xref: /dflybsd-src/sys/vm/vm_pageout.c (revision 97157a3876f6bf4907a92b7c75f2260a85c5acdf)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
65  */
66 
67 /*
68  *	The proverbial page-out daemon.
69  */
70 
71 #include "opt_vm.h"
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/kernel.h>
75 #include <sys/proc.h>
76 #include <sys/kthread.h>
77 #include <sys/resourcevar.h>
78 #include <sys/signalvar.h>
79 #include <sys/vnode.h>
80 #include <sys/vmmeter.h>
81 #include <sys/sysctl.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_param.h>
85 #include <sys/lock.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_pager.h>
91 #include <vm/swap_pager.h>
92 #include <vm/vm_extern.h>
93 
94 #include <sys/thread2.h>
95 #include <sys/spinlock2.h>
96 #include <vm/vm_page2.h>
97 
98 /*
99  * System initialization
100  */
101 
102 /* the kernel process "vm_pageout"*/
103 static int vm_pageout_clean (vm_page_t);
104 static int vm_pageout_free_page_calc (vm_size_t count);
105 struct thread *pagethread;
106 
107 #if !defined(NO_SWAPPING)
108 /* the kernel process "vm_daemon"*/
109 static void vm_daemon (void);
110 static struct	thread *vmthread;
111 
112 static struct kproc_desc vm_kp = {
113 	"vmdaemon",
114 	vm_daemon,
115 	&vmthread
116 };
117 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
118 #endif
119 
120 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
121 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
122 int vm_pageout_pages_needed=0;	/* pageout daemon needs pages */
123 int vm_page_free_hysteresis = 16;
124 
125 #if !defined(NO_SWAPPING)
126 static int vm_pageout_req_swapout;	/* XXX */
127 static int vm_daemon_needed;
128 #endif
129 static int vm_max_launder = 4096;
130 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
131 static int vm_pageout_full_stats_interval = 0;
132 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
133 static int defer_swap_pageouts=0;
134 static int disable_swap_pageouts=0;
135 static u_int vm_anonmem_decline = ACT_DECLINE;
136 static u_int vm_filemem_decline = ACT_DECLINE * 2;
137 
138 #if defined(NO_SWAPPING)
139 static int vm_swap_enabled=0;
140 static int vm_swap_idle_enabled=0;
141 #else
142 static int vm_swap_enabled=1;
143 static int vm_swap_idle_enabled=0;
144 #endif
145 
146 SYSCTL_UINT(_vm, VM_PAGEOUT_ALGORITHM, anonmem_decline,
147 	CTLFLAG_RW, &vm_anonmem_decline, 0, "active->inactive anon memory");
148 
149 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, filemem_decline,
150 	CTLFLAG_RW, &vm_filemem_decline, 0, "active->inactive file cache");
151 
152 SYSCTL_INT(_vm, OID_AUTO, page_free_hysteresis,
153 	CTLFLAG_RW, &vm_page_free_hysteresis, 0,
154 	"Free more pages than the minimum required");
155 
156 SYSCTL_INT(_vm, OID_AUTO, max_launder,
157 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
158 
159 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
160 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
161 
162 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
163 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
164 
165 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
166 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
167 
168 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
169 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
170 
171 #if defined(NO_SWAPPING)
172 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
173 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
174 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
175 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
176 #else
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
181 #endif
182 
183 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
184 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
185 
186 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
187 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
188 
189 static int pageout_lock_miss;
190 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
191 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
192 
193 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
194 
195 #if !defined(NO_SWAPPING)
196 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
197 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
198 static freeer_fcn_t vm_pageout_object_deactivate_pages;
199 static void vm_req_vmdaemon (void);
200 #endif
201 static void vm_pageout_page_stats(int q);
202 
203 static __inline int
204 PQAVERAGE(int n)
205 {
206 	if (n >= 0)
207 		return((n + (PQ_L2_SIZE - 1)) / PQ_L2_SIZE + 1);
208 	else
209 		return((n - (PQ_L2_SIZE - 1)) / PQ_L2_SIZE - 1);
210 }
211 
212 /*
213  * vm_pageout_clean:
214  *
215  * Clean the page and remove it from the laundry.  The page must not be
216  * busy on-call.
217  *
218  * We set the busy bit to cause potential page faults on this page to
219  * block.  Note the careful timing, however, the busy bit isn't set till
220  * late and we cannot do anything that will mess with the page.
221  */
222 static int
223 vm_pageout_clean(vm_page_t m)
224 {
225 	vm_object_t object;
226 	vm_page_t mc[BLIST_MAX_ALLOC];
227 	int error;
228 	int ib, is, page_base;
229 	vm_pindex_t pindex = m->pindex;
230 
231 	object = m->object;
232 
233 	/*
234 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
235 	 * with the new swapper, but we could have serious problems paging
236 	 * out other object types if there is insufficient memory.
237 	 *
238 	 * Unfortunately, checking free memory here is far too late, so the
239 	 * check has been moved up a procedural level.
240 	 */
241 
242 	/*
243 	 * Don't mess with the page if it's busy, held, or special
244 	 *
245 	 * XXX do we really need to check hold_count here?  hold_count
246 	 * isn't supposed to mess with vm_page ops except prevent the
247 	 * page from being reused.
248 	 */
249 	if (m->hold_count != 0 || (m->flags & PG_UNMANAGED)) {
250 		vm_page_wakeup(m);
251 		return 0;
252 	}
253 
254 	/*
255 	 * Place page in cluster.  Align cluster for optimal swap space
256 	 * allocation (whether it is swap or not).  This is typically ~16-32
257 	 * pages, which also tends to align the cluster to multiples of the
258 	 * filesystem block size if backed by a filesystem.
259 	 */
260 	page_base = pindex % BLIST_MAX_ALLOC;
261 	mc[page_base] = m;
262 	ib = page_base - 1;
263 	is = page_base + 1;
264 
265 	/*
266 	 * Scan object for clusterable pages.
267 	 *
268 	 * We can cluster ONLY if: ->> the page is NOT
269 	 * clean, wired, busy, held, or mapped into a
270 	 * buffer, and one of the following:
271 	 * 1) The page is inactive, or a seldom used
272 	 *    active page.
273 	 * -or-
274 	 * 2) we force the issue.
275 	 *
276 	 * During heavy mmap/modification loads the pageout
277 	 * daemon can really fragment the underlying file
278 	 * due to flushing pages out of order and not trying
279 	 * align the clusters (which leave sporatic out-of-order
280 	 * holes).  To solve this problem we do the reverse scan
281 	 * first and attempt to align our cluster, then do a
282 	 * forward scan if room remains.
283 	 */
284 
285 	vm_object_hold(object);
286 	while (ib >= 0) {
287 		vm_page_t p;
288 
289 		p = vm_page_lookup_busy_try(object, pindex - page_base + ib,
290 					    TRUE, &error);
291 		if (error || p == NULL)
292 			break;
293 		if ((p->queue - p->pc) == PQ_CACHE ||
294 		    (p->flags & PG_UNMANAGED)) {
295 			vm_page_wakeup(p);
296 			break;
297 		}
298 		vm_page_test_dirty(p);
299 		if (((p->dirty & p->valid) == 0 &&
300 		     (p->flags & PG_NEED_COMMIT) == 0) ||
301 		    p->queue - p->pc != PQ_INACTIVE ||
302 		    p->wire_count != 0 ||	/* may be held by buf cache */
303 		    p->hold_count != 0) {	/* may be undergoing I/O */
304 			vm_page_wakeup(p);
305 			break;
306 		}
307 		mc[ib] = p;
308 		--ib;
309 	}
310 	++ib;	/* fixup */
311 
312 	while (is < BLIST_MAX_ALLOC &&
313 	       pindex - page_base + is < object->size) {
314 		vm_page_t p;
315 
316 		p = vm_page_lookup_busy_try(object, pindex - page_base + is,
317 					    TRUE, &error);
318 		if (error || p == NULL)
319 			break;
320 		if (((p->queue - p->pc) == PQ_CACHE) ||
321 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
322 			vm_page_wakeup(p);
323 			break;
324 		}
325 		vm_page_test_dirty(p);
326 		if (((p->dirty & p->valid) == 0 &&
327 		     (p->flags & PG_NEED_COMMIT) == 0) ||
328 		    p->queue - p->pc != PQ_INACTIVE ||
329 		    p->wire_count != 0 ||	/* may be held by buf cache */
330 		    p->hold_count != 0) {	/* may be undergoing I/O */
331 			vm_page_wakeup(p);
332 			break;
333 		}
334 		mc[is] = p;
335 		++is;
336 	}
337 
338 	vm_object_drop(object);
339 
340 	/*
341 	 * we allow reads during pageouts...
342 	 */
343 	return vm_pageout_flush(&mc[ib], is - ib, 0);
344 }
345 
346 /*
347  * vm_pageout_flush() - launder the given pages
348  *
349  *	The given pages are laundered.  Note that we setup for the start of
350  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
351  *	reference count all in here rather then in the parent.  If we want
352  *	the parent to do more sophisticated things we may have to change
353  *	the ordering.
354  *
355  *	The pages in the array must be busied by the caller and will be
356  *	unbusied by this function.
357  */
358 int
359 vm_pageout_flush(vm_page_t *mc, int count, int flags)
360 {
361 	vm_object_t object;
362 	int pageout_status[count];
363 	int numpagedout = 0;
364 	int i;
365 
366 	/*
367 	 * Initiate I/O.  Bump the vm_page_t->busy counter.
