xref: /dflybsd-src/sys/vm/vm_pageout.c (revision 1f7ab7c9fc18f47a2f16dc45b13dee254c603ce7)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  * Copyright (c) 1994 David Greenman
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by the University of
23  *	California, Berkeley and its contributors.
24  * 4. Neither the name of the University nor the names of its contributors
25  *    may be used to endorse or promote products derived from this software
26  *    without specific prior written permission.
27  *
28  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
29  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
30  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
31  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
32  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
36  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
37  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
38  * SUCH DAMAGE.
39  *
40  *	from: @(#)vm_pageout.c	7.4 (Berkeley) 5/7/91
41  *
42  *
43  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
44  * All rights reserved.
45  *
46  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  *
68  * $FreeBSD: src/sys/vm/vm_pageout.c,v 1.151.2.15 2002/12/29 18:21:04 dillon Exp $
69  * $DragonFly: src/sys/vm/vm_pageout.c,v 1.25 2006/09/11 20:25:31 dillon Exp $
70  */
71 
72 /*
73  *	The proverbial page-out daemon.
74  */
75 
76 #include "opt_vm.h"
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/kthread.h>
82 #include <sys/resourcevar.h>
83 #include <sys/signalvar.h>
84 #include <sys/vnode.h>
85 #include <sys/vmmeter.h>
86 #include <sys/sysctl.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <sys/lock.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_map.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/vm_extern.h>
98 
99 #include <sys/thread2.h>
100 #include <vm/vm_page2.h>
101 
102 /*
103  * System initialization
104  */
105 
106 /* the kernel process "vm_pageout"*/
107 static void vm_pageout (void);
108 static int vm_pageout_clean (vm_page_t);
109 static void vm_pageout_scan (int pass);
110 static int vm_pageout_free_page_calc (vm_size_t count);
111 struct thread *pagethread;
112 
113 static struct kproc_desc page_kp = {
114 	"pagedaemon",
115 	vm_pageout,
116 	&pagethread
117 };
118 SYSINIT(pagedaemon, SI_SUB_KTHREAD_PAGE, SI_ORDER_FIRST, kproc_start, &page_kp)
119 
120 #if !defined(NO_SWAPPING)
121 /* the kernel process "vm_daemon"*/
122 static void vm_daemon (void);
123 static struct	thread *vmthread;
124 
125 static struct kproc_desc vm_kp = {
126 	"vmdaemon",
127 	vm_daemon,
128 	&vmthread
129 };
130 SYSINIT(vmdaemon, SI_SUB_KTHREAD_VM, SI_ORDER_FIRST, kproc_start, &vm_kp)
131 #endif
132 
133 
134 int vm_pages_needed=0;		/* Event on which pageout daemon sleeps */
135 int vm_pageout_deficit=0;	/* Estimated number of pages deficit */
136 int vm_pageout_pages_needed=0;	/* flag saying that the pageout daemon needs pages */
137 
138 #if !defined(NO_SWAPPING)
139 static int vm_pageout_req_swapout;	/* XXX */
140 static int vm_daemon_needed;
141 #endif
142 extern int vm_swap_size;
143 static int vm_max_launder = 32;
144 static int vm_pageout_stats_max=0, vm_pageout_stats_interval = 0;
145 static int vm_pageout_full_stats_interval = 0;
146 static int vm_pageout_stats_free_max=0, vm_pageout_algorithm=0;
147 static int defer_swap_pageouts=0;
148 static int disable_swap_pageouts=0;
149 
150 #if defined(NO_SWAPPING)
151 static int vm_swap_enabled=0;
152 static int vm_swap_idle_enabled=0;
153 #else
154 static int vm_swap_enabled=1;
155 static int vm_swap_idle_enabled=0;
156 #endif
157 
158 SYSCTL_INT(_vm, VM_PAGEOUT_ALGORITHM, pageout_algorithm,
159 	CTLFLAG_RW, &vm_pageout_algorithm, 0, "LRU page mgmt");
160 
161 SYSCTL_INT(_vm, OID_AUTO, max_launder,
162 	CTLFLAG_RW, &vm_max_launder, 0, "Limit dirty flushes in pageout");
163 
164 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_max,
165 	CTLFLAG_RW, &vm_pageout_stats_max, 0, "Max pageout stats scan length");
166 
167 SYSCTL_INT(_vm, OID_AUTO, pageout_full_stats_interval,
168 	CTLFLAG_RW, &vm_pageout_full_stats_interval, 0, "Interval for full stats scan");
169 
170 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_interval,
171 	CTLFLAG_RW, &vm_pageout_stats_interval, 0, "Interval for partial stats scan");
172 
173 SYSCTL_INT(_vm, OID_AUTO, pageout_stats_free_max,
174 	CTLFLAG_RW, &vm_pageout_stats_free_max, 0, "Not implemented");
175 
176 #if defined(NO_SWAPPING)
177 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
178 	CTLFLAG_RD, &vm_swap_enabled, 0, "");
179 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
180 	CTLFLAG_RD, &vm_swap_idle_enabled, 0, "");
181 #else
182 SYSCTL_INT(_vm, VM_SWAPPING_ENABLED, swap_enabled,
183 	CTLFLAG_RW, &vm_swap_enabled, 0, "Enable entire process swapout");
184 SYSCTL_INT(_vm, OID_AUTO, swap_idle_enabled,
185 	CTLFLAG_RW, &vm_swap_idle_enabled, 0, "Allow swapout on idle criteria");
186 #endif
187 
188 SYSCTL_INT(_vm, OID_AUTO, defer_swapspace_pageouts,
189 	CTLFLAG_RW, &defer_swap_pageouts, 0, "Give preference to dirty pages in mem");
190 
191 SYSCTL_INT(_vm, OID_AUTO, disable_swapspace_pageouts,
192 	CTLFLAG_RW, &disable_swap_pageouts, 0, "Disallow swapout of dirty pages");
193 
194 static int pageout_lock_miss;
195 SYSCTL_INT(_vm, OID_AUTO, pageout_lock_miss,
196 	CTLFLAG_RD, &pageout_lock_miss, 0, "vget() lock misses during pageout");
197 
198 int vm_load;
199 SYSCTL_INT(_vm, OID_AUTO, vm_load,
200 	CTLFLAG_RD, &vm_load, 0, "load on the VM system");
201 int vm_load_enable = 1;
202 SYSCTL_INT(_vm, OID_AUTO, vm_load_enable,
203 	CTLFLAG_RW, &vm_load_enable, 0, "enable vm_load rate limiting");
204 #ifdef INVARIANTS
205 int vm_load_debug;
206 SYSCTL_INT(_vm, OID_AUTO, vm_load_debug,
207 	CTLFLAG_RW, &vm_load_debug, 0, "debug vm_load");
208 #endif
209 
210 #define VM_PAGEOUT_PAGE_COUNT 16
211 int vm_pageout_page_count = VM_PAGEOUT_PAGE_COUNT;
212 
213 int vm_page_max_wired;		/* XXX max # of wired pages system-wide */
214 
215 #if !defined(NO_SWAPPING)
216 typedef void freeer_fcn_t (vm_map_t, vm_object_t, vm_pindex_t, int);
217 static void vm_pageout_map_deactivate_pages (vm_map_t, vm_pindex_t);
218 static freeer_fcn_t vm_pageout_object_deactivate_pages;
219 static void vm_req_vmdaemon (void);
220 #endif
221 static void vm_pageout_page_stats(void);
222 
223 /*
224  * Update
225  */
226 void
227 vm_fault_ratecheck(void)
228 {
229 	if (vm_pages_needed) {
230 		if (vm_load < 1000)
231 			++vm_load;
232 	} else {
233 		if (vm_load > 0)
234 			--vm_load;
235 	}
236 }
237 
238 /*
239  * vm_pageout_clean:
240  *
241  * Clean the page and remove it from the laundry.  The page must not be
242  * busy on-call.
