xref: /dflybsd-src/sys/vm/vm_pageout.c (revision c9e3d8f96688a159959b1af2d4fef14b744173e3)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.36 2008/07/01 02:02:56 dillon Exp $
70  */
71 
72 /*
73  *	The proverbial page-out daemon.
74  */
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101 
102 /*
103  * System initialization
104  */
105 
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static int vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112 
113 static struct kproc_desc page_kp = {
114 	"pagedaemon",
115 	vm_pageout,
116 	&pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119 
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct	thread *vmthread;
124 
125 static struct kproc_desc vm_kp = {
126 	"vmdaemon",
127 	vm_daemon,
128 	&vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132 
133 
134 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
137 
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;	/* XXX */
140 static int vm_daemon_needed;
141 #endif
142 static int vm_max_launder = 32;
143 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
144 static int vm_pageout_full_stats_interval = 0;
145 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
146 static int defer_swap_pageouts=0;
147 static int disable_swap_pageouts=0;
148 
149 #if defined(NO_SWAPPING)
150 static int vm_swap_enabled=0;
151 static int vm_swap_idle_enabled=0;
152 #else
153 static int vm_swap_enabled=1;
154 static int vm_swap_idle_enabled=0;
155 #endif
156 
157 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
158 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
159 
160 SYSCTL_INT(_vm, OID_AUTO, max_launder,
161 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
162 
163 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
164 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
165 
166 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
167 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
168 
169 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
170 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
171 
172 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
173 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
174 
175 #if defined(NO_SWAPPING)
176 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
177 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
178 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
179 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
180 #else
181 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
182 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
183 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
184 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
185 #endif
186 
187 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
188 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
189 
190 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
191 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
192 
193 static int pageout_lock_miss;
194 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
195 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
196 
197 int vm_load;
198 SYSCTL_INT(_vm, OID_AUTO, vm_load,
199 	CTLFLAG_RD, &vm_load, 0, "load on the VM system");
200 int vm_load_enable = 1;
201 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
202 	CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
203 #ifdef INVARIANTS
204 int vm_load_debug;
205 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
206 	CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
207 #endif
208 
209 #define VM_PAGEOUT_PAGE_COUNT 16
210 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
211 
212 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
213 
214 #if !defined(NO_SWAPPING)
215 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
216 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
217 static freeer_fcn_t vm_pageout_object_deactivate_pages;
218 static void vm_req_vmdaemon (void);
219 #endif
220 static void vm_pageout_page_stats(void);
221 
222 /*
223  * Update vm_load to slow down faulting processes.
224  */
225 void
226 vm_fault_ratecheck(void)
227 {
228 	if (vm_pages_needed) {
229 		if (vm_load < 1000)
230 			++vm_load;
231 	} else {
232 		if (vm_load > 0)
233 			--vm_load;
234 	}
235 }
236 
237 /*
238  * vm_pageout_clean:
239  *
240  * Clean the page and remove it from the laundry.  The page must not be
241  * busy on-call.
242  *
243  * We set the busy bit to cause potential page faults on this page to
244  * block.  Note the careful timing, however, the busy bit isn't set till
245  * late and we cannot do anything that will mess with the page.
246  */
247 
248 static int
249 vm_pageout_clean(vm_page_t m)
250 {
251 	vm_object_t object;
252 	vm_page_t mc[2*vm_pageout_page_count];
253 	int pageout_count;
254 	int ib, is, page_base;
255 	vm_pindex_t pindex = m->pindex;
256 
257 	object = m->object;
258 
259 	/*
260 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
261 	 * with the new swapper, but we could have serious problems paging
262 	 * out other object types if there is insufficient memory.
263 	 *
264 	 * Unfortunately, checking free memory here is far too late, so the
265 	 * check has been moved up a procedural level.
266 	 */
267 
268 	/*
269 	 * Don't mess with the page if it's busy, held, or special
270 	 */
271 	if ((m->hold_count != 0) ||
272 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
273 		return 0;
274 	}
275 
276 	mc[vm_pageout_page_count] = m;
277 	pageout_count = 1;
278 	page_base = vm_pageout_page_count;
279 	ib = 1;
280 	is = 1;
281 
282 	/*
283 	 * Scan object for clusterable pages.
284 	 *
285 	 * We can cluster ONLY if: ->> the page is NOT
286 	 * clean, wired, busy, held, or mapped into a
287 	 * buffer, and one of the following:
288 	 * 1) The page is inactive, or a seldom used
289 	 *    active page.
290 	 * -or-
291 	 * 2) we force the issue.
292 	 *
293 	 * During heavy mmap/modification loads the pageout
294 	 * daemon can really fragment the underlying file
295 	 * due to flushing pages out of order and not trying
296 	 * align the clusters (which leave sporatic out-of-order
297 	 * holes).  To solve this problem we do the reverse scan
298 	 * first and attempt to align our cluster, then do a
299 	 * forward scan if room remains.
300 	 */
301 
302 more:
303 	while (ib && pageout_count < vm_pageout_page_count) {
304 		vm_page_t p;
305 
306 		if (ib > pindex) {
307 			ib = 0;
308 			break;
309 		}
310 
311 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
312 			ib = 0;
313 			break;
314 		}
315 		if (((p->queue - p->pc) == PQ_CACHE) ||
316 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
317 			ib = 0;
318 			break;
319 		}
320 		vm_page_test_dirty(p);
321 		if ((p->dirty & p->valid) == 0 ||
322 		    p->queue != PQ_INACTIVE ||
323 		    p->wire_count != 0 ||	/* may be held by buf cache */
324 		    p->hold_count != 0) {	/* may be undergoing I/O */
325 			ib = 0;
326 			break;
327 		}
328 		mc[--page_base] = p;
329 		++pageout_count;
330 		++ib;
331 		/*
332 		 * alignment boundry, stop here and switch directions.  Do
333 		 * not clear ib.
334 		 */
335 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
336 			break;
337 	}
338 
339 	while (pageout_count < vm_pageout_page_count &&
340 	    pindex + is < object->size) {
341 		vm_page_t p;
342 
343 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
344 			break;
345 		if (((p->queue - p->pc) == PQ_CACHE) ||
346 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
347 			break;
348 		}
349 		vm_page_test_dirty(p);
350 		if ((p->dirty & p->valid) == 0 ||
351 		    p->queue != PQ_INACTIVE ||
352 		    p->wire_count != 0 ||	/* may be held by buf cache */
353 		    p->hold_count != 0) {	/* may be undergoing I/O */
354 			break;
355 		}
356 		mc[page_base + pageout_count] = p;
357 		++pageout_count;
358 		++is;
359 	}
360 
361 	/*
362 	 * If we exhausted our forward scan, continue with the reverse scan
363 	 * when possible, even past a page boundry.  This catches boundry
364 	 * conditions.
