xref: /dflybsd-src/sys/vm/vm_pageout.c (revision c12c399a1f4ca85fa32e64e159acf5cd2259d897)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  * This code is derived from software contributed to Berkeley by
12  * The Mach Operating System project at Carnegie-Mellon University.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
39  *
40  *
41  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
42  * All rights reserved.
43  *
44  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
45  *
46  * Permission to use, copy, modify and distribute this software and
47  * its documentation is hereby granted, provided that both the copyright
48  * notice and this permission notice appear in all copies of the
49  * software, derivative works or modified versions, and any portions
50  * thereof, and that both notices appear in supporting documentation.
51  *
52  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
53  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
54  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
55  *
56  * Carnegie Mellon requests users of this software to return to
57  *
58  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
59  *  School of Computer Science
60  *  Carnegie Mellon University
61  *  Pittsburgh PA 15213-3890
62  *
63  * any improvements or extensions that they make and grant Carnegie the
64  * rights to redistribute these changes.
65  *
66  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
67  */
68 
69 /*
70  *	The proverbial page-out daemon.
71  */
72 
73 #include "opt_vm.h"
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/kernel.h>
77 #include <sys/proc.h>
78 #include <sys/kthread.h>
79 #include <sys/resourcevar.h>
80 #include <sys/signalvar.h>
81 #include <sys/vnode.h>
82 #include <sys/vmmeter.h>
83 #include <sys/sysctl.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <sys/lock.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_extern.h>
95 
96 #include <sys/thread2.h>
97 #include <sys/spinlock2.h>
98 #include <vm/vm_page2.h>
99 
100 /*
101  * System initialization
102  */
103 
104 /* the kernel process "vm_pageout"*/
105 static int vm_pageout_clean (vm_page_t);
106 static int vm_pageout_free_page_calc (vm_size_t count);
107 struct thread *pagethread;
108 
109 #if !defined(NO_SWAPPING)
110 /* the kernel process "vm_daemon"*/
111 static void vm_daemon (void);
112 static struct	thread *vmthread;
113 
114 static struct kproc_desc vm_kp = {
115 	"vmdaemon",
116 	vm_daemon,
117 	&vmthread
118 };
119 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
120 #endif
121 
122 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
123 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
124 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
125 
126 #if !defined(NO_SWAPPING)
127 static int vm_pageout_req_swapout;	/* XXX */
128 static int vm_daemon_needed;
129 #endif
130 static int vm_max_launder = 32;
131 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
132 static int vm_pageout_full_stats_interval = 0;
133 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
134 static int defer_swap_pageouts=0;
135 static int disable_swap_pageouts=0;
136 
137 #if defined(NO_SWAPPING)
138 static int vm_swap_enabled=0;
139 static int vm_swap_idle_enabled=0;
140 #else
141 static int vm_swap_enabled=1;
142 static int vm_swap_idle_enabled=0;
143 #endif
144 
145 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
146 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
147 
148 SYSCTL_INT(_vm, OID_AUTO, max_launder,
149 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
150 
151 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
152 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
153 
154 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
155 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
156 
157 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
158 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
159 
160 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
161 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
162 
163 #if defined(NO_SWAPPING)
164 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
165 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
166 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
167 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
168 #else
169 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
170 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
171 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
172 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
173 #endif
174 
175 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
176 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
177 
178 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
179 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
180 
181 static int pageout_lock_miss;
182 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
183 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
184 
185 #define VM_PAGEOUT_PAGE_COUNT 16
186 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
187 
188 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
189 
190 #if !defined(NO_SWAPPING)
191 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
192 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
193 static freeer_fcn_t vm_pageout_object_deactivate_pages;
194 static void vm_req_vmdaemon (void);
195 #endif
196 static void vm_pageout_page_stats(int q);
197 
198 static __inline int
199 PQAVERAGE(int n)
200 {
201 	if (n >= 0)
202 		return((n + (PQ_L2_SIZE - 1)) / PQ_L2_SIZE + 1);
203 	else
204 		return((n - (PQ_L2_SIZE - 1)) / PQ_L2_SIZE - 1);
205 }
206 
207 /*
208  * vm_pageout_clean:
209  *
210  * Clean the page and remove it from the laundry.  The page must not be
211  * busy on-call.
212  *
213  * We set the busy bit to cause potential page faults on this page to
214  * block.  Note the careful timing, however, the busy bit isn't set till
215  * late and we cannot do anything that will mess with the page.
216  */
217 static int
218 vm_pageout_clean(vm_page_t m)
219 {
220 	vm_object_t object;
221 	vm_page_t mc[2*vm_pageout_page_count];
222 	int pageout_count;
223 	int error;
224 	int ib, is, page_base;
225 	vm_pindex_t pindex = m->pindex;
226 
227 	object = m->object;
228 
229 	/*
230 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
231 	 * with the new swapper, but we could have serious problems paging
232 	 * out other object types if there is insufficient memory.
233 	 *
234 	 * Unfortunately, checking free memory here is far too late, so the
235 	 * check has been moved up a procedural level.
236 	 */
237 
238 	/*
239 	 * Don't mess with the page if it's busy, held, or special
240 	 *
241 	 * XXX do we really need to check hold_count here?  hold_count
242 	 * isn't supposed to mess with vm_page ops except prevent the
243 	 * page from being reused.
244 	 */
245 	if (m->hold_count != 0 || (m->flags & PG_UNMANAGED)) {
246 		vm_page_wakeup(m);
247 		return 0;
248 	}
249 
250 	mc[vm_pageout_page_count] = m;
251 	pageout_count = 1;
252 	page_base = vm_pageout_page_count;
253 	ib = 1;
254 	is = 1;
255 
256 	/*
257 	 * Scan object for clusterable pages.
258 	 *
259 	 * We can cluster ONLY if: ->> the page is NOT
260 	 * clean, wired, busy, held, or mapped into a
261 	 * buffer, and one of the following:
262 	 * 1) The page is inactive, or a seldom used
263 	 *    active page.
264 	 * -or-
265 	 * 2) we force the issue.
266 	 *
267 	 * During heavy mmap/modification loads the pageout
268 	 * daemon can really fragment the underlying file
269 	 * due to flushing pages out of order and not trying
270 	 * align the clusters (which leave sporatic out-of-order
271 	 * holes).  To solve this problem we do the reverse scan
272 	 * first and attempt to align our cluster, then do a
273 	 * forward scan if room remains.
274 	 */
275 
276 	vm_object_hold(object);
277 more:
278 	while (ib && pageout_count < vm_pageout_page_count) {
279 		vm_page_t p;
280 
281 		if (ib > pindex) {
282 			ib = 0;
283 			break;
284 		}
285 
286 		p = vm_page_lookup_busy_try(object, pindex - ib, TRUE, &error);
287 		if (error || p == NULL) {
288 			ib = 0;
289 			break;
290 		}
291 		if ((p->queue - p->pc) == PQ_CACHE ||
292 		    (p->flags & PG_UNMANAGED)) {
293 			vm_page_wakeup(p);
294 			ib = 0;
295 			break;
296 		}
297 		vm_page_test_dirty(p);
298 		if (((p->dirty & p->valid) == 0 &&
299 		     (p->flags & PG_NEED_COMMIT) == 0) ||
300 		    p->queue - p->pc != PQ_INACTIVE ||
301 		    p->wire_count != 0 ||	/* may be held by buf cache */
302 		    p->hold_count != 0) {	/* may be undergoing I/O */
303 			vm_page_wakeup(p);
304 			ib = 0;
305 			break;
306 		}
307 		mc[--page_base] = p;
308 		++pageout_count;
309 		++ib;
310 		/*
311 		 * alignment boundry, stop here and switch directions.  Do
312 		 * not clear ib.
313 		 */
314 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
315 			break;
316 	}
317 
318 	while (pageout_count < vm_pageout_page_count &&
319 	    pindex + is < object->size) {
320 		vm_page_t p;
321 
322 		p = vm_page_lookup_busy_try(object, pindex + is, TRUE, &error);
323 		if (error || p == NULL)
324 			break;
325 		if (((p->queue - p->pc) == PQ_CACHE) ||
326 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
327 			vm_page_wakeup(p);
328 			break;
329 		}
330 		vm_page_test_dirty(p);
331 		if (((p->dirty & p->valid) == 0 &&
332 		     (p->flags & PG_NEED_COMMIT) == 0) ||
333 		    p->queue - p->pc != PQ_INACTIVE ||
334 		    p->wire_count != 0 ||	/* may be held by buf cache */
335 		    p->hold_count != 0) {	/* may be undergoing I/O */
336 			vm_page_wakeup(p);
337 			break;
338 		}
339 		mc[page_base + pageout_count] = p;
340 		++pageout_count;
341 		++is;
342 	}
343 
344 	/*
345 	 * If we exhausted our forward scan, continue with the reverse scan
346 	 * when possible, even past a page boundry.  This catches boundry
347 	 * conditions.
