xref: /dflybsd-src/sys/vm/vm_swapcache.c (revision 1be4932c67b48d3aa9a9d6db1cac600d0d84a01c)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 2010 The DragonFly Project.  All rights reserved.
5  *
6  * This code is derived from software contributed to The DragonFly Project
7  * by Matthew Dillon <dillon@backplane.com>
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  *
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in
17  *    the documentation and/or other materials provided with the
18  *    distribution.
19  * 3. Neither the name of The DragonFly Project nor the names of its
20  *    contributors may be used to endorse or promote products derived
21  *    from this software without specific, prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
27  * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28  * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 /*
38  * Implement the swapcache daemon.  When enabled swap is assumed to be
39  * configured on a fast storage device such as a SSD.  Swap is assigned
40  * to clean vnode-backed pages in the inactive queue, clustered by object
41  * if possible, and written out.  The swap assignment sticks around even
42  * after the underlying pages have been recycled.
43  *
44  * The daemon manages write bandwidth based on sysctl settings to control
45  * wear on the SSD.
46  *
47  * The vnode strategy code will check for the swap assignments and divert
48  * reads to the swap device when the data is present in the swapcache.
49  *
50  * This operates on both regular files and the block device vnodes used by
51  * filesystems to manage meta-data.
52  */
53 
54 #include "opt_vm.h"
55 #include <sys/param.h>
56 #include <sys/systm.h>
57 #include <sys/kernel.h>
58 #include <sys/proc.h>
59 #include <sys/kthread.h>
60 #include <sys/resourcevar.h>
61 #include <sys/signalvar.h>
62 #include <sys/vnode.h>
63 #include <sys/vmmeter.h>
64 #include <sys/sysctl.h>
65 
66 #include <vm/vm.h>
67 #include <vm/vm_param.h>
68 #include <sys/lock.h>
69 #include <vm/vm_object.h>
70 #include <vm/vm_page.h>
71 #include <vm/vm_map.h>
72 #include <vm/vm_pageout.h>
73 #include <vm/vm_pager.h>
74 #include <vm/swap_pager.h>
75 #include <vm/vm_extern.h>
76 
77 #include <sys/thread2.h>
78 #include <vm/vm_page2.h>
79 
80 #define INACTIVE_LIST	(&vm_page_queues[PQ_INACTIVE].pl)
81 
82 /* the kernel process "vm_pageout"*/
83 static int vm_swapcached_flush (vm_page_t m, int isblkdev);
84 static int vm_swapcache_test(vm_page_t m);
85 static void vm_swapcache_writing(vm_page_t marker);
86 static void vm_swapcache_cleaning(vm_object_t marker);
87 struct thread *swapcached_thread;
88 
89 SYSCTL_NODE(_vm, OID_AUTO, swapcache, CTLFLAG_RW, NULL, NULL);
90 
91 int vm_swapcache_read_enable;
92 int vm_swapcache_inactive_heuristic;
93 static int vm_swapcache_sleep;
94 static int vm_swapcache_maxlaunder = 256;
95 static int vm_swapcache_data_enable = 0;
96 static int vm_swapcache_meta_enable = 0;
97 static int vm_swapcache_maxswappct = 75;
98 static int vm_swapcache_hysteresis;
99 static int vm_swapcache_use_chflags = 1;	/* require chflags cache */
100 static int64_t vm_swapcache_minburst = 10000000LL;	/* 10MB */
101 static int64_t vm_swapcache_curburst = 4000000000LL;	/* 4G after boot */
102 static int64_t vm_swapcache_maxburst = 2000000000LL;	/* 2G nominal max */
103 static int64_t vm_swapcache_accrate = 100000LL;		/* 100K/s */
104 static int64_t vm_swapcache_write_count;
105 static int64_t vm_swapcache_maxfilesize;
106 
107 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxlaunder,
108 	CTLFLAG_RW, &vm_swapcache_maxlaunder, 0, "");
109 
110 SYSCTL_INT(_vm_swapcache, OID_AUTO, data_enable,