365 	 */
366 	if (ib && pageout_count < vm_pageout_page_count)
367 		goto more;
368 
369 	/*
370 	 * we allow reads during pageouts...
371 	 */
372 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
373 }
374 
375 /*
376  * vm_pageout_flush() - launder the given pages
377  *
378  *	The given pages are laundered.  Note that we setup for the start of
379  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
380  *	reference count all in here rather then in the parent.  If we want
381  *	the parent to do more sophisticated things we may have to change
382  *	the ordering.
383  */
384 int
385 vm_pageout_flush(vm_page_t *mc, int count, int flags)
386 {
387 	vm_object_t object;
388 	int pageout_status[count];
389 	int numpagedout = 0;
390 	int i;
391 
392 	/*
393 	 * Initiate I/O.  Bump the vm_page_t->busy counter.
394 	 */
395 	for (i = 0; i < count; i++) {
396 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
397 		vm_page_io_start(mc[i]);
398 	}
399 
400 	/*
401 	 * We must make the pages read-only.  This will also force the
402 	 * modified bit in the related pmaps to be cleared.  The pager
403 	 * cannot clear the bit for us since the I/O completion code
404 	 * typically runs from an interrupt.  The act of making the page
405 	 * read-only handles the case for us.
406 	 */
407 	for (i = 0; i < count; i++) {
408 		vm_page_protect(mc[i], VM_PROT_READ);
409 	}
410 
411 	object = mc[0]->object;
412 	vm_object_pip_add(object, count);
413 
414 	vm_pager_put_pages(object, mc, count,
415 	    (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
416 	    pageout_status);
417 
418 	for (i = 0; i < count; i++) {
419 		vm_page_t mt = mc[i];
420 
421 		switch (pageout_status[i]) {
422 		case VM_PAGER_OK:
423 			numpagedout++;
424 			break;
425 		case VM_PAGER_PEND:
426 			numpagedout++;
427 			break;
428 		case VM_PAGER_BAD:
429 			/*
430 			 * Page outside of range of object. Right now we
431 			 * essentially lose the changes by pretending it
432 			 * worked.
433 			 */
434 			pmap_clear_modify(mt);
435 			vm_page_undirty(mt);
436 			break;
437 		case VM_PAGER_ERROR:
438 		case VM_PAGER_FAIL:
439 			/*
440 			 * A page typically cannot be paged out when we
441 			 * have run out of swap.  We leave the page
442 			 * marked inactive and will try to page it out
443 			 * again later.
444 			 *
445 			 * Starvation of the active page list is used to
446 			 * determine when the system is massively memory
447 			 * starved.
448 			 */
449 			break;
450 		case VM_PAGER_AGAIN:
451 			break;
452 		}
453 
454 		/*
455 		 * If the operation is still going, leave the page busy to
456 		 * block all other accesses. Also, leave the paging in
457 		 * progress indicator set so that we don't attempt an object
458 		 * collapse.
459 		 *
460 		 * For any pages which have completed synchronously,
461 		 * deactivate the page if we are under a severe deficit.
462 		 * Do not try to enter them into the cache, though, they
463 		 * might still be read-heavy.
464 		 */
465 		if (pageout_status[i] != VM_PAGER_PEND) {
466 			vm_object_pip_wakeup(object);
467 			vm_page_io_finish(mt);
468 			if (vm_page_count_severe())
469 				vm_page_deactivate(mt);
470 #if 0
471 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
472 				vm_page_protect(mt, VM_PROT_READ);
473 #endif
474 		}
475 	}
476 	return numpagedout;
477 }
478 
479 #if !defined(NO_SWAPPING)
480 /*
481  *	vm_pageout_object_deactivate_pages
482  *
483  *	deactivate enough pages to satisfy the inactive target
484  *	requirements or if vm_page_proc_limit is set, then
485  *	deactivate all of the pages in the object and its
486  *	backing_objects.
487  *
488  *	The object and map must be locked.
489  */
490 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
491 
492 static void
493 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
494 	vm_pindex_t desired, int map_remove_only)
495 {
496 	struct rb_vm_page_scan_info info;
497 	int remove_mode;
498 
499 	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
500 		return;
501 
502 	while (object) {
503 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
504 			return;
505 		if (object->paging_in_progress)
506 			return;
507 
508 		remove_mode = map_remove_only;
509 		if (object->shadow_count > 1)
510 			remove_mode = 1;
511 
512 		/*
513 		 * scan the objects entire memory queue.  spl protection is
514 		 * required to avoid an interrupt unbusy/free race against
515 		 * our busy check.
516 		 */
517 		crit_enter();
518 		info.limit = remove_mode;
519 		info.map = map;
520 		info.desired = desired;
521 		vm_page_rb_tree_RB_SCAN(&object->rb_memq, NULL,
522 				vm_pageout_object_deactivate_pages_callback,
523 				&info
524 		);
525 		crit_exit();
526 		object = object->backing_object;
527 	}
528 }
529 
530 static int
531 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
532 {
533 	struct rb_vm_page_scan_info *info = data;
534 	int actcount;
535 
536 	if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
537 		return(-1);
538 	}
539 	mycpu->gd_cnt.v_pdpages++;
540 	if (p->wire_count != 0 || p->hold_count != 0 || p->busy != 0 ||
541 	    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
542 	    !pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
543 		return(0);
544 	}
545 
546 	actcount = pmap_ts_referenced(p);
547 	if (actcount) {
548 		vm_page_flag_set(p, PG_REFERENCED);
549 	} else if (p->flags & PG_REFERENCED) {
550 		actcount = 1;
551 	}
552 
553 	if ((p->queue != PQ_ACTIVE) &&
554 		(p->flags & PG_REFERENCED)) {
555 		vm_page_activate(p);
556 		p->act_count += actcount;
557 		vm_page_flag_clear(p, PG_REFERENCED);
558 	} else if (p->queue == PQ_ACTIVE) {
559 		if ((p->flags & PG_REFERENCED) == 0) {
560 			p->act_count -= min(p->act_count, ACT_DECLINE);
561 			if (!info->limit && (vm_pageout_algorithm || (p->act_count == 0))) {
562 				vm_page_busy(p);
563 				vm_page_protect(p, VM_PROT_NONE);
564 				vm_page_wakeup(p);
565 				vm_page_deactivate(p);
566 			} else {
567 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
568 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
569 			}
570 		} else {
571 			vm_page_activate(p);
572 			vm_page_flag_clear(p, PG_REFERENCED);
573 			if (p->act_count < (ACT_MAX - ACT_ADVANCE))
574 				p->act_count += ACT_ADVANCE;
575 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
576 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
577 		}
578 	} else if (p->queue == PQ_INACTIVE) {
579 		vm_page_busy(p);
580 		vm_page_protect(p, VM_PROT_NONE);
581 		vm_page_wakeup(p);
582 	}
583 	return(0);
584 }
585 
586 /*
587  * deactivate some number of pages in a map, try to do it fairly, but
588  * that is really hard to do.