348 	 */
349 	if (ib && pageout_count < vm_pageout_page_count)
350 		goto more;
351 
352 	vm_object_drop(object);
353 
354 	/*
355 	 * we allow reads during pageouts...
356 	 */
357 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
358 }
359 
360 /*
361  * vm_pageout_flush() - launder the given pages
362  *
363  *	The given pages are laundered.  Note that we setup for the start of
364  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
365  *	reference count all in here rather then in the parent.  If we want
366  *	the parent to do more sophisticated things we may have to change
367  *	the ordering.
368  *
369  *	The pages in the array must be busied by the caller and will be
370  *	unbusied by this function.
371  */
372 int
373 vm_pageout_flush(vm_page_t *mc, int count, int flags)
374 {
375 	vm_object_t object;
376 	int pageout_status[count];
377 	int numpagedout = 0;
378 	int i;
379 
380 	/*
381 	 * Initiate I/O.  Bump the vm_page_t->busy counter.
382 	 */
383 	for (i = 0; i < count; i++) {
384 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
385 			("vm_pageout_flush page %p index %d/%d: partially "
386 			 "invalid page", mc[i], i, count));
387 		vm_page_io_start(mc[i]);
388 	}
389 
390 	/*
391 	 * We must make the pages read-only.  This will also force the
392 	 * modified bit in the related pmaps to be cleared.  The pager
393 	 * cannot clear the bit for us since the I/O completion code
394 	 * typically runs from an interrupt.  The act of making the page
395 	 * read-only handles the case for us.
396 	 *
397 	 * Then we can unbusy the pages, we still hold a reference by virtue
398 	 * of our soft-busy.
399 	 */
400 	for (i = 0; i < count; i++) {
401 		vm_page_protect(mc[i], VM_PROT_READ);
402 		vm_page_wakeup(mc[i]);
403 	}
404 
405 	object = mc[0]->object;
406 	vm_object_pip_add(object, count);
407 
408 	vm_pager_put_pages(object, mc, count,
409 	    (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
410 	    pageout_status);
411 
412 	for (i = 0; i < count; i++) {
413 		vm_page_t mt = mc[i];
414 
415 		switch (pageout_status[i]) {
416 		case VM_PAGER_OK:
417 			numpagedout++;
418 			break;
419 		case VM_PAGER_PEND:
420 			numpagedout++;
421 			break;
422 		case VM_PAGER_BAD:
423 			/*
424 			 * Page outside of range of object. Right now we
425 			 * essentially lose the changes by pretending it
426 			 * worked.
427 			 */
428 			vm_page_busy_wait(mt, FALSE, "pgbad");
429 			pmap_clear_modify(mt);
430 			vm_page_undirty(mt);
431 			vm_page_wakeup(mt);
432 			break;
433 		case VM_PAGER_ERROR:
434 		case VM_PAGER_FAIL:
435 			/*
436 			 * A page typically cannot be paged out when we
437 			 * have run out of swap.  We leave the page
438 			 * marked inactive and will try to page it out
439 			 * again later.
440 			 *
441 			 * Starvation of the active page list is used to
442 			 * determine when the system is massively memory
443 			 * starved.
444 			 */
445 			break;
446 		case VM_PAGER_AGAIN:
447 			break;
448 		}
449 
450 		/*
451 		 * If the operation is still going, leave the page busy to
452 		 * block all other accesses. Also, leave the paging in
453 		 * progress indicator set so that we don't attempt an object
454 		 * collapse.
455 		 *
456 		 * For any pages which have completed synchronously,
457 		 * deactivate the page if we are under a severe deficit.
458 		 * Do not try to enter them into the cache, though, they
459 		 * might still be read-heavy.
460 		 */
461 		if (pageout_status[i] != VM_PAGER_PEND) {
462 			vm_page_busy_wait(mt, FALSE, "pgouw");
463 			if (vm_page_count_severe())
464 				vm_page_deactivate(mt);
465 #if 0
466 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
467 				vm_page_protect(mt, VM_PROT_READ);
468 #endif
469 			vm_page_io_finish(mt);
470 			vm_page_wakeup(mt);
471 			vm_object_pip_wakeup(object);
472 		}
473 	}
474 	return numpagedout;
475 }
476 
477 #if !defined(NO_SWAPPING)
478 /*
479  * deactivate enough pages to satisfy the inactive target
480  * requirements or if vm_page_proc_limit is set, then
481  * deactivate all of the pages in the object and its
482  * backing_objects.
483  *
484  * The map must be locked.
485  * The caller must hold the vm_object.
486  */
487 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
488 
489 static void
490 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
491 				   vm_pindex_t desired, int map_remove_only)
492 {
493 	struct rb_vm_page_scan_info info;
494 	vm_object_t lobject;
495 	vm_object_t tobject;
496 	int remove_mode;
497 
498 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
499 	lobject = object;
500 
501 	while (lobject) {
502 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
503 			break;
504 		if (lobject->type == OBJT_DEVICE || lobject->type == OBJT_PHYS)
505 			break;
506 		if (lobject->paging_in_progress)
507 			break;
508 
509 		remove_mode = map_remove_only;
510 		if (lobject->shadow_count > 1)
511 			remove_mode = 1;
512 
513 		/*
514 		 * scan the objects entire memory queue.  We hold the
515 		 * object's token so the scan should not race anything.
516 		 */
517 		info.limit = remove_mode;
518 		info.map = map;
519 		info.desired = desired;
520 		vm_page_rb_tree_RB_SCAN(&lobject->rb_memq, NULL,
521 				vm_pageout_object_deactivate_pages_callback,
522 				&info
523 		);
524 		while ((tobject = lobject->backing_object) != NULL) {
525 			KKASSERT(tobject != object);
526 			vm_object_hold(tobject);
527 			if (tobject == lobject->backing_object)
528 				break;
529 			vm_object_drop(tobject);
530 		}
531 		if (lobject != object) {
532 			vm_object_lock_swap();
533 			vm_object_drop(lobject);
534 		}
535 		lobject = tobject;
536 	}
537 	if (lobject != object)
538 		vm_object_drop(lobject);
539 }
540 
541 /*
542  * The caller must hold the vm_object.
543  */
544 static int
545 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
546 {
547 	struct rb_vm_page_scan_info *info = data;
548 	int actcount;
549 
550 	if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
551 		return(-1);
552 	}
553 	mycpu->gd_cnt.v_pdpages++;
554 
555 	if (vm_page_busy_try(p, TRUE))
556 		return(0);
557 	if (p->wire_count || p->hold_count || (p->flags & PG_UNMANAGED)) {
558 		vm_page_wakeup(p);
559 		return(0);
560 	}
561 	if (!pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
562 		vm_page_wakeup(p);
563 		return(0);
564 	}
565 
566 	actcount = pmap_ts_referenced(p);
567 	if (actcount) {
568 		vm_page_flag_set(p, PG_REFERENCED);
569 	} else if (p->flags & PG_REFERENCED) {
570 		actcount = 1;
571 	}
572 
573 	vm_page_and_queue_spin_lock(p);
574 	if (p->queue - p->pc != PQ_ACTIVE && (p->flags & PG_REFERENCED)) {
575 		vm_page_and_queue_spin_unlock(p);
576 		vm_page_activate(p);
577 		p->act_count += actcount;
578 		vm_page_flag_clear(p, PG_REFERENCED);
579 	} else if (p->queue - p->pc == PQ_ACTIVE) {
580 		if ((p->flags & PG_REFERENCED) == 0) {
581 			p->act_count -= min(p->act_count, ACT_DECLINE);
582 			if (!info->limit &&
583 			    (vm_pageout_algorithm || (p->act_count == 0))) {
584 				vm_page_and_queue_spin_unlock(p);
585 				vm_page_protect(p, VM_PROT_NONE);
586 				vm_page_deactivate(p);
587 			} else {
588 				TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
589 					     p, pageq);
590 				TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
591 						  p, pageq);
592 				vm_page_and_queue_spin_unlock(p);
593 			}
594 		} else {
595 			vm_page_and_queue_spin_unlock(p);
596 			vm_page_activate(p);
597 			vm_page_flag_clear(p, PG_REFERENCED);
598 
599 			vm_page_and_queue_spin_lock(p);
600 			if (p->queue - p->pc == PQ_ACTIVE) {
601 				if (p->act_count < (ACT_MAX - ACT_ADVANCE))
602 					p->act_count += ACT_ADVANCE;
603 				TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
604 					     p, pageq);
605 				TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
606 						  p, pageq);
607 			}
608 			vm_page_and_queue_spin_unlock(p);
609 		}
610 	} else if (p->queue - p->pc == PQ_INACTIVE) {
611 		vm_page_and_queue_spin_unlock(p);
612 		vm_page_protect(p, VM_PROT_NONE);
613 	} else {
614 		vm_page_and_queue_spin_unlock(p);
615 	}
616 	vm_page_wakeup(p);
617 	return(0);
618 }
619 
620 /*
621  * Deactivate some number of pages in a map, try to do it fairly, but
622  * that is really hard to do.
