xref: /dflybsd-src/usr.bin/top/m_dragonfly.c (revision 211d4362597aee676ecea315377d5cb13da26bb5)
1 /*
2  * top - a top users display for Unix
3  *
4  * SYNOPSIS:  For DragonFly 2.x and later
5  *
6  * DESCRIPTION:
7  * Originally written for BSD4.4 system by Christos Zoulas.
8  * Ported to FreeBSD 2.x by Steven Wallace && Wolfram Schneider
9  * Order support hacked in from top-3.5beta6/machine/m_aix41.c
10  *   by Monte Mitzelfelt (for latest top see http://www.groupsys.com/topinfo/)
11  *
12  * This is the machine-dependent module for DragonFly 2.5.1
13  * Should work for:
14  *	DragonFly 2.x and above
15  *
16  * LIBS: -lkvm
17  *
18  * AUTHOR: Jan Lentfer <Jan.Lentfer@web.de>
19  * This module has been put together from different sources and is based on the
20  * work of many other people, e.g. Matthew Dillon, Simon Schubert, Jordan Gordeev.
21  *
22  * $FreeBSD: src/usr.bin/top/machine.c,v 1.29.2.2 2001/07/31 20:27:05 tmm Exp $
23  */
24 
25 #include <sys/user.h>
26 #include <sys/types.h>
27 #include <sys/time.h>
28 #include <sys/signal.h>
29 #include <sys/param.h>
30 
31 #include "os.h"
32 #include <err.h>
33 #include <kvm.h>
34 #include <stdio.h>
35 #include <unistd.h>
36 #include <math.h>
37 #include <pwd.h>
38 #include <sys/errno.h>
39 #include <sys/sysctl.h>
40 #include <sys/file.h>
41 #include <sys/vmmeter.h>
42 #include <sys/resource.h>
43 #include <sys/rtprio.h>
44 
45 /* Swap */
46 #include <stdlib.h>
47 #include <sys/conf.h>
48 
49 #include <osreldate.h>		/* for changes in kernel structures */
50 
51 #include <sys/kinfo.h>
52 #include <kinfo.h>
53 #include "top.h"
54 #include "display.h"
55 #include "machine.h"
56 #include "screen.h"
57 #include "utils.h"
58 
59 int swapmode(int *retavail, int *retfree);
60 static int namelength;
61 static int cmdlength;
62 static int show_fullcmd;
63 
64 int n_cpus = 0;
65 
66 /* get_process_info passes back a handle.  This is what it looks like: */
67 
68 struct handle {
69 	struct kinfo_proc **next_proc;	/* points to next valid proc pointer */
70 	int remaining;		/* number of pointers remaining */
71 };
72 
73 /* declarations for load_avg */
74 #include "loadavg.h"
75 
76 #define PP(pp, field) ((pp)->kp_ ## field)
77 #define LP(pp, field) ((pp)->kp_lwp.kl_ ## field)
78 #define VP(pp, field) ((pp)->kp_vm_ ## field)
79 
80 /* what we consider to be process size: */
81 #define PROCSIZE(pp) (VP((pp), map_size) / 1024)
82 
83 /*
84  * These definitions control the format of the per-process area
85  */
86 
87 static char smp_header[] =
88 "  PID %-*.*s NICE  SIZE    RES    STATE CPU  TIME   CTIME    CPU COMMAND";
89 
90 #define smp_Proc_format \
91 	"%5d %-*.*s %3d%7s %6s %8.8s %2d %6s %7s %5.2f%% %.*s"
92 
93 /* process state names for the "STATE" column of the display */
94 /*
95  * the extra nulls in the string "run" are for adding a slash and the
96  * processor number when needed
97  */
98 
99 const char *state_abbrev[] = {
100 	"", "RUN\0\0\0", "STOP", "SLEEP",
101 };
102 
103 
104 static kvm_t *kd;
105 
106 /* values that we stash away in _init and use in later routines */
107 
108 static long lastpid;
109 
110 /* these are for calculating cpu state percentages */
111 
112 static struct kinfo_cputime *cp_time, *cp_old;
113 
114 /* these are for detailing the process states */
115 
116 #define MAXPSTATES	6
117 
118 int process_states[MAXPSTATES];
119 
120 char *procstatenames[] = {