589  */
590 static void
591 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
592 {
593 	vm_map_entry_t tmpe;
594 	vm_object_t obj, bigobj;
595 	int nothingwired;
596 
597 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
598 		return;
599 	}
600 
601 	bigobj = NULL;
602 	nothingwired = TRUE;
603 
604 	/*
605 	 * first, search out the biggest object, and try to free pages from
606 	 * that.
607 	 */
608 	tmpe = map->header.next;
609 	while (tmpe != &map->header) {
610 		switch(tmpe->maptype) {
611 		case VM_MAPTYPE_NORMAL:
612 		case VM_MAPTYPE_VPAGETABLE:
613 			obj = tmpe->object.vm_object;
614 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
615 				((bigobj == NULL) ||
616 				 (bigobj->resident_page_count < obj->resident_page_count))) {
617 				bigobj = obj;
618 			}
619 			break;
620 		default:
621 			break;
622 		}
623 		if (tmpe->wired_count > 0)
624 			nothingwired = FALSE;
625 		tmpe = tmpe->next;
626 	}
627 
628 	if (bigobj)
629 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
630 
631 	/*
632 	 * Next, hunt around for other pages to deactivate.  We actually
633 	 * do this search sort of wrong -- .text first is not the best idea.
634 	 */
635 	tmpe = map->header.next;
636 	while (tmpe != &map->header) {
637 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
638 			break;
639 		switch(tmpe->maptype) {
640 		case VM_MAPTYPE_NORMAL:
641 		case VM_MAPTYPE_VPAGETABLE:
642 			obj = tmpe->object.vm_object;
643 			if (obj)
644 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
645 			break;
646 		default:
647 			break;
648 		}
649 		tmpe = tmpe->next;
650 	};
651 
652 	/*
653 	 * Remove all mappings if a process is swapped out, this will free page
654 	 * table pages.
655 	 */
656 	if (desired == 0 && nothingwired)
657 		pmap_remove(vm_map_pmap(map),
658 			    VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
659 	vm_map_unlock(map);
660 }
661 #endif
662 
663 /*
664  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
665  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
666  * be trivially freed.
667  */
668 void
669 vm_pageout_page_free(vm_page_t m)
670 {
671 	vm_object_t object = m->object;
672 	int type = object->type;
673 
674 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
675 		vm_object_reference(object);
676 	vm_page_busy(m);
677 	vm_page_protect(m, VM_PROT_NONE);
678 	vm_page_free(m);
679 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
680 		vm_object_deallocate(object);
681 }
682 
683 /*
684  * vm_pageout_scan does the dirty work for the pageout daemon.
685  */
686 struct vm_pageout_scan_info {
687 	struct proc *bigproc;
688 	vm_offset_t bigsize;
689 };
690 
691 static int vm_pageout_scan_callback(struct proc *p, void *data);
692 
693 static int
694 vm_pageout_scan(int pass)
695 {
696 	struct vm_pageout_scan_info info;
697 	vm_page_t m, next;
698 	struct vm_page marker;
699 	struct vnode *vpfailed;		/* warning, allowed to be stale */
700 	int maxscan, pcount;
701 	int recycle_count;
702 	int inactive_shortage, active_shortage;
703 	int inactive_original_shortage;
704 	vm_object_t object;
705 	int actcount;
706 	int vnodes_skipped = 0;
707 	int maxlaunder;
708 
709 	/*
710 	 * Do whatever cleanup that the pmap code can.
711 	 */
712 	pmap_collect();
713 
714 	/*
715 	 * Calculate our target for the number of free+cache pages we
716 	 * want to get to.  This is higher then the number that causes
717 	 * allocations to stall (severe) in order to provide hysteresis,
718 	 * and if we don't make it all the way but get to the minimum
719 	 * we're happy.
720 	 */
721 	inactive_shortage = vm_paging_target() + vm_pageout_deficit;
722 	inactive_original_shortage = inactive_shortage;
723 	vm_pageout_deficit = 0;
724 
725 	/*
726 	 * Initialize our marker
727 	 */
728 	bzero(&marker, sizeof(marker));
729 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
730 	marker.queue = PQ_INACTIVE;
731 	marker.wire_count = 1;
732 
733 	/*
734 	 * Start scanning the inactive queue for pages we can move to the
735 	 * cache or free.  The scan will stop when the target is reached or
736 	 * we have scanned the entire inactive queue.  Note that m->act_count
737 	 * is not used to form decisions for the inactive queue, only for the
738 	 * active queue.
739 	 *
740 	 * maxlaunder limits the number of dirty pages we flush per scan.
741 	 * For most systems a smaller value (16 or 32) is more robust under
742 	 * extreme memory and disk pressure because any unnecessary writes
743 	 * to disk can result in extreme performance degredation.  However,
744 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
745 	 * used) will die horribly with limited laundering.  If the pageout
746 	 * daemon cannot clean enough pages in the first pass, we let it go
747 	 * all out in succeeding passes.
748 	 */
749 	if ((maxlaunder = vm_max_launder) <= 1)
750 		maxlaunder = 1;
751 	if (pass)
752 		maxlaunder = 10000;
753 
754 	/*
755 	 * We will generally be in a critical section throughout the
756 	 * scan, but we can release it temporarily when we are sitting on a
757 	 * non-busy page without fear.  this is required to prevent an
758 	 * interrupt from unbusying or freeing a page prior to our busy
759 	 * check, leaving us on the wrong queue or checking the wrong
760 	 * page.
761 	 */
762 	crit_enter();
763 rescan0:
764 	vpfailed = NULL;
765 	maxscan = vmstats.v_inactive_count;
766 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
767 	     m != NULL && maxscan-- > 0 && inactive_shortage > 0;
768 	     m = next
769 	 ) {
770 		mycpu->gd_cnt.v_pdpages++;
771 
772 		/*
773 		 * Give interrupts a chance
774 		 */
775 		crit_exit();
776 		crit_enter();
777 
778 		/*
779 		 * It's easier for some of the conditions below to just loop
780 		 * and catch queue changes here rather then check everywhere
781 		 * else.