111 	CTLFLAG_RW, &vm_swapcache_data_enable, 0, "");
112 SYSCTL_INT(_vm_swapcache, OID_AUTO, meta_enable,
113 	CTLFLAG_RW, &vm_swapcache_meta_enable, 0, "");
114 SYSCTL_INT(_vm_swapcache, OID_AUTO, read_enable,
115 	CTLFLAG_RW, &vm_swapcache_read_enable, 0, "");
116 SYSCTL_INT(_vm_swapcache, OID_AUTO, maxswappct,
117 	CTLFLAG_RW, &vm_swapcache_maxswappct, 0, "");
118 SYSCTL_INT(_vm_swapcache, OID_AUTO, hysteresis,
119 	CTLFLAG_RW, &vm_swapcache_hysteresis, 0, "");
120 SYSCTL_INT(_vm_swapcache, OID_AUTO, use_chflags,
121 	CTLFLAG_RW, &vm_swapcache_use_chflags, 0, "");
122 
123 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, minburst,
124 	CTLFLAG_RW, &vm_swapcache_minburst, 0, "");
125 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, curburst,
126 	CTLFLAG_RW, &vm_swapcache_curburst, 0, "");
127 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxburst,
128 	CTLFLAG_RW, &vm_swapcache_maxburst, 0, "");
129 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, maxfilesize,
130 	CTLFLAG_RW, &vm_swapcache_maxfilesize, 0, "");
131 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, accrate,
132 	CTLFLAG_RW, &vm_swapcache_accrate, 0, "");
133 SYSCTL_QUAD(_vm_swapcache, OID_AUTO, write_count,
134 	CTLFLAG_RW, &vm_swapcache_write_count, 0, "");
135 
136 #define SWAPMAX(adj)	\
137 	((int64_t)vm_swap_max * (vm_swapcache_maxswappct + (adj)) / 100)
138 
139 /*
140  * vm_swapcached is the high level pageout daemon.
141  *
142  * No requirements.
143  */
144 static void
145 vm_swapcached_thread(void)
146 {
147 	enum { SWAPC_WRITING, SWAPC_CLEANING } state = SWAPC_WRITING;
148 	enum { SWAPB_BURSTING, SWAPB_RECOVERING } burst = SWAPB_BURSTING;
149 	struct vm_page page_marker;
150 	struct vm_object object_marker;
151 
152 	/*
153 	 * Thread setup
154 	 */
155 	curthread->td_flags |= TDF_SYSTHREAD;
156 
157 	lwkt_gettoken(&vm_token);
158 	crit_enter();
159 
160 	/*
161 	 * Initialize our marker for the inactive scan (SWAPC_WRITING)
162 	 */
163 	bzero(&page_marker, sizeof(page_marker));
164 	page_marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
165 	page_marker.queue = PQ_INACTIVE;
166 	page_marker.wire_count = 1;
167 	TAILQ_INSERT_HEAD(INACTIVE_LIST, &page_marker, pageq);
168 	vm_swapcache_hysteresis = vmstats.v_inactive_target / 2;
169 	vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
170 
171 	/*
172 	 * Initialize our marker for the vm_object scan (SWAPC_CLEANING)
173 	 */
174 	bzero(&object_marker, sizeof(object_marker));
175 	object_marker.type = OBJT_MARKER;
176 	lwkt_gettoken(&vmobj_token);
177 	TAILQ_INSERT_HEAD(&vm_object_list, &object_marker, object_list);
178 	lwkt_reltoken(&vmobj_token);
179 
180 	for (;;) {
181 		/*
182 		 * Check every 5 seconds when not enabled or if no swap
183 		 * is present.
184 		 */
185 		if ((vm_swapcache_data_enable == 0 &&
186 		     vm_swapcache_meta_enable == 0) ||
187 		    vm_swap_max == 0) {
188 			tsleep(&vm_swapcache_sleep, 0, "csleep", hz * 5);
189 			continue;
190 		}
191 
192 		/*
193 		 * Polling rate when enabled is approximately 10 hz.
194 		 */
195 		tsleep(&vm_swapcache_sleep, 0, "csleep", hz / 10);
196 
197 		/*
198 		 * State hysteresis.  Generate write activity up to 75% of
199 		 * swap, then clean out swap assignments down to 70%, then
200 		 * repeat.
201 		 */
202 		if (state == SWAPC_WRITING) {
203 			if (vm_swap_cache_use > SWAPMAX(0))
204 				state = SWAPC_CLEANING;
205 		} else {
206 			if (vm_swap_cache_use < SWAPMAX(-5))
207 				state = SWAPC_WRITING;
208 		}
209 
210 		/*
211 		 * We are allowed to continue accumulating burst value
212 		 * in either state.  Allow the user to set curburst > maxburst
213 		 * for the initial load-in.