121 	" running, ", " idle, ", " active, ", " stopped, ", " zombie, ",
122 	NULL
123 };
124 
125 /* these are for detailing the cpu states */
126 #define CPU_STATES 5
127 int *cpu_states;
128 char *cpustatenames[CPU_STATES + 1] = {
129 	"user", "nice", "system", "interrupt", "idle", NULL
130 };
131 
132 /* these are for detailing the memory statistics */
133 
134 long memory_stats[7];
135 char *memorynames[] = {
136 	"K Active, ", "K Inact, ", "K Wired, ", "K Cache, ", "K Buf, ", "K Free",
137 	NULL
138 };
139 
140 long swap_stats[7];
141 char *swapnames[] = {
142 	/* 0           1            2           3            4       5 */
143 	"K Total, ", "K Used, ", "K Free, ", "% Inuse, ", "K In, ", "K Out",
144 	NULL
145 };
146 
147 
148 /* these are for keeping track of the proc array */
149 
150 static int nproc;
151 static int onproc = -1;
152 static int pref_len;
153 static struct kinfo_proc *pbase;
154 static struct kinfo_proc **pref;
155 
156 /* these are for getting the memory statistics */
157 
158 static int pageshift;		/* log base 2 of the pagesize */
159 
160 /* define pagetok in terms of pageshift */
161 
162 #define pagetok(size) ((size) << pageshift)
163 
164 /* sorting orders. first is default */
165 char *ordernames[] = {
166   "cpu", "size", "res", "time", "pri", "thr", "pid", "ctime",  "pres", NULL
167 };
168 
169 /* compare routines */
170 int proc_compare (struct kinfo_proc **, struct kinfo_proc **);
171 int compare_size (struct kinfo_proc **, struct kinfo_proc **);
172 int compare_res (struct kinfo_proc **, struct kinfo_proc **);
173 int compare_time (struct kinfo_proc **, struct kinfo_proc **);
174 int compare_ctime (struct kinfo_proc **, struct kinfo_proc **);
175 int compare_prio(struct kinfo_proc **, struct kinfo_proc **);
176 int compare_thr (struct kinfo_proc **, struct kinfo_proc **);
177 int compare_pid (struct kinfo_proc **, struct kinfo_proc **);
178 int compare_pres(struct kinfo_proc **, struct kinfo_proc **);
179 
180 int (*proc_compares[]) (struct kinfo_proc **,struct kinfo_proc **) = {
181 	proc_compare,
182 	compare_size,
183 	compare_res,
184 	compare_time,
185 	compare_prio,
186 	compare_thr,
187 	compare_pid,
188 	compare_ctime,
189 	compare_pres,
190 	NULL
191 };
192 
193 static void
194 cputime_percentages(int out[CPU_STATES], struct kinfo_cputime *new,
195     struct kinfo_cputime *old)
196 {
197 	struct kinfo_cputime diffs;
198 	uint64_t total_change, half_total;
199 
200 	/* initialization */
201 	total_change = 0;
202 
203 	diffs.cp_user = new->cp_user - old->cp_user;
204 	diffs.cp_nice = new->cp_nice - old->cp_nice;
205 	diffs.cp_sys = new->cp_sys - old->cp_sys;
206 	diffs.cp_intr = new->cp_intr - old->cp_intr;
207 	diffs.cp_idle = new->cp_idle - old->cp_idle;
208 	total_change = diffs.cp_user + diffs.cp_nice + diffs.cp_sys +
209 	    diffs.cp_intr + diffs.cp_idle;
210 	old->cp_user = new->cp_user;
211 	old->cp_nice = new->cp_nice;
212 	old->cp_sys = new->cp_sys;
213 	old->cp_intr = new->cp_intr;
214 	old->cp_idle = new->cp_idle;
215 
216 	/* avoid divide by zero potential */
217 	if (total_change == 0)
218 		total_change = 1;
219 
220 	/* calculate percentages based on overall change, rounding up */
221 	half_total = total_change >> 1;
222 
223 	out[0] = ((diffs.cp_user * 1000LL + half_total) / total_change);
224 	out[1] = ((diffs.cp_nice * 1000LL + half_total) / total_change);
225 	out[2] = ((diffs.cp_sys * 1000LL + half_total) / total_change);