782 		 */
783 		if (m->queue != PQ_INACTIVE)
784 			goto rescan0;
785 		next = TAILQ_NEXT(m, pageq);
786 
787 		/*
788 		 * skip marker pages
789 		 */
790 		if (m->flags & PG_MARKER)
791 			continue;
792 
793 		/*
794 		 * A held page may be undergoing I/O, so skip it.
795 		 */
796 		if (m->hold_count) {
797 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
798 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
799 			++vm_swapcache_inactive_heuristic;
800 			continue;
801 		}
802 
803 		/*
804 		 * Dont mess with busy pages, keep in the front of the
805 		 * queue, most likely are being paged out.
806 		 */
807 		if (m->busy || (m->flags & PG_BUSY)) {
808 			continue;
809 		}
810 
811 		if (m->object->ref_count == 0) {
812 			/*
813 			 * If the object is not being used, we ignore previous
814 			 * references.
815 			 */
816 			vm_page_flag_clear(m, PG_REFERENCED);
817 			pmap_clear_reference(m);
818 
819 		} else if (((m->flags & PG_REFERENCED) == 0) &&
820 			    (actcount = pmap_ts_referenced(m))) {
821 			/*
822 			 * Otherwise, if the page has been referenced while
823 			 * in the inactive queue, we bump the "activation
824 			 * count" upwards, making it less likely that the
825 			 * page will be added back to the inactive queue
826 			 * prematurely again.  Here we check the page tables
827 			 * (or emulated bits, if any), given the upper level
828 			 * VM system not knowing anything about existing
829 			 * references.
830 			 */
831 			vm_page_activate(m);
832 			m->act_count += (actcount + ACT_ADVANCE);
833 			continue;
834 		}
835 
836 		/*
837 		 * If the upper level VM system knows about any page
838 		 * references, we activate the page.  We also set the
839 		 * "activation count" higher than normal so that we will less
840 		 * likely place pages back onto the inactive queue again.
841 		 */
842 		if ((m->flags & PG_REFERENCED) != 0) {
843 			vm_page_flag_clear(m, PG_REFERENCED);
844 			actcount = pmap_ts_referenced(m);
845 			vm_page_activate(m);
846 			m->act_count += (actcount + ACT_ADVANCE + 1);
847 			continue;
848 		}
849 
850 		/*
851 		 * If the upper level VM system doesn't know anything about
852 		 * the page being dirty, we have to check for it again.  As
853 		 * far as the VM code knows, any partially dirty pages are
854 		 * fully dirty.
855 		 *
856 		 * Pages marked PG_WRITEABLE may be mapped into the user
857 		 * address space of a process running on another cpu.  A
858 		 * user process (without holding the MP lock) running on
859 		 * another cpu may be able to touch the page while we are
860 		 * trying to remove it.  vm_page_cache() will handle this
861 		 * case for us.
862 		 */
863 		if (m->dirty == 0) {
864 			vm_page_test_dirty(m);
865 		} else {
866 			vm_page_dirty(m);
867 		}
868 
869 		if (m->valid == 0) {
870 			/*
871 			 * Invalid pages can be easily freed
872 			 */
873 			vm_pageout_page_free(m);
874 			mycpu->gd_cnt.v_dfree++;
875 			--inactive_shortage;
876 		} else if (m->dirty == 0) {
877 			/*
878 			 * Clean pages can be placed onto the cache queue.
879 			 * This effectively frees them.
880 			 */
881 			vm_page_cache(m);
882 			--inactive_shortage;
883 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
884 			/*
885 			 * Dirty pages need to be paged out, but flushing
886 			 * a page is extremely expensive verses freeing
887 			 * a clean page.  Rather then artificially limiting
888 			 * the number of pages we can flush, we instead give
889 			 * dirty pages extra priority on the inactive queue
890 			 * by forcing them to be cycled through the queue
891 			 * twice before being flushed, after which the
892 			 * (now clean) page will cycle through once more
893 			 * before being freed.  This significantly extends
894 			 * the thrash point for a heavily loaded machine.
895 			 */
896 			vm_page_flag_set(m, PG_WINATCFLS);
897 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
898 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
899 			++vm_swapcache_inactive_heuristic;
900 		} else if (maxlaunder > 0) {
901 			/*
902 			 * We always want to try to flush some dirty pages if
903 			 * we encounter them, to keep the system stable.
904 			 * Normally this number is small, but under extreme
905 			 * pressure where there are insufficient clean pages
906 			 * on the inactive queue, we may have to go all out.
907 			 */
908 			int swap_pageouts_ok;
909 			struct vnode *vp = NULL;
910 
911 			object = m->object;
912 
913 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
914 				swap_pageouts_ok = 1;
915 			} else {
916 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
917 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
918 				vm_page_count_min(0));
919 
920 			}
921 
922 			/*
923 			 * We don't bother paging objects that are "dead".
924 			 * Those objects are in a "rundown" state.
925 			 */
926 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
927 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
928 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
929 				++vm_swapcache_inactive_heuristic;
930 				continue;
931 			}
932 
933 			/*
934 			 * The object is already known NOT to be dead.   It
935 			 * is possible for the vget() to block the whole
936 			 * pageout daemon, but the new low-memory handling
937 			 * code should prevent it.
938 			 *
939 			 * The previous code skipped locked vnodes and, worse,
940 			 * reordered pages in the queue.  This results in
941 			 * completely non-deterministic operation because,
942 			 * quite often, a vm_fault has initiated an I/O and
943 			 * is holding a locked vnode at just the point where
944 			 * the pageout daemon is woken up.
945 			 *
946 			 * We can't wait forever for the vnode lock, we might
947 			 * deadlock due to a vn_read() getting stuck in
948 			 * vm_wait while holding this vnode.  We skip the
949 			 * vnode if we can't get it in a reasonable amount
950 			 * of time.
951 			 *
952 			 * vpfailed is used to (try to) avoid the case where
953 			 * a large number of pages are associated with a
954 			 * locked vnode, which could cause the pageout daemon
955 			 * to stall for an excessive amount of time.
956 			 */
957 			if (object->type == OBJT_VNODE) {
958 				int flags;
959 
960 				vp = object->handle;
961 				flags = LK_EXCLUSIVE | LK_NOOBJ;
962 				if (vp == vpfailed)
963 					flags |= LK_NOWAIT;
964 				else
965 					flags |= LK_TIMELOCK;
966 				if (vget(vp, flags) != 0) {
967 					vpfailed = vp;
968 					++pageout_lock_miss;
969 					if (object->flags & OBJ_MIGHTBEDIRTY)
970 						    vnodes_skipped++;
971 					continue;
972 				}
973 
974 				/*
975 				 * The page might have been moved to another
976 				 * queue during potential blocking in vget()
977 				 * above.  The page might have been freed and
978 				 * reused for another vnode.  The object might
979 				 * have been reused for another vnode.
