xref: /dflybsd-src/usr.bin/top/m_dragonfly.c (revision 2e7bf158f373428dba2c765c927f14d9e94f00a4)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For DragonFly 2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for DragonFly 2.5.1
13  * Should work for:
14  *	DragonFly 2.x and above
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19  * This module has been put together from different sources and is based on the
20  * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
21  *
22  * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23  * $DragonFly: src/usr.bin/top/machine.c,v 1.26 2008/10/16 01:52:33 swildner Exp $
24  */
25 
26 #include <sys/time.h>
27 #include <sys/types.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
30 
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/time.h>
42 #include <sys/user.h>
43 #include <sys/vmmeter.h>
44 #include <sys/resource.h>
45 #include <sys/rtprio.h>
46 
47 /* Swap */
48 #include <stdlib.h>
49 #include <stdio.h>
50 #include <sys/conf.h>
51 
52 #include <osreldate.h>		/* for changes in kernel structures */
53 
54 #include <sys/kinfo.h>
55 #include <kinfo.h>
56 #include "top.h"
57 #include "display.h"
58 #include "machine.h"
59 #include "screen.h"
60 #include "utils.h"
61 
62 int swapmode(int *retavail, int *retfree);
63 static int smpmode;
64 static int namelength;
65 static int cmdlength;
66 static int show_fullcmd;
67 
68 int n_cpus = 0;
69 
70 /*
71  * needs to be a global symbol, so wrapper can be modified accordingly.
72  */
73 static int show_threads = 0;
74 
75 /* get_process_info passes back a handle.  This is what it looks like: */
76 
77 struct handle {
78 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
79 	int remaining;		/* number of pointers remaining */
80 };
81 
82 /* declarations for load_avg */
83 #include "loadavg.h"
84 
85 #define PP(pp, field) ((pp)->kp_ ## field)
86 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
87 #define VP(pp, field) ((pp)->kp_vm_ ## field)
88 
89 /* define what weighted cpu is.  */
90 #define weighted_cpu(pct, pp) (PP((pp), swtime) == 0 ? 0.0 : \
91 			 ((pct) / (1.0 - exp(PP((pp), swtime) * logcpu))))
92 
93 /* what we consider to be process size: */
94 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
95 
96 /*
97  * These definitions control the format of the per-process area
98  */
99 
100 static char smp_header[] =
101 "  PID %-*.*s PRI NICE  SIZE    RES STATE  C   TIME   CTIME   CPU COMMAND";
102 
103 #define smp_Proc_format \
104 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s %1x%7s %7s %5.2f%% %.*s"
105 
106 static char up_header[] =
107 "  PID %-*.*s PRI NICE  SIZE    RES STATE    TIME   CTIME   CPU COMMAND";
108 
109 #define up_Proc_format \
110 	"%5d %-*.*s %3d %3d%7s %6s %-6.6s%.0d%7s %7s %5.2f%% %.*s"
111 
112 
113 
114 /* process state names for the "STATE" column of the display */
115 /*
116  * the extra nulls in the string "run" are for adding a slash and the
117  * processor number when needed
118  */
119 
120 const char *state_abbrev[] = {
121 	"", "RUN\0\0\0", "STOP", "SLEEP",
122 };
123 
124 
125 static kvm_t *kd;
126 
127 /* values that we stash away in _init and use in later routines */
128 
129 static double logcpu;
130 
131 static long lastpid;
132 static int ccpu;
133 
134 /* these are for calculating cpu state percentages */
135 
136 static struct kinfo_cputime *cp_time, *cp_old;
137 
138 /* these are for detailing the process states */
139 
140 int process_states[6];
141 char *procstatenames[] = {
142 	" running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
143 	NULL
144 };
145 
146 /* these are for detailing the cpu states */
147 #define CPU_STATES 5
148 int *cpu_states;
149 char *cpustatenames[CPU_STATES + 1] = {
150 	"user", "nice", "system", "interrupt", "idle", NULL
151 };
152 
153 /* these are for detailing the memory statistics */
154 
155 long memory_stats[7];
156 char *memorynames[] = {
157 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
158 	NULL
159 };
