (smpmode && namelength > 13) 280 namelength = 13; 281 else if (namelength > 15) 282 namelength = 15; 283 284 if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL) 285 return -1; 286 287 if (kinfo_get_sched_ccpu(&ccpu)) { 288 fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n"); 289 return (-1); 290 } 291 /* this is used in calculating WCPU -- calculate it ahead of time */ 292 logcpu = log(loaddouble(ccpu)); 293 294 pbase = NULL; 295 pref = NULL; 296 nproc = 0; 297 onproc = -1; 298 /* 299 * get the page size with "getpagesize" and calculate pageshift from 300 * it 301 */ 302 pagesize = getpagesize(); 303 pageshift = 0; 304 while (pagesize > 1) { 305 pageshift++; 306 pagesize >>= 1; 307 } 308 309 /* we only need the amount of log(2)1024 for our conversion */ 310 pageshift -= LOG1024; 311 312 /* fill in the statics information */ 313 statics->procstate_names = procstatenames; 314 statics->cpustate_names = cpustatenames; 315 statics->memory_names = memorynames; 316 statics->boottime = boottime.tv_sec; 317 statics->swap_names = swapnames; 318 statics->order_names = ordernames; 319 /* we need kvm descriptor in order to show full commands */ 320 statics->flags.fullcmds = kd != NULL; 321 322 /* all done! */ 323 return (0); 324 } 325 326 char * 327 format_header(char *uname_field) 328 { 329 static char Header[128]; 330 331 snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header, 332 namelength, namelength, uname_field); 333 334 if (screen_width <= 79) 335 cmdlength = 80; 336 else 337 cmdlength = screen_width; 338 339 cmdlength = cmdlength - strlen(Header) + 6; 340 341 return Header; 342 } 343 344 static int swappgsin = -1; 345 static int swappgsout = -1; 346 extern struct timeval timeout; 347 348 void 349 get_system_info(struct system_info *si) 350 { 351 size_t len; 352 int cpu; 353 354 if (cpu_states == NULL) { 355 cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus); 356 if (cpu_states == NULL) 357 err(1, "malloc"); 358 bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus); 359 } 360 if (cp_time == NULL) { 361 cp_time = malloc(2 * n_cpus * sizeof(cp_time[0])); 362 if (cp_time == NULL) 363 err(1, "cp_time"); 364 cp_old = cp_time + n_cpus; 365 366 len = n_cpus * sizeof(cp_old[0]); 367 bzero(cp_time, len); 368 if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0)) 369 err(1, "kern.cputime"); 370 } 371 len = n_cpus * sizeof(cp_time[0]); 372 bzero(cp_time, len); 373 if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0)) 374 err(1, "kern.cputime"); 375 376 getloadavg(si->load_avg, 3); 377 378 lastpid = 0; 379 380 /* convert cp_time counts to percentages */ 381 for (cpu = 0; cpu < n_cpus; ++cpu) { 382 cputime_percentages(cpu_states + cpu * CPU_STATES, 383 &cp_time[cpu], &cp_old[cpu]); 384 } 385 386 /* sum memory & swap statistics */ 387 { 388 struct vmmeter vmm; 389 struct vmstats vms; 390 size_t vms_size = sizeof(vms); 391 size_t vmm_size = sizeof(vmm); 392 static unsigned int swap_delay = 0; 393 static int swapavail = 0; 394 static int swapfree = 0; 395 static int bufspace = 0; 396 397 if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0)) 398 err(1, "sysctlbyname: vm.vmstats"); 399 400 if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0)) 401 err(1, "sysctlbyname: vm.vmmeter"); 402 403 if (kinfo_get_vfs_bufspace(&bufspace)) 404 err(1, "kinfo_get_vfs_bufspace"); 405 406 /* convert memory stats to Kbytes */ 407 memory_stats[0] = pagetok(vms.v_active_count); 408 memory_stats[1] = pagetok(vms.v_inactive_count); 409 memory_stats[2] = pagetok(vms.v_wire_count); 