243  *
244  * We set the busy bit to cause potential page faults on this page to
245  * block.  Note the careful timing, however, the busy bit isn't set till
246  * late and we cannot do anything that will mess with the page.
247  */
248 
249 static int
250 vm_pageout_clean(vm_page_t m)
251 {
252 	vm_object_t object;
253 	vm_page_t mc[2*vm_pageout_page_count];
254 	int pageout_count;
255 	int ib, is, page_base;
256 	vm_pindex_t pindex = m->pindex;
257 
258 	object = m->object;
259 
260 	/*
261 	 * It doesn't cost us anything to pageout OBJT_DEFAULT or OBJT_SWAP
262 	 * with the new swapper, but we could have serious problems paging
263 	 * out other object types if there is insufficient memory.
264 	 *
265 	 * Unfortunately, checking free memory here is far too late, so the
266 	 * check has been moved up a procedural level.
267 	 */
268 
269 	/*
270 	 * Don't mess with the page if it's busy, held, or special
271 	 */
272 	if ((m->hold_count != 0) ||
273 	    ((m->busy != 0) || (m->flags & (PG_BUSY|PG_UNMANAGED)))) {
274 		return 0;
275 	}
276 
277 	mc[vm_pageout_page_count] = m;
278 	pageout_count = 1;
279 	page_base = vm_pageout_page_count;
280 	ib = 1;
281 	is = 1;
282 
283 	/*
284 	 * Scan object for clusterable pages.
285 	 *
286 	 * We can cluster ONLY if: ->> the page is NOT
287 	 * clean, wired, busy, held, or mapped into a
288 	 * buffer, and one of the following:
289 	 * 1) The page is inactive, or a seldom used
290 	 *    active page.
291 	 * -or-
292 	 * 2) we force the issue.
293 	 *
294 	 * During heavy mmap/modification loads the pageout
295 	 * daemon can really fragment the underlying file
296 	 * due to flushing pages out of order and not trying
297 	 * align the clusters (which leave sporatic out-of-order
298 	 * holes).  To solve this problem we do the reverse scan
299 	 * first and attempt to align our cluster, then do a
300 	 * forward scan if room remains.
301 	 */
302 
303 more:
304 	while (ib && pageout_count < vm_pageout_page_count) {
305 		vm_page_t p;
306 
307 		if (ib > pindex) {
308 			ib = 0;
309 			break;
310 		}
311 
312 		if ((p = vm_page_lookup(object, pindex - ib)) == NULL) {
313 			ib = 0;
314 			break;
315 		}
316 		if (((p->queue - p->pc) == PQ_CACHE) ||
317 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
318 			ib = 0;
319 			break;
320 		}
321 		vm_page_test_dirty(p);
322 		if ((p->dirty & p->valid) == 0 ||
323 		    p->queue != PQ_INACTIVE ||
324 		    p->wire_count != 0 ||	/* may be held by buf cache */
325 		    p->hold_count != 0) {	/* may be undergoing I/O */
326 			ib = 0;
327 			break;
328 		}
329 		mc[--page_base] = p;
330 		++pageout_count;
331 		++ib;
332 		/*
333 		 * alignment boundry, stop here and switch directions.  Do
334 		 * not clear ib.
335 		 */
336 		if ((pindex - (ib - 1)) % vm_pageout_page_count == 0)
337 			break;
338 	}
339 
340 	while (pageout_count < vm_pageout_page_count &&
341 	    pindex + is < object->size) {
342 		vm_page_t p;
343 
344 		if ((p = vm_page_lookup(object, pindex + is)) == NULL)
345 			break;
346 		if (((p->queue - p->pc) == PQ_CACHE) ||
347 		    (p->flags & (PG_BUSY|PG_UNMANAGED)) || p->busy) {
348 			break;
349 		}
350 		vm_page_test_dirty(p);
351 		if ((p->dirty & p->valid) == 0 ||
352 		    p->queue != PQ_INACTIVE ||
353 		    p->wire_count != 0 ||	/* may be held by buf cache */
354 		    p->hold_count != 0) {	/* may be undergoing I/O */
355 			break;
356 		}
357 		mc[page_base + pageout_count] = p;
358 		++pageout_count;
359 		++is;
360 	}
361 
362 	/*
363 	 * If we exhausted our forward scan, continue with the reverse scan
364 	 * when possible, even past a page boundry.  This catches boundry
365 	 * conditions.
366 	 */
367 	if (ib && pageout_count < vm_pageout_page_count)
368 		goto more;
369 
370 	/*
371 	 * we allow reads during pageouts...
372 	 */
373 	return vm_pageout_flush(&mc[page_base], pageout_count, 0);
374 }
375 
376 /*
377  * vm_pageout_flush() - launder the given pages
378  *
379  *	The given pages are laundered.  Note that we setup for the start of
380  *	I/O ( i.e. busy the page ), mark it read-only, and bump the object
381  *	reference count all in here rather then in the parent.  If we want
382  *	the parent to do more sophisticated things we may have to change
383  *	the ordering.
384  */
385 
386 int
387 vm_pageout_flush(vm_page_t *mc, int count, int flags)
388 {
389 	vm_object_t object;
390 	int pageout_status[count];
391 	int numpagedout = 0;
392 	int i;
393 
394 	/*
395 	 * Initiate I/O.  Bump the vm_page_t->busy counter and
396 	 * mark the pages read-only.
397 	 *
398 	 * We do not have to fixup the clean/dirty bits here... we can
399 	 * allow the pager to do it after the I/O completes.