980 				 */
981 				if (m->queue != PQ_INACTIVE ||
982 				    m->object != object ||
983 				    object->handle != vp) {
984 					if (object->flags & OBJ_MIGHTBEDIRTY)
985 						vnodes_skipped++;
986 					vput(vp);
987 					continue;
988 				}
989 
990 				/*
991 				 * The page may have been busied during the
992 				 * blocking in vput();  We don't move the
993 				 * page back onto the end of the queue so that
994 				 * statistics are more correct if we don't.
995 				 */
996 				if (m->busy || (m->flags & PG_BUSY)) {
997 					vput(vp);
998 					continue;
999 				}
1000 
1001 				/*
1002 				 * If the page has become held it might
1003 				 * be undergoing I/O, so skip it
1004 				 */
1005 				if (m->hold_count) {
1006 					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1007 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1008 					++vm_swapcache_inactive_heuristic;
1009 					if (object->flags & OBJ_MIGHTBEDIRTY)
1010 						vnodes_skipped++;
1011 					vput(vp);
1012 					continue;
1013 				}
1014 			}
1015 
1016 			/*
1017 			 * If a page is dirty, then it is either being washed
1018 			 * (but not yet cleaned) or it is still in the
1019 			 * laundry.  If it is still in the laundry, then we
1020 			 * start the cleaning operation.
1021 			 *
1022 			 * This operation may cluster, invalidating the 'next'
1023 			 * pointer.  To prevent an inordinate number of
1024 			 * restarts we use our marker to remember our place.
1025 			 *
1026 			 * decrement inactive_shortage on success to account
1027 			 * for the (future) cleaned page.  Otherwise we
1028 			 * could wind up laundering or cleaning too many
1029 			 * pages.
1030 			 */
1031 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
1032 			if (vm_pageout_clean(m) != 0) {
1033 				--inactive_shortage;
1034 				--maxlaunder;
1035 			}
1036 			next = TAILQ_NEXT(&marker, pageq);
1037 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1038 			if (vp != NULL)
1039 				vput(vp);
1040 		}
1041 	}
1042 
1043 	/*
1044 	 * We want to move pages from the active queue to the inactive
1045 	 * queue to get the inactive queue to the inactive target.  If
1046 	 * we still have a page shortage from above we try to directly free
1047 	 * clean pages instead of moving them.
1048 	 *
1049 	 * If we do still have a shortage we keep track of the number of
1050 	 * pages we free or cache (recycle_count) as a measure of thrashing
1051 	 * between the active and inactive queues.
1052 	 *
1053 	 * If we were able to completely satisfy the free+cache targets
1054 	 * from the inactive pool we limit the number of pages we move
1055 	 * from the active pool to the inactive pool to 2x the pages we
1056 	 * had removed from the inactive pool (with a minimum of 1/5 the
1057 	 * inactive target).  If we were not able to completely satisfy
1058 	 * the free+cache targets we go for the whole target aggressively.
1059 	 *
1060 	 * NOTE: Both variables can end up negative.
1061 	 * NOTE: We are still in a critical section.
1062 	 */
1063 	active_shortage = vmstats.v_inactive_target - vmstats.v_inactive_count;
1064 	if (inactive_original_shortage < vmstats.v_inactive_target / 10)
1065 		inactive_original_shortage = vmstats.v_inactive_target / 10;
1066 	if (inactive_shortage <= 0 &&
1067 	    active_shortage > inactive_original_shortage * 2) {
1068 		active_shortage = inactive_original_shortage * 2;
1069 	}
1070 
1071 	pcount = vmstats.v_active_count;
1072 	recycle_count = 0;
1073 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1074 
1075 	while ((m != NULL) && (pcount-- > 0) &&
1076 	       (inactive_shortage > 0 || active_shortage > 0)
1077 	) {
1078 		/*
1079 		 * Give interrupts a chance.
1080 		 */
1081 		crit_exit();
1082 		crit_enter();
1083 
1084 		/*
1085 		 * If the page was ripped out from under us, just stop.
1086 		 */
1087 		if (m->queue != PQ_ACTIVE)
1088 			break;
1089 		next = TAILQ_NEXT(m, pageq);
1090 
1091 		/*
1092 		 * Don't deactivate pages that are busy.
1093 		 */
1094 		if ((m->busy != 0) ||
1095 		    (m->flags & PG_BUSY) ||
1096 		    (m->hold_count != 0)) {
1097 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1098 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1099 			m = next;
1100 			continue;
1101 		}
1102 
1103 		/*
1104 		 * The count for pagedaemon pages is done after checking the
1105 		 * page for eligibility...
1106 		 */
1107 		mycpu->gd_cnt.v_pdpages++;
1108 
1109 		/*
1110 		 * Check to see "how much" the page has been used and clear
1111 		 * the tracking access bits.  If the object has no references
1112 		 * don't bother paying the expense.
1113 		 */
1114 		actcount = 0;
1115 		if (m->object->ref_count != 0) {
1116 			if (m->flags & PG_REFERENCED)
1117 				++actcount;
1118 			actcount += pmap_ts_referenced(m);
1119 			if (actcount) {
1120 				m->act_count += ACT_ADVANCE + actcount;
1121 				if (m->act_count > ACT_MAX)
1122 					m->act_count = ACT_MAX;
1123 			}
1124 		}
1125 		vm_page_flag_clear(m, PG_REFERENCED);
1126 
1127 		/*
1128 		 * actcount is only valid if the object ref_count is non-zero.
1129 		 */
1130 		if (actcount && m->object->ref_count != 0) {
1131 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1132 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1133 		} else {
1134 			m->act_count -= min(m->act_count, ACT_DECLINE);
1135 			if (vm_pageout_algorithm ||
1136 			    m->object->ref_count == 0 ||
1137 			    m->act_count < pass + 1
1138 			) {
1139 				/*
1140 				 * Deactivate the page.  If we had a
1141 				 * shortage from our inactive scan try to
1142 				 * free (cache) the page instead.
1143 				 *
1144 				 * Don't just blindly cache the page if
1145 				 * we do not have a shortage from the
1146 				 * inactive scan, that could lead to
1147 				 * gigabytes being moved.