214 		 */
215 		if (vm_swapcache_curburst < vm_swapcache_maxburst) {
216 			vm_swapcache_curburst += vm_swapcache_accrate / 10;
217 			if (vm_swapcache_curburst > vm_swapcache_maxburst)
218 				vm_swapcache_curburst = vm_swapcache_maxburst;
219 		}
220 
221 		/*
222 		 * We don't want to nickle-and-dime the scan as that will
223 		 * create unnecessary fragmentation.  The minimum burst
224 		 * is one-seconds worth of accumulation.
225 		 */
226 		if (state == SWAPC_WRITING) {
227 			if (vm_swapcache_curburst >= vm_swapcache_accrate) {
228 				if (burst == SWAPB_BURSTING) {
229 					vm_swapcache_writing(&page_marker);
230 					if (vm_swapcache_curburst <= 0)
231 						burst = SWAPB_RECOVERING;
232 				} else if (vm_swapcache_curburst >
233 					   vm_swapcache_minburst) {
234 					vm_swapcache_writing(&page_marker);
235 					burst = SWAPB_BURSTING;
236 				}
237 			}
238 		} else {
239 			vm_swapcache_cleaning(&object_marker);
240 		}
241 	}
242 
243 	/*
244 	 * Cleanup (NOT REACHED)
245 	 */
246 	TAILQ_REMOVE(INACTIVE_LIST, &page_marker, pageq);
247 	crit_exit();
248 	lwkt_reltoken(&vm_token);
249 
250 	lwkt_gettoken(&vmobj_token);
251 	TAILQ_REMOVE(&vm_object_list, &object_marker, object_list);
252 	lwkt_reltoken(&vmobj_token);
253 }
254 
255 static struct kproc_desc swpc_kp = {
256 	"swapcached",
257 	vm_swapcached_thread,
258 	&swapcached_thread
259 };
260 SYSINIT(swapcached, SI_SUB_KTHREAD_PAGE, SI_ORDER_SECOND, kproc_start, &swpc_kp)
261 
262 /*
263  * The caller must hold vm_token.
264  */
265 static void
266 vm_swapcache_writing(vm_page_t marker)
267 {
268 	vm_object_t object;
269 	struct vnode *vp;
270 	vm_page_t m;
271 	int count;
272 	int isblkdev;
273 
274 	/*
275 	 * Deal with an overflow of the heuristic counter or if the user
276 	 * manually changes the hysteresis.
277 	 *
278 	 * Try to avoid small incremental pageouts by waiting for enough
279 	 * pages to buildup in the inactive queue to hopefully get a good
280 	 * burst in.  This heuristic is bumped by the VM system and reset
281 	 * when our scan hits the end of the queue.
282 	 */
283 	if (vm_swapcache_inactive_heuristic < -vm_swapcache_hysteresis)
284 		vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
285 	if (vm_swapcache_inactive_heuristic < 0)
286 		return;
287 
288 	/*
289 	 * Scan the inactive queue from our marker to locate
290 	 * suitable pages to push to the swap cache.
291 	 *
292 	 * We are looking for clean vnode-backed pages.
293 	 *
294 	 * NOTE: PG_SWAPPED pages in particular are not part of
295 	 *	 our count because once the cache stabilizes we
296 	 *	 can end up with a very high datarate of VM pages
297 	 *	 cycling from it.
298 	 */
299 	m = marker;
300 	count = vm_swapcache_maxlaunder;
301 
302 	while ((m = TAILQ_NEXT(m, pageq)) != NULL && count--) {
303 		if (m->flags & (PG_MARKER | PG_SWAPPED)) {
304 			++count;
305 			continue;
306 		}
307 		if (vm_swapcache_curburst < 0)
308 			break;
309 		if (vm_swapcache_test(m))
310 			continue;
311 		object = m->object;
312 		vp = object->handle;
313 		if (vp == NULL)
314 			continue;
315 
316 		switch(vp->v_type) {
317 		case VREG:
318 			/*
319 			 * If data_enable is 0 do not try to swapcache data.
320 			 * If use_chflags is set then only swapcache data for
321 			 * VSWAPCACHE marked vnodes, otherwise any vnode.
322 			 */
323 			if (vm_swapcache_data_enable == 0 ||
324 			    ((vp->v_flag & VSWAPCACHE) == 0 &&
325 			     vm_swapcache_use_chflags)) {
326 				continue;
327 			}
328 			if (vm_swapcache_maxfilesize &&
329 			    object->size >
330 			    (vm_swapcache_maxfilesize >> PAGE_SHIFT)) {
331 				continue;
332 			}
333 			isblkdev = 0;
334 			break;
335 		case VCHR:
336 			/*
337 			 * The PG_NOTMETA flag only applies to pages
338 			 * associated with block devices.