400 	 */
401 
402 	for (i = 0; i < count; i++) {
403 		KASSERT(mc[i]->valid == VM_PAGE_BITS_ALL, ("vm_pageout_flush page %p index %d/%d: partially invalid page", mc[i], i, count));
404 		vm_page_io_start(mc[i]);
405 		vm_page_protect(mc[i], VM_PROT_READ);
406 	}
407 
408 	object = mc[0]->object;
409 	vm_object_pip_add(object, count);
410 
411 	vm_pager_put_pages(object, mc, count,
412 	    (flags | ((object == kernel_object) ? VM_PAGER_PUT_SYNC : 0)),
413 	    pageout_status);
414 
415 	for (i = 0; i < count; i++) {
416 		vm_page_t mt = mc[i];
417 
418 		switch (pageout_status[i]) {
419 		case VM_PAGER_OK:
420 			numpagedout++;
421 			break;
422 		case VM_PAGER_PEND:
423 			numpagedout++;
424 			break;
425 		case VM_PAGER_BAD:
426 			/*
427 			 * Page outside of range of object. Right now we
428 			 * essentially lose the changes by pretending it
429 			 * worked.
430 			 */
431 			pmap_clear_modify(mt);
432 			vm_page_undirty(mt);
433 			break;
434 		case VM_PAGER_ERROR:
435 		case VM_PAGER_FAIL:
436 			/*
437 			 * If page couldn't be paged out, then reactivate the
438 			 * page so it doesn't clog the inactive list.  (We
439 			 * will try paging out it again later).
440 			 */
441 			vm_page_activate(mt);
442 			break;
443 		case VM_PAGER_AGAIN:
444 			break;
445 		}
446 
447 		/*
448 		 * If the operation is still going, leave the page busy to
449 		 * block all other accesses. Also, leave the paging in
450 		 * progress indicator set so that we don't attempt an object
451 		 * collapse.
452 		 */
453 		if (pageout_status[i] != VM_PAGER_PEND) {
454 			vm_object_pip_wakeup(object);
455 			vm_page_io_finish(mt);
456 			if (!vm_page_count_severe() || !vm_page_try_to_cache(mt))
457 				vm_page_protect(mt, VM_PROT_READ);
458 		}
459 	}
460 	return numpagedout;
461 }
462 
463 #if !defined(NO_SWAPPING)
464 /*
465  *	vm_pageout_object_deactivate_pages
466  *
467  *	deactivate enough pages to satisfy the inactive target
468  *	requirements or if vm_page_proc_limit is set, then
469  *	deactivate all of the pages in the object and its
470  *	backing_objects.
471  *
472  *	The object and map must be locked.
473  */
474 static void
475 vm_pageout_object_deactivate_pages(vm_map_t map, vm_object_t object,
476 	vm_pindex_t desired, int map_remove_only)
477 {
478 	vm_page_t p, next;
479 	int rcount;
480 	int remove_mode;
481 
482 	if (object->type == OBJT_DEVICE || object->type == OBJT_PHYS)
483 		return;
484 
485 	while (object) {
486 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
487 			return;
488 		if (object->paging_in_progress)
489 			return;
490 
491 		remove_mode = map_remove_only;
492 		if (object->shadow_count > 1)
493 			remove_mode = 1;
494 
495 		/*
496 		 * scan the objects entire memory queue.  spl protection is
497 		 * required to avoid an interrupt unbusy/free race against
498 		 * our busy check.
499 		 */
500 		crit_enter();
501 		rcount = object->resident_page_count;
502 		p = TAILQ_FIRST(&object->memq);
503 
504 		while (p && (rcount-- > 0)) {
505 			int actcount;
506 			if (pmap_resident_count(vm_map_pmap(map)) <= desired) {
507 				crit_exit();
508 				return;
509 			}
510 			next = TAILQ_NEXT(p, listq);
511 			mycpu->gd_cnt.v_pdpages++;
512 			if (p->wire_count != 0 ||
513 			    p->hold_count != 0 ||
514 			    p->busy != 0 ||
515 			    (p->flags & (PG_BUSY|PG_UNMANAGED)) ||
516 			    !pmap_page_exists_quick(vm_map_pmap(map), p)) {
517 				p = next;
518 				continue;
519 			}
520 
521 			actcount = pmap_ts_referenced(p);
522 			if (actcount) {
523 				vm_page_flag_set(p, PG_REFERENCED);
524 			} else if (p->flags & PG_REFERENCED) {
525 				actcount = 1;
526 			}
527 
528 			if ((p->queue != PQ_ACTIVE) &&
529 				(p->flags & PG_REFERENCED)) {
530 				vm_page_activate(p);
531 				p->act_count += actcount;
532 				vm_page_flag_clear(p, PG_REFERENCED);
533 			} else if (p->queue == PQ_ACTIVE) {
534 				if ((p->flags & PG_REFERENCED) == 0) {
535 					p->act_count -= min(p->act_count, ACT_DECLINE);
536 					if (!remove_mode && (vm_pageout_algorithm || (p->act_count == 0))) {
537 						vm_page_protect(p, VM_PROT_NONE);
538 						vm_page_deactivate(p);
539 					} else {
540 						TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
541 						TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
542 					}
543 				} else {
544 					vm_page_activate(p);
545 					vm_page_flag_clear(p, PG_REFERENCED);
546 					if (p->act_count < (ACT_MAX - ACT_ADVANCE))
547 						p->act_count += ACT_ADVANCE;
548 					TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
549 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, p, pageq);
550 				}
551 			} else if (p->queue == PQ_INACTIVE) {
552 				vm_page_protect(p, VM_PROT_NONE);
553 			}
554 			p = next;
555 		}
556 		crit_exit();
557 		object = object->backing_object;
558 	}
559 }
560 
561 /*
562  * deactivate some number of pages in a map, try to do it fairly, but
563  * that is really hard to do.
564  */
565 static void
566 vm_pageout_map_deactivate_pages(vm_map_t map, vm_pindex_t desired)
567 {
568 	vm_map_entry_t tmpe;
569 	vm_object_t obj, bigobj;
570 	int nothingwired;
571 
572 	if (lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT)) {
573 		return;
574 	}
575 
576 	bigobj = NULL;
577 	nothingwired = TRUE;
578 
579 	/*
580 	 * first, search out the biggest object, and try to free pages from
581 	 * that.
582 	 */
583 	tmpe = map->header.next;
584 	while (tmpe != &map->header) {
585 		switch(tmpe->maptype) {
586 		case VM_MAPTYPE_NORMAL:
587 		case VM_MAPTYPE_VPAGETABLE:
588 			obj = tmpe->object.vm_object;
589 			if ((obj != NULL) && (obj->shadow_count <= 1) &&
590 				((bigobj == NULL) ||
591 				 (bigobj->resident_page_count < obj->resident_page_count))) {
592 				bigobj = obj;
593 			}
594 			break;
595 		default:
596 			break;
597 		}
598 		if (tmpe->wired_count > 0)
599 			nothingwired = FALSE;
600 		tmpe = tmpe->next;
601 	}
602 
603 	if (bigobj)
604 		vm_pageout_object_deactivate_pages(map, bigobj, desired, 0);
605 
606 	/*
607 	 * Next, hunt around for other pages to deactivate.  We actually
608 	 * do this search sort of wrong -- .text first is not the best idea.