368 	 */
369 	for (i = 0; i < count; i++) {
370 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL,
371 			("vm_pageout_flush page %p index %d/%d: partially "
372 			 "invalid page", mc[i], i, count));
373 		vm_page_io_start(mc[i]);
374 	}
375 
376 	/*
377 	 * We must make the pages read-only.  This will also force the
378 	 * modified bit in the related pmaps to be cleared.  The pager
379 	 * cannot clear the bit for us since the I/O completion code
380 	 * typically runs from an interrupt.  The act of making the page
381 	 * read-only handles the case for us.
382 	 *
383 	 * Then we can unbusy the pages, we still hold a reference by virtue
384 	 * of our soft-busy.
385 	 */
386 	for (i = 0; i < count; i++) {
387 		vm_page_protect(mc[i], VM_PROT_READ);
388 		vm_page_wakeup(mc[i]);
389 	}
390 
391 	object = mc[0]->object;
392 	vm_object_pip_add(object, count);
393 
394 	vm_pager_put_pages(object, mc, count,
395 	    (flags | ((object == &kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
396 	    pageout_status);
397 
398 	for (i = 0; i < count; i++) {
399 		vm_page_t mt = mc[i];
400 
401 		switch (pageout_status[i]) {
402 		case VM_PAGER_OK:
403 			numpagedout++;
404 			break;
405 		case VM_PAGER_PEND:
406 			numpagedout++;
407 			break;
408 		case VM_PAGER_BAD:
409 			/*
410 			 * Page outside of range of object. Right now we
411 			 * essentially lose the changes by pretending it
412 			 * worked.
413 			 */
414 			vm_page_busy_wait(mt, FALSE, "pgbad");
415 			pmap_clear_modify(mt);
416 			vm_page_undirty(mt);
417 			vm_page_wakeup(mt);
418 			break;
419 		case VM_PAGER_ERROR:
420 		case VM_PAGER_FAIL:
421 			/*
422 			 * A page typically cannot be paged out when we
423 			 * have run out of swap.  We leave the page
424 			 * marked inactive and will try to page it out
425 			 * again later.
426 			 *
427 			 * Starvation of the active page list is used to
428 			 * determine when the system is massively memory
429 			 * starved.
430 			 */
431 			break;
432 		case VM_PAGER_AGAIN:
433 			break;
434 		}
435 
436 		/*
437 		 * If the operation is still going, leave the page busy to
438 		 * block all other accesses. Also, leave the paging in
439 		 * progress indicator set so that we don't attempt an object
440 		 * collapse.
441 		 *
442 		 * For any pages which have completed synchronously,
443 		 * deactivate the page if we are under a severe deficit.
444 		 * Do not try to enter them into the cache, though, they
445 		 * might still be read-heavy.
446 		 */
447 		if (pageout_status[i] != VM_PAGER_PEND) {
448 			vm_page_busy_wait(mt, FALSE, "pgouw");
449 			if (vm_page_count_severe())
450 				vm_page_deactivate(mt);
451 #if 0
452 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
453 				vm_page_protect(mt, VM_PROT_READ);
454 #endif
455 			vm_page_io_finish(mt);
456 			vm_page_wakeup(mt);
457 			vm_object_pip_wakeup(object);
458 		}
459 	}
460 	return numpagedout;
461 }
462 
463 #if !defined(NO_SWAPPING)
464 /*
465  * deactivate enough pages to satisfy the inactive target
466  * requirements or if vm_page_proc_limit is set, then
467  * deactivate all of the pages in the object and its
468  * backing_objects.
469  *
470  * The map must be locked.
471  * The caller must hold the vm_object.
472  */
473 static int vm_pageout_object_deactivate_pages_callback(vm_page_t, void *);
474 
475 static void
476 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
477 				   vm_pindex_t desired, int map_remove_only)
478 {
479 	struct rb_vm_page_scan_info info;
480 	vm_object_t lobject;
481 	vm_object_t tobject;
482 	int remove_mode;
483 
484 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
485 	lobject = object;
486 
487 	while (lobject) {
488 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
489 			break;
490 		if (lobject->type == OBJT_DEVICE ||
491 		    lobject->type == OBJT_MGTDEVICE ||
492 		    lobject->type == OBJT_PHYS)
493 			break;
494 		if (lobject->paging_in_progress)
495 			break;
496 
497 		remove_mode = map_remove_only;
498 		if (lobject->shadow_count > 1)
499 			remove_mode = 1;
500 
501 		/*
502 		 * scan the objects entire memory queue.  We hold the
503 		 * object's token so the scan should not race anything.
504 		 */
505 		info.limit = remove_mode;
506 		info.map = map;
507 		info.desired = desired;
508 		vm_page_rb_tree_RB_SCAN(&lobject->rb_memq, NULL,
509 				vm_pageout_object_deactivate_pages_callback,
510 				&info
511 		);
512 		while ((tobject = lobject->backing_object) != NULL) {
513 			KKASSERT(tobject != object);
514 			vm_object_hold(tobject);
515 			if (tobject == lobject->backing_object)
516 				break;
517 			vm_object_drop(tobject);
518 		}
519 		if (lobject != object) {
520 			if (tobject)
521 				vm_object_lock_swap();
522 			vm_object_drop(lobject);
523 			/* leaves tobject locked & at top */
524 		}
525 		lobject = tobject;
526 	}
527 	if (lobject != object)
528 		vm_object_drop(lobject);	/* NULL ok */
529 }
530 
531 /*
532  * The caller must hold the vm_object.
533  */
534 static int
535 vm_pageout_object_deactivate_pages_callback(vm_page_t p, void *data)
536 {
537 	struct rb_vm_page_scan_info *info = data;
538 	int actcount;
539 
540 	if (pmap_resident_count(vm_map_pmap(info->map)) <= info->desired) {
541 		return(-1);
542 	}
543 	mycpu->gd_cnt.v_pdpages++;
544 
545 	if (vm_page_busy_try(p, TRUE))
546 		return(0);
547 	if (p->wire_count || p->hold_count || (p->flags & PG_UNMANAGED)) {
548 		vm_page_wakeup(p);
549 		return(0);
550 	}
551 	if (!pmap_page_exists_quick(vm_map_pmap(info->map), p)) {
552 		vm_page_wakeup(p);
553 		return(0);
554 	}
555 
556 	actcount = pmap_ts_referenced(p);
557 	if (actcount) {
558 		vm_page_flag_set(p, PG_REFERENCED);
559 	} else if (p->flags & PG_REFERENCED) {
560 		actcount = 1;
561 	}
562 
563 	vm_page_and_queue_spin_lock(p);
564 	if (p->queue - p->pc != PQ_ACTIVE && (p->flags & PG_REFERENCED)) {
565 		vm_page_and_queue_spin_unlock(p);
566 		vm_page_activate(p);
567 		p->act_count += actcount;
568 		vm_page_flag_clear(p, PG_REFERENCED);
569 	} else if (p->queue - p->pc == PQ_ACTIVE) {
570 		if ((p->flags & PG_REFERENCED) == 0) {
571 			p->act_count -= min(p->act_count, ACT_DECLINE);
572 			if (!info->limit &&
573 			    (vm_pageout_algorithm || (p->act_count == 0))) {
574 				vm_page_and_queue_spin_unlock(p);
575 				vm_page_protect(p, VM_PROT_NONE);
576 				vm_page_deactivate(p);
577 			} else {
578 				TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
579 					     p, pageq);
580 				TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
581 						  p, pageq);
582 				vm_page_and_queue_spin_unlock(p);
583 			}
584 		} else {
585 			vm_page_and_queue_spin_unlock(p);
586 			vm_page_activate(p);
587 			vm_page_flag_clear(p, PG_REFERENCED);
588 
589 			vm_page_and_queue_spin_lock(p);
590 			if (p->queue - p->pc == PQ_ACTIVE) {
591 				if (p->act_count < (ACT_MAX - ACT_ADVANCE))
592 					p->act_count += ACT_ADVANCE;
593 				TAILQ_REMOVE(&vm_page_queues[p->queue].pl,
594 					     p, pageq);
595 				TAILQ_INSERT_TAIL(&vm_page_queues[p->queue].pl,
596 						  p, pageq);
597 			}
598 			vm_page_and_queue_spin_unlock(p);
599 		}
600 	} else if (p->queue - p->pc == PQ_INACTIVE) {
601 		vm_page_and_queue_spin_unlock(p);
602 		vm_page_protect(p, VM_PROT_NONE);
603 	} else {
604 		vm_page_and_queue_spin_unlock(p);
605 	}
606 	vm_page_wakeup(p);
607 	return(0);
608 }
609 
610 /*
611  * Deactivate some number of pages in a map, try to do it fairly, but
612  * that is really hard to do.
613  */
614 static void
615 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
616 {
617 	vm_map_entry_t tmpe;
618 	vm_object_t obj, bigobj;
619 	int nothingwired;
620 
621 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
622 		return;
623 	}
624 
625 	bigobj = NULL;
626 	nothingwired = TRUE;
627 
628 	/*
629 	 * first, search out the biggest object, and try to free pages from
630 	 * that.