410 memory_stats[3] = pagetok(vms.v_cache_count); 411 memory_stats[4] = bufspace / 1024; 412 memory_stats[5] = pagetok(vms.v_free_count); 413 memory_stats[6] = -1; 414 415 /* first interval */ 416 if (swappgsin < 0) { 417 swap_stats[4] = 0; 418 swap_stats[5] = 0; 419 } 420 /* compute differences between old and new swap statistic */ 421 else { 422 swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin))); 423 swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout))); 424 } 425 426 swappgsin = vmm.v_swappgsin; 427 swappgsout = vmm.v_swappgsout; 428 429 /* call CPU heavy swapmode() only for changes */ 430 if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) { 431 swap_stats[3] = swapmode(&swapavail, &swapfree); 432 swap_stats[0] = swapavail; 433 swap_stats[1] = swapavail - swapfree; 434 swap_stats[2] = swapfree; 435 } 436 swap_delay = 1; 437 swap_stats[6] = -1; 438 } 439 440 /* set arrays and strings */ 441 si->cpustates = cpu_states; 442 si->memory = memory_stats; 443 si->swap = swap_stats; 444 445 446 if (lastpid > 0) { 447 si->last_pid = lastpid; 448 } else { 449 si->last_pid = -1; 450 } 451 } 452 453 454 static struct handle handle; 455 456 caddr_t 457 get_process_info(struct system_info *si, struct process_select *sel, 458 int compare_index) 459 { 460 int i; 461 int total_procs; 462 int active_procs; 463 struct kinfo_proc **prefp; 464 struct kinfo_proc *pp; 465 466 /* these are copied out of sel for speed */ 467 int show_idle; 468 int show_system; 469 int show_uid; 470 471 472 pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc); 473 if (nproc > onproc) 474 pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *) 475 * (onproc = nproc)); 476 if (pref == NULL || pbase == NULL) { 477 (void)fprintf(stderr, "top: Out of memory.\n"); 478 quit(23); 479 } 480 /* get a pointer to the states summary array */ 481 si->procstates = process_states; 482 483 /* set up flags which define what we are going to select */ 484 show_idle = sel->idle; 485 show_system = sel->system; 486 show_uid = sel->uid != -1; 487 show_fullcmd = sel->fullcmd; 488 489 /* count up process states and get pointers to interesting procs */ 490 total_procs = 0; 491 active_procs = 0; 492 memset((char *)process_states, 0, sizeof(process_states)); 493 prefp = pref; 494 for (pp = pbase, i = 0; i < nproc; pp++, i++) { 495 /* 496 * Place pointers to each valid proc structure in pref[]. 497 * Process slots that are actually in use have a non-zero 498 * status field. Processes with P_SYSTEM set are system 499 * processes---these get ignored unless show_sysprocs is set. 500 */ 501 if ((show_threads && (LP(pp, pid) == -1)) || 502 (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) { 503 total_procs++; 504 if (LP(pp, stat) == LSRUN) 505 process_states[0]++; 506 process_states[PP(pp, stat)]++; 507 if ((show_threads && (LP(pp, pid) == -1)) || 508 (show_idle || (LP(pp, pctcpu) != 0) || 509 (LP(pp, stat) == LSRUN)) && 510 (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) { 511 *prefp++ = pp; 512 active_procs++; 513 } 514 } 515 } 516 517 qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *), 518 (int (*)(const void *, const void *))proc_compares[compare_index]); 519 520 /* remember active and total counts */ 521 si->p_total = total_procs; 522 si->p_active = pref_len = active_procs; 523 524 /* pass back a handle */ 525 handle.next_proc = pref; 526 handle.remaining = active_procs; 527 return ((caddr_t) & handle); 528 } 529 530 char fmt[MAX_COLS]; /* static area where result is built */ 531 532 char * 533 