609 	 */
610 	tmpe = map->header.next;
611 	while (tmpe != &map->header) {
612 		if (pmap_resident_count(vm_map_pmap(map)) <= desired)
613 			break;
614 		switch(tmpe->maptype) {
615 		case VM_MAPTYPE_NORMAL:
616 		case VM_MAPTYPE_VPAGETABLE:
617 			obj = tmpe->object.vm_object;
618 			if (obj)
619 				vm_pageout_object_deactivate_pages(map, obj, desired, 0);
620 			break;
621 		default:
622 			break;
623 		}
624 		tmpe = tmpe->next;
625 	};
626 
627 	/*
628 	 * Remove all mappings if a process is swapped out, this will free page
629 	 * table pages.
630 	 */
631 	if (desired == 0 && nothingwired)
632 		pmap_remove(vm_map_pmap(map),
633 			VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS);
634 	vm_map_unlock(map);
635 }
636 #endif
637 
638 /*
639  * Don't try to be fancy - being fancy can lead to vnode deadlocks.   We
640  * only do it for OBJT_DEFAULT and OBJT_SWAP objects which we know can
641  * be trivially freed.
642  */
643 void
644 vm_pageout_page_free(vm_page_t m) {
645 	vm_object_t object = m->object;
646 	int type = object->type;
647 
648 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
649 		vm_object_reference(object);
650 	vm_page_busy(m);
651 	vm_page_protect(m, VM_PROT_NONE);
652 	vm_page_free(m);
653 	if (type == OBJT_SWAP || type == OBJT_DEFAULT)
654 		vm_object_deallocate(object);
655 }
656 
657 /*
658  *	vm_pageout_scan does the dirty work for the pageout daemon.
659  */
660 
661 struct vm_pageout_scan_info {
662 	struct proc *bigproc;
663 	vm_offset_t bigsize;
664 };
665 
666 static int vm_pageout_scan_callback(struct proc *p, void *data);
667 
668 static void
669 vm_pageout_scan(int pass)
670 {
671 	struct vm_pageout_scan_info info;
672 	vm_page_t m, next;
673 	struct vm_page marker;
674 	int page_shortage, maxscan, pcount;
675 	int addl_page_shortage, addl_page_shortage_init;
676 	vm_object_t object;
677 	int actcount;
678 	int vnodes_skipped = 0;
679 	int maxlaunder;
680 
681 	/*
682 	 * Do whatever cleanup that the pmap code can.
683 	 */
684 	pmap_collect();
685 
686 	addl_page_shortage_init = vm_pageout_deficit;
687 	vm_pageout_deficit = 0;
688 
689 	/*
690 	 * Calculate the number of pages we want to either free or move
691 	 * to the cache.
692 	 */
693 	page_shortage = vm_paging_target() + addl_page_shortage_init;
694 
695 	/*
696 	 * Initialize our marker
697 	 */
698 	bzero(&marker, sizeof(marker));
699 	marker.flags = PG_BUSY | PG_FICTITIOUS | PG_MARKER;
700 	marker.queue = PQ_INACTIVE;
701 	marker.wire_count = 1;
702 
703 	/*
704 	 * Start scanning the inactive queue for pages we can move to the
705 	 * cache or free.  The scan will stop when the target is reached or
706 	 * we have scanned the entire inactive queue.  Note that m->act_count
707 	 * is not used to form decisions for the inactive queue, only for the
708 	 * active queue.
709 	 *
710 	 * maxlaunder limits the number of dirty pages we flush per scan.
711 	 * For most systems a smaller value (16 or 32) is more robust under
712 	 * extreme memory and disk pressure because any unnecessary writes
713 	 * to disk can result in extreme performance degredation.  However,
714 	 * systems with excessive dirty pages (especially when MAP_NOSYNC is
715 	 * used) will die horribly with limited laundering.  If the pageout
716 	 * daemon cannot clean enough pages in the first pass, we let it go
717 	 * all out in succeeding passes.
718 	 */
719 	if ((maxlaunder = vm_max_launder) <= 1)
720 		maxlaunder = 1;
721 	if (pass)
722 		maxlaunder = 10000;
723 
724 	/*
725 	 * We will generally be in a critical section throughout the
726 	 * scan, but we can release it temporarily when we are sitting on a
727 	 * non-busy page without fear.  this is required to prevent an
728 	 * interrupt from unbusying or freeing a page prior to our busy
729 	 * check, leaving us on the wrong queue or checking the wrong
730 	 * page.
731 	 */
732 	crit_enter();
733 rescan0:
734 	addl_page_shortage = addl_page_shortage_init;
735 	maxscan = vmstats.v_inactive_count;
736 	for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
737 	     m != NULL && maxscan-- > 0 && page_shortage > 0;
738 	     m = next
739 	 ) {
740 		mycpu->gd_cnt.v_pdpages++;
741 
742 		/*
743 		 * Give interrupts a chance
744 		 */
745 		crit_exit();
746 		crit_enter();
747 
748 		/*
749 		 * It's easier for some of the conditions below to just loop
750 		 * and catch queue changes here rather then check everywhere
751 		 * else.
752 		 */
753 		if (m->queue != PQ_INACTIVE)
754 			goto rescan0;
755 		next = TAILQ_NEXT(m, pageq);
756 
757 		/*
758 		 * skip marker pages
759 		 */
760 		if (m->flags & PG_MARKER)
761 			continue;
762 
763 		/*
764 		 * A held page may be undergoing I/O, so skip it.
765 		 */
766 		if (m->hold_count) {
767 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
768 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
769 			addl_page_shortage++;
770 			continue;
771 		}
772 
773 		/*
774 		 * Dont mess with busy pages, keep in the front of the
775 		 * queue, most likely are being paged out.
776 		 */
777 		if (m->busy || (m->flags & PG_BUSY)) {
778 			addl_page_shortage++;
779 			continue;
780 		}
781 
782 		if (m->object->ref_count == 0) {
783 			/*
784 			 * If the object is not being used, we ignore previous
785 			 * references.
786 			 */
787 			vm_page_flag_clear(m, PG_REFERENCED);
788 			pmap_clear_reference(m);
789 
790 		} else if (((m->flags & PG_REFERENCED) == 0) &&
791 			    (actcount = pmap_ts_referenced(m))) {
792 			/*
793 			 * Otherwise, if the page has been referenced while
794 			 * in the inactive queue, we bump the "activation
795 			 * count" upwards, making it less likely that the
796 			 * page will be added back to the inactive queue
797 			 * prematurely again.  Here we check the page tables
798 			 * (or emulated bits, if any), given the upper level
799 			 * VM system not knowing anything about existing
800 			 * references.
801 			 */
802 			vm_page_activate(m);
803 			m->act_count += (actcount + ACT_ADVANCE);
804 			continue;
805 		}
806 
807 		/*
808 		 * If the upper level VM system knows about any page
809 		 * references, we activate the page.  We also set the
810 		 * "activation count" higher than normal so that we will less
811 		 * likely place pages back onto the inactive queue again.