631 	 */
632 	tmpe = map->header.next;
633 	while (tmpe != &map->header) {
634 		switch(tmpe->maptype) {
635 		case VM_MAPTYPE_NORMAL:
636 		case VM_MAPTYPE_VPAGETABLE:
637 			obj = tmpe->object.vm_object;
638 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
639 				((bigobj == NULL) ||
640 				 (bigobj->resident_page_count < obj->resident_page_count))) {
641 				bigobj = obj;
642 			}
643 			break;
644 		default:
645 			break;
646 		}
647 		if (tmpe->wired_count > 0)
648 			nothingwired = FALSE;
649 		tmpe = tmpe->next;
650 	}
651 
652 	if (bigobj)  {
653 		vm_object_hold(bigobj);
654 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
655 		vm_object_drop(bigobj);
656 	}
657 
658 	/*
659 	 * Next, hunt around for other pages to deactivate.  We actually
660 	 * do this search sort of wrong -- .text first is not the best idea.
661 	 */
662 	tmpe = map->header.next;
663 	while (tmpe != &map->header) {
664 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
665 			break;
666 		switch(tmpe->maptype) {
667 		case VM_MAPTYPE_NORMAL:
668 		case VM_MAPTYPE_VPAGETABLE:
669 			obj = tmpe->object.vm_object;
670 			if (obj) {
671 				vm_object_hold(obj);
672 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
673 				vm_object_drop(obj);
674 			}
675 			break;
676 		default:
677 			break;
678 		}
679 		tmpe = tmpe->next;
680 	}
681 
682 	/*
683 	 * Remove all mappings if a process is swapped out, this will free page
684 	 * table pages.
685 	 */
686 	if (desired == 0 && nothingwired)
687 		pmap_remove(vm_map_pmap(map),
688 			    VM_MIN_USER_ADDRESS, VM_MAX_USER_ADDRESS);
689 	vm_map_unlock(map);
690 }
691 #endif
692 
693 /*
694  * Called when the pageout scan wants to free a page.  We no longer
695  * try to cycle the vm_object here with a reference & dealloc, which can
696  * cause a non-trivial object collapse in a critical path.
697  *
698  * It is unclear why we cycled the ref_count in the past, perhaps to try
699  * to optimize shadow chain collapses but I don't quite see why it would
700  * be necessary.  An OBJ_DEAD object should terminate any and all vm_pages
701  * synchronously and not have to be kicked-start.
702  */
703 static void
704 vm_pageout_page_free(vm_page_t m)
705 {
706 	vm_page_protect(m, VM_PROT_NONE);
707 	vm_page_free(m);
708 }
709 
710 /*
711  * vm_pageout_scan does the dirty work for the pageout daemon.
712  */
713 struct vm_pageout_scan_info {
714 	struct proc *bigproc;
715 	vm_offset_t bigsize;
716 };
717 
718 static int vm_pageout_scan_callback(struct proc *p, void *data);
719 
720 static int
721 vm_pageout_scan_inactive(int pass, int q, int avail_shortage,
722 			 int *vnodes_skippedp)
723 {
724 	vm_page_t m;
725 	struct vm_page marker;
726 	struct vnode *vpfailed;		/* warning, allowed to be stale */
727 	int maxscan;
728 	int count;
729 	int delta = 0;
730 	vm_object_t object;
731 	int actcount;
732 	int maxlaunder;
733 
734 	/*
735 	 * Start scanning the inactive queue for pages we can move to the
736 	 * cache or free.  The scan will stop when the target is reached or
737 	 * we have scanned the entire inactive queue.  Note that m->act_count
738 	 * is not used to form decisions for the inactive queue, only for the
739 	 * active queue.
740 	 *
741 	 * maxlaunder limits the number of dirty pages we flush per scan.
742 	 * For most systems a smaller value (16 or 32) is more robust under
743 	 * extreme memory and disk pressure because any unnecessary writes
744 	 * to disk can result in extreme performance degredation.  However,
745 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
746 	 * used) will die horribly with limited laundering.  If the pageout
747 	 * daemon cannot clean enough pages in the first pass, we let it go
748 	 * all out in succeeding passes.
749 	 */
750 	if ((maxlaunder = vm_max_launder) <= 1)
751 		maxlaunder = 1;
752 	if (pass)
753 		maxlaunder = 10000;
754 
755 	/*
756 	 * Initialize our marker
757 	 */
758 	bzero(&marker, sizeof(marker));
759 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
760 	marker.queue = PQ_INACTIVE + q;
761 	marker.pc = q;
762 	marker.wire_count = 1;
763 
764 	/*
765 	 * Inactive queue scan.
766 	 *
767 	 * NOTE: The vm_page must be spinlocked before the queue to avoid
768 	 *	 deadlocks, so it is easiest to simply iterate the loop
769 	 *	 with the queue unlocked at the top.
770 	 */
771 	vpfailed = NULL;
772 
773 	vm_page_queues_spin_lock(PQ_INACTIVE + q);
774 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
775 	maxscan = vm_page_queues[PQ_INACTIVE + q].lcnt;
776 	vm_page_queues_spin_unlock(PQ_INACTIVE + q);
777 
778 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
779 	       maxscan-- > 0 && avail_shortage - delta > 0)
780 	{
781 		vm_page_and_queue_spin_lock(m);
782 		if (m != TAILQ_NEXT(&marker, pageq)) {
783 			vm_page_and_queue_spin_unlock(m);
784 			++maxscan;
785 			continue;
786 		}
787 		KKASSERT(m->queue - m->pc == PQ_INACTIVE);
788 		TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl,
789 			     &marker, pageq);
790 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE + q].pl, m,
791 				   &marker, pageq);
792 		mycpu->gd_cnt.v_pdpages++;
793 
794 		/*
795 		 * Skip marker pages
796 		 */
797 		if (m->flags & PG_MARKER) {
798 			vm_page_and_queue_spin_unlock(m);
799 			continue;
800 		}
801 
802 		/*
803 		 * Try to busy the page.  Don't mess with pages which are
804 		 * already busy or reorder them in the queue.
805 		 */
806 		if (vm_page_busy_try(m, TRUE)) {
807 			vm_page_and_queue_spin_unlock(m);
808 			continue;
809 		}
810 		vm_page_and_queue_spin_unlock(m);
811 		KKASSERT(m->queue - m->pc == PQ_INACTIVE);
812 
813 		lwkt_yield();
814 
815 		/*
816 		 * The page has been successfully busied and is now no
817 		 * longer spinlocked.  The queue is no longer spinlocked
818 		 * either.
819 		 */
820 
821 		/*
822 		 * It is possible for a page to be busied ad-hoc (e.g. the
823 		 * pmap_collect() code) and wired and race against the
824 		 * allocation of a new page.  vm_page_alloc() may be forced
825 		 * to deactivate the wired page in which case it winds up
826 		 * on the inactive queue and must be handled here.  We
827 		 * correct the problem simply by unqueuing the page.
828 		 */
829 		if (m->wire_count) {
830 			vm_page_unqueue_nowakeup(m);
831 			vm_page_wakeup(m);
832 			kprintf("WARNING: pagedaemon: wired page on "
833 				"inactive queue %p\n", m);
834 			continue;
835 		}
836 
837 		/*
838 		 * A held page may be undergoing I/O, so skip it.
839 		 */
840 		if (m->hold_count) {
841 			vm_page_and_queue_spin_lock(m);
842 			if (m->queue - m->pc == PQ_INACTIVE) {
843 				TAILQ_REMOVE(
844 					&vm_page_queues[PQ_INACTIVE + q].pl,
845 					m, pageq);
846 				TAILQ_INSERT_TAIL(
847 					&vm_page_queues[PQ_INACTIVE + q].pl,
848 					m, pageq);
849 				++vm_swapcache_inactive_heuristic;
850 			}
851 			vm_page_and_queue_spin_unlock(m);
852 			vm_page_wakeup(m);
853 			continue;
854 		}
855 
856 		if (m->object == NULL || m->object->ref_count == 0) {
857 			/*
858 			 * If the object is not being used, we ignore previous
859 			 * references.
860 			 */
861 			vm_page_flag_clear(m, PG_REFERENCED);
862 			pmap_clear_reference(m);
863 			/* fall through to end */
864 		} else if (((m->flags & PG_REFERENCED) == 0) &&
865 			    (actcount = pmap_ts_referenced(m))) {
866 			/*
867 			 * Otherwise, if the page has been referenced while
868 			 * in the inactive queue, we bump the "activation
869 			 * count" upwards, making it less likely that the
870 			 * page will be added back to the inactive queue
871 			 * prematurely again.  Here we check the page tables
872 			 * (or emulated bits, if any), given the upper level
873 			 * VM system not knowing anything about existing
874 			 * references.
875 			 */
876 			vm_page_activate(m);
877 			m->act_count += (actcount + ACT_ADVANCE);
878 			vm_page_wakeup(m);
879 			continue;
880 		}
881 
882 		/*
883 		 * (m) is still busied.
884 		 *
885 		 * If the upper level VM system knows about any page
886 		 * references, we activate the page.  We also set the
887 		 * "activation count" higher than normal so that we will less
888 		 * likely place pages back onto the inactive queue again.
889 		 */
890 		if ((m->flags & PG_REFERENCED) != 0) {
891 			vm_page_flag_clear(m, PG_REFERENCED);
892 			actcount = pmap_ts_referenced(m);
893 			vm_page_activate(m);
894 			m->act_count += (actcount + ACT_ADVANCE + 1);
895 			vm_page_wakeup(m);
896 			continue;
897 		}
898 
899 		/*
900 		 * If the upper level VM system doesn't know anything about
901 		 * the page being dirty, we have to check for it again.  As
902 		 * far as the VM code knows, any partially dirty pages are
903 		 * fully dirty.