160 
161 long swap_stats[7];
162 char *swapnames[] = {
163 	/* 0           1            2           3            4       5 */
164 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
165 	NULL
166 };
167 
168 
169 /* these are for keeping track of the proc array */
170 
171 static int nproc;
172 static int onproc = -1;
173 static int pref_len;
174 static struct kinfo_proc *pbase;
175 static struct kinfo_proc **pref;
176 
177 /* these are for getting the memory statistics */
178 
179 static int pageshift;		/* log base 2 of the pagesize */
180 
181 /* define pagetok in terms of pageshift */
182 
183 #define pagetok(size) ((size) << pageshift)
184 
185 /* sorting orders. first is default */
186 char *ordernames[] = {
187 	"cpu", "size", "res", "time", "pri", "thr", "pid", "ctime",  NULL
188 };
189 
190 /* compare routines */
191 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
192 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
193 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
194 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
195 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
196 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
197 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
198 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
199 
200 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
201 	proc_compare,
202 	compare_size,
203 	compare_res,
204 	compare_time,
205 	compare_prio,
206 	compare_thr,
207 	compare_pid,
208 	compare_ctime,
209 	NULL
210 };
211 
212 static void
213 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
214     struct kinfo_cputime *old)
215 {
216 	struct kinfo_cputime diffs;
217 	uint64_t total_change, half_total;
218 
219 	/* initialization */
220 	total_change = 0;
221 
222 	diffs.cp_user = new->cp_user - old->cp_user;
223 	diffs.cp_nice = new->cp_nice - old->cp_nice;
224 	diffs.cp_sys = new->cp_sys - old->cp_sys;
225 	diffs.cp_intr = new->cp_intr - old->cp_intr;
226 	diffs.cp_idle = new->cp_idle - old->cp_idle;
227 	total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
228 	    diffs.cp_intr + diffs.cp_idle;
229 	old->cp_user = new->cp_user;
230 	old->cp_nice = new->cp_nice;
231 	old->cp_sys = new->cp_sys;
232 	old->cp_intr = new->cp_intr;
233 	old->cp_idle = new->cp_idle;
234 
235 	/* avoid divide by zero potential */
236 	if (total_change == 0)
237 		total_change = 1;
238 
239 	/* calculate percentages based on overall change, rounding up */
240 	half_total = total_change >> 1;
241 
242 	out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
243 	out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
244 	out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
245 	out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
246 	out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
247 }
248 
249 int
250 machine_init(struct statics *statics)
251 {
252 	int pagesize;
253 	size_t modelen;
254 	struct passwd *pw;
255 	struct timeval boottime;
256 
257 	if (n_cpus < 1) {
258 		if (kinfo_get_cpus(&n_cpus))
259 			err(1, "kinfo_get_cpus failed");
260 	}
261 	/* get boot time */
262 	modelen = sizeof(boottime);
263 	if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
264 		/* we have no boottime to report */
265 		boottime.tv_sec = -1;
266 	}
267 	modelen = sizeof(smpmode);
268 	if ((sysctlbyname("machdep.smp_active", &smpmode, &modelen, NULL, 0) < 0 &&
269 	    sysctlbyname("smp.smp_active", &smpmode, &modelen, NULL, 0) < 0) ||
270 	    modelen != sizeof(smpmode))
271 		smpmode = 0;
272 
273 	while ((pw = getpwent()) != NULL) {
274 		if ((int)strlen(pw->pw_name) > namelength)
275 			namelength = strlen(pw->pw_name);
276 	}
277 	if (namelength < 8)
278 		namelength = 8;
279 	if (smpmode && namelength > 13)
280 		namelength = 13;
281 	else if (namelength > 15)
282 		namelength = 15;
283 
284 	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
285 		return -1;
286 
287 	if (kinfo_get_sched_ccpu(&ccpu)) {
288 		fprintf(stderr, "top: kinfo_get_sched_ccpu failed\n");