339 			 */
340 			if (m->flags & PG_NOTMETA)
341 				continue;
342 			if (vm_swapcache_meta_enable == 0)
343 				continue;
344 			isblkdev = 1;
345 			break;
346 		default:
347 			continue;
348 		}
349 
350 		/*
351 		 * Ok, move the marker and soft-busy the page.
352 		 */
353 		TAILQ_REMOVE(INACTIVE_LIST, marker, pageq);
354 		TAILQ_INSERT_AFTER(INACTIVE_LIST, m, marker, pageq);
355 
356 		/*
357 		 * Assign swap and initiate I/O.
358 		 *
359 		 * (adjust for the --count which also occurs in the loop)
360 		 */
361 		count -= vm_swapcached_flush(m, isblkdev) - 1;
362 
363 		/*
364 		 * Setup for next loop using marker.
365 		 */
366 		m = marker;
367 	}
368 
369 	/*
370 	 * Cleanup marker position.  If we hit the end of the
371 	 * list the marker is placed at the tail.  Newly deactivated
372 	 * pages will be placed after it.
373 	 *
374 	 * Earlier inactive pages that were dirty and become clean
375 	 * are typically moved to the end of PQ_INACTIVE by virtue
376 	 * of vfs_vmio_release() when they become unwired from the
377 	 * buffer cache.
378 	 */
379 	TAILQ_REMOVE(INACTIVE_LIST, marker, pageq);
380 	if (m) {
381 		TAILQ_INSERT_BEFORE(m, marker, pageq);
382 	} else {
383 		TAILQ_INSERT_TAIL(INACTIVE_LIST, marker, pageq);
384 		vm_swapcache_inactive_heuristic = -vm_swapcache_hysteresis;
385 	}
386 }
387 
388 /*
389  * Flush the specified page using the swap_pager.
390  *
391  * Try to collect surrounding pages, including pages which may
392  * have already been assigned swap.  Try to cluster within a
393  * contiguous aligned SMAP_META_PAGES (typ 16 x PAGE_SIZE) block
394  * to match what swap_pager_putpages() can do.
395  *
396  * We also want to try to match against the buffer cache blocksize
397  * but we don't really know what it is here.  Since the buffer cache
398  * wires and unwires pages in groups the fact that we skip wired pages
399  * should be sufficient.
400  *
401  * Returns a count of pages we might have flushed (minimum 1)
402  *
403  * The caller must hold vm_token.
404  */
405 static
406 int
407 vm_swapcached_flush(vm_page_t m, int isblkdev)
408 {
409 	vm_object_t object;
410 	vm_page_t marray[SWAP_META_PAGES];
411 	vm_pindex_t basei;
412 	int rtvals[SWAP_META_PAGES];
413 	int x;
414 	int i;
415 	int j;
416 	int count;
417 
418 	vm_page_io_start(m);
419 	vm_page_protect(m, VM_PROT_READ);
420 	object = m->object;
421 
422 	/*
423 	 * Try to cluster around (m), keeping in mind that the swap pager
424 	 * can only do SMAP_META_PAGES worth of continguous write.
425 	 */
426 	x = (int)m->pindex & SWAP_META_MASK;
427 	marray[x] = m;
428 	basei = m->pindex;
429 
430 	for (i = x - 1; i >= 0; --i) {
431 		m = vm_page_lookup(object, basei - x + i);
432 		if (m == NULL)
433 			break;
434 		if (vm_swapcache_test(m))
435 			break;
436 		if (isblkdev && (m->flags & PG_NOTMETA))
437 			break;
438 		vm_page_io_start(m);
439 		vm_page_protect(m, VM_PROT_READ);
440 		if (m->queue - m->pc == PQ_CACHE) {
441 			vm_page_unqueue_nowakeup(m);
442 			vm_page_deactivate(m);
443 		}
444 		marray[i] = m;
445 	}
446 	++i;
447 
448 	for (j = x + 1; j < SWAP_META_PAGES; ++j) {
449 		m = vm_page_lookup(object, basei - x + j);
450 		if (m == NULL)
451 			break;
452 		if (vm_swapcache_test(m))
453 			break;
454 		if (isblkdev && (m->flags & PG_NOTMETA))
455 			break;
456 		vm_page_io_start(m);
457 		vm_page_protect(m, VM_PROT_READ);
458 		if (m->queue - m->pc == PQ_CACHE) {
459 			vm_page_unqueue_nowakeup(m);
460 			vm_page_deactivate(m);
461 		}
462 		marray[j] = m;
463 	}
464 
465 	count = j - i;
466 	vm_object_pip_add(object, count);
467 	swap_pager_putpages(object, marray + i, count, FALSE, rtvals + i);
468 	vm_swapcache_write_count += count * PAGE_SIZE;
469 	vm_swapcache_curburst -= count * PAGE_SIZE;
470 
471 	while (i < j) {
472 		if (rtvals[i] != VM_PAGER_PEND) {
473 			vm_page_io_finish(marray[i]);
474 			vm_object_pip_wakeup(object);
475 		}
476 		++i;
477 	}
478 	return(count);
479 }
480 
481 /*
482  * Test whether a VM page is suitable for writing to the swapcache.