904 		 *
905 		 * Pages marked PG_WRITEABLE may be mapped into the user
906 		 * address space of a process running on another cpu.  A
907 		 * user process (without holding the MP lock) running on
908 		 * another cpu may be able to touch the page while we are
909 		 * trying to remove it.  vm_page_cache() will handle this
910 		 * case for us.
911 		 */
912 		if (m->dirty == 0) {
913 			vm_page_test_dirty(m);
914 		} else {
915 			vm_page_dirty(m);
916 		}
917 
918 		if (m->valid == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
919 			/*
920 			 * Invalid pages can be easily freed
921 			 */
922 			vm_pageout_page_free(m);
923 			mycpu->gd_cnt.v_dfree++;
924 			++delta;
925 		} else if (m->dirty == 0 && (m->flags & PG_NEED_COMMIT) == 0) {
926 			/*
927 			 * Clean pages can be placed onto the cache queue.
928 			 * This effectively frees them.
929 			 */
930 			vm_page_cache(m);
931 			++delta;
932 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
933 			/*
934 			 * Dirty pages need to be paged out, but flushing
935 			 * a page is extremely expensive verses freeing
936 			 * a clean page.  Rather then artificially limiting
937 			 * the number of pages we can flush, we instead give
938 			 * dirty pages extra priority on the inactive queue
939 			 * by forcing them to be cycled through the queue
940 			 * twice before being flushed, after which the
941 			 * (now clean) page will cycle through once more
942 			 * before being freed.  This significantly extends
943 			 * the thrash point for a heavily loaded machine.
944 			 */
945 			vm_page_flag_set(m, PG_WINATCFLS);
946 			vm_page_and_queue_spin_lock(m);
947 			if (m->queue - m->pc == PQ_INACTIVE) {
948 				TAILQ_REMOVE(
949 					&vm_page_queues[PQ_INACTIVE + q].pl,
950 					m, pageq);
951 				TAILQ_INSERT_TAIL(
952 					&vm_page_queues[PQ_INACTIVE + q].pl,
953 					m, pageq);
954 				++vm_swapcache_inactive_heuristic;
955 			}
956 			vm_page_and_queue_spin_unlock(m);
957 			vm_page_wakeup(m);
958 		} else if (maxlaunder > 0) {
959 			/*
960 			 * We always want to try to flush some dirty pages if
961 			 * we encounter them, to keep the system stable.
962 			 * Normally this number is small, but under extreme
963 			 * pressure where there are insufficient clean pages
964 			 * on the inactive queue, we may have to go all out.
965 			 */
966 			int swap_pageouts_ok;
967 			struct vnode *vp = NULL;
968 
969 			swap_pageouts_ok = 0;
970 			object = m->object;
971 			if (object &&
972 			    (object->type != OBJT_SWAP) &&
973 			    (object->type != OBJT_DEFAULT)) {
974 				swap_pageouts_ok = 1;
975 			} else {
976 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
977 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
978 				vm_page_count_min(0));
979 
980 			}
981 
982 			/*
983 			 * We don't bother paging objects that are "dead".
984 			 * Those objects are in a "rundown" state.
985 			 */
986 			if (!swap_pageouts_ok ||
987 			    (object == NULL) ||
988 			    (object->flags & OBJ_DEAD)) {
989 				vm_page_and_queue_spin_lock(m);
990 				if (m->queue - m->pc == PQ_INACTIVE) {
991 					TAILQ_REMOVE(
992 					    &vm_page_queues[PQ_INACTIVE + q].pl,
993 					    m, pageq);
994 					TAILQ_INSERT_TAIL(
995 					    &vm_page_queues[PQ_INACTIVE + q].pl,
996 					    m, pageq);
997 					++vm_swapcache_inactive_heuristic;
998 				}
999 				vm_page_and_queue_spin_unlock(m);
1000 				vm_page_wakeup(m);
1001 				continue;
1002 			}
1003 
1004 			/*
1005 			 * (m) is still busied.
1006 			 *
1007 			 * The object is already known NOT to be dead.   It
1008 			 * is possible for the vget() to block the whole
1009 			 * pageout daemon, but the new low-memory handling
1010 			 * code should prevent it.
1011 			 *
1012 			 * The previous code skipped locked vnodes and, worse,
1013 			 * reordered pages in the queue.  This results in
1014 			 * completely non-deterministic operation because,
1015 			 * quite often, a vm_fault has initiated an I/O and
1016 			 * is holding a locked vnode at just the point where
1017 			 * the pageout daemon is woken up.
1018 			 *
1019 			 * We can't wait forever for the vnode lock, we might
1020 			 * deadlock due to a vn_read() getting stuck in
1021 			 * vm_wait while holding this vnode.  We skip the
1022 			 * vnode if we can't get it in a reasonable amount
1023 			 * of time.
1024 			 *
1025 			 * vpfailed is used to (try to) avoid the case where
1026 			 * a large number of pages are associated with a
1027 			 * locked vnode, which could cause the pageout daemon
1028 			 * to stall for an excessive amount of time.
1029 			 */
1030 			if (object->type == OBJT_VNODE) {
1031 				int flags;
1032 
1033 				vp = object->handle;
1034 				flags = LK_EXCLUSIVE;
1035 				if (vp == vpfailed)
1036 					flags |= LK_NOWAIT;
1037 				else
1038 					flags |= LK_TIMELOCK;
1039 				vm_page_hold(m);
1040 				vm_page_wakeup(m);
1041 
1042 				/*
1043 				 * We have unbusied (m) temporarily so we can
1044 				 * acquire the vp lock without deadlocking.
1045 				 * (m) is held to prevent destruction.
1046 				 */
1047 				if (vget(vp, flags) != 0) {
1048 					vpfailed = vp;
1049 					++pageout_lock_miss;
1050 					if (object->flags & OBJ_MIGHTBEDIRTY)
1051 						    ++*vnodes_skippedp;
1052 					vm_page_unhold(m);
1053 					continue;
1054 				}
1055 
1056 				/*
1057 				 * The page might have been moved to another
1058 				 * queue during potential blocking in vget()
1059 				 * above.  The page might have been freed and
1060 				 * reused for another vnode.  The object might
1061 				 * have been reused for another vnode.
1062 				 */
1063 				if (m->queue - m->pc != PQ_INACTIVE ||
1064 				    m->object != object ||
1065 				    object->handle != vp) {
1066 					if (object->flags & OBJ_MIGHTBEDIRTY)
1067 						++*vnodes_skippedp;
1068 					vput(vp);
1069 					vm_page_unhold(m);
1070 					continue;
1071 				}
1072 
1073 				/*
1074 				 * The page may have been busied during the
1075 				 * blocking in vput();  We don't move the
1076 				 * page back onto the end of the queue so that
1077 				 * statistics are more correct if we don't.
1078 				 */
1079 				if (vm_page_busy_try(m, TRUE)) {
1080 					vput(vp);
1081 					vm_page_unhold(m);
1082 					continue;
1083 				}
1084 				vm_page_unhold(m);
1085 
1086 				/*
1087 				 * (m) is busied again
1088 				 *
1089 				 * We own the busy bit and remove our hold
1090 				 * bit.  If the page is still held it
1091 				 * might be undergoing I/O, so skip it.
1092 				 */
1093 				if (m->hold_count) {
1094 					vm_page_and_queue_spin_lock(m);
1095 					if (m->queue - m->pc == PQ_INACTIVE) {
1096 						TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1097 						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE + q].pl, m, pageq);
1098 						++vm_swapcache_inactive_heuristic;
1099 					}
1100 					vm_page_and_queue_spin_unlock(m);
1101 					if (object->flags & OBJ_MIGHTBEDIRTY)
1102 						++*vnodes_skippedp;
1103 					vm_page_wakeup(m);
1104 					vput(vp);
1105 					continue;
1106 				}
1107 				/* (m) is left busied as we fall through */
1108 			}
1109 
1110 			/*
1111 			 * page is busy and not held here.
1112 			 *
1113 			 * If a page is dirty, then it is either being washed
1114 			 * (but not yet cleaned) or it is still in the
1115 			 * laundry.  If it is still in the laundry, then we
1116 			 * start the cleaning operation.
1117 			 *
1118 			 * decrement inactive_shortage on success to account
1119 			 * for the (future) cleaned page.  Otherwise we
1120 			 * could wind up laundering or cleaning too many
1121 			 * pages.
1122 			 */
1123 			count = vm_pageout_clean(m);
1124 			delta += count;
1125 			maxlaunder -= count;
1126 
1127 			/*
1128 			 * Clean ate busy, page no longer accessible
1129 			 */
1130 			if (vp != NULL)
1131 				vput(vp);
1132 		} else {
1133 			vm_page_wakeup(m);
1134 		}
1135 
1136 		/*
1137 		 * Systems with a ton of memory can wind up with huge
1138 		 * deactivation counts.  Because the inactive scan is
1139 		 * doing a lot of flushing, the combination can result
1140 		 * in excessive paging even in situations where other
1141 		 * unrelated threads free up sufficient VM.
1142 		 *
1143 		 * To deal with this we abort the nominal active->inactive
1144 		 * scan before we hit the inactive target when free+cache
1145 		 * levels have already reached their target.