289 		return (-1);
290 	}
291 	/* this is used in calculating WCPU -- calculate it ahead of time */
292 	logcpu = log(loaddouble(ccpu));
293 
294 	pbase = NULL;
295 	pref = NULL;
296 	nproc = 0;
297 	onproc = -1;
298 	/*
299 	 * get the page size with "getpagesize" and calculate pageshift from
300 	 * it
301 	 */
302 	pagesize = getpagesize();
303 	pageshift = 0;
304 	while (pagesize > 1) {
305 		pageshift++;
306 		pagesize >>= 1;
307 	}
308 
309 	/* we only need the amount of log(2)1024 for our conversion */
310 	pageshift -= LOG1024;
311 
312 	/* fill in the statics information */
313 	statics->procstate_names = procstatenames;
314 	statics->cpustate_names = cpustatenames;
315 	statics->memory_names = memorynames;
316 	statics->boottime = boottime.tv_sec;
317 	statics->swap_names = swapnames;
318 	statics->order_names = ordernames;
319 	/* we need kvm descriptor in order to show full commands */
320 	statics->flags.fullcmds = kd != NULL;
321 
322 	/* all done! */
323 	return (0);
324 }
325 
326 char *
327 format_header(char *uname_field)
328 {
329 	static char Header[128];
330 
331 	snprintf(Header, sizeof(Header), smpmode ? smp_header : up_header,
332 	    namelength, namelength, uname_field);
333 
334 	if (screen_width <= 79)
335 		cmdlength = 80;
336 	else
337 		cmdlength = screen_width;
338 
339 	cmdlength = cmdlength - strlen(Header) + 6;
340 
341 	return Header;
342 }
343 
344 static int swappgsin = -1;
345 static int swappgsout = -1;
346 extern struct timeval timeout;
347 
348 void
349 get_system_info(struct system_info *si)
350 {
351 	size_t len;
352 	int cpu;
353 
354 	if (cpu_states == NULL) {
355 		cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
356 		if (cpu_states == NULL)
357 			err(1, "malloc");
358 		bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
359 	}
360 	if (cp_time == NULL) {
361 		cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
362 		if (cp_time == NULL)
363 			err(1, "cp_time");
364 		cp_old = cp_time + n_cpus;
365 
366 		len = n_cpus * sizeof(cp_old[0]);
367 		bzero(cp_time, len);
368 		if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
369 			err(1, "kern.cputime");
370 	}
371 	len = n_cpus * sizeof(cp_time[0]);
372 	bzero(cp_time, len);
373 	if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
374 		err(1, "kern.cputime");
375 
376 	getloadavg(si->load_avg, 3);
377 
378 	lastpid = 0;
379 
380 	/* convert cp_time counts to percentages */
381 	for (cpu = 0; cpu < n_cpus; ++cpu) {
382 		cputime_percentages(cpu_states + cpu * CPU_STATES,
383 		    &cp_time[cpu], &cp_old[cpu]);
384 	}
385 
386 	/* sum memory & swap statistics */
387 	{
388 		struct vmmeter vmm;
389 		struct vmstats vms;
390 		size_t vms_size = sizeof(vms);
391 		size_t vmm_size = sizeof(vmm);
392 		static unsigned int swap_delay = 0;
393 		static int swapavail = 0;
394 		static int swapfree = 0;
395 		static int bufspace = 0;
396 
397 		if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
398 			err(1, "sysctlbyname: vm.vmstats");
399 
400 		if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
401 			err(1, "sysctlbyname: vm.vmmeter");
402 
403 		if (kinfo_get_vfs_bufspace(&bufspace))
404 			err(1, "kinfo_get_vfs_bufspace");
405 
406 		/* convert memory stats to Kbytes */
407 		memory_stats[0] = pagetok(vms.v_active_count);
408 		memory_stats[1] = pagetok(vms.v_inactive_count);
409 		memory_stats[2] = pagetok(vms.v_wire_count);
410 		memory_stats[3] = pagetok(vms.v_cache_count);
411 		memory_stats[4] = bufspace / 1024;
412 		memory_stats[5] = pagetok(vms.v_free_count);
413 		memory_stats[6] = -1;
414 
415 		/* first interval */
416 		if (swappgsin < 0) {
417 			swap_stats[4] = 0;
418 			swap_stats[5] = 0;
419 		}
420 		/* compute differences between old and new swap statistic */
421 		else {
422 			swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
423 			swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
424 		}
425 
426 		swappgsin = vmm.v_swappgsin;
