xref: /dflybsd-src/sys/vm/vm_pager.c (revision 0c1d7dca433e727c476aff53acb839b357a28ef6)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_pager.c	8.6 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  *
62  * $FreeBSD: src/sys/vm/vm_pager.c,v 1.54.2.2 2001/11/18 07:11:00 dillon Exp $
63  */
64 
65 /*
66  *	Paging space routine stubs.  Emulates a matchmaker-like interface
67  *	for builtin pagers.
68  */
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/vnode.h>
74 #include <sys/buf.h>
75 #include <sys/ucred.h>
76 #include <sys/dsched.h>
77 #include <sys/proc.h>
78 #include <sys/sysctl.h>
79 #include <sys/thread2.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_param.h>
83 #include <vm/vm_kern.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_extern.h>
88 
89 #include <sys/buf2.h>
90 #include <vm/vm_page2.h>
91 
92 extern struct pagerops defaultpagerops;
93 extern struct pagerops swappagerops;
94 extern struct pagerops vnodepagerops;
95 extern struct pagerops devicepagerops;
96 extern struct pagerops physpagerops;
97 
98 int cluster_pbuf_freecnt = -1;	/* unlimited to begin with */
99 
100 static int dead_pager_getpage (vm_object_t, vm_page_t *, int);
101 static void dead_pager_putpages (vm_object_t, vm_page_t *, int, int, int *);
102 static boolean_t dead_pager_haspage (vm_object_t, vm_pindex_t);
103 static void dead_pager_dealloc (vm_object_t);
104 
105 /*
106  * No requirements.
107  */
108 static int
109 dead_pager_getpage(vm_object_t obj, vm_page_t *mpp, int seqaccess)
110 {
111 	return VM_PAGER_FAIL;
112 }
113 
114 /*
115  * No requirements.
116  */
117 static void
118 dead_pager_putpages(vm_object_t object, vm_page_t *m, int count, int flags,
119 		    int *rtvals)
120 {
121 	int i;
122 
123 	for (i = 0; i < count; i++) {
124 		rtvals[i] = VM_PAGER_AGAIN;
125 	}
126 }
127 
128 /*
129  * No requirements.
130  */
131 static boolean_t
132 dead_pager_haspage(vm_object_t object, vm_pindex_t pindex)
133 {
134 	return FALSE;
135 }
136 
137 /*
138  * No requirements.
139  */
140 static void
141 dead_pager_dealloc(vm_object_t object)
142 {
143 	KKASSERT(object->swblock_count == 0);
144 	return;
145 }
146 
147 static struct pagerops deadpagerops = {
148 	dead_pager_dealloc,
149 	dead_pager_getpage,
150 	dead_pager_putpages,
151 	dead_pager_haspage
152 };
153 
154 struct pagerops *pagertab[] = {
155 	&defaultpagerops,	/* OBJT_DEFAULT */
156 	&swappagerops,		/* OBJT_SWAP */
157 	&vnodepagerops,		/* OBJT_VNODE */
158 	&devicepagerops,	/* OBJT_DEVICE */
159 	&devicepagerops,	/* OBJT_MGTDEVICE */
160 	&physpagerops,		/* OBJT_PHYS */
161 	&deadpagerops		/* OBJT_DEAD */
162 };
163 
164 int npagers = NELEM(pagertab);
165 
166 /*
167  * Kernel address space for mapping pages.
168  * Used by pagers where KVAs are needed for IO.
169  *
170  * XXX needs to be large enough to support the number of pending async
171  * cleaning requests (NPENDINGIO == 64) * the maximum swap cluster size
172  * (MAXPHYS == 64k) if you want to get the most efficiency.