1146 		 *
1147 		 * Note that nominally the inactive scan is not freeing or
1148 		 * caching pages, it is deactivating active pages, so it
1149 		 * will not by itself cause the abort condition.
1150 		 */
1151 		if (vm_paging_target() < 0)
1152 			break;
1153 	}
1154 	vm_page_queues_spin_lock(PQ_INACTIVE + q);
1155 	TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE + q].pl, &marker, pageq);
1156 	vm_page_queues_spin_unlock(PQ_INACTIVE + q);
1157 
1158 	return (delta);
1159 }
1160 
1161 static int
1162 vm_pageout_scan_active(int pass, int q,
1163 		       int avail_shortage, int inactive_shortage,
1164 		       int *recycle_countp)
1165 {
1166 	struct vm_page marker;
1167 	vm_page_t m;
1168 	int actcount;
1169 	int delta = 0;
1170 	int maxscan;
1171 
1172 	/*
1173 	 * We want to move pages from the active queue to the inactive
1174 	 * queue to get the inactive queue to the inactive target.  If
1175 	 * we still have a page shortage from above we try to directly free
1176 	 * clean pages instead of moving them.
1177 	 *
1178 	 * If we do still have a shortage we keep track of the number of
1179 	 * pages we free or cache (recycle_count) as a measure of thrashing
1180 	 * between the active and inactive queues.
1181 	 *
1182 	 * If we were able to completely satisfy the free+cache targets
1183 	 * from the inactive pool we limit the number of pages we move
1184 	 * from the active pool to the inactive pool to 2x the pages we
1185 	 * had removed from the inactive pool (with a minimum of 1/5 the
1186 	 * inactive target).  If we were not able to completely satisfy
1187 	 * the free+cache targets we go for the whole target aggressively.
1188 	 *
1189 	 * NOTE: Both variables can end up negative.
1190 	 * NOTE: We are still in a critical section.
1191 	 */
1192 
1193 	bzero(&marker, sizeof(marker));
1194 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1195 	marker.queue = PQ_ACTIVE + q;
1196 	marker.pc = q;
1197 	marker.wire_count = 1;
1198 
1199 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1200 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1201 	maxscan = vm_page_queues[PQ_ACTIVE + q].lcnt;
1202 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1203 
1204 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1205 	       maxscan-- > 0 && (avail_shortage - delta > 0 ||
1206 				inactive_shortage > 0))
1207 	{
1208 		vm_page_and_queue_spin_lock(m);
1209 		if (m != TAILQ_NEXT(&marker, pageq)) {
1210 			vm_page_and_queue_spin_unlock(m);
1211 			++maxscan;
1212 			continue;
1213 		}
1214 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1215 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1216 			     &marker, pageq);
1217 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1218 				   &marker, pageq);
1219 
1220 		/*
1221 		 * Skip marker pages
1222 		 */
1223 		if (m->flags & PG_MARKER) {
1224 			vm_page_and_queue_spin_unlock(m);
1225 			continue;
1226 		}
1227 
1228 		/*
1229 		 * Try to busy the page.  Don't mess with pages which are
1230 		 * already busy or reorder them in the queue.
1231 		 */
1232 		if (vm_page_busy_try(m, TRUE)) {
1233 			vm_page_and_queue_spin_unlock(m);
1234 			continue;
1235 		}
1236 
1237 		/*
1238 		 * Don't deactivate pages that are held, even if we can
1239 		 * busy them.  (XXX why not?)
1240 		 */
1241 		if (m->hold_count != 0) {
1242 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl,
1243 				     m, pageq);
1244 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE + q].pl,
1245 					  m, pageq);
1246 			vm_page_and_queue_spin_unlock(m);
1247 			vm_page_wakeup(m);
1248 			continue;
1249 		}
1250 		vm_page_and_queue_spin_unlock(m);
1251 		lwkt_yield();
1252 
1253 		/*
1254 		 * The page has been successfully busied and the page and
1255 		 * queue are no longer locked.
1256 		 */
1257 
1258 		/*
1259 		 * The count for pagedaemon pages is done after checking the
1260 		 * page for eligibility...
1261 		 */
1262 		mycpu->gd_cnt.v_pdpages++;
1263 
1264 		/*
1265 		 * Check to see "how much" the page has been used and clear
1266 		 * the tracking access bits.  If the object has no references
1267 		 * don't bother paying the expense.
1268 		 */
1269 		actcount = 0;
1270 		if (m->object && m->object->ref_count != 0) {
1271 			if (m->flags & PG_REFERENCED)
1272 				++actcount;
1273 			actcount += pmap_ts_referenced(m);
1274 			if (actcount) {
1275 				m->act_count += ACT_ADVANCE + actcount;
1276 				if (m->act_count > ACT_MAX)
1277 					m->act_count = ACT_MAX;
1278 			}
1279 		}
1280 		vm_page_flag_clear(m, PG_REFERENCED);
1281 
1282 		/*
1283 		 * actcount is only valid if the object ref_count is non-zero.
1284 		 * If the page does not have an object, actcount will be zero.
1285 		 */
1286 		if (actcount && m->object->ref_count != 0) {
1287 			vm_page_and_queue_spin_lock(m);
1288 			if (m->queue - m->pc == PQ_ACTIVE) {
1289 				TAILQ_REMOVE(
1290 					&vm_page_queues[PQ_ACTIVE + q].pl,
1291 					m, pageq);
1292 				TAILQ_INSERT_TAIL(
1293 					&vm_page_queues[PQ_ACTIVE + q].pl,
1294 					m, pageq);
1295 			}
1296 			vm_page_and_queue_spin_unlock(m);
1297 			vm_page_wakeup(m);
1298 		} else {
1299 			switch(m->object->type) {
1300 			case OBJT_DEFAULT:
1301 			case OBJT_SWAP:
1302 				m->act_count -= min(m->act_count,
1303 						    vm_anonmem_decline);
1304 				break;
1305 			default:
1306 				m->act_count -= min(m->act_count,
1307 						    vm_filemem_decline);
1308 				break;
1309 			}
1310 			if (vm_pageout_algorithm ||
1311 			    (m->object == NULL) ||
1312 			    (m->object && (m->object->ref_count == 0)) ||
1313 			    m->act_count < pass + 1
1314 			) {
1315 				/*
1316 				 * Deactivate the page.  If we had a
1317 				 * shortage from our inactive scan try to
1318 				 * free (cache) the page instead.
1319 				 *
1320 				 * Don't just blindly cache the page if
1321 				 * we do not have a shortage from the
1322 				 * inactive scan, that could lead to
1323 				 * gigabytes being moved.
1324 				 */
1325 				--inactive_shortage;
1326 				if (avail_shortage - delta > 0 ||
1327 				    (m->object && (m->object->ref_count == 0)))
1328 				{
1329 					if (avail_shortage - delta > 0)
1330 						++*recycle_countp;
1331 					vm_page_protect(m, VM_PROT_NONE);
1332 					if (m->dirty == 0 &&
1333 					    (m->flags & PG_NEED_COMMIT) == 0 &&
1334 					    avail_shortage - delta > 0) {
1335 						vm_page_cache(m);
1336 					} else {
1337 						vm_page_deactivate(m);
1338 						vm_page_wakeup(m);
1339 					}
1340 				} else {
1341 					vm_page_deactivate(m);
1342 					vm_page_wakeup(m);
1343 				}
1344 				++delta;
1345 			} else {
1346 				vm_page_and_queue_spin_lock(m);
1347 				if (m->queue - m->pc == PQ_ACTIVE) {
1348 					TAILQ_REMOVE(
1349 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1350 					    m, pageq);
1351 					TAILQ_INSERT_TAIL(
1352 					    &vm_page_queues[PQ_ACTIVE + q].pl,
1353 					    m, pageq);
1354 				}
1355 				vm_page_and_queue_spin_unlock(m);
1356 				vm_page_wakeup(m);
1357 			}
1358 		}
1359 	}
1360 
1361 	/*
1362 	 * Clean out our local marker.
1363 	 */
1364 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1365 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1366 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1367 
1368 	return (delta);
1369 }
1370 
1371 /*
1372  * The number of actually free pages can drop down to v_free_reserved,
1373  * we try to build the free count back above v_free_min.  Note that
1374  * vm_paging_needed() also returns TRUE if v_free_count is not at
1375  * least v_free_min so that is the minimum we must build the free
1376  * count to.
1377  *
1378  * We use a slightly higher target to improve hysteresis,
1379  * ((v_free_target + v_free_min) / 2).  Since v_free_target
1380  * is usually the same as v_cache_min this maintains about
1381  * half the pages in the free queue as are in the cache queue,
1382  * providing pretty good pipelining for pageout operation.
1383  *
1384  * The system operator can manipulate vm.v_cache_min and
1385  * vm.v_free_target to tune the pageout demon.  Be sure
1386  * to keep vm.v_free_min < vm.v_free_target.
1387  *
1388  * Note that the original paging target is to get at least
1389  * (free_min + cache_min) into (free + cache).  The slightly
1390  * higher target will shift additional pages from cache to free
1391  * without effecting the original paging target in order to
1392  * maintain better hysteresis and not have the free count always
1393  * be dead-on v_free_min.
1394  *
1395  * NOTE: we are still in a critical section.