427 		swappgsout = vmm.v_swappgsout;
428 
429 		/* call CPU heavy swapmode() only for changes */
430 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
431 			swap_stats[3] = swapmode(&swapavail, &swapfree);
432 			swap_stats[0] = swapavail;
433 			swap_stats[1] = swapavail - swapfree;
434 			swap_stats[2] = swapfree;
435 		}
436 		swap_delay = 1;
437 		swap_stats[6] = -1;
438 	}
439 
440 	/* set arrays and strings */
441 	si->cpustates = cpu_states;
442 	si->memory = memory_stats;
443 	si->swap = swap_stats;
444 
445 
446 	if (lastpid > 0) {
447 		si->last_pid = lastpid;
448 	} else {
449 		si->last_pid = -1;
450 	}
451 }
452 
453 
454 static struct handle handle;
455 
456 caddr_t
457 get_process_info(struct system_info *si, struct process_select *sel,
458     int compare_index)
459 {
460 	int i;
461 	int total_procs;
462 	int active_procs;
463 	struct kinfo_proc **prefp;
464 	struct kinfo_proc *pp;
465 
466 	/* these are copied out of sel for speed */
467 	int show_idle;
468 	int show_system;
469 	int show_uid;
470 
471 
472 	pbase = kvm_getprocs(kd, KERN_PROC_ALL, 0, &nproc);
473 	if (nproc > onproc)
474 		pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
475 		    * (onproc = nproc));
476 	if (pref == NULL || pbase == NULL) {
477 		(void)fprintf(stderr, "top: Out of memory.\n");
478 		quit(23);
479 	}
480 	/* get a pointer to the states summary array */
481 	si->procstates = process_states;
482 
483 	/* set up flags which define what we are going to select */
484 	show_idle = sel->idle;
485 	show_system = sel->system;
486 	show_uid = sel->uid != -1;
487 	show_fullcmd = sel->fullcmd;
488 
489 	/* count up process states and get pointers to interesting procs */
490 	total_procs = 0;
491 	active_procs = 0;
492 	memset((char *)process_states, 0, sizeof(process_states));
493 	prefp = pref;
494 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
495 		/*
496 		 * Place pointers to each valid proc structure in pref[].
497 		 * Process slots that are actually in use have a non-zero
498 		 * status field.  Processes with P_SYSTEM set are system
499 		 * processes---these get ignored unless show_sysprocs is set.
500 		 */
501 		if ((show_threads && (LP(pp, pid) == -1)) ||
502 		    (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
503 			total_procs++;
504 			if (LP(pp, stat) == LSRUN)
505 				process_states[0]++;
506 			process_states[PP(pp, stat)]++;
507 			if ((show_threads && (LP(pp, pid) == -1)) ||
508 			    (show_idle || (LP(pp, pctcpu) != 0) ||
509 			    (LP(pp, stat) == LSRUN)) &&
510 			    (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
511 				*prefp++ = pp;
512 				active_procs++;
513 			}
514 		}
515 	}
516 
517 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
518 	    (int (*)(const void *, const void *))proc_compares[compare_index]);
519 
520 	/* remember active and total counts */
521 	si->p_total = total_procs;
522 	si->p_active = pref_len = active_procs;
523 
524 	/* pass back a handle */
525 	handle.next_proc = pref;
526 	handle.remaining = active_procs;
527 	return ((caddr_t) & handle);
528 }
529 
530 char fmt[MAX_COLS];		/* static area where result is built */
531 
532 char *
533 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
534 {
535 	struct kinfo_proc *pp;
536 	long cputime;
537 	long ccputime;
538 	double pct;
539 	struct handle *hp;
540 	char status[16];
541 	int state;
542 	int xnice;
543 	char **comm_full;
544 	char *comm;
545 	char cputime_fmt[10], ccputime_fmt[10];
546 
547 	/* find and remember the next proc structure */
548 	hp = (struct handle *)xhandle;
549 	pp = *(hp->next_proc++);
550 	hp->remaining--;
551 
552 	/* get the process's command name */
553 	if (show_fullcmd) {
554 		if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) {
555 			return (fmt);
556 		}
557 	}
558 	else {
559 		comm = PP(pp, comm);
560 	}
561 
562 	/*
563 	 * Convert the process's runtime from microseconds to seconds.  This
564 	 * time includes the interrupt time to be in compliance with ps output.