format_next_process(caddr_t xhandle, char *(*get_userid) (int)) 534 { 535 struct kinfo_proc *pp; 536 long cputime; 537 long ccputime; 538 double pct; 539 struct handle *hp; 540 char status[16]; 541 int state; 542 int xnice; 543 char **comm_full; 544 char *comm; 545 char cputime_fmt[10], ccputime_fmt[10]; 546 547 /* find and remember the next proc structure */ 548 hp = (struct handle *)xhandle; 549 pp = *(hp->next_proc++); 550 hp->remaining--; 551 552 /* get the process's command name */ 553 if (show_fullcmd) { 554 if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) { 555 return (fmt); 556 } 557 } 558 else { 559 comm = PP(pp, comm); 560 } 561 562 /* 563 * Convert the process's runtime from microseconds to seconds. This 564 * time includes the interrupt time to be in compliance with ps output. 565 */ 566 cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000; 567 ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec; 568 format_time(cputime, cputime_fmt, sizeof(cputime_fmt)); 569 format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt)); 570 571 /* calculate the base for cpu percentages */ 572 pct = pctdouble(LP(pp, pctcpu)); 573 574 /* generate "STATE" field */ 575 switch (state = LP(pp, stat)) { 576 case LSRUN: 577 if (smpmode && LP(pp, tdflags) & TDF_RUNNING) 578 sprintf(status, "CPU%d", LP(pp, cpuid)); 579 else 580 strcpy(status, "RUN"); 581 break; 582 case LSSLEEP: 583 if (LP(pp, wmesg) != NULL) { 584 sprintf(status, "%.6s", LP(pp, wmesg)); 585 break; 586 } 587 /* fall through */ 588 default: 589 590 if (state >= 0 && 591 (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev)) 592 sprintf(status, "%.6s", state_abbrev[(unsigned char)state]); 593 else 594 sprintf(status, "?%5d", state); 595 break; 596 } 597 598 if (PP(pp, stat) == SZOMB) 599 strcpy(status, "ZOMB"); 600 601 /* 602 * idle time 0 - 31 -> nice value +21 - +52 normal time -> nice 603 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread 604 * 0 - 31 -> nice value -53 - 605 */ 606 switch (LP(pp, rtprio.type)) { 607 case RTP_PRIO_REALTIME: 608 xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio); 609 break; 610 case RTP_PRIO_IDLE: 611 xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio); 612 break; 613 case RTP_PRIO_THREAD: 614 xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio); 615 break; 616 default: 617 xnice = PP(pp, nice); 618 break; 619 } 620 621 /* format this entry */ 622 snprintf(fmt, sizeof(fmt), 623 smpmode ? smp_Proc_format : up_Proc_format, 624 (int)PP(pp, pid), 625 namelength, namelength, 626 get_userid(PP(pp, ruid)), 627 (int)((show_threads && (LP(pp, pid) == -1)) ? 628 LP(pp, tdprio) : LP(pp, prio)), 629 (int)xnice, 630 format_k(PROCSIZE(pp)), 631 format_k(pagetok(VP(pp, rssize))), 632 status, 633 (int)(smpmode ? LP(pp, cpuid) : 0), 634 cputime_fmt, 635 ccputime_fmt, 636 100.0 * pct, 637 cmdlength, 638 show_fullcmd ? *comm_full : comm); 639 640 /* return the result */ 641 return (fmt); 642 } 643 644 /* comparison routines for qsort */ 645 646 /* 647 * proc_compare - comparison function for "qsort" 648 * Compares the resource consumption of two processes using five 649 * distinct keys. The keys (in descending order of importance) are: 650 * percent cpu, cpu ticks, state, resident set size, total virtual 651 * memory usage. The process states are ordered as follows (from least 652 * to most important): WAIT, zombie, sleep, stop, start, run. The 653 * array declaration below maps a process state index into a number 654 * that reflects this ordering. 