173  */
174 #define PAGER_MAP_SIZE	(8 * 1024 * 1024)
175 
176 #define BSWHSIZE	16
177 #define BSWHMASK	(BSWHSIZE - 1)
178 
179 TAILQ_HEAD(swqueue, buf);
180 
181 int pager_map_size = PAGER_MAP_SIZE;
182 struct vm_map pager_map;
183 
184 static vm_offset_t swapbkva_mem;	/* swap buffers kva */
185 static vm_offset_t swapbkva_kva;	/* swap buffers kva */
186 static struct swqueue bswlist_mem[BSWHSIZE];	/* with preallocated memory */
187 static struct swqueue bswlist_kva[BSWHSIZE];	/* with kva */
188 static struct swqueue bswlist_raw[BSWHSIZE];	/* without kva */
189 static struct spinlock bswspin_mem[BSWHSIZE];
190 static struct spinlock bswspin_kva[BSWHSIZE];
191 static struct spinlock bswspin_raw[BSWHSIZE];
192 static int pbuf_raw_count;
193 static int pbuf_kva_count;
194 static int pbuf_mem_count;
195 
196 SYSCTL_INT(_vfs, OID_AUTO, pbuf_raw_count, CTLFLAG_RD, &pbuf_raw_count, 0,
197     "Kernel pbuf raw reservations");
198 SYSCTL_INT(_vfs, OID_AUTO, pbuf_kva_count, CTLFLAG_RD, &pbuf_kva_count, 0,
199     "Kernel pbuf kva reservations");
200 SYSCTL_INT(_vfs, OID_AUTO, pbuf_mem_count, CTLFLAG_RD, &pbuf_mem_count, 0,
201     "Kernel pbuf mem reservations");
202 
203 /*
204  * Initialize the swap buffer list.
205  *
206  * Called from the low level boot code only.
207  */
208 static void
209 vm_pager_init(void *arg __unused)
210 {
211 	int i;
212 
213 	for (i = 0; i < BSWHSIZE; ++i) {
214 		TAILQ_INIT(&bswlist_mem[i]);
215 		TAILQ_INIT(&bswlist_kva[i]);
216 		TAILQ_INIT(&bswlist_raw[i]);
217 		spin_init(&bswspin_mem[i], "bswmem");
218 		spin_init(&bswspin_kva[i], "bswkva");
219 		spin_init(&bswspin_raw[i], "bswraw");
220 	}
221 }
222 SYSINIT(vm_mem, SI_BOOT1_VM, SI_ORDER_SECOND, vm_pager_init, NULL);
223 
224 /*
225  * Called from the low level boot code only.
226  */
227 static
228 void
229 vm_pager_bufferinit(void *dummy __unused)
230 {
231 	struct buf *bp;
232 	long i;
233 
234 	/*
235 	 * Reserve KVM space for pbuf data.
236 	 */
237 	swapbkva_mem = kmem_alloc_pageable(&pager_map, nswbuf_mem * MAXPHYS);
238 	if (!swapbkva_mem)
239 		panic("Not enough pager_map VM space for physical buffers");
240 	swapbkva_kva = kmem_alloc_pageable(&pager_map, nswbuf_kva * MAXPHYS);
241 	if (!swapbkva_kva)
242 		panic("Not enough pager_map VM space for physical buffers");
243 
244 	/*
245 	 * Initial pbuf setup.
246 	 *
247 	 * mem - These pbufs have permanently allocated memory
248 	 * kva - These pbufs have unallocated kva reservations
249 	 * raw - These pbufs have no kva reservations
250 	 */
251 
252 	/*
253 	 * Buffers with pre-allocated kernel memory can be convenient for
254 	 * copyin/copyout because no SMP page invalidation or other pmap
255 	 * operations are needed.
256 	 */
257 #if 1
258 	bp = swbuf_mem;
259 	for (i = 0; i < nswbuf_mem; ++i, ++bp) {
260 		vm_page_t m;
261 		vm_pindex_t pg;
262 		int j;
263 
264 		bp->b_kvabase = (caddr_t)((intptr_t)i * MAXPHYS) + swapbkva_mem;
265 		bp->b_kvasize = MAXPHYS;
266 		bp->b_swindex = i & BSWHMASK;
267 		BUF_LOCKINIT(bp);
268 		buf_dep_init(bp);
269 		TAILQ_INSERT_HEAD(&bswlist_mem[i & BSWHMASK], bp, b_freelist);
270 		atomic_add_int(&pbuf_mem_count, 1);
271 		bp->b_data = bp->b_kvabase;
272 		bp->b_bcount = MAXPHYS;
273 		bp->b_xio.xio_pages = bp->b_xio.xio_internal_pages;
274 
275 		pg = (vm_offset_t)bp->b_kvabase >> PAGE_SHIFT;
276 		vm_object_hold(&kernel_object);
277 		for (j = 0; j < MAXPHYS / PAGE_SIZE; ++j) {
278 			m = vm_page_alloc(&kernel_object, pg, VM_ALLOC_NORMAL |
279 							      VM_ALLOC_SYSTEM);
280 			KKASSERT(m != NULL);
281 			bp->b_xio.xio_internal_pages[j] = m;
282 			vm_page_wire(m);
283 			vm_page_flag_clear(m, PG_ZERO);
284 			/* early boot, no other cpus running yet */
285 			pmap_kenter_noinval(pg * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
286 			cpu_invlpg((void *)(pg * PAGE_SIZE));
287 			vm_page_wakeup(m);
288 			++pg;
289 		}
290 		vm_object_drop(&kernel_object);
291 		bp->b_xio.xio_npages = j;
292 	}
293 #endif
294 
295 	/*
296 	 * Buffers with pre-assigned KVA bases.  The KVA has no memory pages
297 	 * assigned to it.  Saves the caller from having to reserve KVA for
298 	 * the page map.