565 	*/
566 	cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
567 	ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
568 	format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
569 	format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
570 
571 	/* calculate the base for cpu percentages */
572 	pct = pctdouble(LP(pp, pctcpu));
573 
574 	/* generate "STATE" field */
575 	switch (state = LP(pp, stat)) {
576 	case LSRUN:
577 		if (smpmode && LP(pp, tdflags) & TDF_RUNNING)
578 			sprintf(status, "CPU%d", LP(pp, cpuid));
579 		else
580 			strcpy(status, "RUN");
581 		break;
582 	case LSSLEEP:
583 		if (LP(pp, wmesg) != NULL) {
584 			sprintf(status, "%.6s", LP(pp, wmesg));
585 			break;
586 		}
587 		/* fall through */
588 	default:
589 
590 		if (state >= 0 &&
591 		    (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
592 			sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
593 		else
594 			sprintf(status, "?%5d", state);
595 		break;
596 	}
597 
598 	if (PP(pp, stat) == SZOMB)
599 		strcpy(status, "ZOMB");
600 
601 	/*
602 	 * idle time 0 - 31 -> nice value +21 - +52 normal time      -> nice
603 	 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
604 	 * 0 - 31 -> nice value -53 -
605 	 */
606 	switch (LP(pp, rtprio.type)) {
607 	case RTP_PRIO_REALTIME:
608 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
609 		break;
610 	case RTP_PRIO_IDLE:
611 		xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
612 		break;
613 	case RTP_PRIO_THREAD:
614 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
615 		break;
616 	default:
617 		xnice = PP(pp, nice);
618 		break;
619 	}
620 
621 	/* format this entry */
622 	snprintf(fmt, sizeof(fmt),
623 	    smpmode ? smp_Proc_format : up_Proc_format,
624 	    (int)PP(pp, pid),
625 	    namelength, namelength,
626 	    get_userid(PP(pp, ruid)),
627 	    (int)((show_threads && (LP(pp, pid) == -1)) ?
628 	    LP(pp, tdprio) : LP(pp, prio)),
629 	    (int)xnice,
630 	    format_k(PROCSIZE(pp)),
631 	    format_k(pagetok(VP(pp, rssize))),
632 	    status,
633 	    (int)(smpmode ? LP(pp, cpuid) : 0),
634 	    cputime_fmt,
635 	    ccputime_fmt,
636 	    100.0 * pct,
637 	    cmdlength,
638 	    show_fullcmd ? *comm_full : comm);
639 
640 	/* return the result */
641 	return (fmt);
642 }
643 
644 /* comparison routines for qsort */
645 
646 /*
647  *  proc_compare - comparison function for "qsort"
648  *	Compares the resource consumption of two processes using five
649  *  	distinct keys.  The keys (in descending order of importance) are:
650  *  	percent cpu, cpu ticks, state, resident set size, total virtual
651  *  	memory usage.  The process states are ordered as follows (from least
652  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
653  *  	array declaration below maps a process state index into a number
654  *  	that reflects this ordering.