655 */ 656 657 static unsigned char sorted_state[] = 658 { 659 0, /* not used */ 660 3, /* sleep */ 661 1, /* ABANDONED (WAIT) */ 662 6, /* run */ 663 5, /* start */ 664 2, /* zombie */ 665 4 /* stop */ 666 }; 667 668 669 #define ORDERKEY_PCTCPU \ 670 if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \ 671 (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0) 672 673 #define CPTICKS(p) (LP(p, uticks) + LP(p, sticks) + LP(p, iticks)) 674 675 #define ORDERKEY_CPTICKS \ 676 if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \ 677 CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0) 678 679 #define CTIME(p) (((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \ 680 PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec) 681 682 #define ORDERKEY_CTIME \ 683 if ((result = CTIME(p2) > CTIME(p1) ? 1 : \ 684 CTIME(p2) < CTIME(p1) ? -1 : 0) == 0) 685 686 #define ORDERKEY_STATE \ 687 if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \ 688 sorted_state[(unsigned char) PP(p1, stat)]) == 0) 689 690 #define ORDERKEY_PRIO \ 691 if ((result = LP(p2, prio) - LP(p1, prio)) == 0) 692 693 #define ORDERKEY_KTHREADS \ 694 if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0) 695 696 #define ORDERKEY_KTHREADS_PRIO \ 697 if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0) 698 699 #define ORDERKEY_RSSIZE \ 700 if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0) 701 702 #define ORDERKEY_MEM \ 703 if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 ) 704 705 #define ORDERKEY_PID \ 706 if ( (result = PP(p1, pid) - PP(p2, pid)) == 0) 707 708 /* compare_cpu - the comparison function for sorting by cpu percentage */ 709 710 int 711 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2) 712 { 713 struct kinfo_proc *p1; 714 struct kinfo_proc *p2; 715 int result; 716 pctcpu lresult; 717 718 /* remove one level of indirection */ 719 p1 = *(struct kinfo_proc **) pp1; 720 p2 = *(struct kinfo_proc **) pp2; 721 722 ORDERKEY_PCTCPU 723 ORDERKEY_CPTICKS 724 ORDERKEY_STATE 725 ORDERKEY_PRIO 726 ORDERKEY_RSSIZE 727 ORDERKEY_MEM 728 {} 729 730 return (result); 731 } 732 733 /* compare_size - the comparison function for sorting by total memory usage */ 734 735 int 736 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2) 737 { 738 struct kinfo_proc *p1; 739 struct kinfo_proc *p2; 740 int result; 741 pctcpu lresult; 742 743 /* remove one level of indirection */ 744 p1 = *(struct kinfo_proc **) pp1; 745 p2 = *(struct kinfo_proc **) pp2; 746 747 ORDERKEY_MEM 748 ORDERKEY_RSSIZE 749 ORDERKEY_PCTCPU 750 ORDERKEY_CPTICKS 751 ORDERKEY_STATE 752 ORDERKEY_PRIO 753 {} 754 755 return (result); 756 } 757 758 /* compare_res - the comparison function for sorting by resident set size */ 759 760 int 761 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2) 762 { 763 struct kinfo_proc *p1; 764 struct kinfo_proc *p2; 765 int result; 766 pctcpu lresult; 767 768 /* remove one level of indirection */ 769 p1 = *(struct kinfo_proc **) pp1; 770 p2 = *(struct kinfo_proc **) pp2; 771 772 ORDERKEY_RSSIZE 773 ORDERKEY_MEM 774 ORDERKEY_PCTCPU 775 ORDERKEY_CPTICKS 776 ORDERKEY_STATE 777 ORDERKEY_PRIO 778 {} 779 780 return (result); 781 } 782 783 /* compare_time - the comparison function for sorting by total cpu time */ 784 785 int 786 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2) 787 { 788 struct kinfo_proc *p1; 789 struct kinfo_proc *p2; 790 int result; 791 pctcpu lresult; 792 793 /* remove one level of indirection */ 794 p1 = *(struct kinfo_proc **) pp1; 795 p2 = *(struct kinfo_proc **) pp2; 796 797 ORDERKEY_CPTICKS 798 