1148 				 */
1149 				--active_shortage;
1150 				if (inactive_shortage > 0 ||
1151 				    m->object->ref_count == 0) {
1152 					if (inactive_shortage > 0)
1153 						++recycle_count;
1154 					vm_page_busy(m);
1155 					vm_page_protect(m, VM_PROT_NONE);
1156 					vm_page_wakeup(m);
1157 					if (m->dirty == 0 &&
1158 					    inactive_shortage > 0) {
1159 						--inactive_shortage;
1160 						vm_page_cache(m);
1161 					} else {
1162 						vm_page_deactivate(m);
1163 					}
1164 				} else {
1165 					vm_page_deactivate(m);
1166 				}
1167 			} else {
1168 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1169 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1170 			}
1171 		}
1172 		m = next;
1173 	}
1174 
1175 	/*
1176 	 * We try to maintain some *really* free pages, this allows interrupt
1177 	 * code to be guaranteed space.  Since both cache and free queues
1178 	 * are considered basically 'free', moving pages from cache to free
1179 	 * does not effect other calculations.
1180 	 *
1181 	 * NOTE: we are still in a critical section.
1182 	 *
1183 	 * Pages moved from PQ_CACHE to totally free are not counted in the
1184 	 * pages_freed counter.
1185 	 */
1186 	while (vmstats.v_free_count < vmstats.v_free_reserved) {
1187 		static int cache_rover = 0;
1188 		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1189 		if (m == NULL)
1190 			break;
1191 		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1192 		    m->busy ||
1193 		    m->hold_count ||
1194 		    m->wire_count) {
1195 #ifdef INVARIANTS
1196 			kprintf("Warning: busy page %p found in cache\n", m);
1197 #endif
1198 			vm_page_deactivate(m);
1199 			continue;
1200 		}
1201 		KKASSERT((m->flags & PG_MAPPED) == 0);
1202 		KKASSERT(m->dirty == 0);
1203 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1204 		vm_pageout_page_free(m);
1205 		mycpu->gd_cnt.v_dfree++;
1206 	}
1207 
1208 	crit_exit();
1209 
1210 #if !defined(NO_SWAPPING)
1211 	/*
1212 	 * Idle process swapout -- run once per second.
1213 	 */
1214 	if (vm_swap_idle_enabled) {
1215 		static long lsec;
1216 		if (time_second != lsec) {
1217 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1218 			vm_req_vmdaemon();
1219 			lsec = time_second;
1220 		}
1221 	}
1222 #endif
1223 
1224 	/*
1225 	 * If we didn't get enough free pages, and we have skipped a vnode
1226 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1227 	 * if we did not get enough free pages.
1228 	 */
1229 	if (vm_paging_target() > 0) {
1230 		if (vnodes_skipped && vm_page_count_min(0))
1231 			speedup_syncer();
1232 #if !defined(NO_SWAPPING)
1233 		if (vm_swap_enabled && vm_page_count_target()) {
1234 			vm_req_vmdaemon();
1235 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1236 		}
1237 #endif
1238 	}
1239 
1240 	/*
1241 	 * Handle catastrophic conditions.  Under good conditions we should
1242 	 * be at the target, well beyond our minimum.  If we could not even
1243 	 * reach our minimum the system is under heavy stress.
1244 	 *
1245 	 * Determine whether we have run out of memory.  This occurs when
1246 	 * swap_pager_full is TRUE and the only pages left in the page
1247 	 * queues are dirty.  We will still likely have page shortages.
1248 	 *
1249 	 * - swap_pager_full is set if insufficient swap was
1250 	 *   available to satisfy a requested pageout.
1251 	 *
1252 	 * - the inactive queue is bloated (4 x size of active queue),
1253 	 *   meaning it is unable to get rid of dirty pages and.
1254 	 *
1255 	 * - vm_page_count_min() without counting pages recycled from the
1256 	 *   active queue (recycle_count) means we could not recover
1257 	 *   enough pages to meet bare minimum needs.  This test only
1258 	 *   works if the inactive queue is bloated.
1259 	 *
1260 	 * - due to a positive inactive_shortage we shifted the remaining
1261 	 *   dirty pages from the active queue to the inactive queue
1262 	 *   trying to find clean ones to free.
1263 	 */
1264 	if (swap_pager_full && vm_page_count_min(recycle_count))
1265 		kprintf("Warning: system low on memory+swap!\n");
1266 	if (swap_pager_full && vm_page_count_min(recycle_count) &&
1267 	    vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1268 	    inactive_shortage > 0) {
1269 		/*
1270 		 * Kill something.
1271 		 */
1272 		info.bigproc = NULL;
1273 		info.bigsize = 0;
1274 		allproc_scan(vm_pageout_scan_callback, &info);
1275 		if (info.bigproc != NULL) {
1276 			killproc(info.bigproc, "out of swap space");
1277 			info.bigproc->p_nice = PRIO_MIN;
1278 			info.bigproc->p_usched->resetpriority(
1279 				FIRST_LWP_IN_PROC(info.bigproc));
1280 			wakeup(&vmstats.v_free_count);
1281 			PRELE(info.bigproc);
1282 		}
1283 	}
1284 	return(inactive_shortage);
1285 }
1286 
1287 static int
1288 vm_pageout_scan_callback(struct proc *p, void *data)
1289 {
1290 	struct vm_pageout_scan_info *info = data;
1291 	vm_offset_t size;
1292 
1293 	/*
1294 	 * Never kill system processes or init.  If we have configured swap
1295 	 * then try to avoid killing low-numbered pids.
1296 	 */
1297 	if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1298 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1299 		return (0);
1300 	}
1301 
1302 	/*
1303 	 * if the process is in a non-running type state,
1304 	 * don't touch it.
1305 	 */
1306 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1307 		return (0);
1308 
1309 	/*
1310 	 * Get the approximate process size.  Note that anonymous pages
1311 	 * with backing swap will be counted twice, but there should not
1312 	 * be too many such pages due to the stress the VM system is
1313 	 * under at this point.
1314 	 */
1315 	size = vmspace_anonymous_count(p->p_vmspace) +
1316 		vmspace_swap_count(p->p_vmspace);
1317 
1318 	/*
1319 	 * If the this process is bigger than the biggest one
1320 	 * remember it.
1321 	 */
1322 	if (info->bigsize < size) {
1323 		if (info->bigproc)
1324 			PRELE(info->bigproc);
1325 		PHOLD(p);
1326 		info->bigproc = p;
1327 		info->bigsize = size;
1328 	}
1329 	return(0);
1330 }
1331 
1332 /*
1333  * This routine tries to maintain the pseudo LRU active queue,
1334  * so that during long periods of time where there is no paging,
1335  * that some statistic accumulation still occurs.  This code
1336  * helps the situation where paging just starts to occur.