623  */
624 static void
625 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
626 {
627 	vm_map_entry_t tmpe;
628 	vm_object_t obj, bigobj;
629 	int nothingwired;
630 
631 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
632 		return;
633 	}
634 
635 	bigobj = NULL;
636 	nothingwired = TRUE;
637 
638 	/*
639 	 * first, search out the biggest object, and try to free pages from
640 	 * that.
641 	 */
642 	tmpe = map->header.next;
643 	while (tmpe != &map->header) {
644 		switch(tmpe->maptype) {
645 		case VM_MAPTYPE_NORMAL:
646 		case VM_MAPTYPE_VPAGETABLE:
647 			obj = tmpe->object.vm_object;
648 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
649 				((bigobj == NULL) ||
650 				 (bigobj->resident_page_count < obj->resident_page_count))) {
651 				bigobj = obj;
652 			}
653 			break;
654 		default:
655 			break;
656 		}
657 		if (tmpe->wired_count > 0)
658 			nothingwired = FALSE;
659 		tmpe = tmpe->next;
660 	}
661 
662 	if (bigobj)  {
663 		vm_object_hold(bigobj);
664 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
665 		vm_object_drop(bigobj);
666 	}
667 
668 	/*
669 	 * Next, hunt around for other pages to deactivate.  We actually
670 	 * do this search sort of wrong -- .text first is not the best idea.
671 	 */
672 	tmpe = map->header.next;
673 	while (tmpe != &map->header) {
674 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
675 			break;
676 		switch(tmpe->maptype) {
677 		case VM_MAPTYPE_NORMAL:
678 		case VM_MAPTYPE_VPAGETABLE:
679 			obj = tmpe->object.vm_object;
680 			if (obj) {
681 				vm_object_hold(obj);
682 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
683 				vm_object_drop(obj);
684 			}
685 			break;
686 		default:
687 			break;
688 		}
689 		tmpe = tmpe->next;
690 	};
691 
692 	/*
693 	 * Remove all mappings if a process is swapped out, this will free page
694 	 * table pages.
695 	 */
696 	if (desired == 0 && nothingwired)
697 		pmap_remove(vm_map_pmap(map),
698 			    VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
699 	vm_map_unlock(map);
700 }
701 #endif
702 
703 /*
704  * Called when the pageout scan wants to free a page.  We no longer
705  * try to cycle the vm_object here with a reference & dealloc, which can
706  * cause a non-trivial object collapse in a critical path.
707  *
708  * It is unclear why we cycled the ref_count in the past, perhaps to try
709  * to optimize shadow chain collapses but I don't quite see why it would
710  * be necessary.  An OBJ_DEAD object should terminate any and all vm_pages
711  * synchronously and not have to be kicked-start.
712  */
713 static void
714 vm_pageout_page_free(vm_page_t m)
715 {
716 	vm_page_protect(m, VM_PROT_NONE);
717 	vm_page_free(m);
718 }
719 
720 /*
721  * vm_pageout_scan does the dirty work for the pageout daemon.
722  */
723 struct vm_pageout_scan_info {
724 	struct proc *bigproc;
725 	vm_offset_t bigsize;
726 };
727 
728 static int vm_pageout_scan_callback(struct proc *p, void *data);
729 
730 static int
731 vm_pageout_scan_inactive(int pass, int q, int avail_shortage,
732 			 int *vnodes_skippedp)
733 {
734 	vm_page_t m;
735 	struct vm_page marker;
736 	struct vnode *vpfailed;		/* warning, allowed to be stale */
737 	int maxscan;
738 	int delta = 0;
739 	vm_object_t object;
740 	int actcount;
741 	int maxlaunder;
742 
743 	/*
744 	 * Start scanning the inactive queue for pages we can move to the
745 	 * cache or free.  The scan will stop when the target is reached or
746 	 * we have scanned the entire inactive queue.  Note that m->act_count
747 	 * is not used to form decisions for the inactive queue, only for the
748 	 * active queue.
749 	 *
750 	 * maxlaunder limits the number of dirty pages we flush per scan.
751 	 * For most systems a smaller value (16 or 32) is more robust under
752 	 * extreme memory and disk pressure because any unnecessary writes
753 	 * to disk can result in extreme performance degredation.  However,
754 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
755 	 * used) will die horribly with limited laundering.  If the pageout
756 	 * daemon cannot clean enough pages in the first pass, we let it go
757 	 * all out in succeeding passes.
758 	 */
759 	if ((maxlaunder = vm_max_launder) <= 1)
760 		maxlaunder = 1;
761 	if (pass)
762 		maxlaunder = 10000;
763 
764 	/*
765 	 * Initialize our marker
766 	 */
767 	bzero(&marker, sizeof(marker));
768 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
769 	marker.queue = PQ_INACTIVE + q;
770 	marker.pc = q;
771 	marker.wire_count = 1;
772 
773 	/*
774 	 * Inactive queue scan.
775 	 *
776 	 * NOTE: The vm_page must be spinlocked before the queue to avoid
777 	 *	 deadlocks, so it is easiest to simply iterate the loop
778 	 *	 with the queue unlocked at the top.
779 	 */
780 	vpfailed = NULL;
781 
782 	vm_page_queues_spin_lock(PQ_INACTIVE + q);
783 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
784 	maxscan = vm_page_queues[PQ_INACTIVE + q].lcnt;
785 	vm_page_queues_spin_unlock(PQ_INACTIVE + q);
786 
787 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
788 	       maxscan-- > 0 && avail_shortage - delta > 0)
789 	{
790 		vm_page_and_queue_spin_lock(m);
791 		if (m != TAILQ_NEXT(&marker, pageq)) {
792 			vm_page_and_queue_spin_unlock(m);
793 			++maxscan;
794 			continue;
795 		}
796 		KKASSERT(m->queue - m->pc == PQ_INACTIVE);
797 		TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl,
798 			     &marker, pageq);
799 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE + q].pl, m,
800 				   &marker, pageq);
801 		mycpu->gd_cnt.v_pdpages++;
802 
803 		/*
804 		 * Skip marker pages
805 		 */
806 		if (m->flags & PG_MARKER) {
807 			vm_page_and_queue_spin_unlock(m);
808 			continue;
809 		}
810 
811 		/*
812 		 * Try to busy the page.  Don't mess with pages which are
813 		 * already busy or reorder them in the queue.
814 		 */
815 		if (vm_page_busy_try(m, TRUE)) {
816 			vm_page_and_queue_spin_unlock(m);
817 			continue;
818 		}
819 		vm_page_and_queue_spin_unlock(m);
820 		KKASSERT(m->queue - m->pc == PQ_INACTIVE);
821 
822 		lwkt_yield();
823 
824 		/*
825 		 * The page has been successfully busied and is now no
826 		 * longer spinlocked.  The queue is no longer spinlocked
827 		 * either.
828 		 */
829 
830 		/*
831 		 * It is possible for a page to be busied ad-hoc (e.g. the
832 		 * pmap_collect() code) and wired and race against the
833 		 * allocation of a new page.  vm_page_alloc() may be forced
834 		 * to deactivate the wired page in which case it winds up
835 		 * on the inactive queue and must be handled here.  We
836 		 * correct the problem simply by unqueuing the page.
837 		 */
838 		if (m->wire_count) {
839 			vm_page_unqueue_nowakeup(m);
840 			vm_page_wakeup(m);
841 			kprintf("WARNING: pagedaemon: wired page on "
842 				"inactive queue %p\n", m);
843 			continue;
844 		}
845 
846 		/*
847 		 * A held page may be undergoing I/O, so skip it.
848 		 */
849 		if (m->hold_count) {
850 			vm_page_and_queue_spin_lock(m);
851 			if (m->queue - m->pc == PQ_INACTIVE) {
852 				TAILQ_REMOVE(
853 					&vm_page_queues[PQ_INACTIVE + q].pl,
854 					m, pageq);
855 				TAILQ_INSERT_TAIL(
856 					&vm_page_queues[PQ_INACTIVE + q].pl,
857 					m, pageq);
858 				++vm_swapcache_inactive_heuristic;
859 			}
860 			vm_page_and_queue_spin_unlock(m);
861 			vm_page_wakeup(m);
862 			continue;
863 		}
864 
865 		if (m->object->ref_count == 0) {
866 			/*
867 			 * If the object is not being used, we ignore previous
868 			 * references.
869 			 */
870 			vm_page_flag_clear(m, PG_REFERENCED);
871 			pmap_clear_reference(m);
872 			/* fall through to end */
873 		} else if (((m->flags & PG_REFERENCED) == 0) &&
874 			    (actcount = pmap_ts_referenced(m))) {
875 			/*
876 			 * Otherwise, if the page has been referenced while
877 			 * in the inactive queue, we bump the "activation
878 			 * count" upwards, making it less likely that the
879 			 * page will be added back to the inactive queue
880 			 * prematurely again.  Here we check the page tables
881 			 * (or emulated bits, if any), given the upper level
882 			 * VM system not knowing anything about existing
883 			 * references.