812 		 */
813 		if ((m->flags & PG_REFERENCED) != 0) {
814 			vm_page_flag_clear(m, PG_REFERENCED);
815 			actcount = pmap_ts_referenced(m);
816 			vm_page_activate(m);
817 			m->act_count += (actcount + ACT_ADVANCE + 1);
818 			continue;
819 		}
820 
821 		/*
822 		 * If the upper level VM system doesn't know anything about
823 		 * the page being dirty, we have to check for it again.  As
824 		 * far as the VM code knows, any partially dirty pages are
825 		 * fully dirty.
826 		 *
827 		 * Pages marked PG_WRITEABLE may be mapped into the user
828 		 * address space of a process running on another cpu.  A
829 		 * user process (without holding the MP lock) running on
830 		 * another cpu may be able to touch the page while we are
831 		 * trying to remove it.  To prevent this from occuring we
832 		 * must call pmap_remove_all() or otherwise make the page
833 		 * read-only.  If the race occured pmap_remove_all() is
834 		 * responsible for setting m->dirty.
835 		 */
836 		if (m->dirty == 0) {
837 			vm_page_test_dirty(m);
838 #if 0
839 			if (m->dirty == 0 && (m->flags & PG_WRITEABLE) != 0)
840 				pmap_remove_all(m);
841 #endif
842 		} else {
843 			vm_page_dirty(m);
844 		}
845 
846 		if (m->valid == 0) {
847 			/*
848 			 * Invalid pages can be easily freed
849 			 */
850 			vm_pageout_page_free(m);
851 			mycpu->gd_cnt.v_dfree++;
852 			--page_shortage;
853 		} else if (m->dirty == 0) {
854 			/*
855 			 * Clean pages can be placed onto the cache queue.
856 			 * This effectively frees them.
857 			 */
858 			vm_page_cache(m);
859 			--page_shortage;
860 		} else if ((m->flags & PG_WINATCFLS) == 0 && pass == 0) {
861 			/*
862 			 * Dirty pages need to be paged out, but flushing
863 			 * a page is extremely expensive verses freeing
864 			 * a clean page.  Rather then artificially limiting
865 			 * the number of pages we can flush, we instead give
866 			 * dirty pages extra priority on the inactive queue
867 			 * by forcing them to be cycled through the queue
868 			 * twice before being flushed, after which the
869 			 * (now clean) page will cycle through once more
870 			 * before being freed.  This significantly extends
871 			 * the thrash point for a heavily loaded machine.
872 			 */
873 			vm_page_flag_set(m, PG_WINATCFLS);
874 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
875 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
876 		} else if (maxlaunder > 0) {
877 			/*
878 			 * We always want to try to flush some dirty pages if
879 			 * we encounter them, to keep the system stable.
880 			 * Normally this number is small, but under extreme
881 			 * pressure where there are insufficient clean pages
882 			 * on the inactive queue, we may have to go all out.
883 			 */
884 			int swap_pageouts_ok;
885 			struct vnode *vp = NULL;
886 
887 			object = m->object;
888 
889 			if ((object->type != OBJT_SWAP) && (object->type != OBJT_DEFAULT)) {
890 				swap_pageouts_ok = 1;
891 			} else {
892 				swap_pageouts_ok = !(defer_swap_pageouts || disable_swap_pageouts);
893 				swap_pageouts_ok |= (!disable_swap_pageouts && defer_swap_pageouts &&
894 				vm_page_count_min());
895 
896 			}
897 
898 			/*
899 			 * We don't bother paging objects that are "dead".
900 			 * Those objects are in a "rundown" state.
901 			 */
902 			if (!swap_pageouts_ok || (object->flags & OBJ_DEAD)) {
903 				TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
904 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
905 				continue;
906 			}
907 
908 			/*
909 			 * The object is already known NOT to be dead.   It
910 			 * is possible for the vget() to block the whole
911 			 * pageout daemon, but the new low-memory handling
912 			 * code should prevent it.
913 			 *
914 			 * The previous code skipped locked vnodes and, worse,
915 			 * reordered pages in the queue.  This results in
916 			 * completely non-deterministic operation because,
917 			 * quite often, a vm_fault has initiated an I/O and
918 			 * is holding a locked vnode at just the point where
919 			 * the pageout daemon is woken up.
920 			 *
921 			 * We can't wait forever for the vnode lock, we might
922 			 * deadlock due to a vn_read() getting stuck in
923 			 * vm_wait while holding this vnode.  We skip the
924 			 * vnode if we can't get it in a reasonable amount
925 			 * of time.
926 			 */
927 
928 			if (object->type == OBJT_VNODE) {
929 				vp = object->handle;
930 
931 				if (vget(vp, LK_EXCLUSIVE|LK_NOOBJ|LK_TIMELOCK)) {
932 					++pageout_lock_miss;
933 					if (object->flags & OBJ_MIGHTBEDIRTY)
934 						    vnodes_skipped++;
935 					continue;
936 				}
937 
938 				/*
939 				 * The page might have been moved to another
940 				 * queue during potential blocking in vget()
941 				 * above.  The page might have been freed and
942 				 * reused for another vnode.  The object might
943 				 * have been reused for another vnode.
944 				 */
945 				if (m->queue != PQ_INACTIVE ||
946 				    m->object != object ||
947 				    object->handle != vp) {
948 					if (object->flags & OBJ_MIGHTBEDIRTY)
949 						vnodes_skipped++;
950 					vput(vp);
951 					continue;
952 				}
953 
954 				/*
955 				 * The page may have been busied during the
956 				 * blocking in vput();  We don't move the
957 				 * page back onto the end of the queue so that
958 				 * statistics are more correct if we don't.
959 				 */
960 				if (m->busy || (m->flags & PG_BUSY)) {
961 					vput(vp);
962 					continue;
963 				}
964 
965 				/*
966 				 * If the page has become held it might
967 				 * be undergoing I/O, so skip it
968 				 */
969 				if (m->hold_count) {
970 					TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
971 					TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
972 					if (object->flags & OBJ_MIGHTBEDIRTY)
973 						vnodes_skipped++;
974 					vput(vp);
975 					continue;
976 				}
977 			}
978 
979 			/*
980 			 * If a page is dirty, then it is either being washed
981 			 * (but not yet cleaned) or it is still in the
982 			 * laundry.  If it is still in the laundry, then we
983 			 * start the cleaning operation.
984 			 *
985 			 * This operation may cluster, invalidating the 'next'
986 			 * pointer.  To prevent an inordinate number of
987 			 * restarts we use our marker to remember our place.
988 			 *
989 			 * decrement page_shortage on success to account for
990 			 * the (future) cleaned page.  Otherwise we could wind
991 			 * up laundering or cleaning too many pages.