226 	out[3] = ((diffs.cp_intr * 1000LL + half_total) / total_change);
227 	out[4] = ((diffs.cp_idle * 1000LL + half_total) / total_change);
228 }
229 
230 int
231 machine_init(struct statics *statics)
232 {
233 	int pagesize;
234 	size_t modelen;
235 	struct passwd *pw;
236 	struct timeval boottime;
237 
238 	if (n_cpus < 1) {
239 		if (kinfo_get_cpus(&n_cpus))
240 			err(1, "kinfo_get_cpus failed");
241 	}
242 	/* get boot time */
243 	modelen = sizeof(boottime);
244 	if (sysctlbyname("kern.boottime", &boottime, &modelen, NULL, 0) == -1) {
245 		/* we have no boottime to report */
246 		boottime.tv_sec = -1;
247 	}
248 
249 	while ((pw = getpwent()) != NULL) {
250 		if ((int)strlen(pw->pw_name) > namelength)
251 			namelength = strlen(pw->pw_name);
252 	}
253 	if (namelength < 8)
254 		namelength = 8;
255 	if (namelength > 13)
256 		namelength = 13;
257 
258 	if ((kd = kvm_open(NULL, NULL, NULL, O_RDONLY, NULL)) == NULL)
259 		return -1;
260 
261 	pbase = NULL;
262 	pref = NULL;
263 	nproc = 0;
264 	onproc = -1;
265 	/*
266 	 * get the page size with "getpagesize" and calculate pageshift from
267 	 * it
268 	 */
269 	pagesize = getpagesize();
270 	pageshift = 0;
271 	while (pagesize > 1) {
272 		pageshift++;
273 		pagesize >>= 1;
274 	}
275 
276 	/* we only need the amount of log(2)1024 for our conversion */
277 	pageshift -= LOG1024;
278 
279 	/* fill in the statics information */
280 	statics->procstate_names = procstatenames;
281 	statics->cpustate_names = cpustatenames;
282 	statics->memory_names = memorynames;
283 	statics->boottime = boottime.tv_sec;
284 	statics->swap_names = swapnames;
285 	statics->order_names = ordernames;
286 	/* we need kvm descriptor in order to show full commands */
287 	statics->flags.fullcmds = kd != NULL;
288 
289 	/* all done! */
290 	return (0);
291 }
292 
293 char *
294 format_header(char *uname_field)
295 {
296 	static char Header[128];
297 
298 	snprintf(Header, sizeof(Header), smp_header,
299 	    namelength, namelength, uname_field);
300 
301 	if (screen_width <= 79)
302 		cmdlength = 80;
303 	else
304 		cmdlength = screen_width;
305 
306 	cmdlength = cmdlength - strlen(Header) + 6;
307 
308 	return Header;
309 }
310 
311 static int swappgsin = -1;
312 static int swappgsout = -1;
313 extern struct timeval timeout;
314 
315 void
316 get_system_info(struct system_info *si)
317 {
318 	size_t len;
319 	int cpu;
320 
321 	if (cpu_states == NULL) {
322 		cpu_states = malloc(sizeof(*cpu_states) * CPU_STATES * n_cpus);
323 		if (cpu_states == NULL)
324 			err(1, "malloc");
325 		bzero(cpu_states, sizeof(*cpu_states) * CPU_STATES * n_cpus);
326 	}
327 	if (cp_time == NULL) {
328 		cp_time = malloc(2 * n_cpus * sizeof(cp_time[0]));
329 		if (cp_time == NULL)
330 			err(1, "cp_time");
331 		cp_old = cp_time + n_cpus;
332 		len = n_cpus * sizeof(cp_old[0]);
333 		bzero(cp_time, len);
334 		if (sysctlbyname("kern.cputime", cp_old, &len, NULL, 0))
335 			err(1, "kern.cputime");
336 	}
337 	len = n_cpus * sizeof(cp_time[0]);
338 	bzero(cp_time, len);
339 	if (sysctlbyname("kern.cputime", cp_time, &len, NULL, 0))
340 		err(1, "kern.cputime");
341 
342 	getloadavg(si->load_avg, 3);
343 
344 	lastpid = 0;
345 
346 	/* convert cp_time counts to percentages */
347 	for (cpu = 0; cpu < n_cpus; ++cpu) {
348 		cputime_percentages(cpu_states + cpu * CPU_STATES,
349 		    &cp_time[cpu], &cp_old[cpu]);
350 	}
351 
352 	/* sum memory & swap statistics */
353 	{