655  */
656 
657 static unsigned char sorted_state[] =
658 {
659 	0,			/* not used		 */
660 	3,			/* sleep		 */
661 	1,			/* ABANDONED (WAIT)	 */
662 	6,			/* run			 */
663 	5,			/* start		 */
664 	2,			/* zombie		 */
665 	4			/* stop			 */
666 };
667 
668 
669 #define ORDERKEY_PCTCPU \
670   if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
671      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
672 
673 #define CPTICKS(p)	(LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
674 
675 #define ORDERKEY_CPTICKS \
676   if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
677 		CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
678 
679 #define CTIME(p)	(((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
680   PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
681 
682 #define ORDERKEY_CTIME \
683    if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
684 		CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
685 
686 #define ORDERKEY_STATE \
687   if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
688                 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
689 
690 #define ORDERKEY_PRIO \
691   if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
692 
693 #define ORDERKEY_KTHREADS \
694   if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
695 
696 #define ORDERKEY_KTHREADS_PRIO \
697   if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
698 
699 #define ORDERKEY_RSSIZE \
700   if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
701 
702 #define ORDERKEY_MEM \
703   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
704 
705 #define ORDERKEY_PID \
706   if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
707 
708 /* compare_cpu - the comparison function for sorting by cpu percentage */
709 
710 int
711 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
712 {
713 	struct kinfo_proc *p1;
714 	struct kinfo_proc *p2;
715 	int result;
716 	pctcpu lresult;
717 
718 	/* remove one level of indirection */
719 	p1 = *(struct kinfo_proc **) pp1;
720 	p2 = *(struct kinfo_proc **) pp2;
721 
722 	ORDERKEY_PCTCPU
723 	ORDERKEY_CPTICKS
724 	ORDERKEY_STATE
725 	ORDERKEY_PRIO
726 	ORDERKEY_RSSIZE
727 	ORDERKEY_MEM
728 	{}
729 
730 	return (result);
731 }
732 
733 /* compare_size - the comparison function for sorting by total memory usage */
734 
735 int
736 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
737 {
738 	struct kinfo_proc *p1;
739 	struct kinfo_proc *p2;
740 	int result;
741 	pctcpu lresult;
742 
743 	/* remove one level of indirection */
744 	p1 = *(struct kinfo_proc **) pp1;
745 	p2 = *(struct kinfo_proc **) pp2;
746 
747 	ORDERKEY_MEM
748 	ORDERKEY_RSSIZE
749 	ORDERKEY_PCTCPU
750 	ORDERKEY_CPTICKS
751 	ORDERKEY_STATE
752 	ORDERKEY_PRIO
753 	{}
754 
755 	return (result);
756 }
757 
758 /* compare_res - the comparison function for sorting by resident set size */
759 
760 int
761 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
762 {
763 	struct kinfo_proc *p1;
764 	struct kinfo_proc *p2;
765 	int result;
766 	pctcpu lresult;
767 
768 	/* remove one level of indirection */
769 	p1 = *(struct kinfo_proc **) pp1;
770 	p2 = *(struct kinfo_proc **) pp2;
771 
772 	ORDERKEY_RSSIZE
773 	ORDERKEY_MEM
774 	ORDERKEY_PCTCPU
775 	ORDERKEY_CPTICKS
776 	ORDERKEY_STATE
777 	ORDERKEY_PRIO
778 	{}
779 
780 	return (result);
781 }
782 
783 /* compare_time - the comparison function for sorting by total cpu time */
784 
785 int
786 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
787 {
788 	struct kinfo_proc *p1;
789 	struct kinfo_proc *p2;
790 	int result;
791 	pctcpu lresult;
792 
793 	/* remove one level of indirection */
794 	p1 = *(struct kinfo_proc **) pp1;
795 	p2 = *(struct kinfo_proc **) pp2;