992 			 */
993 			TAILQ_INSERT_AFTER(&vm_page_queues[PQ_INACTIVE].pl, m, &marker, pageq);
994 			if (vm_pageout_clean(m) != 0) {
995 				--page_shortage;
996 				--maxlaunder;
997 			}
998 			next = TAILQ_NEXT(&marker, pageq);
999 			TAILQ_REMOVE(&vm_page_queues[PQ_INACTIVE].pl, &marker, pageq);
1000 			if (vp != NULL)
1001 				vput(vp);
1002 		}
1003 	}
1004 
1005 	/*
1006 	 * Compute the number of pages we want to try to move from the
1007 	 * active queue to the inactive queue.
1008 	 */
1009 	page_shortage = vm_paging_target() +
1010 	    vmstats.v_inactive_target - vmstats.v_inactive_count;
1011 	page_shortage += addl_page_shortage;
1012 
1013 	/*
1014 	 * Scan the active queue for things we can deactivate. We nominally
1015 	 * track the per-page activity counter and use it to locate
1016 	 * deactivation candidates.
1017 	 *
1018 	 * NOTE: we are still in a critical section.
1019 	 */
1020 	pcount = vmstats.v_active_count;
1021 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1022 
1023 	while ((m != NULL) && (pcount-- > 0) && (page_shortage > 0)) {
1024 		/*
1025 		 * Give interrupts a chance.
1026 		 */
1027 		crit_exit();
1028 		crit_enter();
1029 
1030 		/*
1031 		 * If the page was ripped out from under us, just stop.
1032 		 */
1033 		if (m->queue != PQ_ACTIVE)
1034 			break;
1035 		next = TAILQ_NEXT(m, pageq);
1036 
1037 		/*
1038 		 * Don't deactivate pages that are busy.
1039 		 */
1040 		if ((m->busy != 0) ||
1041 		    (m->flags & PG_BUSY) ||
1042 		    (m->hold_count != 0)) {
1043 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1044 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1045 			m = next;
1046 			continue;
1047 		}
1048 
1049 		/*
1050 		 * The count for pagedaemon pages is done after checking the
1051 		 * page for eligibility...
1052 		 */
1053 		mycpu->gd_cnt.v_pdpages++;
1054 
1055 		/*
1056 		 * Check to see "how much" the page has been used.
1057 		 */
1058 		actcount = 0;
1059 		if (m->object->ref_count != 0) {
1060 			if (m->flags & PG_REFERENCED) {
1061 				actcount += 1;
1062 			}
1063 			actcount += pmap_ts_referenced(m);
1064 			if (actcount) {
1065 				m->act_count += ACT_ADVANCE + actcount;
1066 				if (m->act_count > ACT_MAX)
1067 					m->act_count = ACT_MAX;
1068 			}
1069 		}
1070 
1071 		/*
1072 		 * Since we have "tested" this bit, we need to clear it now.
1073 		 */
1074 		vm_page_flag_clear(m, PG_REFERENCED);
1075 
1076 		/*
1077 		 * Only if an object is currently being used, do we use the
1078 		 * page activation count stats.
1079 		 */
1080 		if (actcount && (m->object->ref_count != 0)) {
1081 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1082 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1083 		} else {
1084 			m->act_count -= min(m->act_count, ACT_DECLINE);
1085 			if (vm_pageout_algorithm ||
1086 			    m->object->ref_count == 0 ||
1087 			    m->act_count < pass) {
1088 				page_shortage--;
1089 				if (m->object->ref_count == 0) {
1090 					vm_page_protect(m, VM_PROT_NONE);
1091 					if (m->dirty == 0)
1092 						vm_page_cache(m);
1093 					else
1094 						vm_page_deactivate(m);
1095 				} else {
1096 					vm_page_deactivate(m);
1097 				}
1098 			} else {
1099 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1100 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1101 			}
1102 		}
1103 		m = next;
1104 	}
1105 
1106 	/*
1107 	 * We try to maintain some *really* free pages, this allows interrupt
1108 	 * code to be guaranteed space.  Since both cache and free queues
1109 	 * are considered basically 'free', moving pages from cache to free
1110 	 * does not effect other calculations.
1111 	 *
1112 	 * NOTE: we are still in a critical section.
1113 	 */
1114 
1115 	while (vmstats.v_free_count < vmstats.v_free_reserved) {
1116 		static int cache_rover = 0;
1117 		m = vm_page_list_find(PQ_CACHE, cache_rover, FALSE);
1118 		if (!m)
1119 			break;
1120 		if ((m->flags & (PG_BUSY|PG_UNMANAGED)) ||
1121 		    m->busy ||
1122 		    m->hold_count ||
1123 		    m->wire_count) {
1124 #ifdef INVARIANTS
1125 			printf("Warning: busy page %p found in cache\n", m);
1126 #endif
1127 			vm_page_deactivate(m);
1128 			continue;
1129 		}
1130 		cache_rover = (cache_rover + PQ_PRIME2) & PQ_L2_MASK;
1131 		vm_pageout_page_free(m);
1132 		mycpu->gd_cnt.v_dfree++;
1133 	}
1134 
1135 	crit_exit();
1136 
1137 #if !defined(NO_SWAPPING)
1138 	/*
1139 	 * Idle process swapout -- run once per second.
1140 	 */
1141 	if (vm_swap_idle_enabled) {
1142 		static long lsec;
1143 		if (time_second != lsec) {
1144 			vm_pageout_req_swapout |= VM_SWAP_IDLE;
1145 			vm_req_vmdaemon();
1146 			lsec = time_second;
1147 		}
1148 	}
1149 #endif
1150 
1151 	/*
1152 	 * If we didn't get enough free pages, and we have skipped a vnode
1153 	 * in a writeable object, wakeup the sync daemon.  And kick swapout
1154 	 * if we did not get enough free pages.
1155 	 */
1156 	if (vm_paging_target() > 0) {
1157 		if (vnodes_skipped && vm_page_count_min())
1158 			speedup_syncer();
1159 #if !defined(NO_SWAPPING)
1160 		if (vm_swap_enabled && vm_page_count_target()) {
1161 			vm_req_vmdaemon();
1162 			vm_pageout_req_swapout |= VM_SWAP_NORMAL;
1163 		}
1164 #endif
1165 	}
1166 
1167 	/*
1168 	 * If we are out of swap and were not able to reach our paging
1169 	 * target, kill the largest process.