1396  *
1397  * Pages moved from PQ_CACHE to totally free are not counted in the
1398  * pages_freed counter.
1399  */
1400 static void
1401 vm_pageout_scan_cache(int avail_shortage, int vnodes_skipped, int recycle_count)
1402 {
1403 	struct vm_pageout_scan_info info;
1404 	vm_page_t m;
1405 
1406 	while (vmstats.v_free_count <
1407 	       (vmstats.v_free_min + vmstats.v_free_target) / 2) {
1408 		/*
1409 		 * This steals some code from vm/vm_page.c
1410 		 */
1411 		static int cache_rover = 0;
1412 
1413 		m = vm_page_list_find(PQ_CACHE, cache_rover & PQ_L2_MASK, FALSE);
1414 		if (m == NULL)
1415 			break;
1416 		/* page is returned removed from its queue and spinlocked */
1417 		if (vm_page_busy_try(m, TRUE)) {
1418 			vm_page_deactivate_locked(m);
1419 			vm_page_spin_unlock(m);
1420 			continue;
1421 		}
1422 		vm_page_spin_unlock(m);
1423 		pagedaemon_wakeup();
1424 		lwkt_yield();
1425 
1426 		/*
1427 		 * Page has been successfully busied and it and its queue
1428 		 * is no longer spinlocked.
1429 		 */
1430 		if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
1431 		    m->hold_count ||
1432 		    m->wire_count) {
1433 			vm_page_deactivate(m);
1434 			vm_page_wakeup(m);
1435 			continue;
1436 		}
1437 		KKASSERT((m->flags & PG_MAPPED) == 0);
1438 		KKASSERT(m->dirty == 0);
1439 		cache_rover += PQ_PRIME2;
1440 		vm_pageout_page_free(m);
1441 		mycpu->gd_cnt.v_dfree++;
1442 	}
1443 
1444 #if !defined(NO_SWAPPING)
1445 	/*
1446 	 * Idle process swapout -- run once per second.
1447 	 */
1448 	if (vm_swap_idle_enabled) {
1449 		static time_t lsec;
1450 		if (time_uptime != lsec) {
1451 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1452 			vm_req_vmdaemon();
1453 			lsec = time_uptime;
1454 		}
1455 	}
1456 #endif
1457 
1458 	/*
1459 	 * If we didn't get enough free pages, and we have skipped a vnode
1460 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1461 	 * if we did not get enough free pages.
1462 	 */
1463 	if (vm_paging_target() > 0) {
1464 		if (vnodes_skipped && vm_page_count_min(0))
1465 			speedup_syncer(NULL);
1466 #if !defined(NO_SWAPPING)
1467 		if (vm_swap_enabled && vm_page_count_target()) {
1468 			vm_req_vmdaemon();
1469 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1470 		}
1471 #endif
1472 	}
1473 
1474 	/*
1475 	 * Handle catastrophic conditions.  Under good conditions we should
1476 	 * be at the target, well beyond our minimum.  If we could not even
1477 	 * reach our minimum the system is under heavy stress.
1478 	 *
1479 	 * Determine whether we have run out of memory.  This occurs when
1480 	 * swap_pager_full is TRUE and the only pages left in the page
1481 	 * queues are dirty.  We will still likely have page shortages.
1482 	 *
1483 	 * - swap_pager_full is set if insufficient swap was
1484 	 *   available to satisfy a requested pageout.
1485 	 *
1486 	 * - the inactive queue is bloated (4 x size of active queue),
1487 	 *   meaning it is unable to get rid of dirty pages and.
1488 	 *
1489 	 * - vm_page_count_min() without counting pages recycled from the
1490 	 *   active queue (recycle_count) means we could not recover
1491 	 *   enough pages to meet bare minimum needs.  This test only
1492 	 *   works if the inactive queue is bloated.
1493 	 *
1494 	 * - due to a positive avail_shortage we shifted the remaining
1495 	 *   dirty pages from the active queue to the inactive queue
1496 	 *   trying to find clean ones to free.
1497 	 */
1498 	if (swap_pager_full && vm_page_count_min(recycle_count))
1499 		kprintf("Warning: system low on memory+swap!\n");
1500 	if (swap_pager_full && vm_page_count_min(recycle_count) &&
1501 	    vmstats.v_inactive_count > vmstats.v_active_count * 4 &&
1502 	    avail_shortage > 0) {
1503 		/*
1504 		 * Kill something.
1505 		 */
1506 		info.bigproc = NULL;
1507 		info.bigsize = 0;
1508 		allproc_scan(vm_pageout_scan_callback, &info);
1509 		if (info.bigproc != NULL) {
1510 			killproc(info.bigproc, "out of swap space");
1511 			info.bigproc->p_nice = PRIO_MIN;
1512 			info.bigproc->p_usched->resetpriority(
1513 				FIRST_LWP_IN_PROC(info.bigproc));
1514 			wakeup(&vmstats.v_free_count);
1515 			PRELE(info.bigproc);
1516 		}
1517 	}
1518 }
1519 
1520 static int
1521 vm_pageout_scan_callback(struct proc *p, void *data)
1522 {
1523 	struct vm_pageout_scan_info *info = data;
1524 	vm_offset_t size;
1525 
1526 	/*
1527 	 * Never kill system processes or init.  If we have configured swap
1528 	 * then try to avoid killing low-numbered pids.
1529 	 */
1530 	if ((p->p_flags & P_SYSTEM) || (p->p_pid == 1) ||
1531 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1532 		return (0);
1533 	}
1534 
1535 	lwkt_gettoken(&p->p_token);
1536 
1537 	/*
1538 	 * if the process is in a non-running type state,
1539 	 * don't touch it.
1540 	 */
1541 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
1542 		lwkt_reltoken(&p->p_token);
1543 		return (0);
1544 	}
1545 
1546 	/*
1547 	 * Get the approximate process size.  Note that anonymous pages
1548 	 * with backing swap will be counted twice, but there should not
1549 	 * be too many such pages due to the stress the VM system is
1550 	 * under at this point.
1551 	 */
1552 	size = vmspace_anonymous_count(p->p_vmspace) +
1553 		vmspace_swap_count(p->p_vmspace);
1554 
1555 	/*
1556 	 * If the this process is bigger than the biggest one
1557 	 * remember it.
1558 	 */
1559 	if (info->bigsize < size) {
1560 		if (info->bigproc)
1561 			PRELE(info->bigproc);
1562 		PHOLD(p);
1563 		info->bigproc = p;
1564 		info->bigsize = size;
1565 	}
1566 	lwkt_reltoken(&p->p_token);
1567 	lwkt_yield();
1568 
1569 	return(0);
1570 }
1571 
1572 /*
1573  * This routine tries to maintain the pseudo LRU active queue,
1574  * so that during long periods of time where there is no paging,
1575  * that some statistic accumulation still occurs.  This code
1576  * helps the situation where paging just starts to occur.
1577  */
1578 static void
1579 vm_pageout_page_stats(int q)
1580 {
1581 	static int fullintervalcount = 0;
1582 	struct vm_page marker;
1583 	vm_page_t m;
1584 	int pcount, tpcount;		/* Number of pages to check */
1585 	int page_shortage;
1586 
1587 	page_shortage = (vmstats.v_inactive_target + vmstats.v_cache_max +
1588 			 vmstats.v_free_min) -
1589 			(vmstats.v_free_count + vmstats.v_inactive_count +
1590 			 vmstats.v_cache_count);
1591 
1592 	if (page_shortage <= 0)
1593 		return;
1594 
1595 	pcount = vm_page_queues[PQ_ACTIVE + q].lcnt;
1596 	fullintervalcount += vm_pageout_stats_interval;
1597 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1598 		tpcount = (vm_pageout_stats_max * pcount) /
1599 			  vmstats.v_page_count + 1;
1600 		if (pcount > tpcount)
1601 			pcount = tpcount;
1602 	} else {
1603 		fullintervalcount = 0;
1604 	}
1605 
1606 	bzero(&marker, sizeof(marker));
1607 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
1608 	marker.queue = PQ_ACTIVE + q;
1609 	marker.pc = q;
1610 	marker.wire_count = 1;
1611 
1612 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1613 	TAILQ_INSERT_HEAD(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1614 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1615 
1616 	while ((m = TAILQ_NEXT(&marker, pageq)) != NULL &&
1617 	       pcount-- > 0)
1618 	{
1619 		int actcount;
1620 
1621 		vm_page_and_queue_spin_lock(m);
1622 		if (m != TAILQ_NEXT(&marker, pageq)) {
1623 			vm_page_and_queue_spin_unlock(m);
1624 			++pcount;
1625 			continue;
1626 		}
1627 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1628 		TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1629 		TAILQ_INSERT_AFTER(&vm_page_queues[PQ_ACTIVE + q].pl, m,
1630 				   &marker, pageq);
1631 
1632 		/*
1633 		 * Ignore markers
1634 		 */
1635 		if (m->flags & PG_MARKER) {
1636 			vm_page_and_queue_spin_unlock(m);
1637 			continue;
1638 		}
1639 
1640 		/*
1641 		 * Ignore pages we can't busy
1642 		 */
1643 		if (vm_page_busy_try(m, TRUE)) {
1644 			vm_page_and_queue_spin_unlock(m);
1645 			continue;
1646 		}
1647 		vm_page_and_queue_spin_unlock(m);
1648 		KKASSERT(m->queue - m->pc == PQ_ACTIVE);
1649 
1650 		/*
1651 		 * We now have a safely busied page, the page and queue
1652 		 * spinlocks have been released.