884 			 */
885 			vm_page_activate(m);
886 			m->act_count += (actcount + ACT_ADVANCE);
887 			vm_page_wakeup(m);
888 			continue;
889 		}
890 
891 		/*
892 		 * (m) is still busied.
893 		 *
894 		 * If the upper level VM system knows about any page
895 		 * references, we activate the page.  We also set the
896 		 * "activation count" higher than normal so that we will less
897 		 * likely place pages back onto the inactive queue again.
898 		 */
899 		if ((m->flags & PG_REFERENCED) != 0) {
900 			vm_page_flag_clear(m, PG_REFERENCED);
901 			actcount = pmap_ts_referenced(m);
902 			vm_page_activate(m);
903 			m->act_count += (actcount + ACT_ADVANCE + 1);
904 			vm_page_wakeup(m);
905 			continue;
906 		}
907 
908 		/*
909 		 * If the upper level VM system doesn't know anything about
910 		 * the page being dirty, we have to check for it again.  As
911 		 * far as the VM code knows, any partially dirty pages are
912 		 * fully dirty.
913 		 *
914 		 * Pages marked PG_WRITEABLE may be mapped into the user
915 		 * address space of a process running on another cpu.  A
916 		 * user process (without holding the MP lock) running on
917 		 * another cpu may be able to touch the page while we are
918 		 * trying to remove it.  vm_page_cache() will handle this
919 		 * case for us.
920 		 */
921 		if (m->dirty == 0) {
922 			vm_page_test_dirty(m);
923 		} else {
924 			vm_page_dirty(m);
925 		}
926 
927 		if (m->valid == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
928 			/*
929 			 * Invalid pages can be easily freed
930 			 */
931 			vm_pageout_page_free(m);
932 			mycpu->gd_cnt.v_dfree++;
933 			++delta;
934 		} else if (m->dirty == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
935 			/*
936 			 * Clean pages can be placed onto the cache queue.
937 			 * This effectively frees them.
938 			 */
939 			vm_page_cache(m);
940 			++delta;
941 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
942 			/*
943 			 * Dirty pages need to be paged out, but flushing
944 			 * a page is extremely expensive verses freeing
945 			 * a clean page.  Rather then artificially limiting
946 			 * the number of pages we can flush, we instead give
947 			 * dirty pages extra priority on the inactive queue
948 			 * by forcing them to be cycled through the queue
949 			 * twice before being flushed, after which the
950 			 * (now clean) page will cycle through once more
951 			 * before being freed.  This significantly extends
952 			 * the thrash point for a heavily loaded machine.
953 			 */
954 			vm_page_flag_set(m, PG_WINATCFLS);
955 			vm_page_and_queue_spin_lock(m);
956 			if (m->queue - m->pc == PQ_INACTIVE) {
957 				TAILQ_REMOVE(
958 					&vm_page_queues[PQ_INACTIVE + q].pl,
959 					m, pageq);
960 				TAILQ_INSERT_TAIL(
961 					&vm_page_queues[PQ_INACTIVE + q].pl,
962 					m, pageq);
963 				++vm_swapcache_inactive_heuristic;
964 			}
965 			vm_page_and_queue_spin_unlock(m);
966 			vm_page_wakeup(m);
967 		} else if (maxlaunder > 0) {
968 			/*
969 			 * We always want to try to flush some dirty pages if
970 			 * we encounter them, to keep the system stable.
971 			 * Normally this number is small, but under extreme
972 			 * pressure where there are insufficient clean pages
973 			 * on the inactive queue, we may have to go all out.
974 			 */
975 			int swap_pageouts_ok;
976 			struct vnode *vp = NULL;
977 
978 			object = m->object;
979 
980 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
981 				swap_pageouts_ok = 1;
982 			} else {
983 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
984 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
985 				vm_page_count_min(0));
986 
987 			}
988 
989 			/*
990 			 * We don't bother paging objects that are "dead".
991 			 * Those objects are in a "rundown" state.
992 			 */
993 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
994 				vm_page_and_queue_spin_lock(m);
995 				if (m->queue - m->pc == PQ_INACTIVE) {
996 					TAILQ_REMOVE(
997 					    &vm_page_queues[PQ_INACTIVE + q].pl,
998 					    m, pageq);
999 					TAILQ_INSERT_TAIL(
1000 					    &vm_page_queues[PQ_INACTIVE + q].pl,
1001 					    m, pageq);
1002 					++vm_swapcache_inactive_heuristic;
1003 				}
1004 				vm_page_and_queue_spin_unlock(m);
1005 				vm_page_wakeup(m);
1006 				continue;
1007 			}
1008 
1009 			/*
1010 			 * (m) is still busied.
1011 			 *
1012 			 * The object is already known NOT to be dead.   It
1013 			 * is possible for the vget() to block the whole
1014 			 * pageout daemon, but the new low-memory handling
1015 			 * code should prevent it.
1016 			 *
1017 			 * The previous code skipped locked vnodes and, worse,
1018 			 * reordered pages in the queue.  This results in
1019 			 * completely non-deterministic operation because,
1020 			 * quite often, a vm_fault has initiated an I/O and
1021 			 * is holding a locked vnode at just the point where
1022 			 * the pageout daemon is woken up.
1023 			 *
1024 			 * We can't wait forever for the vnode lock, we might
1025 			 * deadlock due to a vn_read() getting stuck in
1026 			 * vm_wait while holding this vnode.  We skip the
1027 			 * vnode if we can't get it in a reasonable amount
1028 			 * of time.
1029 			 *
1030 			 * vpfailed is used to (try to) avoid the case where
1031 			 * a large number of pages are associated with a
1032 			 * locked vnode, which could cause the pageout daemon
1033 			 * to stall for an excessive amount of time.
1034 			 */
1035 			if (object->type == OBJT_VNODE) {
1036 				int flags;
1037 
1038 				vp = object->handle;
1039 				flags = LK_EXCLUSIVE | LK_NOOBJ;
1040 				if (vp == vpfailed)
1041 					flags |= LK_NOWAIT;
1042 				else
1043 					flags |= LK_TIMELOCK;
1044 				vm_page_hold(m);
1045 				vm_page_wakeup(m);
1046 
1047 				/*
1048 				 * We have unbusied (m) temporarily so we can
1049 				 * acquire the vp lock without deadlocking.
1050 				 * (m) is held to prevent destruction.
1051 				 */
1052 				if (vget(vp, flags) != 0) {
1053 					vpfailed = vp;
1054 					++pageout_lock_miss;
1055 					if (object->flags & OBJ_MIGHTBEDIRTY)
1056 						    ++*vnodes_skippedp;
1057 					vm_page_unhold(m);
1058 					continue;
1059 				}
1060 
1061 				/*
1062 				 * The page might have been moved to another
1063 				 * queue during potential blocking in vget()
1064 				 * above.  The page might have been freed and
1065 				 * reused for another vnode.  The object might
1066 				 * have been reused for another vnode.
1067 				 */
1068 				if (m->queue - m->pc != PQ_INACTIVE ||
1069 				    m->object != object ||
1070 				    object->handle != vp) {
1071 					if (object->flags & OBJ_MIGHTBEDIRTY)
1072 						++*vnodes_skippedp;
1073 					vput(vp);
1074 					vm_page_unhold(m);
1075 					continue;
1076 				}
1077 
1078 				/*
1079 				 * The page may have been busied during the
1080 				 * blocking in vput();  We don't move the
1081 				 * page back onto the end of the queue so that
1082 				 * statistics are more correct if we don't.
1083 				 */
1084 				if (vm_page_busy_try(m, TRUE)) {
1085 					vput(vp);
1086 					vm_page_unhold(m);
1087 					continue;
1088 				}
1089 				vm_page_unhold(m);
1090 
1091 				/*
1092 				 * (m) is busied again
1093 				 *
1094 				 * We own the busy bit and remove our hold
1095 				 * bit.  If the page is still held it
1096 				 * might be undergoing I/O, so skip it.
1097 				 */
1098 				if (m->hold_count) {
1099 					vm_page_and_queue_spin_lock(m);
1100 					if (m->queue - m->pc == PQ_INACTIVE) {
1101 						TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1102 						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1103 						++vm_swapcache_inactive_heuristic;
1104 					}
1105 					vm_page_and_queue_spin_unlock(m);
1106 					if (object->flags & OBJ_MIGHTBEDIRTY)
1107 						++*vnodes_skippedp;
1108 					vm_page_wakeup(m);
1109 					vput(vp);
1110 					continue;
1111 				}
1112 				/* (m) is left busied as we fall through */
1113 			}
1114 
1115 			/*
1116 			 * page is busy and not held here.