1170 	 */
1171 	if ((vm_swap_size < 64 && vm_page_count_min()) ||
1172 	    (swap_pager_full && vm_paging_target() > 0)) {
1173 #if 0
1174 	if ((vm_swap_size < 64 || swap_pager_full) && vm_page_count_min()) {
1175 #endif
1176 		info.bigproc = NULL;
1177 		info.bigsize = 0;
1178 		allproc_scan(vm_pageout_scan_callback, &info);
1179 		if (info.bigproc != NULL) {
1180 			killproc(info.bigproc, "out of swap space");
1181 			info.bigproc->p_nice = PRIO_MIN;
1182 			info.bigproc->p_usched->resetpriority(&info.bigproc->p_lwp);
1183 			wakeup(&vmstats.v_free_count);
1184 			PRELE(info.bigproc);
1185 		}
1186 	}
1187 }
1188 
1189 static int
1190 vm_pageout_scan_callback(struct proc *p, void *data)
1191 {
1192 	struct vm_pageout_scan_info *info = data;
1193 	vm_offset_t size;
1194 
1195 	/*
1196 	 * if this is a system process, skip it
1197 	 */
1198 	if ((p->p_flag & P_SYSTEM) || (p->p_pid == 1) ||
1199 	    ((p->p_pid < 48) && (vm_swap_size != 0))) {
1200 		return (0);
1201 	}
1202 
1203 	/*
1204 	 * if the process is in a non-running type state,
1205 	 * don't touch it.
1206 	 */
1207 	if (p->p_stat != SRUN && p->p_stat != SSLEEP) {
1208 		return (0);
1209 	}
1210 
1211 	/*
1212 	 * get the process size
1213 	 */
1214 	size = vmspace_resident_count(p->p_vmspace) +
1215 		vmspace_swap_count(p->p_vmspace);
1216 
1217 	/*
1218 	 * If the this process is bigger than the biggest one
1219 	 * remember it.
1220 	 */
1221 	if (size > info->bigsize) {
1222 		if (info->bigproc)
1223 			PRELE(info->bigproc);
1224 		PHOLD(p);
1225 		info->bigproc = p;
1226 		info->bigsize = size;
1227 	}
1228 	return(0);
1229 }
1230 
1231 /*
1232  * This routine tries to maintain the pseudo LRU active queue,
1233  * so that during long periods of time where there is no paging,
1234  * that some statistic accumulation still occurs.  This code
1235  * helps the situation where paging just starts to occur.
1236  */
1237 static void
1238 vm_pageout_page_stats(void)
1239 {
1240 	vm_page_t m,next;
1241 	int pcount,tpcount;		/* Number of pages to check */
1242 	static int fullintervalcount = 0;
1243 	int page_shortage;
1244 
1245 	page_shortage =
1246 	    (vmstats.v_inactive_target + vmstats.v_cache_max + vmstats.v_free_min) -
1247 	    (vmstats.v_free_count + vmstats.v_inactive_count + vmstats.v_cache_count);
1248 
1249 	if (page_shortage <= 0)
1250 		return;
1251 
1252 	crit_enter();
1253 
1254 	pcount = vmstats.v_active_count;
1255 	fullintervalcount += vm_pageout_stats_interval;
1256 	if (fullintervalcount < vm_pageout_full_stats_interval) {
1257 		tpcount = (vm_pageout_stats_max * vmstats.v_active_count) / vmstats.v_page_count;
1258 		if (pcount > tpcount)
1259 			pcount = tpcount;
1260 	} else {
1261 		fullintervalcount = 0;
1262 	}
1263 
1264 	m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1265 	while ((m != NULL) && (pcount-- > 0)) {
1266 		int actcount;
1267 
1268 		if (m->queue != PQ_ACTIVE) {
1269 			break;
1270 		}
1271 
1272 		next = TAILQ_NEXT(m, pageq);
1273 		/*
1274 		 * Don't deactivate pages that are busy.
1275 		 */
1276 		if ((m->busy != 0) ||
1277 		    (m->flags & PG_BUSY) ||
1278 		    (m->hold_count != 0)) {
1279 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1280 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1281 			m = next;
1282 			continue;
1283 		}
1284 
1285 		actcount = 0;
1286 		if (m->flags & PG_REFERENCED) {
1287 			vm_page_flag_clear(m, PG_REFERENCED);
1288 			actcount += 1;
1289 		}
1290 
1291 		actcount += pmap_ts_referenced(m);
1292 		if (actcount) {
1293 			m->act_count += ACT_ADVANCE + actcount;
1294 			if (m->act_count > ACT_MAX)
1295 				m->act_count = ACT_MAX;
1296 			TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1297 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1298 		} else {
1299 			if (m->act_count == 0) {
1300 				/*
1301 				 * We turn off page access, so that we have
1302 				 * more accurate RSS stats.  We don't do this
1303 				 * in the normal page deactivation when the
1304 				 * system is loaded VM wise, because the
1305 				 * cost of the large number of page protect
1306 				 * operations would be higher than the value
1307 				 * of doing the operation.
1308 				 */
1309 				vm_page_protect(m, VM_PROT_NONE);
1310 				vm_page_deactivate(m);
1311 			} else {
1312 				m->act_count -= min(m->act_count, ACT_DECLINE);
1313 				TAILQ_REMOVE(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1314 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1315 			}
1316 		}
1317 
1318 		m = next;
1319 	}
1320 	crit_exit();
1321 }
1322 
1323 static int
1324 vm_pageout_free_page_calc(vm_size_t count)
1325 {
1326 	if (count < vmstats.v_page_count)
1327 		 return 0;
1328 	/*
1329 	 * free_reserved needs to include enough for the largest swap pager
1330 	 * structures plus enough for any pv_entry structs when paging.
1331 	 */
1332 	if (vmstats.v_page_count > 1024)
1333 		vmstats.v_free_min = 4 + (vmstats.v_page_count - 1024) / 200;
1334 	else
1335 		vmstats.v_free_min = 4;
1336 	vmstats.v_pageout_free_min = (2*MAXBSIZE)/PAGE_SIZE +
1337 		vmstats.v_interrupt_free_min;
1338 	vmstats.v_free_reserved = vm_pageout_page_count +
1339 		vmstats.v_pageout_free_min + (count / 768) + PQ_L2_SIZE;
1340 	vmstats.v_free_severe = vmstats.v_free_min / 2;
1341 	vmstats.v_free_min += vmstats.v_free_reserved;
1342 	vmstats.v_free_severe += vmstats.v_free_reserved;
1343 	return 1;
1344 }
1345 
1346 
1347 /*
1348  *	vm_pageout is the high level pageout daemon.
1349  */
1350 static void
1351 vm_pageout(void)
1352 {
1353 	int pass;
1354 
1355 	/*
1356 	 * Initialize some paging parameters.
1357 	 */
1358 
1359 	vmstats.v_interrupt_free_min = 2;
1360 	if (vmstats.v_page_count < 2000)
1361 		vm_pageout_page_count = 8;
1362 
1363 	vm_pageout_free_page_calc(vmstats.v_page_count);
1364 	/*
1365 	 * v_free_target and v_cache_min control pageout hysteresis.  Note
1366 	 * that these are more a measure of the VM cache queue hysteresis
1367 	 * then the VM free queue.  Specifically, v_free_target is the
1368 	 * high water mark (free+cache pages).