1653 		 *
1654 		 * Ignore held pages
1655 		 */
1656 		if (m->hold_count) {
1657 			vm_page_wakeup(m);
1658 			continue;
1659 		}
1660 
1661 		/*
1662 		 * Calculate activity
1663 		 */
1664 		actcount = 0;
1665 		if (m->flags & PG_REFERENCED) {
1666 			vm_page_flag_clear(m, PG_REFERENCED);
1667 			actcount += 1;
1668 		}
1669 		actcount += pmap_ts_referenced(m);
1670 
1671 		/*
1672 		 * Update act_count and move page to end of queue.
1673 		 */
1674 		if (actcount) {
1675 			m->act_count += ACT_ADVANCE + actcount;
1676 			if (m->act_count > ACT_MAX)
1677 				m->act_count = ACT_MAX;
1678 			vm_page_and_queue_spin_lock(m);
1679 			if (m->queue - m->pc == PQ_ACTIVE) {
1680 				TAILQ_REMOVE(
1681 					&vm_page_queues[PQ_ACTIVE + q].pl,
1682 					m, pageq);
1683 				TAILQ_INSERT_TAIL(
1684 					&vm_page_queues[PQ_ACTIVE + q].pl,
1685 					m, pageq);
1686 			}
1687 			vm_page_and_queue_spin_unlock(m);
1688 			vm_page_wakeup(m);
1689 			continue;
1690 		}
1691 
1692 		if (m->act_count == 0) {
1693 			/*
1694 			 * We turn off page access, so that we have
1695 			 * more accurate RSS stats.  We don't do this
1696 			 * in the normal page deactivation when the
1697 			 * system is loaded VM wise, because the
1698 			 * cost of the large number of page protect
1699 			 * operations would be higher than the value
1700 			 * of doing the operation.
1701 			 *
1702 			 * We use the marker to save our place so
1703 			 * we can release the spin lock.  both (m)
1704 			 * and (next) will be invalid.
1705 			 */
1706 			vm_page_protect(m, VM_PROT_NONE);
1707 			vm_page_deactivate(m);
1708 		} else {
1709 			m->act_count -= min(m->act_count, ACT_DECLINE);
1710 			vm_page_and_queue_spin_lock(m);
1711 			if (m->queue - m->pc == PQ_ACTIVE) {
1712 				TAILQ_REMOVE(
1713 					&vm_page_queues[PQ_ACTIVE + q].pl,
1714 					m, pageq);
1715 				TAILQ_INSERT_TAIL(
1716 					&vm_page_queues[PQ_ACTIVE + q].pl,
1717 					m, pageq);
1718 			}
1719 			vm_page_and_queue_spin_unlock(m);
1720 		}
1721 		vm_page_wakeup(m);
1722 	}
1723 
1724 	/*
1725 	 * Remove our local marker
1726 	 */
1727 	vm_page_queues_spin_lock(PQ_ACTIVE + q);
1728 	TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE + q].pl, &marker, pageq);
1729 	vm_page_queues_spin_unlock(PQ_ACTIVE + q);
1730 }
1731 
1732 static int
1733 vm_pageout_free_page_calc(vm_size_t count)
1734 {
1735 	if (count < vmstats.v_page_count)
1736 		 return 0;
1737 	/*
1738 	 * free_reserved needs to include enough for the largest swap pager
1739 	 * structures plus enough for any pv_entry structs when paging.
1740 	 *
1741 	 * v_free_min		normal allocations
1742 	 * v_free_reserved	system allocations
1743 	 * v_pageout_free_min	allocations by pageout daemon
1744 	 * v_interrupt_free_min	low level allocations (e.g swap structures)
1745 	 */
1746 	if (vmstats.v_page_count > 1024)
1747 		vmstats.v_free_min = 64 + (vmstats.v_page_count - 1024) / 200;
1748 	else
1749 		vmstats.v_free_min = 64;
1750 	vmstats.v_free_reserved = vmstats.v_free_min * 4 / 8 + 7;
1751 	vmstats.v_free_severe = vmstats.v_free_min * 4 / 8 + 0;
1752 	vmstats.v_pageout_free_min = vmstats.v_free_min * 2 / 8 + 7;
1753 	vmstats.v_interrupt_free_min = vmstats.v_free_min * 1 / 8 + 7;
1754 
1755 	return 1;
1756 }
1757 
1758 
1759 /*
1760  * vm_pageout is the high level pageout daemon.
1761  *
1762  * No requirements.
1763  */
1764 static void
1765 vm_pageout_thread(void)
1766 {
1767 	int pass;
1768 	int q;
1769 	int q1iterator = 0;
1770 	int q2iterator = 0;
1771 
1772 	/*
1773 	 * Initialize some paging parameters.
1774 	 */
1775 	curthread->td_flags |= TDF_SYSTHREAD;
1776 
1777 	vm_pageout_free_page_calc(vmstats.v_page_count);
1778 
1779 	/*
1780 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1781 	 * that these are more a measure of the VM cache queue hysteresis
1782 	 * then the VM free queue.  Specifically, v_free_target is the
1783 	 * high water mark (free+cache pages).
1784 	 *
1785 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1786 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1787 	 * be big enough to handle memory needs while the pageout daemon
1788 	 * is signalled and run to free more pages.
1789 	 */
1790 	if (vmstats.v_free_count > 6144)
1791 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1792 	else
1793 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1794 
1795 	/*
1796 	 * NOTE: With the new buffer cache b_act_count we want the default
1797 	 *	 inactive target to be a percentage of available memory.
1798 	 *
1799 	 *	 The inactive target essentially determines the minimum
1800 	 *	 number of 'temporary' pages capable of caching one-time-use
1801 	 *	 files when the VM system is otherwise full of pages
1802 	 *	 belonging to multi-time-use files or active program data.
1803 	 *
1804 	 * NOTE: The inactive target is aggressively persued only if the
1805 	 *	 inactive queue becomes too small.  If the inactive queue
1806 	 *	 is large enough to satisfy page movement to free+cache
1807 	 *	 then it is repopulated more slowly from the active queue.
1808 	 *	 This allows a general inactive_target default to be set.
1809 	 *
1810 	 *	 There is an issue here for processes which sit mostly idle
1811 	 *	 'overnight', such as sshd, tcsh, and X.  Any movement from
1812 	 *	 the active queue will eventually cause such pages to
1813 	 *	 recycle eventually causing a lot of paging in the morning.
1814 	 *	 To reduce the incidence of this pages cycled out of the
1815 	 *	 buffer cache are moved directly to the inactive queue if
1816 	 *	 they were only used once or twice.
1817 	 *
1818 	 *	 The vfs.vm_cycle_point sysctl can be used to adjust this.
1819 	 *	 Increasing the value (up to 64) increases the number of
1820 	 *	 buffer recyclements which go directly to the inactive queue.
1821 	 */
1822 	if (vmstats.v_free_count > 2048) {
1823 		vmstats.v_cache_min = vmstats.v_free_target;
1824 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1825 	} else {
1826 		vmstats.v_cache_min = 0;
1827 		vmstats.v_cache_max = 0;
1828 	}
1829 	vmstats.v_inactive_target = vmstats.v_free_count / 4;
1830 
1831 	/* XXX does not really belong here */
1832 	if (vm_page_max_wired == 0)
1833 		vm_page_max_wired = vmstats.v_free_count / 3;
1834 
1835 	if (vm_pageout_stats_max == 0)
1836 		vm_pageout_stats_max = vmstats.v_free_target;
1837 
1838 	/*
1839 	 * Set interval in seconds for stats scan.
1840 	 */
1841 	if (vm_pageout_stats_interval == 0)
1842 		vm_pageout_stats_interval = 5;
1843 	if (vm_pageout_full_stats_interval == 0)
1844 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1845 
1846 
1847 	/*
1848 	 * Set maximum free per pass
1849 	 */
1850 	if (vm_pageout_stats_free_max == 0)
1851 		vm_pageout_stats_free_max = 5;
1852 
1853 	swap_pager_swap_init();
1854 	pass = 0;
1855 
1856 	/*
1857 	 * The pageout daemon is never done, so loop forever.
1858 	 */
1859 	while (TRUE) {
1860 		int error;
1861 		int avail_shortage;
1862 		int inactive_shortage;
1863 		int vnodes_skipped = 0;
1864 		int recycle_count = 0;
1865 		int tmp;
1866 
1867 		/*
1868 		 * Wait for an action request.  If we timeout check to
1869 		 * see if paging is needed (in case the normal wakeup
1870 		 * code raced us).
1871 		 */
1872 		if (vm_pages_needed == 0) {
1873 			error = tsleep(&vm_pages_needed,
1874 				       0, "psleep",
1875 				       vm_pageout_stats_interval * hz);
1876 			if (error &&
1877 			    vm_paging_needed() == 0 &&
1878 			    vm_pages_needed == 0) {
1879 				for (q = 0; q < PQ_L2_SIZE; ++q)
1880 					vm_pageout_page_stats(q);
1881 				continue;
1882 			}
1883 			vm_pages_needed = 1;
1884 		}
1885 
1886 		mycpu->gd_cnt.v_pdwakeups++;
1887 
1888 		/*
1889 		 * Do whatever cleanup that the pmap code can.