354 		struct vmmeter vmm;
355 		struct vmstats vms;
356 		size_t vms_size = sizeof(vms);
357 		size_t vmm_size = sizeof(vmm);
358 		static unsigned int swap_delay = 0;
359 		static int swapavail = 0;
360 		static int swapfree = 0;
361 		static long bufspace = 0;
362 
363 		if (sysctlbyname("vm.vmstats", &vms, &vms_size, NULL, 0))
364 			err(1, "sysctlbyname: vm.vmstats");
365 
366 		if (sysctlbyname("vm.vmmeter", &vmm, &vmm_size, NULL, 0))
367 			err(1, "sysctlbyname: vm.vmmeter");
368 
369 		if (kinfo_get_vfs_bufspace(&bufspace))
370 			err(1, "kinfo_get_vfs_bufspace");
371 
372 		/* convert memory stats to Kbytes */
373 		memory_stats[0] = pagetok(vms.v_active_count);
374 		memory_stats[1] = pagetok(vms.v_inactive_count);
375 		memory_stats[2] = pagetok(vms.v_wire_count);
376 		memory_stats[3] = pagetok(vms.v_cache_count);
377 		memory_stats[4] = bufspace / 1024;
378 		memory_stats[5] = pagetok(vms.v_free_count);
379 		memory_stats[6] = -1;
380 
381 		/* first interval */
382 		if (swappgsin < 0) {
383 			swap_stats[4] = 0;
384 			swap_stats[5] = 0;
385 		}
386 		/* compute differences between old and new swap statistic */
387 		else {
388 			swap_stats[4] = pagetok(((vmm.v_swappgsin - swappgsin)));
389 			swap_stats[5] = pagetok(((vmm.v_swappgsout - swappgsout)));
390 		}
391 
392 		swappgsin = vmm.v_swappgsin;
393 		swappgsout = vmm.v_swappgsout;
394 
395 		/* call CPU heavy swapmode() only for changes */
396 		if (swap_stats[4] > 0 || swap_stats[5] > 0 || swap_delay == 0) {
397 			swap_stats[3] = swapmode(&swapavail, &swapfree);
398 			swap_stats[0] = swapavail;
399 			swap_stats[1] = swapavail - swapfree;
400 			swap_stats[2] = swapfree;
401 		}
402 		swap_delay = 1;
403 		swap_stats[6] = -1;
404 	}
405 
406 	/* set arrays and strings */
407 	si->cpustates = cpu_states;
408 	si->memory = memory_stats;
409 	si->swap = swap_stats;
410 
411 
412 	if (lastpid > 0) {
413 		si->last_pid = lastpid;
414 	} else {
415 		si->last_pid = -1;
416 	}
417 }
418 
419 
420 static struct handle handle;
421 
422 caddr_t
423 get_process_info(struct system_info *si, struct process_select *sel,
424     int compare_index)
425 {
426 	int i;
427 	int total_procs;
428 	int active_procs;
429 	struct kinfo_proc **prefp;
430 	struct kinfo_proc *pp;
431 
432 	/* these are copied out of sel for speed */
433 	int show_idle;
434 	int show_system;
435 	int show_uid;
436 	int show_threads;
437 
438 	show_threads = sel->threads;
439 
440 
441 	pbase = kvm_getprocs(kd,
442 	    KERN_PROC_ALL | (show_threads ? KERN_PROC_FLAG_LWP : 0), 0, &nproc);
443 	if (nproc > onproc)
444 		pref = (struct kinfo_proc **)realloc(pref, sizeof(struct kinfo_proc *)
445 		    * (onproc = nproc));
446 	if (pref == NULL || pbase == NULL) {
447 		(void)fprintf(stderr, "top: Out of memory.\n");
448 		quit(23);
449 	}
450 	/* get a pointer to the states summary array */
451 	si->procstates = process_states;
452 
453 	/* set up flags which define what we are going to select */
454 	show_idle = sel->idle;
455 	show_system = sel->system;
456 	show_uid = sel->uid != -1;
457 	show_fullcmd = sel->fullcmd;
458 
459 	/* count up process states and get pointers to interesting procs */
460 	total_procs = 0;
461 	active_procs = 0;
462 	memset((char *)process_states, 0, sizeof(process_states));
463 	prefp = pref;
464 	for (pp = pbase, i = 0; i < nproc; pp++, i++) {
465 		/*
466 		 * Place pointers to each valid proc structure in pref[].