299 	 */
300 	bp = swbuf_kva;
301 	for (i = 0; i < nswbuf_kva; ++i, ++bp) {
302 		bp->b_kvabase = (caddr_t)((intptr_t)i * MAXPHYS) + swapbkva_kva;
303 		bp->b_kvasize = MAXPHYS;
304 		bp->b_swindex = i & BSWHMASK;
305 		BUF_LOCKINIT(bp);
306 		buf_dep_init(bp);
307 		TAILQ_INSERT_HEAD(&bswlist_kva[i & BSWHMASK], bp, b_freelist);
308 		atomic_add_int(&pbuf_kva_count, 1);
309 	}
310 
311 	/*
312 	 * RAW buffers with no KVA mappings.
313 	 *
314 	 * NOTE: We use KM_NOTLBSYNC here to reduce unnecessary IPIs
315 	 *	 during startup, which can really slow down emulated
316 	 *	 systems.
317 	 */
318 	nswbuf_raw = nbuf * 2;
319 	swbuf_raw = (void *)kmem_alloc3(&kernel_map,
320 				round_page(nswbuf_raw * sizeof(struct buf)),
321 				KM_NOTLBSYNC);
322 	smp_invltlb();
323 	bp = swbuf_raw;
324 	for (i = 0; i < nswbuf_raw; ++i, ++bp) {
325 		bp->b_swindex = i & BSWHMASK;
326 		BUF_LOCKINIT(bp);
327 		buf_dep_init(bp);
328 		TAILQ_INSERT_HEAD(&bswlist_raw[i & BSWHMASK], bp, b_freelist);
329 		atomic_add_int(&pbuf_raw_count, 1);
330 	}
331 
332 	/*
333 	 * Allow the clustering code to use half of our pbufs.
334 	 */
335 	cluster_pbuf_freecnt = nswbuf_kva / 2;
336 }
337 
338 SYSINIT(do_vmpg, SI_BOOT2_MACHDEP, SI_ORDER_FIRST, vm_pager_bufferinit, NULL);
339 
340 /*
341  * No requirements.
342  */
343 void
344 vm_pager_deallocate(vm_object_t object)
345 {
346 	(*pagertab[object->type]->pgo_dealloc) (object);
347 }
348 
349 /*
350  * vm_pager_get_pages() - inline, see vm/vm_pager.h
351  * vm_pager_put_pages() - inline, see vm/vm_pager.h
352  * vm_pager_has_page() - inline, see vm/vm_pager.h
353  * vm_pager_page_inserted() - inline, see vm/vm_pager.h
354  * vm_pager_page_removed() - inline, see vm/vm_pager.h
355  */
356 
357 /*
358  * Search the specified pager object list for an object with the
359  * specified handle.  If an object with the specified handle is found,
360  * increase its reference count and return it.  Otherwise, return NULL.
361  *
362  * The pager object list must be locked.
363  */
364 vm_object_t
365 vm_pager_object_lookup(struct pagerlst *pg_list, void *handle)
366 {
367 	vm_object_t object;
368 
369 	TAILQ_FOREACH(object, pg_list, pager_object_list) {
370 		if (object->handle == handle) {
371 			VM_OBJECT_LOCK(object);
372 			if ((object->flags & OBJ_DEAD) == 0) {
373 				vm_object_reference_locked(object);
374 				VM_OBJECT_UNLOCK(object);
375 				break;
376 			}
377 			VM_OBJECT_UNLOCK(object);
378 		}
379 	}
380 	return (object);
381 }
382 
383 /*
384  * Initialize a physical buffer.
385  *
386  * No requirements.