1369 	 *
1370 	 * v_free_reserved + v_cache_min (mostly means v_cache_min) is the
1371 	 * low water mark, while v_free_min is the stop.  v_cache_min must
1372 	 * be big enough to handle memory needs while the pageout daemon
1373 	 * is signalled and run to free more pages.
1374 	 */
1375 	if (vmstats.v_free_count > 6144)
1376 		vmstats.v_free_target = 4 * vmstats.v_free_min + vmstats.v_free_reserved;
1377 	else
1378 		vmstats.v_free_target = 2 * vmstats.v_free_min + vmstats.v_free_reserved;
1379 
1380 	if (vmstats.v_free_count > 2048) {
1381 		vmstats.v_cache_min = vmstats.v_free_target;
1382 		vmstats.v_cache_max = 2 * vmstats.v_cache_min;
1383 		vmstats.v_inactive_target = (3 * vmstats.v_free_target) / 2;
1384 	} else {
1385 		vmstats.v_cache_min = 0;
1386 		vmstats.v_cache_max = 0;
1387 		vmstats.v_inactive_target = vmstats.v_free_count / 4;
1388 	}
1389 	if (vmstats.v_inactive_target > vmstats.v_free_count / 3)
1390 		vmstats.v_inactive_target = vmstats.v_free_count / 3;
1391 
1392 	/* XXX does not really belong here */
1393 	if (vm_page_max_wired == 0)
1394 		vm_page_max_wired = vmstats.v_free_count / 3;
1395 
1396 	if (vm_pageout_stats_max == 0)
1397 		vm_pageout_stats_max = vmstats.v_free_target;
1398 
1399 	/*
1400 	 * Set interval in seconds for stats scan.
1401 	 */
1402 	if (vm_pageout_stats_interval == 0)
1403 		vm_pageout_stats_interval = 5;
1404 	if (vm_pageout_full_stats_interval == 0)
1405 		vm_pageout_full_stats_interval = vm_pageout_stats_interval * 4;
1406 
1407 
1408 	/*
1409 	 * Set maximum free per pass
1410 	 */
1411 	if (vm_pageout_stats_free_max == 0)
1412 		vm_pageout_stats_free_max = 5;
1413 
1414 	swap_pager_swap_init();
1415 	pass = 0;
1416 	/*
1417 	 * The pageout daemon is never done, so loop forever.
1418 	 */
1419 	while (TRUE) {
1420 		int error;
1421 
1422 		/*
1423 		 * If we have enough free memory, wakeup waiters.  Do
1424 		 * not clear vm_pages_needed until we reach our target,
1425 		 * otherwise we may be woken up over and over again and
1426 		 * waste a lot of cpu.
1427 		 */
1428 		crit_enter();
1429 		if (vm_pages_needed && !vm_page_count_min()) {
1430 			if (vm_paging_needed() <= 0)
1431 				vm_pages_needed = 0;
1432 			wakeup(&vmstats.v_free_count);
1433 		}
1434 		if (vm_pages_needed) {
1435 			/*
1436 			 * Still not done, take a second pass without waiting
1437 			 * (unlimited dirty cleaning), otherwise sleep a bit
1438 			 * and try again.
1439 			 */
1440 			++pass;
1441 			if (pass > 1)
1442 				tsleep(&vm_pages_needed, 0, "psleep", hz/2);
1443 		} else {
1444 			/*
1445 			 * Good enough, sleep & handle stats.  Prime the pass
1446 			 * for the next run.
1447 			 */
1448 			if (pass > 1)
1449 				pass = 1;
1450 			else
1451 				pass = 0;
1452 			error = tsleep(&vm_pages_needed,
1453 				0, "psleep", vm_pageout_stats_interval * hz);
1454 			if (error && !vm_pages_needed) {
1455 				crit_exit();
1456 				pass = 0;
1457 				vm_pageout_page_stats();
1458 				continue;
1459 			}
1460 		}
1461 
1462 		if (vm_pages_needed)
1463 			mycpu->gd_cnt.v_pdwakeups++;
1464 		crit_exit();
1465 		vm_pageout_scan(pass);
1466 		vm_pageout_deficit = 0;
1467 	}
1468 }
1469 
1470 void
1471 pagedaemon_wakeup(void)
1472 {
1473 	if (!vm_pages_needed && curthread != pagethread) {
1474 		vm_pages_needed++;
1475 		wakeup(&vm_pages_needed);
1476 	}
1477 }
1478 
1479 #if !defined(NO_SWAPPING)
1480 static void
1481 vm_req_vmdaemon(void)
1482 {
1483 	static int lastrun = 0;
1484 
1485 	if ((ticks > (lastrun + hz)) || (ticks < lastrun)) {
1486 		wakeup(&vm_daemon_needed);
1487 		lastrun = ticks;
1488 	}
1489 }
1490 
1491 static int vm_daemon_callback(struct proc *p, void *data __unused);
1492 
1493 static void
1494 vm_daemon(void)
1495 {
1496 	while (TRUE) {
1497 		tsleep(&vm_daemon_needed, 0, "psleep", 0);
1498 		if (vm_pageout_req_swapout) {
1499 			swapout_procs(vm_pageout_req_swapout);
1500 			vm_pageout_req_swapout = 0;
1501 		}
1502 		/*
1503 		 * scan the processes for exceeding their rlimits or if
1504 		 * process is swapped out -- deactivate pages
1505 		 */
1506 		allproc_scan(vm_daemon_callback, NULL);
1507 	}
1508 }
1509 
1510 static int
1511 vm_daemon_callback(struct proc *p, void *data __unused)
1512 {
1513 	vm_pindex_t limit, size;
1514 
1515 	/*
1516 	 * if this is a system process or if we have already
1517 	 * looked at this process, skip it.
1518 	 */
1519 	if (p->p_flag & (P_SYSTEM | P_WEXIT))
1520 		return (0);
1521 
1522 	/*
1523 	 * if the process is in a non-running type state,
1524 	 * don't touch it.
1525 	 */
1526 	if (p->p_stat != SRUN && p->p_stat != SSLEEP)
1527 		return (0);
1528 
1529 	/*
1530 	 * get a limit
1531 	 */
1532 	limit = OFF_TO_IDX(qmin(p->p_rlimit[RLIMIT_RSS].rlim_cur,
1533 			        p->p_rlimit[RLIMIT_RSS].rlim_max));
1534 
1535 	/*
1536 	 * let processes that are swapped out really be
1537 	 * swapped out.  Set the limit to nothing to get as
1538 	 * many pages out to swap as possible.
1539 	 */
1540 	if (p->p_flag & P_SWAPPEDOUT)
1541 		limit = 0;
1542 
1543 	size = vmspace_resident_count(p->p_vmspace);
1544 	if (limit >= 0 && size >= limit) {
1545 		vm_pageout_map_deactivate_pages(
1546 		    &p->p_vmspace->vm_map, limit);
1547 	}
1548 	return (0);
1549 }
1550 
1551 #endif
1552