467 		 * Process slots that are actually in use have a non-zero
468 		 * status field.  Processes with P_SYSTEM set are system
469 		 * processes---these get ignored unless show_sysprocs is set.
470 		 */
471 		if ((show_system && (LP(pp, pid) == -1)) ||
472 		    (show_system || ((PP(pp, flags) & P_SYSTEM) == 0))) {
473 			int pstate = LP(pp, stat);
474 
475 			total_procs++;
476 			if (pstate == LSRUN)
477 				process_states[0]++;
478 			if (pstate >= 0 && pstate < MAXPSTATES)
479 				process_states[pstate]++;
480 			if ((show_system && (LP(pp, pid) == -1)) ||
481 			    (show_idle || (LP(pp, pctcpu) != 0) ||
482 			    (pstate == LSRUN)) &&
483 			    (!show_uid || PP(pp, ruid) == (uid_t) sel->uid)) {
484 				*prefp++ = pp;
485 				active_procs++;
486 			}
487 		}
488 	}
489 
490 	qsort((char *)pref, active_procs, sizeof(struct kinfo_proc *),
491 	    (int (*)(const void *, const void *))proc_compares[compare_index]);
492 
493 	/* remember active and total counts */
494 	si->p_total = total_procs;
495 	si->p_active = pref_len = active_procs;
496 
497 	/* pass back a handle */
498 	handle.next_proc = pref;
499 	handle.remaining = active_procs;
500 	return ((caddr_t) & handle);
501 }
502 
503 char fmt[MAX_COLS];		/* static area where result is built */
504 
505 char *
506 format_next_process(caddr_t xhandle, char *(*get_userid) (int))
507 {
508 	struct kinfo_proc *pp;
509 	long cputime;
510 	long ccputime;
511 	double pct;
512 	struct handle *hp;
513 	char status[16];
514 	int state;
515 	int xnice;
516 	char **comm_full;
517 	char *comm;
518 	char cputime_fmt[10], ccputime_fmt[10];
519 
520 	/* find and remember the next proc structure */
521 	hp = (struct handle *)xhandle;
522 	pp = *(hp->next_proc++);
523 	hp->remaining--;
524 
525 	/* get the process's command name */
526 	if (show_fullcmd) {
527 		if ((comm_full = kvm_getargv(kd, pp, 0)) == NULL) {
528 			return (fmt);
529 		}
530 	}
531 	else {
532 		comm = PP(pp, comm);
533 	}
534 
535 	/*
536 	 * Convert the process's runtime from microseconds to seconds.  This
537 	 * time includes the interrupt time to be in compliance with ps output.
538 	*/
539 	cputime = (LP(pp, uticks) + LP(pp, sticks) + LP(pp, iticks)) / 1000000;
540 	ccputime = cputime + PP(pp, cru).ru_stime.tv_sec + PP(pp, cru).ru_utime.tv_sec;
541 	format_time(cputime, cputime_fmt, sizeof(cputime_fmt));
542 	format_time(ccputime, ccputime_fmt, sizeof(ccputime_fmt));
543 
544 	/* calculate the base for cpu percentages */
545 	pct = pctdouble(LP(pp, pctcpu));
546 
547 	/* generate "STATE" field */
548 	switch (state = LP(pp, stat)) {
549 	case LSRUN:
550 		if (LP(pp, tdflags) & TDF_RUNNING)
551 			sprintf(status, "CPU%d", LP(pp, cpuid));
552 		else
553 			strcpy(status, "RUN");
554 		break;
555 	case LSSLEEP:
556 		if (LP(pp, wmesg) != NULL) {
557 			sprintf(status, "%.8s", LP(pp, wmesg)); /* WMESGLEN */
558 			break;
559 		}
560 		/* fall through */
561 	default:
562 
563 		if (state >= 0 &&
564 		    (unsigned)state < sizeof(state_abbrev) / sizeof(*state_abbrev))
565 			sprintf(status, "%.6s", state_abbrev[(unsigned char)state]);
566 		else
567 			sprintf(status, "?%5d", state);
568 		break;
569 	}
570 
571 	if (PP(pp, stat) == SZOMB)
572 		strcpy(status, "ZOMB");
573 
574 	/*