387  */
388 static void
389 initpbuf(struct buf *bp)
390 {
391 	bp->b_qindex = 0;		/* BQUEUE_NONE */
392 	bp->b_data = bp->b_kvabase;	/* NULL if pbuf sans kva */
393 	bp->b_flags = B_PAGING;
394 	bp->b_cmd = BUF_CMD_DONE;
395 	bp->b_error = 0;
396 	bp->b_bcount = 0;
397 	bp->b_bufsize = MAXPHYS;
398 	initbufbio(bp);
399 	xio_init(&bp->b_xio);
400 	BUF_LOCK(bp, LK_EXCLUSIVE);
401 }
402 
403 /*
404  * Allocate a physical buffer
405  *
406  *	There are a limited number of physical buffers.  We need to make
407  *	sure that no single subsystem is able to hog all of them,
408  *	so each subsystem implements a counter which is typically initialized
409  *	to 1/2 nswbuf.  getpbuf() decrements this counter in allocation and
410  *	increments it on release, and blocks if the counter hits zero.  A
411  *	subsystem may initialize the counter to -1 to disable the feature,
412  *	but it must still be sure to match up all uses of getpbuf() with
413  *	relpbuf() using the same variable.
414  *
415  *	NOTE: pfreecnt can be NULL, but this 'feature' will be removed
416  *	relatively soon when the rest of the subsystems get smart about it. XXX
417  *
418  *	Physical buffers can be with or without KVA space reserved.  There
419  *	are severe limitations on the ones with KVA reserved, and fewer
420  *	limitations on the ones without.  getpbuf() gets one without,
421  *	getpbuf_kva() gets one with.
422  *
423  * No requirements.
424  */
425 struct buf *
426 getpbuf(int *pfreecnt)	/* raw */
427 {
428 	struct buf *bp;
429 	int iter;
430 	int loops;
431 
432 	for (;;) {
433 		while (pfreecnt && *pfreecnt <= 0) {
434 			tsleep_interlock(pfreecnt, 0);
435 			if (atomic_fetchadd_int(pfreecnt, 0) <= 0)
436 				tsleep(pfreecnt, PINTERLOCKED, "wswbuf0", 0);
437 		}
438 		if (pbuf_raw_count <= 0) {
439 			tsleep_interlock(&pbuf_raw_count, 0);
440 			if (atomic_fetchadd_int(&pbuf_raw_count, 0) <= 0)
441 				tsleep(&pbuf_raw_count, PINTERLOCKED,
442 				       "wswbuf0", 0);
443 			continue;
444 		}
445 		iter = mycpuid & BSWHMASK;
446 		for (loops = BSWHSIZE; loops; --loops) {
447 			if (TAILQ_FIRST(&bswlist_raw[iter]) == NULL) {
448 				iter = (iter + 1) & BSWHMASK;
449 				continue;
450 			}
451 			spin_lock(&bswspin_raw[iter]);
452 			if ((bp = TAILQ_FIRST(&bswlist_raw[iter])) == NULL) {
453 				spin_unlock(&bswspin_raw[iter]);
454 				iter = (iter + 1) & BSWHMASK;
455 				continue;
456 			}
457 			TAILQ_REMOVE(&bswlist_raw[iter], bp, b_freelist);
458 			atomic_add_int(&pbuf_raw_count, -1);
459 			if (pfreecnt)
460 				atomic_add_int(pfreecnt, -1);
461 			spin_unlock(&bswspin_raw[iter]);
462 			initpbuf(bp);
463 
464 			return bp;
465 		}
466 	}
467 	/* not reached */
468 }
469 
470 struct buf *
471 getpbuf_kva(int *pfreecnt)
472 {
473 	struct buf *bp;
474 	int iter;
475 	int loops;
476 
477 	for (;;) {
478 		while (pfreecnt && *pfreecnt <= 0) {
479 			tsleep_interlock(pfreecnt, 0);
480 			if (atomic_fetchadd_int(pfreecnt, 0) <= 0)
481 				tsleep(pfreecnt, PINTERLOCKED, "wswbuf0", 0);
482 		}
483 		if (pbuf_kva_count <= 0) {
484 			tsleep_interlock(&pbuf_kva_count, 0);
485 			if (atomic_fetchadd_int(&pbuf_kva_count, 0) <= 0)
486 				tsleep(&pbuf_kva_count, PINTERLOCKED,
487 				       "wswbuf0", 0);
488 			continue;
489 		}
490 		iter = mycpuid & BSWHMASK;
491 		for (loops = BSWHSIZE; loops; --loops) {
492 			if (TAILQ_FIRST(&bswlist_kva[iter]) == NULL) {
493 				iter = (iter + 1) & BSWHMASK;
494 				continue;
495 			}
496 			spin_lock(&bswspin_kva[iter]);
497 			if ((bp = TAILQ_FIRST(&bswlist_kva[iter])) == NULL) {
498 				spin_unlock(&bswspin_kva[iter]);
499 				iter = (iter + 1) & BSWHMASK;
500 				continue;
501 			}
502 			TAILQ_REMOVE(&bswlist_kva[iter], bp, b_freelist);
503 			atomic_add_int(&pbuf_kva_count, -1);
504 			if (pfreecnt)
505 				atomic_add_int(pfreecnt, -1);
506 			spin_unlock(&bswspin_kva[iter]);
507 			initpbuf(bp);
508 
509 			return bp;
510 		}
511 	}
512 	/* not reached */
513 }
514 
515 /*
516  * Allocate a pbuf with kernel memory already preallocated.  Caller must
517  * not change the mapping.