1117 			 *
1118 			 * If a page is dirty, then it is either being washed
1119 			 * (but not yet cleaned) or it is still in the
1120 			 * laundry.  If it is still in the laundry, then we
1121 			 * start the cleaning operation.
1122 			 *
1123 			 * decrement inactive_shortage on success to account
1124 			 * for the (future) cleaned page.  Otherwise we
1125 			 * could wind up laundering or cleaning too many
1126 			 * pages.
1127 			 */
1128 			if (vm_pageout_clean(m) != 0) {
1129 				++delta;
1130 				--maxlaunder;
1131 			}
1132 			/* clean ate busy, page no longer accessible */
1133 			if (vp != NULL)
1134 				vput(vp);
1135 		} else {
1136 			vm_page_wakeup(m);
1137 		}
1138 	}
1139 	vm_page_queues_spin_lock(PQ_INACTIVE + q);
1140 	TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
1141 	vm_page_queues_spin_unlock(PQ_INACTIVE + q);
1142 	return (delta);
1143 }
1144 
1145 static int
1146 vm_pageout_scan_active(int pass, int q,
1147 		       int avail_shortage, int inactive_shortage,
1148 		       int *recycle_countp)
1149 {
1150 	struct vm_page marker;
1151 	vm_page_t m;
1152 	int actcount;
1153 	int delta = 0;
1154 	int maxscan;
1155 
1156 	/*
1157 	 * We want to move pages from the active queue to the inactive
1158 	 * queue to get the inactive queue to the inactive target.  If
1159 	 * we still have a page shortage from above we try to directly free
1160 	 * clean pages instead of moving them.
1161 	 *
1162 	 * If we do still have a shortage we keep track of the number of
1163 	 * pages we free or cache (recycle_count) as a measure of thrashing
1164 	 * between the active and inactive queues.
1165 	 *
1166 	 * If we were able to completely satisfy the free+cache targets
1167 	 * from the inactive pool we limit the number of pages we move
1168 	 * from the active pool to the inactive pool to 2x the pages we
1169 	 * had removed from the inactive pool (with a minimum of 1/5 the
1170 	 * inactive target).  If we were not able to completely satisfy
1171 	 * the free+cache targets we go for the whole target aggressively.
1172 	 *
1173 	 * NOTE: Both variables can end up negative.
1174 	 * NOTE: We are still in a critical section.
1175 	 */
1176 
1177 	bzero(&marker, sizeof(marker));
1178 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1179 	marker.queue = PQ_ACTIVE + q;
1180 	marker.pc = q;
1181 	marker.wire_count = 1;
1182 
1183 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1184 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1185 	maxscan = vm_page_queues[PQ_ACTIVE + q].lcnt;
1186 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1187 
1188 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1189 	       maxscan-- > 0 && (avail_shortage - delta > 0 ||
1190 				inactive_shortage > 0))
1191 	{
1192 		vm_page_and_queue_spin_lock(m);
1193 		if (m != TAILQ_NEXT(&marker, pageq)) {
1194 			vm_page_and_queue_spin_unlock(m);
1195 			++maxscan;
1196 			continue;
1197 		}
1198 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1199 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1200 			     &marker, pageq);
1201 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1202 				   &marker, pageq);
1203 
1204 		/*
1205 		 * Skip marker pages
1206 		 */
1207 		if (m->flags & PG_MARKER) {
1208 			vm_page_and_queue_spin_unlock(m);
1209 			continue;
1210 		}
1211 
1212 		/*
1213 		 * Try to busy the page.  Don't mess with pages which are
1214 		 * already busy or reorder them in the queue.
1215 		 */
1216 		if (vm_page_busy_try(m, TRUE)) {
1217 			vm_page_and_queue_spin_unlock(m);
1218 			continue;
1219 		}
1220 
1221 		/*
1222 		 * Don't deactivate pages that are held, even if we can
1223 		 * busy them.  (XXX why not?)
1224 		 */
1225 		if (m->hold_count != 0) {
1226 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1227 				     m, pageq);
1228 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE + q].pl,
1229 					  m, pageq);
1230 			vm_page_and_queue_spin_unlock(m);
1231 			vm_page_wakeup(m);
1232 			continue;
1233 		}
1234 		vm_page_and_queue_spin_unlock(m);
1235 		lwkt_yield();
1236 
1237 		/*
1238 		 * The page has been successfully busied and the page and
1239 		 * queue are no longer locked.
1240 		 */
1241 
1242 		/*
1243 		 * The count for pagedaemon pages is done after checking the
1244 		 * page for eligibility...
1245 		 */
1246 		mycpu->gd_cnt.v_pdpages++;
1247 
1248 		/*
1249 		 * Check to see "how much" the page has been used and clear
1250 		 * the tracking access bits.  If the object has no references
1251 		 * don't bother paying the expense.
1252 		 */
1253 		actcount = 0;
1254 		if (m->object->ref_count != 0) {
1255 			if (m->flags & PG_REFERENCED)
1256 				++actcount;
1257 			actcount += pmap_ts_referenced(m);
1258 			if (actcount) {
1259 				m->act_count += ACT_ADVANCE + actcount;
1260 				if (m->act_count > ACT_MAX)
1261 					m->act_count = ACT_MAX;
1262 			}
1263 		}
1264 		vm_page_flag_clear(m, PG_REFERENCED);
1265 
1266 		/*
1267 		 * actcount is only valid if the object ref_count is non-zero.
1268 		 */
1269 		if (actcount && m->object->ref_count != 0) {
1270 			vm_page_and_queue_spin_lock(m);
1271 			if (m->queue - m->pc == PQ_ACTIVE) {
1272 				TAILQ_REMOVE(
1273 					&vm_page_queues[PQ_ACTIVE + q].pl,
1274 					m, pageq);
1275 				TAILQ_INSERT_TAIL(
1276 					&vm_page_queues[PQ_ACTIVE + q].pl,
1277 					m, pageq);
1278 			}
1279 			vm_page_and_queue_spin_unlock(m);
1280 			vm_page_wakeup(m);
1281 		} else {
1282 			m->act_count -= min(m->act_count, ACT_DECLINE);
1283 			if (vm_pageout_algorithm ||
1284 			    m->object->ref_count == 0 ||
1285 			    m->act_count < pass + 1
1286 			) {
1287 				/*
1288 				 * Deactivate the page.  If we had a
1289 				 * shortage from our inactive scan try to
1290 				 * free (cache) the page instead.
1291 				 *
1292 				 * Don't just blindly cache the page if
1293 				 * we do not have a shortage from the
1294 				 * inactive scan, that could lead to
1295 				 * gigabytes being moved.
1296 				 */
1297 				--inactive_shortage;
1298 				if (avail_shortage - delta > 0 ||
1299 				    m->object->ref_count == 0) {
1300 					if (avail_shortage - delta > 0)
1301 						++*recycle_countp;
1302 					vm_page_protect(m, VM_PROT_NONE);
1303 					if (m->dirty == 0 &&
1304 					    (m->flags & PG_NEED_COMMIT) == 0 &&
1305 					    avail_shortage - delta > 0) {
1306 						vm_page_cache(m);
1307 					} else {
1308 						vm_page_deactivate(m);
1309 						vm_page_wakeup(m);
1310 					}
1311 				} else {
1312 					vm_page_deactivate(m);
1313 					vm_page_wakeup(m);
1314 				}
1315 				++delta;
1316 			} else {
1317 				vm_page_and_queue_spin_lock(m);
1318 				if (m->queue - m->pc == PQ_ACTIVE) {
1319 					TAILQ_REMOVE(
1320 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1321 					    m, pageq);
1322 					TAILQ_INSERT_TAIL(
1323 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1324 					    m, pageq);
1325 				}
1326 				vm_page_and_queue_spin_unlock(m);
1327 				vm_page_wakeup(m);
1328 			}
1329 		}
1330 	}
1331 
1332 	/*
1333 	 * Clean out our local marker.
1334 	 */
1335 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1336 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1337 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1338 
1339 	return (delta);
1340 }
1341 
1342 /*
1343  * The number of actually free pages can drop down to v_free_reserved,
1344  * we try to build the free count back above v_free_min.  Note that
1345  * vm_paging_needed() also returns TRUE if v_free_count is not at
1346  * least v_free_min so that is the minimum we must build the free
1347  * count to.
1348  *
1349  * We use a slightly higher target to improve hysteresis,
1350  * ((v_free_target + v_free_min) / 2).  Since v_free_target
1351  * is usually the same as v_cache_min this maintains about
1352  * half the pages in the free queue as are in the cache queue,
1353  * providing pretty good pipelining for pageout operation.
1354  *
1355  * The system operator can manipulate vm.v_cache_min and
1356  * vm.v_free_target to tune the pageout demon.  Be sure
1357  * to keep vm.v_free_min < vm.v_free_target.