1337  */
1338 static void
1339 vm_pageout_page_stats(void)
1340 {
1341 	vm_page_t m,next;
1342 	int pcount,tpcount;		/* Number of pages to check */
1343 	static int fullintervalcount = 0;
1344 	int page_shortage;
1345 
1346 	page_shortage =
1347 	    (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1348 	    (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1349 
1350 	if (page_shortage <= 0)
1351 		return;
1352 
1353 	crit_enter();
1354 
1355 	pcount = vmstats.v_active_count;
1356 	fullintervalcount += vm_pageout_stats_interval;
1357 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1358 		tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1359 		if (pcount > tpcount)
1360 			pcount = tpcount;
1361 	} else {
1362 		fullintervalcount = 0;
1363 	}
1364 
1365 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1366 	while ((m != NULL) && (pcount-- > 0)) {
1367 		int actcount;
1368 
1369 		if (m->queue != PQ_ACTIVE) {
1370 			break;
1371 		}
1372 
1373 		next = TAILQ_NEXT(m, pageq);
1374 		/*
1375 		 * Don't deactivate pages that are busy.
1376 		 */
1377 		if ((m->busy != 0) ||
1378 		    (m->flags & PG_BUSY) ||
1379 		    (m->hold_count != 0)) {
1380 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1381 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1382 			m = next;
1383 			continue;
1384 		}
1385 
1386 		actcount = 0;
1387 		if (m->flags & PG_REFERENCED) {
1388 			vm_page_flag_clear(m, PG_REFERENCED);
1389 			actcount += 1;
1390 		}
1391 
1392 		actcount += pmap_ts_referenced(m);
1393 		if (actcount) {
1394 			m->act_count += ACT_ADVANCE + actcount;
1395 			if (m->act_count > ACT_MAX)
1396 				m->act_count = ACT_MAX;
1397 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1398 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1399 		} else {
1400 			if (m->act_count == 0) {
1401 				/*
1402 				 * We turn off page access, so that we have
1403 				 * more accurate RSS stats.  We don't do this
1404 				 * in the normal page deactivation when the
1405 				 * system is loaded VM wise, because the
1406 				 * cost of the large number of page protect
1407 				 * operations would be higher than the value
1408 				 * of doing the operation.
1409 				 */
1410 				vm_page_busy(m);
1411 				vm_page_protect(m, VM_PROT_NONE);
1412 				vm_page_wakeup(m);
1413 				vm_page_deactivate(m);
1414 			} else {
1415 				m->act_count -= min(m->act_count, ACT_DECLINE);
1416 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1417 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1418 			}
1419 		}
1420 
1421 		m = next;
1422 	}
1423 	crit_exit();
1424 }
1425 
1426 static int
1427 vm_pageout_free_page_calc(vm_size_t count)
1428 {
1429 	if (count < vmstats.v_page_count)
1430 		 return 0;
1431 	/*
1432 	 * free_reserved needs to include enough for the largest swap pager
1433 	 * structures plus enough for any pv_entry structs when paging.
1434 	 */
1435 	if (vmstats.v_page_count > 1024)
1436 		vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1437 	else
1438 		vmstats.v_free_min = 4;
1439 	vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1440 		vmstats.v_interrupt_free_min;
1441 	vmstats.v_free_reserved = vm_pageout_page_count +
1442 		vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1443 	vmstats.v_free_severe = vmstats.v_free_min / 2;
1444 	vmstats.v_free_min += vmstats.v_free_reserved;
1445 	vmstats.v_free_severe += vmstats.v_free_reserved;
1446 	return 1;
1447 }
1448 
1449 
1450 /*
1451  * vm_pageout is the high level pageout daemon.
1452  */
1453 static void
1454 vm_pageout(void)
1455 {
1456 	int pass;
1457 	int inactive_shortage;
1458 
1459 	/*
1460 	 * Initialize some paging parameters.
1461 	 */
1462 	curthread->td_flags |= TDF_SYSTHREAD;
1463 
1464 	vmstats.v_interrupt_free_min = 2;
1465 	if (vmstats.v_page_count < 2000)
1466 		vm_pageout_page_count = 8;
1467 
1468 	vm_pageout_free_page_calc(vmstats.v_page_count);
1469 
1470 	/*
1471 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1472 	 * that these are more a measure of the VM cache queue hysteresis
1473 	 * then the VM free queue.  Specifically, v_free_target is the
1474 	 * high water mark (free+cache pages).
1475 	 *
1476 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1477 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1478 	 * be big enough to handle memory needs while the pageout daemon
1479 	 * is signalled and run to free more pages.
1480 	 */
1481 	if (vmstats.v_free_count > 6144)
1482 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1483 	else
1484 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1485 
1486 	/*
1487 	 * NOTE: With the new buffer cache b_act_count we want the default
1488 	 *	 inactive target to be a percentage of available memory.
1489 	 *
1490 	 *	 The inactive target essentially determines the minimum
1491 	 *	 number of 'temporary' pages capable of caching one-time-use
1492 	 *	 files when the VM system is otherwise full of pages
1493 	 *	 belonging to multi-time-use files or active program data.
1494 	 *
1495 	 * NOTE: The inactive target is aggressively persued only if the
1496 	 *	 inactive queue becomes too small.  If the inactive queue
1497 	 *	 is large enough to satisfy page movement to free+cache
1498 	 *	 then it is repopulated more slowly from the active queue.
1499 	 *	 This allows a general inactive_target default to be set.
1500 	 *
1501 	 *	 There is an issue here for processes which sit mostly idle
1502 	 *	 'overnight', such as sshd, tcsh, and X.  Any movement from
1503 	 *	 the active queue will eventually cause such pages to
1504 	 *	 recycle eventually causing a lot of paging in the morning.
1505 	 *	 To reduce the incidence of this pages cycled out of the
1506 	 *	 buffer cache are moved directly to the inactive queue if
1507 	 *	 they were only used once or twice.
1508 	 *
1509 	 *	 The vfs.vm_cycle_point sysctl can be used to adjust this.
1510 	 *	 Increasing the value (up to 64) increases the number of
1511 	 *	 buffer recyclements which go directly to the inactive queue.