1890 		 */
1891 		pmap_collect();
1892 
1893 		/*
1894 		 * Scan for pageout.  Try to avoid thrashing the system
1895 		 * with activity.
1896 		 *
1897 		 * Calculate our target for the number of free+cache pages we
1898 		 * want to get to.  This is higher then the number that causes
1899 		 * allocations to stall (severe) in order to provide hysteresis,
1900 		 * and if we don't make it all the way but get to the minimum
1901 		 * we're happy.  Goose it a bit if there are multipler
1902 		 * requests for memory.
1903 		 */
1904 		avail_shortage = vm_paging_target() + vm_pageout_deficit;
1905 		vm_pageout_deficit = 0;
1906 
1907 		if (avail_shortage > 0) {
1908 			for (q = 0; q < PQ_L2_SIZE; ++q) {
1909 				avail_shortage -=
1910 					vm_pageout_scan_inactive(
1911 					    pass,
1912 					    (q + q1iterator) & PQ_L2_MASK,
1913 					    PQAVERAGE(avail_shortage),
1914 					    &vnodes_skipped);
1915 				if (avail_shortage <= 0)
1916 					break;
1917 			}
1918 			q1iterator = q + 1;
1919 		}
1920 
1921 		/*
1922 		 * Figure out how many active pages we must deactivate.  If
1923 		 * we were able to reach our target with just the inactive
1924 		 * scan above we limit the number of active pages we
1925 		 * deactivate to reduce unnecessary work.
1926 		 */
1927 		inactive_shortage = vmstats.v_inactive_target -
1928 				    vmstats.v_inactive_count;
1929 
1930 		/*
1931 		 * If we were unable to free sufficient inactive pages to
1932 		 * satisfy the free/cache queue requirements then simply
1933 		 * reaching the inactive target may not be good enough.
1934 		 * Try to deactivate pages in excess of the target based
1935 		 * on the shortfall.
1936 		 *
1937 		 * However to prevent thrashing the VM system do not
1938 		 * deactivate more than an additional 1/10 the inactive
1939 		 * target's worth of active pages.
1940 		 */
1941 		if (avail_shortage > 0) {
1942 			tmp = avail_shortage * 2;
1943 			if (tmp > vmstats.v_inactive_target / 10)
1944 				tmp = vmstats.v_inactive_target / 10;
1945 			inactive_shortage += tmp;
1946 		}
1947 
1948 		/*
1949 		 * Only trigger on inactive shortage.  Triggering on
1950 		 * avail_shortage can starve the active queue with
1951 		 * unnecessary active->inactive transitions and destroy
1952 		 * performance.
1953 		 */
1954 		if (/*avail_shortage > 0 ||*/ inactive_shortage > 0) {
1955 			int delta;
1956 
1957 			for (q = 0; q < PQ_L2_SIZE; ++q) {
1958 				delta = vm_pageout_scan_active(
1959 						pass,
1960 						(q + q2iterator) & PQ_L2_MASK,
1961 						PQAVERAGE(avail_shortage),
1962 						PQAVERAGE(inactive_shortage),
1963 						&recycle_count);
1964 				inactive_shortage -= delta;
1965 				avail_shortage -= delta;
1966 				if (inactive_shortage <= 0 &&
1967 				    avail_shortage <= 0) {
1968 					break;
1969 				}
1970 			}
1971 			q2iterator = q + 1;
1972 		}
1973 
1974 		/*
1975 		 * Finally free enough cache pages to meet our free page
1976 		 * requirement and take more drastic measures if we are
1977 		 * still in trouble.
1978 		 */
1979 		vm_pageout_scan_cache(avail_shortage, vnodes_skipped,
1980 				      recycle_count);
1981 
1982 		/*
1983 		 * Wait for more work.
1984 		 */
1985 		if (avail_shortage > 0) {
1986 			++pass;
1987 			if (swap_pager_full) {
1988 				/*
1989 				 * Running out of memory, catastrophic back-off
1990 				 * to one-second intervals.
1991 				 */
1992 				tsleep(&vm_pages_needed, 0, "pdelay", hz);
1993 			} else if (pass < 10 && vm_pages_needed > 1) {
1994 				/*
1995 				 * Normal operation, additional processes
1996 				 * have already kicked us.  Retry immediately.
1997 				 */
1998 			} else if (pass < 10) {
1999 				/*
2000 				 * Normal operation, fewer processes.  Delay
2001 				 * a bit but allow wakeups.
2002 				 */
2003 				vm_pages_needed = 0;
2004 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2005 				vm_pages_needed = 1;
2006 			} else {
2007 				/*
2008 				 * We've taken too many passes, forced delay.
2009 				 */
2010 				tsleep(&vm_pages_needed, 0, "pdelay", hz / 10);
2011 			}
2012 		} else if (vm_pages_needed) {
2013 			/*
2014 			 * Interlocked wakeup of waiters (non-optional).
2015 			 *
2016 			 * Similar to vm_page_free_wakeup() in vm_page.c,
2017 			 * wake
2018 			 */
2019 			pass = 0;
2020 			if (!vm_page_count_min(vm_page_free_hysteresis) ||
2021 			    !vm_page_count_target()) {
2022 				vm_pages_needed = 0;
2023 				wakeup(&vmstats.v_free_count);
2024 			}
2025 		} else {
2026 			pass = 0;
2027 		}
2028 	}
2029 }
2030 
2031 static struct kproc_desc page_kp = {
2032 	"pagedaemon",
2033 	vm_pageout_thread,
2034 	&pagethread
2035 };
2036 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
2037 
2038 
2039 /*
2040  * Called after allocating a page out of the cache or free queue
2041  * to possibly wake the pagedaemon up to replentish our supply.
2042  *
2043  * We try to generate some hysteresis by waking the pagedaemon up
2044  * when our free+cache pages go below the free_min+cache_min level.
2045  * The pagedaemon tries to get the count back up to at least the
2046  * minimum, and through to the target level if possible.
2047  *
2048  * If the pagedaemon is already active bump vm_pages_needed as a hint
2049  * that there are even more requests pending.
2050  *
2051  * SMP races ok?
2052  * No requirements.
2053  */
2054 void
2055 pagedaemon_wakeup(void)
2056 {
2057 	if (vm_paging_needed() && curthread != pagethread) {
2058 		if (vm_pages_needed == 0) {
2059 			vm_pages_needed = 1;	/* SMP race ok */
2060 			wakeup(&vm_pages_needed);
2061 		} else if (vm_page_count_min(0)) {
2062 			++vm_pages_needed;	/* SMP race ok */
2063 		}
2064 	}
2065 }
2066 
2067 #if !defined(NO_SWAPPING)
2068 
2069 /*
2070  * SMP races ok?
2071  * No requirements.
2072  */
2073 static void
2074 vm_req_vmdaemon(void)
2075 {
2076 	static int lastrun = 0;
2077 
2078 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
2079 		wakeup(&vm_daemon_needed);
2080 		lastrun = ticks;
2081 	}
2082 }
2083 
2084 static int vm_daemon_callback(struct proc *p, void *data __unused);
2085 
2086 /*
2087  * No requirements.
2088  */
2089 static void
2090 vm_daemon(void)
2091 {
2092 	/*
2093 	 * XXX vm_daemon_needed specific token?
2094 	 */
2095 	while (TRUE) {
2096 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
2097 		if (vm_pageout_req_swapout) {
2098 			swapout_procs(vm_pageout_req_swapout);
2099 			vm_pageout_req_swapout = 0;
2100 		}
2101 		/*
2102 		 * scan the processes for exceeding their rlimits or if
2103 		 * process is swapped out -- deactivate pages
2104 		 */
2105 		allproc_scan(vm_daemon_callback, NULL);
2106 	}
2107 }
2108 
2109 static int
2110 vm_daemon_callback(struct proc *p, void *data __unused)
2111 {
2112 	struct vmspace *vm;
2113 	vm_pindex_t limit, size;
2114 
2115 	/*
2116 	 * if this is a system process or if we have already
2117 	 * looked at this process, skip it.
2118 	 */
2119 	lwkt_gettoken(&p->p_token);
2120 
2121 	if (p->p_flags & (P_SYSTEM | P_WEXIT)) {
2122 		lwkt_reltoken(&p->p_token);
2123 		return (0);
2124 	}
2125 
2126 	/*
2127 	 * if the process is in a non-running type state,
2128 	 * don't touch it.
2129 	 */
2130 	if (p->p_stat != SACTIVE && p->p_stat != SSTOP) {
2131 		lwkt_reltoken(&p->p_token);
2132 		return (0);
2133 	}
2134 
2135 	/*
2136 	 * get a limit
2137 	 */
2138 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
2139 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
2140 
2141 	/*
2142 	 * let processes that are swapped out really be
2143 	 * swapped out.  Set the limit to nothing to get as
2144 	 * many pages out to swap as possible.
2145 	 */
2146 	if (p->p_flags & P_SWAPPEDOUT)
2147 		limit = 0;
2148 
2149 	vm = p->p_vmspace;
2150 	vmspace_hold(vm);
2151 	size = vmspace_resident_count(vm);
2152 	if (limit >= 0 && size >= limit) {
2153 		vm_pageout_map_deactivate_pages(&vm->vm_map, limit);
2154 	}
2155 	vmspace_drop(vm);
2156 
2157 	lwkt_reltoken(&p->p_token);
2158 
2159 	return (0);
2160 }
2161 
2162 #endif
2163