575 	 * idle time 0 - 31 -> nice value +21 - +52 normal time      -> nice
576 	 * value -20 - +20 real time 0 - 31 -> nice value -52 - -21 thread
577 	 * 0 - 31 -> nice value -53 -
578 	 */
579 	switch (LP(pp, rtprio.type)) {
580 	case RTP_PRIO_REALTIME:
581 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX + LP(pp, rtprio.prio);
582 		break;
583 	case RTP_PRIO_IDLE:
584 		xnice = PRIO_MAX + 1 + LP(pp, rtprio.prio);
585 		break;
586 	case RTP_PRIO_THREAD:
587 		xnice = PRIO_MIN - 1 - RTP_PRIO_MAX - LP(pp, rtprio.prio);
588 		break;
589 	default:
590 		xnice = PP(pp, nice);
591 		break;
592 	}
593 
594 	/* format this entry */
595 	snprintf(fmt, sizeof(fmt),
596 	    smp_Proc_format,
597 	    (int)PP(pp, pid),
598 	    namelength, namelength,
599 	    get_userid(PP(pp, ruid)),
600 	    (int)xnice,
601 	    format_k(PROCSIZE(pp)),
602 	    format_k(pagetok(VP(pp, rssize))),
603 	    status,
604 	    LP(pp, cpuid),
605 	    cputime_fmt,
606 	    ccputime_fmt,
607 	    100.0 * pct,
608 	    cmdlength,
609 	    show_fullcmd ? *comm_full : comm);
610 
611 	/* return the result */
612 	return (fmt);
613 }
614 
615 /* comparison routines for qsort */
616 
617 /*
618  *  proc_compare - comparison function for "qsort"
619  *	Compares the resource consumption of two processes using five
620  *  	distinct keys.  The keys (in descending order of importance) are:
621  *  	percent cpu, cpu ticks, state, resident set size, total virtual
622  *  	memory usage.  The process states are ordered as follows (from least
623  *  	to most important):  WAIT, zombie, sleep, stop, start, run.  The
624  *  	array declaration below maps a process state index into a number
625  *  	that reflects this ordering.
626  */
627 
628 static unsigned char sorted_state[] =
629 {
630 	0,			/* not used		 */
631 	3,			/* sleep		 */
632 	1,			/* ABANDONED (WAIT)	 */
633 	6,			/* run			 */
634 	5,			/* start		 */
635 	2,			/* zombie		 */
636 	4			/* stop			 */
637 };
638 
639 
640 #define ORDERKEY_PCTCPU \
641   if (lresult = (long) LP(p2, pctcpu) - (long) LP(p1, pctcpu), \
642      (result = lresult > 0 ? 1 : lresult < 0 ? -1 : 0) == 0)
643 
644 #define CPTICKS(p)	(LP(p, uticks) + LP(p, sticks) + LP(p, iticks))
645 
646 #define ORDERKEY_CPTICKS \
647   if ((result = CPTICKS(p2) > CPTICKS(p1) ? 1 : \
648 		CPTICKS(p2) < CPTICKS(p1) ? -1 : 0) == 0)
649 
650 #define CTIME(p)	(((LP(p, uticks) + LP(p, sticks) + LP(p, iticks))/1000000) + \
651   PP(p, cru).ru_stime.tv_sec + PP(p, cru).ru_utime.tv_sec)
652 
653 #define ORDERKEY_CTIME \
654    if ((result = CTIME(p2) > CTIME(p1) ? 1 : \
655 		CTIME(p2) < CTIME(p1) ? -1 : 0) == 0)
656 
657 #define ORDERKEY_STATE \
658   if ((result = sorted_state[(unsigned char) PP(p2, stat)] - \
659                 sorted_state[(unsigned char) PP(p1, stat)]) == 0)
660 
661 #define ORDERKEY_PRIO \
662   if ((result = LP(p2, prio) - LP(p1, prio)) == 0)
663 
664 #define ORDERKEY_KTHREADS \
665   if ((result = (LP(p1, pid) == 0) - (LP(p2, pid) == 0)) == 0)
666 
667 #define ORDERKEY_KTHREADS_PRIO \
668   if ((result = LP(p2, tdprio) - LP(p1, tdprio)) == 0)
669 
670 #define ORDERKEY_RSSIZE \
671   if ((result = VP(p2, rssize) - VP(p1, rssize)) == 0)
672 
673 #define ORDERKEY_MEM \
674   if ( (result = PROCSIZE(p2) - PROCSIZE(p1)) == 0 )
675 
676 #define ORDERKEY_PID \