1512 	 */
1513 	if (vmstats.v_free_count > 2048) {
1514 		vmstats.v_cache_min = vmstats.v_free_target;
1515 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1516 	} else {
1517 		vmstats.v_cache_min = 0;
1518 		vmstats.v_cache_max = 0;
1519 	}
1520 	vmstats.v_inactive_target = vmstats.v_free_count / 4;
1521 
1522 	/* XXX does not really belong here */
1523 	if (vm_page_max_wired == 0)
1524 		vm_page_max_wired = vmstats.v_free_count / 3;
1525 
1526 	if (vm_pageout_stats_max == 0)
1527 		vm_pageout_stats_max = vmstats.v_free_target;
1528 
1529 	/*
1530 	 * Set interval in seconds for stats scan.
1531 	 */
1532 	if (vm_pageout_stats_interval == 0)
1533 		vm_pageout_stats_interval = 5;
1534 	if (vm_pageout_full_stats_interval == 0)
1535 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1536 
1537 
1538 	/*
1539 	 * Set maximum free per pass
1540 	 */
1541 	if (vm_pageout_stats_free_max == 0)
1542 		vm_pageout_stats_free_max = 5;
1543 
1544 	swap_pager_swap_init();
1545 	pass = 0;
1546 
1547 	/*
1548 	 * The pageout daemon is never done, so loop forever.
1549 	 */
1550 	while (TRUE) {
1551 		int error;
1552 
1553 		/*
1554 		 * Wait for an action request
1555 		 */
1556 		crit_enter();
1557 		if (vm_pages_needed == 0) {
1558 			error = tsleep(&vm_pages_needed,
1559 				       0, "psleep",
1560 				       vm_pageout_stats_interval * hz);
1561 			if (error && vm_pages_needed == 0) {
1562 				vm_pageout_page_stats();
1563 				continue;
1564 			}
1565 			vm_pages_needed = 1;
1566 		}
1567 		crit_exit();
1568 
1569 		/*
1570 		 * If we have enough free memory, wakeup waiters.
1571 		 * (This is optional here)
1572 		 */
1573 		crit_enter();
1574 		if (!vm_page_count_min(0))
1575 			wakeup(&vmstats.v_free_count);
1576 		mycpu->gd_cnt.v_pdwakeups++;
1577 		crit_exit();
1578 
1579 		/*
1580 		 * Scan for pageout.  Try to avoid thrashing the system
1581 		 * with activity.
1582 		 */
1583 		inactive_shortage = vm_pageout_scan(pass);
1584 		if (inactive_shortage > 0) {
1585 			++pass;
1586 			if (swap_pager_full) {
1587 				/*
1588 				 * Running out of memory, catastrophic back-off
1589 				 * to one-second intervals.
1590 				 */
1591 				tsleep(&vm_pages_needed, 0, "pdelay", hz);
1592 			} else if (pass < 10 && vm_pages_needed > 1) {
1593 				/*
1594 				 * Normal operation, additional processes
1595 				 * have already kicked us.  Retry immediately.
1596 				 */
1597 			} else if (pass < 10) {
1598 				/*
1599 				 * Normal operation, fewer processes.  Delay
1600 				 * a bit but allow wakeups.
1601 				 */
1602 				vm_pages_needed = 0;
1603 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1604 				vm_pages_needed = 1;
1605 			} else {
1606 				/*
1607 				 * We've taken too many passes, forced delay.
1608 				 */
1609 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1610 			}
1611 		} else {
1612 			/*
1613 			 * Interlocked wakeup of waiters (non-optional)
1614 			 */
1615 			pass = 0;
1616 			if (vm_pages_needed && !vm_page_count_min(0)) {
1617 				wakeup(&vmstats.v_free_count);
1618 				vm_pages_needed = 0;
1619 			}
1620 		}
1621 	}
1622 }
1623 
1624 /*
1625  * Called after allocating a page out of the cache or free queue
1626  * to possibly wake the pagedaemon up to replentish our supply.
1627  *
1628  * We try to generate some hysteresis by waking the pagedaemon up
1629  * when our free+cache pages go below the severe level.  The pagedaemon
1630  * tries to get the count back up to at least the minimum, and through
1631  * to the target level if possible.
1632  *
1633  * If the pagedaemon is already active bump vm_pages_needed as a hint
1634  * that there are even more requests pending.
1635  */
1636 void
1637 pagedaemon_wakeup(void)
1638 {
1639 	if (vm_page_count_severe() && curthread != pagethread) {
1640 		if (vm_pages_needed == 0) {
1641 			vm_pages_needed = 1;
1642 			wakeup(&vm_pages_needed);
1643 		} else if (vm_page_count_min(0)) {
1644 			++vm_pages_needed;
1645 		}
1646 	}
1647 }
1648 
1649 #if !defined(NO_SWAPPING)
1650 static void
1651 vm_req_vmdaemon(void)
1652 {
1653 	static int lastrun = 0;
1654 
1655 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1656 		wakeup(&vm_daemon_needed);
1657 		lastrun = ticks;
1658 	}
1659 }
1660 
1661 static int vm_daemon_callback(struct proc *p, void *data __unused);
1662 
1663 static void
1664 vm_daemon(void)
1665 {
1666 	while (TRUE) {
1667 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
1668 		if (vm_pageout_req_swapout) {
1669 			swapout_procs(vm_pageout_req_swapout);
1670 			vm_pageout_req_swapout = 0;
1671 		}
1672 		/*
1673 		 * scan the processes for exceeding their rlimits or if
1674 		 * process is swapped out -- deactivate pages
1675 		 */
1676 		allproc_scan(vm_daemon_callback, NULL);
1677 	}
1678 }
1679 
1680 static int
1681 vm_daemon_callback(struct proc *p, void *data __unused)
1682 {
1683 	vm_pindex_t limit, size;
1684 
1685 	/*
1686 	 * if this is a system process or if we have already
1687 	 * looked at this process, skip it.
1688 	 */
1689 	if (p->p_flag & (P_SYSTEM | P_WEXIT))
1690 		return (0);
1691 
1692 	/*
1693 	 * if the process is in a non-running type state,
1694 	 * don't touch it.
1695 	 */
1696 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1697 		return (0);
1698 
1699 	/*
1700 	 * get a limit
1701 	 */
1702 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1703 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
1704 
1705 	/*
1706 	 * let processes that are swapped out really be
1707 	 * swapped out.  Set the limit to nothing to get as
1708 	 * many pages out to swap as possible.
1709 	 */
1710 	if (p->p_flag & P_SWAPPEDOUT)
1711 		limit = 0;
1712 
1713 	size = vmspace_resident_count(p->p_vmspace);
1714 	if (limit >= 0 && size >= limit) {
1715 		vm_pageout_map_deactivate_pages(
1716 		    &p->p_vmspace->vm_map, limit);
1717 	}
1718 	return (0);
1719 }
1720 
1721 #endif
1722