518  */
519 struct buf *
520 getpbuf_mem(int *pfreecnt)
521 {
522 	struct buf *bp;
523 	int iter;
524 	int loops;
525 
526 	for (;;) {
527 		while (pfreecnt && *pfreecnt <= 0) {
528 			tsleep_interlock(pfreecnt, 0);
529 			if (atomic_fetchadd_int(pfreecnt, 0) <= 0)
530 				tsleep(pfreecnt, PINTERLOCKED, "wswbuf0", 0);
531 		}
532 		if (pbuf_mem_count <= 0) {
533 			tsleep_interlock(&pbuf_mem_count, 0);
534 			if (atomic_fetchadd_int(&pbuf_mem_count, 0) <= 0)
535 				tsleep(&pbuf_mem_count, PINTERLOCKED,
536 				       "wswbuf0", 0);
537 			continue;
538 		}
539 		iter = mycpuid & BSWHMASK;
540 		for (loops = BSWHSIZE; loops; --loops) {
541 			if (TAILQ_FIRST(&bswlist_mem[iter]) == NULL) {
542 				iter = (iter + 1) & BSWHMASK;
543 				continue;
544 			}
545 			spin_lock(&bswspin_mem[iter]);
546 			if ((bp = TAILQ_FIRST(&bswlist_mem[iter])) == NULL) {
547 				spin_unlock(&bswspin_mem[iter]);
548 				iter = (iter + 1) & BSWHMASK;
549 				continue;
550 			}
551 			TAILQ_REMOVE(&bswlist_mem[iter], bp, b_freelist);
552 			atomic_add_int(&pbuf_mem_count, -1);
553 			if (pfreecnt)
554 				atomic_add_int(pfreecnt, -1);
555 			spin_unlock(&bswspin_mem[iter]);
556 			initpbuf(bp);
557 
558 			return bp;
559 		}
560 	}
561 	/* not reached */
562 }
563 
564 /*
565  * Allocate a physical buffer, if one is available.
566  *
567  * Note that there is no NULL hack here - all subsystems using this
568  * call understand how to use pfreecnt.
569  *
570  * No requirements.