1358  *
1359  * Note that the original paging target is to get at least
1360  * (free_min + cache_min) into (free + cache).  The slightly
1361  * higher target will shift additional pages from cache to free
1362  * without effecting the original paging target in order to
1363  * maintain better hysteresis and not have the free count always
1364  * be dead-on v_free_min.
1365  *
1366  * NOTE: we are still in a critical section.
1367  *
1368  * Pages moved from PQ_CACHE to totally free are not counted in the
1369  * pages_freed counter.
1370  */
1371 static void
1372 vm_pageout_scan_cache(int avail_shortage, int vnodes_skipped, int recycle_count)
1373 {
1374 	struct vm_pageout_scan_info info;
1375 	vm_page_t m;
1376 
1377 	while (vmstats.v_free_count <
1378 	       (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1379 		/*
1380 		 * This steals some code from vm/vm_page.c
1381 		 */
1382 		static int cache_rover = 0;
1383 
1384 		m = vm_page_list_find(PQ_CACHE, cache_rover & PQ_L2_MASK, FALSE);
1385 		if (m == NULL)
1386 			break;
1387 		/* page is returned removed from its queue and spinlocked */
1388 		if (vm_page_busy_try(m, TRUE)) {
1389 			vm_page_deactivate_locked(m);
1390 			vm_page_spin_unlock(m);
1391 #ifdef INVARIANTS
1392 			kprintf("Warning: busy page %p found in cache\n", m);
1393 #endif
1394 			continue;
1395 		}
1396 		vm_page_spin_unlock(m);
1397 		pagedaemon_wakeup();
1398 		lwkt_yield();
1399 
1400 		/*
1401 		 * Page has been successfully busied and it and its queue
1402 		 * is no longer spinlocked.
1403 		 */
1404 		if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1405 		    m->hold_count ||
1406 		    m->wire_count) {
1407 			vm_page_deactivate(m);
1408 			vm_page_wakeup(m);
1409 			continue;
1410 		}
1411 		KKASSERT((m->flags & PG_MAPPED) == 0);
1412 		KKASSERT(m->dirty == 0);
1413 		cache_rover += PQ_PRIME2;
1414 		vm_pageout_page_free(m);
1415 		mycpu->gd_cnt.v_dfree++;
1416 	}
1417 
1418 #if !defined(NO_SWAPPING)
1419 	/*
1420 	 * Idle process swapout -- run once per second.
1421 	 */
1422 	if (vm_swap_idle_enabled) {
1423 		static long lsec;
1424 		if (time_second != lsec) {
1425 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1426 			vm_req_vmdaemon();
1427 			lsec = time_second;
1428 		}
1429 	}
1430 #endif
1431 
1432 	/*
1433 	 * If we didn't get enough free pages, and we have skipped a vnode
1434 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1435 	 * if we did not get enough free pages.
1436 	 */
1437 	if (vm_paging_target() > 0) {
1438 		if (vnodes_skipped && vm_page_count_min(0))
1439 			speedup_syncer();
1440 #if !defined(NO_SWAPPING)
1441 		if (vm_swap_enabled && vm_page_count_target()) {
1442 			vm_req_vmdaemon();
1443 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1444 		}
1445 #endif
1446 	}
1447 
1448 	/*
1449 	 * Handle catastrophic conditions.  Under good conditions we should
1450 	 * be at the target, well beyond our minimum.  If we could not even
1451 	 * reach our minimum the system is under heavy stress.
1452 	 *
1453 	 * Determine whether we have run out of memory.  This occurs when
1454 	 * swap_pager_full is TRUE and the only pages left in the page
1455 	 * queues are dirty.  We will still likely have page shortages.
1456 	 *
1457 	 * - swap_pager_full is set if insufficient swap was
1458 	 *   available to satisfy a requested pageout.
1459 	 *
1460 	 * - the inactive queue is bloated (4 x size of active queue),
1461 	 *   meaning it is unable to get rid of dirty pages and.
1462 	 *
1463 	 * - vm_page_count_min() without counting pages recycled from the
1464 	 *   active queue (recycle_count) means we could not recover
1465 	 *   enough pages to meet bare minimum needs.  This test only
1466 	 *   works if the inactive queue is bloated.
1467 	 *
1468 	 * - due to a positive avail_shortage we shifted the remaining
1469 	 *   dirty pages from the active queue to the inactive queue
1470 	 *   trying to find clean ones to free.
1471 	 */
1472 	if (swap_pager_full && vm_page_count_min(recycle_count))
1473 		kprintf("Warning: system low on memory+swap!\n");
1474 	if (swap_pager_full && vm_page_count_min(recycle_count) &&
1475 	    vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1476 	    avail_shortage > 0) {
1477 		/*
1478 		 * Kill something.
1479 		 */
1480 		info.bigproc = NULL;
1481 		info.bigsize = 0;
1482 		allproc_scan(vm_pageout_scan_callback, &info);
1483 		if (info.bigproc != NULL) {
1484 			killproc(info.bigproc, "out of swap space");
1485 			info.bigproc->p_nice = PRIO_MIN;
1486 			info.bigproc->p_usched->resetpriority(
1487 				FIRST_LWP_IN_PROC(info.bigproc));
1488 			wakeup(&vmstats.v_free_count);
1489 			PRELE(info.bigproc);
1490 		}
1491 	}
1492 }
1493 
1494 /*
1495  * The caller must hold proc_token.
1496  */
1497 static int
1498 vm_pageout_scan_callback(struct proc *p, void *data)
1499 {
1500 	struct vm_pageout_scan_info *info = data;
1501 	vm_offset_t size;
1502 
1503 	/*
1504 	 * Never kill system processes or init.  If we have configured swap
1505 	 * then try to avoid killing low-numbered pids.
1506 	 */
1507 	if ((p->p_flags & P_SYSTEM) || (p->p_pid == 1) ||
1508 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1509 		return (0);
1510 	}
1511 
1512 	/*
1513 	 * if the process is in a non-running type state,
1514 	 * don't touch it.
1515 	 */
1516 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
1517 		return (0);
1518 
1519 	/*
1520 	 * Get the approximate process size.  Note that anonymous pages
1521 	 * with backing swap will be counted twice, but there should not
1522 	 * be too many such pages due to the stress the VM system is
1523 	 * under at this point.
1524 	 */
1525 	size = vmspace_anonymous_count(p->p_vmspace) +
1526 		vmspace_swap_count(p->p_vmspace);
1527 
1528 	/*
1529 	 * If the this process is bigger than the biggest one
1530 	 * remember it.
1531 	 */
1532 	if (info->bigsize < size) {
1533 		if (info->bigproc)
1534 			PRELE(info->bigproc);
1535 		PHOLD(p);
1536 		info->bigproc = p;
1537 		info->bigsize = size;
1538 	}
1539 	lwkt_yield();
1540 	return(0);
1541 }
1542 
1543 /*
1544  * This routine tries to maintain the pseudo LRU active queue,
1545  * so that during long periods of time where there is no paging,
1546  * that some statistic accumulation still occurs.  This code
1547  * helps the situation where paging just starts to occur.
1548  */
1549 static void
1550 vm_pageout_page_stats(int q)
1551 {
1552 	static int fullintervalcount = 0;
1553 	struct vm_page marker;
1554 	vm_page_t m;
1555 	int pcount, tpcount;		/* Number of pages to check */
1556 	int page_shortage;
1557 
1558 	page_shortage = (vmstats.v_inactive_target + vmstats.v_cache_max +
1559 			 vmstats.v_free_min) -
1560 			(vmstats.v_free_count + vmstats.v_inactive_count +
1561 			 vmstats.v_cache_count);
1562 
1563 	if (page_shortage <= 0)
1564 		return;
1565 
1566 	pcount = vm_page_queues[PQ_ACTIVE + q].lcnt;
1567 	fullintervalcount += vm_pageout_stats_interval;
1568 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1569 		tpcount = (vm_pageout_stats_max * pcount) /
1570 			  vmstats.v_page_count + 1;
1571 		if (pcount > tpcount)
1572 			pcount = tpcount;
1573 	} else {
1574 		fullintervalcount = 0;
1575 	}
1576 
1577 	bzero(&marker, sizeof(marker));
1578 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1579 	marker.queue = PQ_ACTIVE + q;
1580 	marker.pc = q;
1581 	marker.wire_count = 1;
1582 
1583 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1584 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1585 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1586 
1587 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1588 	       pcount-- > 0)
1589 	{
1590 		int actcount;
1591 
1592 		vm_page_and_queue_spin_lock(m);
1593 		if (m != TAILQ_NEXT(&marker, pageq)) {
1594 			vm_page_and_queue_spin_unlock(m);
1595 			++pcount;
1596 			continue;
1597 		}
1598 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1599 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1600 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1601 				   &marker, pageq);
1602 
1603 		/*
1604 		 * Ignore markers
1605 		 */
1606 		if (m->flags & PG_MARKER) {
1607 			vm_page_and_queue_spin_unlock(m);
1608 			continue;
1609 		}
1610 
1611 		/*
1612 		 * Ignore pages we can't busy
1613 		 */
1614 		if (vm_page_busy_try(m, TRUE)) {
1615 			vm_page_and_queue_spin_unlock(m);
1616 			continue;
1617 		}
1618 		vm_page_and_queue_spin_unlock(m);
1619 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1620 
1621 		/*
1622 		 * We now have a safely busied page, the page and queue
1623 		 * spinlocks have been released.