677   if ( (result = PP(p1, pid) - PP(p2, pid)) == 0)
678 
679 #define ORDERKEY_PRSSIZE \
680   if((result = VP(p2, prssize) - VP(p1, prssize)) == 0)
681 
682 /* compare_cpu - the comparison function for sorting by cpu percentage */
683 
684 int
685 proc_compare(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
686 {
687 	struct kinfo_proc *p1;
688 	struct kinfo_proc *p2;
689 	int result;
690 	pctcpu lresult;
691 
692 	/* remove one level of indirection */
693 	p1 = *(struct kinfo_proc **) pp1;
694 	p2 = *(struct kinfo_proc **) pp2;
695 
696 	ORDERKEY_PCTCPU
697 	ORDERKEY_CPTICKS
698 	ORDERKEY_STATE
699 	ORDERKEY_PRIO
700 	ORDERKEY_RSSIZE
701 	ORDERKEY_MEM
702 	{}
703 
704 	return (result);
705 }
706 
707 /* compare_size - the comparison function for sorting by total memory usage */
708 
709 int
710 compare_size(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
711 {
712 	struct kinfo_proc *p1;
713 	struct kinfo_proc *p2;
714 	int result;
715 	pctcpu lresult;
716 
717 	/* remove one level of indirection */
718 	p1 = *(struct kinfo_proc **) pp1;
719 	p2 = *(struct kinfo_proc **) pp2;
720 
721 	ORDERKEY_MEM
722 	ORDERKEY_RSSIZE
723 	ORDERKEY_PCTCPU
724 	ORDERKEY_CPTICKS
725 	ORDERKEY_STATE
726 	ORDERKEY_PRIO
727 	{}
728 
729 	return (result);
730 }
731 
732 /* compare_res - the comparison function for sorting by resident set size */
733 
734 int
735 compare_res(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
736 {
737 	struct kinfo_proc *p1;
738 	struct kinfo_proc *p2;
739 	int result;
740 	pctcpu lresult;
741 
742 	/* remove one level of indirection */
743 	p1 = *(struct kinfo_proc **) pp1;
744 	p2 = *(struct kinfo_proc **) pp2;
745 
746 	ORDERKEY_RSSIZE
747 	ORDERKEY_MEM
748 	ORDERKEY_PCTCPU
749 	ORDERKEY_CPTICKS
750 	ORDERKEY_STATE
751 	ORDERKEY_PRIO
752 	{}
753 
754 	return (result);
755 }
756 
757 /* compare_pres - the comparison function for sorting by proportional resident set size */
758 
759 int
760 compare_pres(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
761 {
762 	struct kinfo_proc *p1;
763 	struct kinfo_proc *p2;
764 	int result;
765 	pctcpu lresult;
766 
767 	/* remove one level of indirection */
768 	p1 = *(struct kinfo_proc **) pp1;
769 	p2 = *(struct kinfo_proc **) pp2;
770 
771 	ORDERKEY_PRSSIZE
772 	ORDERKEY_RSSIZE
773 	ORDERKEY_MEM
774 	ORDERKEY_PCTCPU
775 	ORDERKEY_CPTICKS
776 	ORDERKEY_STATE
777 	ORDERKEY_PRIO
778 	{}
779 
780 	return (result);
781 }
782 
783 /* compare_time - the comparison function for sorting by total cpu time */
784 
785 int
786 compare_time(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
787 {
788 	struct kinfo_proc *p1;
789 	struct kinfo_proc *p2;
790 	int result;
791 	pctcpu lresult;
792 
793 	/* remove one level of indirection */
794 	p1 = *(struct kinfo_proc **) pp1;
795 	p2 = *(struct kinfo_proc **) pp2;
796 
797 	ORDERKEY_CPTICKS
798 	ORDERKEY_PCTCPU
799 	ORDERKEY_KTHREADS
800 	ORDERKEY_KTHREADS_PRIO
801 	ORDERKEY_STATE
802 	ORDERKEY_PRIO
803 	ORDERKEY_RSSIZE
804 	ORDERKEY_MEM
805 	{}
806 
807 	return (result);
808 }
809 
810 int
811 compare_ctime(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
812 {
813 	struct kinfo_proc *p1;
814 	struct kinfo_proc *p2;
815 	int result;
816 	pctcpu lresult;
817 
818 	/* remove one level of indirection */