796 
797 	ORDERKEY_CPTICKS
798 	ORDERKEY_PCTCPU
799 	ORDERKEY_KTHREADS
800 	ORDERKEY_KTHREADS_PRIO
801 	ORDERKEY_STATE
802 	ORDERKEY_PRIO
803 	ORDERKEY_RSSIZE
804 	ORDERKEY_MEM
805 	{}
806 
807 	return (result);
808 }
809 
810 int
811 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
812 {
813 	struct kinfo_proc *p1;
814 	struct kinfo_proc *p2;
815 	int result;
816 	pctcpu lresult;
817 
818 	/* remove one level of indirection */
819 	p1 = *(struct kinfo_proc **) pp1;
820 	p2 = *(struct kinfo_proc **) pp2;
821 
822 	ORDERKEY_CTIME
823 	ORDERKEY_PCTCPU
824 	ORDERKEY_KTHREADS
825 	ORDERKEY_KTHREADS_PRIO
826 	ORDERKEY_STATE
827 	ORDERKEY_PRIO
828 	ORDERKEY_RSSIZE
829 	ORDERKEY_MEM
830 	{}
831 
832 	return (result);
833 }
834 
835 /* compare_prio - the comparison function for sorting by cpu percentage */
836 
837 int
838 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
839 {
840 	struct kinfo_proc *p1;
841 	struct kinfo_proc *p2;
842 	int result;
843 	pctcpu lresult;
844 
845 	/* remove one level of indirection */
846 	p1 = *(struct kinfo_proc **) pp1;
847 	p2 = *(struct kinfo_proc **) pp2;
848 
849 	ORDERKEY_KTHREADS
850 	ORDERKEY_KTHREADS_PRIO
851 	ORDERKEY_PRIO
852 	ORDERKEY_CPTICKS
853 	ORDERKEY_PCTCPU
854 	ORDERKEY_STATE
855 	ORDERKEY_RSSIZE
856 	ORDERKEY_MEM
857 	{}
858 
859 	return (result);
860 }
861 
862 int
863 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
864 {
865 	struct kinfo_proc *p1;
866 	struct kinfo_proc *p2;
867 	int result;
868 	pctcpu lresult;
869 
870 	/* remove one level of indirection */
871 	p1 = *(struct kinfo_proc **)pp1;
872 	p2 = *(struct kinfo_proc **)pp2;
873 
874 	ORDERKEY_KTHREADS
875 	ORDERKEY_KTHREADS_PRIO
876 	ORDERKEY_CPTICKS
877 	ORDERKEY_PCTCPU
878 	ORDERKEY_STATE
879 	ORDERKEY_RSSIZE
880 	ORDERKEY_MEM
881 	{}
882 
883 	return (result);
884 }
885 
886 /* compare_pid - the comparison function for sorting by process id */
887 
888 int
889 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
890 {
891 	struct kinfo_proc *p1;
892 	struct kinfo_proc *p2;
893 	int result;
894 
895 	/* remove one level of indirection */
896 	p1 = *(struct kinfo_proc **) pp1;
897 	p2 = *(struct kinfo_proc **) pp2;
898 
899 	ORDERKEY_PID
900 	;
901 
902 	return(result);
903 }
904 
905 /*
906  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
907  *		the process does not exist.
908  *		It is EXTREMLY IMPORTANT that this function work correctly.
909  *		If top runs setuid root (as in SVR4), then this function
910  *		is the only thing that stands in the way of a serious
911  *		security problem.  It validates requests for the "kill"
912  *		and "renice" commands.
913  */
914 
915 int
916 proc_owner(int pid)
917 {
918 	int xcnt;
919 	struct kinfo_proc **prefp;
920 	struct kinfo_proc *pp;
921 
922 	prefp = pref;
923 	xcnt = pref_len;
924 	while (--xcnt >= 0) {
925 		pp = *prefp++;
926 		if (PP(pp, pid) == (pid_t) pid) {
927 			return ((int)PP(pp, ruid));
928 		}
929 	}
930 	return (-1);
931 }
932 
933 
934 /*
935  * swapmode is based on a program called swapinfo written
936  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
937  */
938 int
939 swapmode(int *retavail, int *retfree)
940 {
941 	int n;
942 	int pagesize = getpagesize();
943 	struct kvm_swap swapary[1];
944 
945 	*retavail = 0;
946 	*retfree = 0;
947 
948 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
949 
950 	n = kvm_getswapinfo(kd, swapary, 1, 0);
951 	if (n < 0 || swapary[0].ksw_total == 0)
952 		return (0);
953 
954 	*retavail = CONVERT(swapary[0].ksw_total);
955 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
956 
957 	n = (int)((double)swapary[0].ksw_used * 100.0 /
958 	    (double)swapary[0].ksw_total);
959 	return (n);
960 }
961