1624 		 *
1625 		 * Ignore held pages
1626 		 */
1627 		if (m->hold_count) {
1628 			vm_page_wakeup(m);
1629 			continue;
1630 		}
1631 
1632 		/*
1633 		 * Calculate activity
1634 		 */
1635 		actcount = 0;
1636 		if (m->flags & PG_REFERENCED) {
1637 			vm_page_flag_clear(m, PG_REFERENCED);
1638 			actcount += 1;
1639 		}
1640 		actcount += pmap_ts_referenced(m);
1641 
1642 		/*
1643 		 * Update act_count and move page to end of queue.
1644 		 */
1645 		if (actcount) {
1646 			m->act_count += ACT_ADVANCE + actcount;
1647 			if (m->act_count > ACT_MAX)
1648 				m->act_count = ACT_MAX;
1649 			vm_page_and_queue_spin_lock(m);
1650 			if (m->queue - m->pc == PQ_ACTIVE) {
1651 				TAILQ_REMOVE(
1652 					&vm_page_queues[PQ_ACTIVE + q].pl,
1653 					m, pageq);
1654 				TAILQ_INSERT_TAIL(
1655 					&vm_page_queues[PQ_ACTIVE + q].pl,
1656 					m, pageq);
1657 			}
1658 			vm_page_and_queue_spin_unlock(m);
1659 			vm_page_wakeup(m);
1660 			continue;
1661 		}
1662 
1663 		if (m->act_count == 0) {
1664 			/*
1665 			 * We turn off page access, so that we have
1666 			 * more accurate RSS stats.  We don't do this
1667 			 * in the normal page deactivation when the
1668 			 * system is loaded VM wise, because the
1669 			 * cost of the large number of page protect
1670 			 * operations would be higher than the value
1671 			 * of doing the operation.
1672 			 *
1673 			 * We use the marker to save our place so
1674 			 * we can release the spin lock.  both (m)
1675 			 * and (next) will be invalid.
1676 			 */
1677 			vm_page_protect(m, VM_PROT_NONE);
1678 			vm_page_deactivate(m);
1679 		} else {
1680 			m->act_count -= min(m->act_count, ACT_DECLINE);
1681 			vm_page_and_queue_spin_lock(m);
1682 			if (m->queue - m->pc == PQ_ACTIVE) {
1683 				TAILQ_REMOVE(
1684 					&vm_page_queues[PQ_ACTIVE + q].pl,
1685 					m, pageq);
1686 				TAILQ_INSERT_TAIL(
1687 					&vm_page_queues[PQ_ACTIVE + q].pl,
1688 					m, pageq);
1689 			}
1690 			vm_page_and_queue_spin_unlock(m);
1691 		}
1692 		vm_page_wakeup(m);
1693 	}
1694 
1695 	/*
1696 	 * Remove our local marker
1697 	 */
1698 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1699 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1700 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1701 }
1702 
1703 static int
1704 vm_pageout_free_page_calc(vm_size_t count)
1705 {
1706 	if (count < vmstats.v_page_count)
1707 		 return 0;
1708 	/*
1709 	 * free_reserved needs to include enough for the largest swap pager
1710 	 * structures plus enough for any pv_entry structs when paging.
1711 	 *
1712 	 * v_free_min		normal allocations
1713 	 * v_free_reserved	system allocations
1714 	 * v_pageout_free_min	allocations by pageout daemon
1715 	 * v_interrupt_free_min	low level allocations (e.g swap structures)
1716 	 */
1717 	if (vmstats.v_page_count > 1024)
1718 		vmstats.v_free_min = 64 + (vmstats.v_page_count - 1024) / 200;
1719 	else
1720 		vmstats.v_free_min = 64;
1721 	vmstats.v_free_reserved = vmstats.v_free_min * 4 / 8 + 7;
1722 	vmstats.v_free_severe = vmstats.v_free_min * 4 / 8 + 0;
1723 	vmstats.v_pageout_free_min = vmstats.v_free_min * 2 / 8 + 7;
1724 	vmstats.v_interrupt_free_min = vmstats.v_free_min * 1 / 8 + 7;
1725 
1726 	return 1;
1727 }
1728 
1729 
1730 /*
1731  * vm_pageout is the high level pageout daemon.
1732  *
1733  * No requirements.
1734  */
1735 static void
1736 vm_pageout_thread(void)
1737 {
1738 	int pass;
1739 	int q;
1740 
1741 	/*
1742 	 * Initialize some paging parameters.
1743 	 */
1744 	curthread->td_flags |= TDF_SYSTHREAD;
1745 
1746 	if (vmstats.v_page_count < 2000)
1747 		vm_pageout_page_count = 8;
1748 
1749 	vm_pageout_free_page_calc(vmstats.v_page_count);
1750 
1751 	/*
1752 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1753 	 * that these are more a measure of the VM cache queue hysteresis
1754 	 * then the VM free queue.  Specifically, v_free_target is the
1755 	 * high water mark (free+cache pages).
1756 	 *
1757 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1758 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1759 	 * be big enough to handle memory needs while the pageout daemon
1760 	 * is signalled and run to free more pages.
1761 	 */
1762 	if (vmstats.v_free_count > 6144)
1763 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1764 	else
1765 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1766 
1767 	/*
1768 	 * NOTE: With the new buffer cache b_act_count we want the default
1769 	 *	 inactive target to be a percentage of available memory.
1770 	 *
1771 	 *	 The inactive target essentially determines the minimum
1772 	 *	 number of 'temporary' pages capable of caching one-time-use
1773 	 *	 files when the VM system is otherwise full of pages
1774 	 *	 belonging to multi-time-use files or active program data.
1775 	 *
1776 	 * NOTE: The inactive target is aggressively persued only if the
1777 	 *	 inactive queue becomes too small.  If the inactive queue
1778 	 *	 is large enough to satisfy page movement to free+cache
1779 	 *	 then it is repopulated more slowly from the active queue.
1780 	 *	 This allows a general inactive_target default to be set.
1781 	 *
1782 	 *	 There is an issue here for processes which sit mostly idle
1783 	 *	 'overnight', such as sshd, tcsh, and X.  Any movement from
1784 	 *	 the active queue will eventually cause such pages to
1785 	 *	 recycle eventually causing a lot of paging in the morning.
1786 	 *	 To reduce the incidence of this pages cycled out of the
1787 	 *	 buffer cache are moved directly to the inactive queue if
1788 	 *	 they were only used once or twice.
1789 	 *
1790 	 *	 The vfs.vm_cycle_point sysctl can be used to adjust this.
1791 	 *	 Increasing the value (up to 64) increases the number of
1792 	 *	 buffer recyclements which go directly to the inactive queue.
1793 	 */
1794 	if (vmstats.v_free_count > 2048) {
1795 		vmstats.v_cache_min = vmstats.v_free_target;
1796 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1797 	} else {
1798 		vmstats.v_cache_min = 0;
1799 		vmstats.v_cache_max = 0;
1800 	}
1801 	vmstats.v_inactive_target = vmstats.v_free_count / 4;
1802 
1803 	/* XXX does not really belong here */
1804 	if (vm_page_max_wired == 0)
1805 		vm_page_max_wired = vmstats.v_free_count / 3;
1806 
1807 	if (vm_pageout_stats_max == 0)
1808 		vm_pageout_stats_max = vmstats.v_free_target;
1809 
1810 	/*
1811 	 * Set interval in seconds for stats scan.
1812 	 */
1813 	if (vm_pageout_stats_interval == 0)
1814 		vm_pageout_stats_interval = 5;
1815 	if (vm_pageout_full_stats_interval == 0)
1816 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1817 
1818 
1819 	/*
1820 	 * Set maximum free per pass
1821 	 */
1822 	if (vm_pageout_stats_free_max == 0)
1823 		vm_pageout_stats_free_max = 5;
1824 
1825 	swap_pager_swap_init();
1826 	pass = 0;
1827 
1828 	/*
1829 	 * The pageout daemon is never done, so loop forever.
1830 	 */
1831 	while (TRUE) {
1832 		int error;
1833 		int delta1;
1834 		int delta2;
1835 		int avail_shortage;
1836 		int inactive_shortage;
1837 		int vnodes_skipped = 0;
1838 		int recycle_count = 0;
1839 		int tmp;
1840 
1841 		/*
1842 		 * Wait for an action request.  If we timeout check to
1843 		 * see if paging is needed (in case the normal wakeup
1844 		 * code raced us).