ORDERKEY_PCTCPU 799 ORDERKEY_KTHREADS 800 ORDERKEY_KTHREADS_PRIO 801 ORDERKEY_STATE 802 ORDERKEY_PRIO 803 ORDERKEY_RSSIZE 804 ORDERKEY_MEM 805 {} 806 807 return (result); 808 } 809 810 int 811 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2) 812 { 813 struct kinfo_proc *p1; 814 struct kinfo_proc *p2; 815 int result; 816 pctcpu lresult; 817 818 /* remove one level of indirection */ 819 p1 = *(struct kinfo_proc **) pp1; 820 p2 = *(struct kinfo_proc **) pp2; 821 822 ORDERKEY_CTIME 823 ORDERKEY_PCTCPU 824 ORDERKEY_KTHREADS 825 ORDERKEY_KTHREADS_PRIO 826 ORDERKEY_STATE 827 ORDERKEY_PRIO 828 ORDERKEY_RSSIZE 829 ORDERKEY_MEM 830 {} 831 832 return (result); 833 } 834 835 /* compare_prio - the comparison function for sorting by cpu percentage */ 836 837 int 838 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2) 839 { 840 struct kinfo_proc *p1; 841 struct kinfo_proc *p2; 842 int result; 843 pctcpu lresult; 844 845 /* remove one level of indirection */ 846 p1 = *(struct kinfo_proc **) pp1; 847 p2 = *(struct kinfo_proc **) pp2; 848 849 ORDERKEY_KTHREADS 850 ORDERKEY_KTHREADS_PRIO 851 ORDERKEY_PRIO 852 ORDERKEY_CPTICKS 853 ORDERKEY_PCTCPU 854 ORDERKEY_STATE 855 ORDERKEY_RSSIZE 856 ORDERKEY_MEM 857 {} 858 859 return (result); 860 } 861 862 int 863 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2) 864 { 865 struct kinfo_proc *p1; 866 struct kinfo_proc *p2; 867 int result; 868 pctcpu lresult; 869 870 /* remove one level of indirection */ 871 p1 = *(struct kinfo_proc **)pp1; 872 p2 = *(struct kinfo_proc **)pp2; 873 874 ORDERKEY_KTHREADS 875 ORDERKEY_KTHREADS_PRIO 876 ORDERKEY_CPTICKS 877 ORDERKEY_PCTCPU 878 ORDERKEY_STATE 879 ORDERKEY_RSSIZE 880 ORDERKEY_MEM 881 {} 882 883 return (result); 884 } 885 886 /* compare_pid - the comparison function for sorting by process id */ 887 888 int 889 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2) 890 { 891 struct kinfo_proc *p1; 892 struct kinfo_proc *p2; 893 int result; 894 895 /* remove one level of indirection */ 896 p1 = *(struct kinfo_proc **) pp1; 897 p2 = *(struct kinfo_proc **) pp2; 898 899 ORDERKEY_PID 900 ; 901 902 return(result); 903 } 904 905 /* 906 * proc_owner(pid) - returns the uid that owns process "pid", or -1 if 907 * the process does not exist. 908 * It is EXTREMLY IMPORTANT that this function work correctly. 909 * If top runs setuid root (as in SVR4), then this function 910 * is the only thing that stands in the way of a serious 911 * security problem. It validates requests for the "kill" 912 * and "renice" commands. 913 */ 914 915 int 916 proc_owner(int pid) 917 { 918 int xcnt; 919 struct kinfo_proc **prefp; 920 struct kinfo_proc *pp; 921 922 prefp = pref; 923 xcnt = pref_len; 924 while (--xcnt >= 0) { 925 pp = *prefp++; 926 if (PP(pp, pid) == (pid_t) pid) { 927 return ((int)PP(pp, ruid)); 928 } 929 } 930 return (-1); 931 } 932 933 934 /* 935 * swapmode is based on a program called swapinfo written 936 * by Kevin Lahey <kml@rokkaku.atl.ga.us>. 937 */ 938 int 939 swapmode(int *retavail, int *retfree) 940 { 941 int n; 942 int pagesize = getpagesize(); 943 struct kvm_swap swapary[1]; 944 945 *retavail = 0; 946 *retfree = 0; 947 948 #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) 949 950 n = kvm_getswapinfo(kd, swapary, 1, 0); 951 if (n < 0 || swapary[0].ksw_total == 0) 952 return (0); 953 954 *retavail = CONVERT(swapary[0].ksw_total); 955 *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); 956 957 n = (int)((double)swapary[0].ksw_used * 100.0 / 958 (double)swapary[0].ksw_total); 959 return (n); 960 } 961