571  */
572 struct buf *
573 trypbuf(int *pfreecnt)		/* raw */
574 {
575 	struct buf *bp;
576 	int iter = mycpuid & BSWHMASK;
577 	int loops;
578 
579 	for (loops = BSWHSIZE; loops; --loops) {
580 		if (*pfreecnt <= 0 || TAILQ_FIRST(&bswlist_raw[iter]) == NULL) {
581 			iter = (iter + 1) & BSWHMASK;
582 			continue;
583 		}
584 		spin_lock(&bswspin_raw[iter]);
585 		if (*pfreecnt <= 0 ||
586 		    (bp = TAILQ_FIRST(&bswlist_raw[iter])) == NULL) {
587 			spin_unlock(&bswspin_raw[iter]);
588 			iter = (iter + 1) & BSWHMASK;
589 			continue;
590 		}
591 		TAILQ_REMOVE(&bswlist_raw[iter], bp, b_freelist);
592 		atomic_add_int(&pbuf_raw_count, -1);
593 		atomic_add_int(pfreecnt, -1);
594 
595 		spin_unlock(&bswspin_raw[iter]);
596 
597 		initpbuf(bp);
598 
599 		return bp;
600 	}
601 	return NULL;
602 }
603 
604 struct buf *
605 trypbuf_kva(int *pfreecnt)
606 {
607 	struct buf *bp;
608 	int iter = mycpuid & BSWHMASK;
609 	int loops;
610 
611 	for (loops = BSWHSIZE; loops; --loops) {
612 		if (*pfreecnt <= 0 || TAILQ_FIRST(&bswlist_kva[iter]) == NULL) {
613 			iter = (iter + 1) & BSWHMASK;
614 			continue;
615 		}
616 		spin_lock(&bswspin_kva[iter]);
617 		if (*pfreecnt <= 0 ||
618 		    (bp = TAILQ_FIRST(&bswlist_kva[iter])) == NULL) {
619 			spin_unlock(&bswspin_kva[iter]);
620 			iter = (iter + 1) & BSWHMASK;
621 			continue;
622 		}
623 		TAILQ_REMOVE(&bswlist_kva[iter], bp, b_freelist);
624 		atomic_add_int(&pbuf_kva_count, -1);
625 		atomic_add_int(pfreecnt, -1);
626 
627 		spin_unlock(&bswspin_kva[iter]);
628 
629 		initpbuf(bp);
630 
631 		return bp;
632 	}
633 	return NULL;
634 }
635 
636 /*
637  * Release a physical buffer
638  *
639  *	NOTE: pfreecnt can be NULL, but this 'feature' will be removed
640  *	relatively soon when the rest of the subsystems get smart about it. XXX
641  *
642  * No requirements.
643  */
644 void
645 relpbuf(struct buf *bp, int *pfreecnt)
646 {
647 	int wake = 0;
648 	int wake_free = 0;
649 	int iter = bp->b_swindex;
650 
651 	KKASSERT(bp->b_flags & B_PAGING);
652 	dsched_buf_exit(bp);
653 
654 	BUF_UNLOCK(bp);
655 
656 	if (bp >= swbuf_mem && bp < &swbuf_mem[nswbuf_mem]) {
657 		KKASSERT(bp->b_kvabase);
658 		spin_lock(&bswspin_mem[iter]);
659 		TAILQ_INSERT_HEAD(&bswlist_mem[iter], bp, b_freelist);
660 		if (atomic_fetchadd_int(&pbuf_mem_count, 1) == nswbuf_mem / 4)
661 			wake = 1;
662 		if (pfreecnt) {
663 			if (atomic_fetchadd_int(pfreecnt, 1) == 1)
664 				wake_free = 1;
665 		}
666 		spin_unlock(&bswspin_mem[iter]);
667 		if (wake)
668 			wakeup(&pbuf_mem_count);
669 	} else if (swbuf_kva && bp < &swbuf_kva[nswbuf_kva]) {
670 		KKASSERT(bp->b_kvabase);
671 		spin_lock(&bswspin_kva[iter]);
672 		TAILQ_INSERT_HEAD(&bswlist_kva[iter], bp, b_freelist);
673 		if (atomic_fetchadd_int(&pbuf_kva_count, 1) == nswbuf_kva / 4)
674 			wake = 1;
675 		if (pfreecnt) {
676 			if (atomic_fetchadd_int(pfreecnt, 1) == 1)
677 				wake_free = 1;
678 		}
679 		spin_unlock(&bswspin_kva[iter]);
680 		if (wake)
681 			wakeup(&pbuf_kva_count);
682 	} else {
683 		KKASSERT(bp->b_kvabase == NULL);
684 		KKASSERT(bp >= swbuf_raw && bp < &swbuf_raw[nswbuf_raw]);
685 		spin_lock(&bswspin_raw[iter]);
686 		TAILQ_INSERT_HEAD(&bswlist_raw[iter], bp, b_freelist);
687 		if (atomic_fetchadd_int(&pbuf_raw_count, 1) == nswbuf_raw / 4)
688 			wake = 1;
689 		if (pfreecnt) {
690 			if (atomic_fetchadd_int(pfreecnt, 1) == 1)
691 				wake_free = 1;
692 		}
693 		spin_unlock(&bswspin_raw[iter]);
694 		if (wake)
695 			wakeup(&pbuf_raw_count);
696 	}
697 	if (wake_free)
698 		wakeup(pfreecnt);
699 }
700 
701 void
702 pbuf_adjcount(int *pfreecnt, int n)
703 {
704 	if (n) {
705 		atomic_add_int(pfreecnt, n);
706 		wakeup(pfreecnt);
707 	}
708 }
709