1845 		 */
1846 		if (vm_pages_needed == 0) {
1847 			error = tsleep(&vm_pages_needed,
1848 				       0, "psleep",
1849 				       vm_pageout_stats_interval * hz);
1850 			if (error &&
1851 			    vm_paging_needed() == 0 &&
1852 			    vm_pages_needed == 0) {
1853 				for (q = 0; q < PQ_L2_SIZE; ++q)
1854 					vm_pageout_page_stats(q);
1855 				continue;
1856 			}
1857 			vm_pages_needed = 1;
1858 		}
1859 
1860 		mycpu->gd_cnt.v_pdwakeups++;
1861 
1862 		/*
1863 		 * Do whatever cleanup that the pmap code can.
1864 		 */
1865 		pmap_collect();
1866 
1867 		/*
1868 		 * Scan for pageout.  Try to avoid thrashing the system
1869 		 * with activity.
1870 		 *
1871 		 * Calculate our target for the number of free+cache pages we
1872 		 * want to get to.  This is higher then the number that causes
1873 		 * allocations to stall (severe) in order to provide hysteresis,
1874 		 * and if we don't make it all the way but get to the minimum
1875 		 * we're happy.  Goose it a bit if there are multipler
1876 		 * requests for memory.
1877 		 */
1878 		avail_shortage = vm_paging_target() + vm_pageout_deficit;
1879 		vm_pageout_deficit = 0;
1880 		delta1 = 0;
1881 		if (avail_shortage > 0) {
1882 			for (q = 0; q < PQ_L2_SIZE; ++q) {
1883 				delta1 += vm_pageout_scan_inactive(
1884 					    pass, q,
1885 					    PQAVERAGE(avail_shortage),
1886 					    &vnodes_skipped);
1887 			}
1888 			avail_shortage -= delta1;
1889 		}
1890 
1891 		/*
1892 		 * Figure out how many active pages we must deactivate.  If
1893 		 * we were able to reach our target with just the inactive
1894 		 * scan above we limit the number of active pages we
1895 		 * deactivate to reduce unnecessary work.
1896 		 */
1897 		inactive_shortage = vmstats.v_inactive_target -
1898 				    vmstats.v_inactive_count;
1899 
1900 		/*
1901 		 * If we were unable to free sufficient inactive pages to
1902 		 * satisfy the free/cache queue requirements then simply
1903 		 * reaching the inactive target may not be good enough.
1904 		 * Try to deactivate pages in excess of the target based
1905 		 * on the shortfall.
1906 		 *
1907 		 * However to prevent thrashing the VM system do not
1908 		 * deactivate more than an additional 1/10 the inactive
1909 		 * target's worth of active pages.
1910 		 */
1911 		if (avail_shortage > 0) {
1912 			tmp = avail_shortage * 2;
1913 			if (tmp > vmstats.v_inactive_target / 10)
1914 				tmp = vmstats.v_inactive_target / 10;
1915 			inactive_shortage += tmp;
1916 		}
1917 
1918 		if (avail_shortage > 0 || inactive_shortage > 0) {
1919 			delta2 = 0;
1920 			for (q = 0; q < PQ_L2_SIZE; ++q) {
1921 				delta2 += vm_pageout_scan_active(
1922 						pass, q,
1923 						PQAVERAGE(avail_shortage),
1924 						PQAVERAGE(inactive_shortage),
1925 						&recycle_count);
1926 			}
1927 			inactive_shortage -= delta2;
1928 			avail_shortage -= delta2;
1929 		}
1930 
1931 		/*
1932 		 * Finally free enough cache pages to meet our free page
1933 		 * requirement and take more drastic measures if we are
1934 		 * still in trouble.
1935 		 */
1936 		vm_pageout_scan_cache(avail_shortage, vnodes_skipped,
1937 				      recycle_count);
1938 
1939 		/*
1940 		 * Wait for more work.
1941 		 */
1942 		if (avail_shortage > 0) {
1943 			++pass;
1944 			if (swap_pager_full) {
1945 				/*
1946 				 * Running out of memory, catastrophic back-off
1947 				 * to one-second intervals.
1948 				 */
1949 				tsleep(&vm_pages_needed, 0, "pdelay", hz);
1950 			} else if (pass < 10 && vm_pages_needed > 1) {
1951 				/*
1952 				 * Normal operation, additional processes
1953 				 * have already kicked us.  Retry immediately.
1954 				 */
1955 			} else if (pass < 10) {
1956 				/*
1957 				 * Normal operation, fewer processes.  Delay
1958 				 * a bit but allow wakeups.
1959 				 */
1960 				vm_pages_needed = 0;
1961 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1962 				vm_pages_needed = 1;
1963 			} else {
1964 				/*
1965 				 * We've taken too many passes, forced delay.
1966 				 */
1967 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
1968 			}
1969 		} else {
1970 			/*
1971 			 * Interlocked wakeup of waiters (non-optional)
1972 			 */
1973 			pass = 0;
1974 			if (vm_pages_needed && !vm_page_count_min(0)) {
1975 				wakeup(&vmstats.v_free_count);
1976 				vm_pages_needed = 0;
1977 			}
1978 		}
1979 	}
1980 }
1981 
1982 static struct kproc_desc page_kp = {
1983 	"pagedaemon",
1984 	vm_pageout_thread,
1985 	&pagethread
1986 };
1987 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
1988 
1989 
1990 /*
1991  * Called after allocating a page out of the cache or free queue
1992  * to possibly wake the pagedaemon up to replentish our supply.
1993  *
1994  * We try to generate some hysteresis by waking the pagedaemon up
1995  * when our free+cache pages go below the free_min+cache_min level.
1996  * The pagedaemon tries to get the count back up to at least the
1997  * minimum, and through to the target level if possible.
1998  *
1999  * If the pagedaemon is already active bump vm_pages_needed as a hint
2000  * that there are even more requests pending.
2001  *
2002  * SMP races ok?
2003  * No requirements.
2004  */
2005 void
2006 pagedaemon_wakeup(void)
2007 {
2008 	if (vm_paging_needed() && curthread != pagethread) {
2009 		if (vm_pages_needed == 0) {
2010 			vm_pages_needed = 1;	/* SMP race ok */
2011 			wakeup(&vm_pages_needed);
2012 		} else if (vm_page_count_min(0)) {
2013 			++vm_pages_needed;	/* SMP race ok */
2014 		}
2015 	}
2016 }
2017 
2018 #if !defined(NO_SWAPPING)
2019 
2020 /*
2021  * SMP races ok?
2022  * No requirements.
2023  */
2024 static void
2025 vm_req_vmdaemon(void)
2026 {
2027 	static int lastrun = 0;
2028 
2029 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2030 		wakeup(&vm_daemon_needed);
2031 		lastrun = ticks;
2032 	}
2033 }
2034 
2035 static int vm_daemon_callback(struct proc *p, void *data __unused);
2036 
2037 /*
2038  * No requirements.
2039  */
2040 static void
2041 vm_daemon(void)
2042 {
2043 	/*
2044 	 * XXX vm_daemon_needed specific token?
2045 	 */
2046 	while (TRUE) {
2047 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
2048 		if (vm_pageout_req_swapout) {
2049 			swapout_procs(vm_pageout_req_swapout);
2050 			vm_pageout_req_swapout = 0;
2051 		}
2052 		/*
2053 		 * scan the processes for exceeding their rlimits or if
2054 		 * process is swapped out -- deactivate pages
2055 		 */
2056 		allproc_scan(vm_daemon_callback, NULL);
2057 	}
2058 }
2059 
2060 /*
2061  * Caller must hold proc_token.
2062  */
2063 static int
2064 vm_daemon_callback(struct proc *p, void *data __unused)
2065 {
2066 	vm_pindex_t limit, size;
2067 
2068 	/*
2069 	 * if this is a system process or if we have already
2070 	 * looked at this process, skip it.
2071 	 */
2072 	if (p->p_flags & (P_SYSTEM | P_WEXIT))
2073 		return (0);
2074 
2075 	/*
2076 	 * if the process is in a non-running type state,
2077 	 * don't touch it.
2078 	 */
2079 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP)
2080 		return (0);
2081 
2082 	/*
2083 	 * get a limit
2084 	 */
2085 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
2086 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
2087 
2088 	/*
2089 	 * let processes that are swapped out really be
2090 	 * swapped out.  Set the limit to nothing to get as
2091 	 * many pages out to swap as possible.
2092 	 */
2093 	if (p->p_flags & P_SWAPPEDOUT)
2094 		limit = 0;
2095 
2096 	lwkt_gettoken(&p->p_vmspace->vm_map.token);
2097 	size = vmspace_resident_count(p->p_vmspace);
2098 	if (limit >= 0 && size >= limit) {
2099 		vm_pageout_map_deactivate_pages(&p->p_vmspace->vm_map, limit);
2100 	}
2101 	lwkt_reltoken(&p->p_vmspace->vm_map.token);
2102 	return (0);
2103 }
2104 
2105 #endif
2106