483  * Does not test m->queue, PG_MARKER, or PG_SWAPPED.
484  *
485  * Returns 0 on success, 1 on failure
486  *
487  * The caller must hold vm_token.
488  */
489 static int
490 vm_swapcache_test(vm_page_t m)
491 {
492 	vm_object_t object;
493 
494 	if (m->flags & (PG_BUSY | PG_UNMANAGED))
495 		return(1);
496 	if (m->busy || m->hold_count || m->wire_count)
497 		return(1);
498 	if (m->valid != VM_PAGE_BITS_ALL)
499 		return(1);
500 	if (m->dirty & m->valid)
501 		return(1);
502 	if ((object = m->object) == NULL)
503 		return(1);
504 	if (object->type != OBJT_VNODE ||
505 	    (object->flags & OBJ_DEAD)) {
506 		return(1);
507 	}
508 	vm_page_test_dirty(m);
509 	if (m->dirty & m->valid)
510 		return(1);
511 	return(0);
512 }
513 
514 /*
515  * Cleaning pass
516  *
517  * The caller must hold vm_token.
518  */
519 static
520 void
521 vm_swapcache_cleaning(vm_object_t marker)
522 {
523 	vm_object_t object;
524 	struct vnode *vp;
525 	int count;
526 	int n;
527 
528 	object = marker;
529 	count = vm_swapcache_maxlaunder;
530 
531 	/*
532 	 * Look for vnode objects
533 	 */
534 	lwkt_gettoken(&vm_token);
535 	lwkt_gettoken(&vmobj_token);
536 
537 	while ((object = TAILQ_NEXT(object, object_list)) != NULL && count--) {
538 		if (object->type != OBJT_VNODE)
539 			continue;
540 		if ((object->flags & OBJ_DEAD) || object->swblock_count == 0)
541 			continue;
542 		if ((vp = object->handle) == NULL)
543 			continue;
544 		if (vp->v_type != VREG && vp->v_type != VCHR)
545 			continue;
546 
547 		/*
548 		 * Adjust iterator.
549 		 */
550 		if (marker->backing_object != object)
551 			marker->size = 0;
552 
553 		/*
554 		 * Move the marker so we can work on the VM object
555 		 */
556 		TAILQ_REMOVE(&vm_object_list, marker, object_list);
557 		TAILQ_INSERT_AFTER(&vm_object_list, object,
558 				   marker, object_list);
559 
560 		/*
561 		 * Look for swblocks starting at our iterator.
562 		 *
563 		 * The swap_pager_condfree() function attempts to free
564 		 * swap space starting at the specified index.  The index
565 		 * will be updated on return.  The function will return
566 		 * a scan factor (NOT the number of blocks freed).
567 		 *
568 		 * If it must cut its scan of the object short due to an
569 		 * excessive number of swblocks, or is able to free the
570 		 * requested number of blocks, it will return n >= count
571 		 * and we break and pick it back up on a future attempt.
572 		 */
573 		n = swap_pager_condfree(object, &marker->size, count);
574 		count -= n;
575 		if (count < 0)
576 			break;
577 
578 		/*
579 		 * Setup for loop.
580 		 */
581 		marker->size = 0;
582 		object = marker;
583 	}
584 
585 	/*
586 	 * Adjust marker so we continue the scan from where we left off.
587 	 * When we reach the end we start back at the beginning.
588 	 */
589 	TAILQ_REMOVE(&vm_object_list, marker, object_list);
590 	if (object)
591 		TAILQ_INSERT_BEFORE(object, marker, object_list);
592 	else
593 		TAILQ_INSERT_HEAD(&vm_object_list, marker, object_list);
594 	marker->backing_object = object;
595 
596 	lwkt_reltoken(&vmobj_token);
597 	lwkt_reltoken(&vm_token);
598 }
599