819 	p1 = *(struct kinfo_proc **) pp1;
820 	p2 = *(struct kinfo_proc **) pp2;
821 
822 	ORDERKEY_CTIME
823 	ORDERKEY_PCTCPU
824 	ORDERKEY_KTHREADS
825 	ORDERKEY_KTHREADS_PRIO
826 	ORDERKEY_STATE
827 	ORDERKEY_PRIO
828 	ORDERKEY_RSSIZE
829 	ORDERKEY_MEM
830 	{}
831 
832 	return (result);
833 }
834 
835 /* compare_prio - the comparison function for sorting by cpu percentage */
836 
837 int
838 compare_prio(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
839 {
840 	struct kinfo_proc *p1;
841 	struct kinfo_proc *p2;
842 	int result;
843 	pctcpu lresult;
844 
845 	/* remove one level of indirection */
846 	p1 = *(struct kinfo_proc **) pp1;
847 	p2 = *(struct kinfo_proc **) pp2;
848 
849 	ORDERKEY_KTHREADS
850 	ORDERKEY_KTHREADS_PRIO
851 	ORDERKEY_PRIO
852 	ORDERKEY_CPTICKS
853 	ORDERKEY_PCTCPU
854 	ORDERKEY_STATE
855 	ORDERKEY_RSSIZE
856 	ORDERKEY_MEM
857 	{}
858 
859 	return (result);
860 }
861 
862 int
863 compare_thr(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
864 {
865 	struct kinfo_proc *p1;
866 	struct kinfo_proc *p2;
867 	int result;
868 	pctcpu lresult;
869 
870 	/* remove one level of indirection */
871 	p1 = *(struct kinfo_proc **)pp1;
872 	p2 = *(struct kinfo_proc **)pp2;
873 
874 	ORDERKEY_KTHREADS
875 	ORDERKEY_KTHREADS_PRIO
876 	ORDERKEY_CPTICKS
877 	ORDERKEY_PCTCPU
878 	ORDERKEY_STATE
879 	ORDERKEY_RSSIZE
880 	ORDERKEY_MEM
881 	{}
882 
883 	return (result);
884 }
885 
886 /* compare_pid - the comparison function for sorting by process id */
887 
888 int
889 compare_pid(struct kinfo_proc **pp1, struct kinfo_proc **pp2)
890 {
891 	struct kinfo_proc *p1;
892 	struct kinfo_proc *p2;
893 	int result;
894 
895 	/* remove one level of indirection */
896 	p1 = *(struct kinfo_proc **) pp1;
897 	p2 = *(struct kinfo_proc **) pp2;
898 
899 	ORDERKEY_PID
900 	;
901 
902 	return(result);
903 }
904 
905 /*
906  * proc_owner(pid) - returns the uid that owns process "pid", or -1 if
907  *		the process does not exist.
908  *		It is EXTREMLY IMPORTANT that this function work correctly.
909  *		If top runs setuid root (as in SVR4), then this function
910  *		is the only thing that stands in the way of a serious
911  *		security problem.  It validates requests for the "kill"
912  *		and "renice" commands.
913  */
914 
915 int
916 proc_owner(int pid)
917 {
918 	int xcnt;
919 	struct kinfo_proc **prefp;
920 	struct kinfo_proc *pp;
921 
922 	prefp = pref;
923 	xcnt = pref_len;
924 	while (--xcnt >= 0) {
925 		pp = *prefp++;
926 		if (PP(pp, pid) == (pid_t) pid) {
927 			return ((int)PP(pp, ruid));
928 		}
929 	}
930 	return (-1);
931 }
932 
933 
934 /*
935  * swapmode is based on a program called swapinfo written
936  * by Kevin Lahey <kml@rokkaku.atl.ga.us>.
937  */
938 int
939 swapmode(int *retavail, int *retfree)
940 {
941 	int n;
942 	int pagesize = getpagesize();
943 	struct kvm_swap swapary[1];
944 
945 	*retavail = 0;
946 	*retfree = 0;
947 
948 #define CONVERT(v)	((quad_t)(v) * pagesize / 1024)
949 
950 	n = kvm_getswapinfo(kd, swapary, 1, 0);
951 	if (n < 0 || swapary[0].ksw_total == 0)
952 		return (0);
953 
954 	*retavail = CONVERT(swapary[0].ksw_total);
955 	*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
956 
957 	n = (int)((double)swapary[0].ksw_used * 100.0 /
958 	    (double)swapary[0].ksw_total);
959 	return (n);
960 }
961