1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 36 */ 37 38 /* 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 /* 65 * Resident memory management module. The module manipulates 'VM pages'. 66 * A VM page is the core building block for memory management. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/vnode.h> 75 #include <sys/kernel.h> 76 #include <sys/alist.h> 77 #include <sys/sysctl.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <sys/lock.h> 82 #include <vm/vm_kern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_extern.h> 90 #include <vm/swap_pager.h> 91 92 #include <machine/inttypes.h> 93 #include <machine/md_var.h> 94 95 #include <vm/vm_page2.h> 96 #include <sys/spinlock2.h> 97 98 #define VMACTION_HSIZE 256 99 #define VMACTION_HMASK (VMACTION_HSIZE - 1) 100 101 static void vm_page_queue_init(void); 102 static void vm_page_free_wakeup(void); 103 static vm_page_t vm_page_select_cache(u_short pg_color); 104 static vm_page_t _vm_page_list_find2(int basequeue, int index); 105 static void _vm_page_deactivate_locked(vm_page_t m, int athead); 106 107 /* 108 * Array of tailq lists 109 */ 110 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT]; 111 112 LIST_HEAD(vm_page_action_list, vm_page_action); 113 struct vm_page_action_list action_list[VMACTION_HSIZE]; 114 static volatile int vm_pages_waiting; 115 116 static struct alist vm_contig_alist; 117 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536]; 118 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin); 119 120 static u_long vm_dma_reserved = 0; 121 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved); 122 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0, 123 "Memory reserved for DMA"); 124 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD, 125 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA"); 126 127 static int vm_contig_verbose = 0; 128 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose); 129 130 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 131 vm_pindex_t, pindex); 132 133 static void 134 vm_page_queue_init(void) 135 { 136 int i; 137 138 for (i = 0; i < PQ_L2_SIZE; i++) 139 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count; 140 for (i = 0; i < PQ_L2_SIZE; i++) 141 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count; 142 for (i = 0; i < PQ_L2_SIZE; i++) 143 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count; 144 for (i = 0; i < PQ_L2_SIZE; i++) 145 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count; 146 for (i = 0; i < PQ_L2_SIZE; i++) 147 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count; 148 /* PQ_NONE has no queue */ 149 150 for (i = 0; i < PQ_COUNT; i++) { 151 TAILQ_INIT(&vm_page_queues[i].pl); 152 spin_init(&vm_page_queues[i].spin); 153 } 154 155 for (i = 0; i < VMACTION_HSIZE; i++) 156 LIST_INIT(&action_list[i]); 157 } 158 159 /* 160 * note: place in initialized data section? Is this necessary? 161 */ 162 long first_page = 0; 163 int vm_page_array_size = 0; 164 int vm_page_zero_count = 0; 165 vm_page_t vm_page_array = NULL; 166 vm_paddr_t vm_low_phys_reserved; 167 168 /* 169 * (low level boot) 170 * 171 * Sets the page size, perhaps based upon the memory size. 172 * Must be called before any use of page-size dependent functions. 173 */ 174 void 175 vm_set_page_size(void) 176 { 177 if (vmstats.v_page_size == 0) 178 vmstats.v_page_size = PAGE_SIZE; 179 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 180 panic("vm_set_page_size: page size not a power of two"); 181 } 182 183 /* 184 * (low level boot) 185 * 186 * Add a new page to the freelist for use by the system. New pages 187 * are added to both the head and tail of the associated free page 188 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 189 * requests pull 'recent' adds (higher physical addresses) first. 190 * 191 * Beware that the page zeroing daemon will also be running soon after 192 * boot, moving pages from the head to the tail of the PQ_FREE queues. 193 * 194 * Must be called in a critical section. 195 */ 196 static void 197 vm_add_new_page(vm_paddr_t pa) 198 { 199 struct vpgqueues *vpq; 200 vm_page_t m; 201 202 m = PHYS_TO_VM_PAGE(pa); 203 m->phys_addr = pa; 204 m->flags = 0; 205 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK; 206 /* 207 * Twist for cpu localization in addition to page coloring, so 208 * different cpus selecting by m->queue get different page colors. 209 */ 210 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK; 211 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK; 212 /* 213 * Reserve a certain number of contiguous low memory pages for 214 * contigmalloc() to use. 215 */ 216 if (pa < vm_low_phys_reserved) { 217 atomic_add_int(&vmstats.v_page_count, 1); 218 atomic_add_int(&vmstats.v_dma_pages, 1); 219 m->queue = PQ_NONE; 220 m->wire_count = 1; 221 atomic_add_int(&vmstats.v_wire_count, 1); 222 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1); 223 return; 224 } 225 226 /* 227 * General page 228 */ 229 m->queue = m->pc + PQ_FREE; 230 KKASSERT(m->dirty == 0); 231 232 atomic_add_int(&vmstats.v_page_count, 1); 233 atomic_add_int(&vmstats.v_free_count, 1); 234 vpq = &vm_page_queues[m->queue]; 235 if ((vpq->flipflop & 15) == 0) { 236 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 237 m->flags |= PG_ZERO; 238 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 239 atomic_add_int(&vm_page_zero_count, 1); 240 } else { 241 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 242 } 243 ++vpq->flipflop; 244 ++vpq->lcnt; 245 } 246 247 /* 248 * (low level boot) 249 * 250 * Initializes the resident memory module. 251 * 252 * Preallocates memory for critical VM structures and arrays prior to 253 * kernel_map becoming available. 254 * 255 * Memory is allocated from (virtual2_start, virtual2_end) if available, 256 * otherwise memory is allocated from (virtual_start, virtual_end). 257 * 258 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be 259 * large enough to hold vm_page_array & other structures for machines with 260 * large amounts of ram, so we want to use virtual2* when available. 261 */ 262 void 263 vm_page_startup(void) 264 { 265 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start; 266 vm_offset_t mapped; 267 vm_size_t npages; 268 vm_paddr_t page_range; 269 vm_paddr_t new_end; 270 int i; 271 vm_paddr_t pa; 272 int nblocks; 273 vm_paddr_t last_pa; 274 vm_paddr_t end; 275 vm_paddr_t biggestone, biggestsize; 276 vm_paddr_t total; 277 278 total = 0; 279 biggestsize = 0; 280 biggestone = 0; 281 nblocks = 0; 282 vaddr = round_page(vaddr); 283 284 for (i = 0; phys_avail[i + 1]; i += 2) { 285 phys_avail[i] = round_page64(phys_avail[i]); 286 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]); 287 } 288 289 for (i = 0; phys_avail[i + 1]; i += 2) { 290 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 291 292 if (size > biggestsize) { 293 biggestone = i; 294 biggestsize = size; 295 } 296 ++nblocks; 297 total += size; 298 } 299 300 end = phys_avail[biggestone+1]; 301 end = trunc_page(end); 302 303 /* 304 * Initialize the queue headers for the free queue, the active queue 305 * and the inactive queue. 306 */ 307 vm_page_queue_init(); 308 309 #if !defined(_KERNEL_VIRTUAL) 310 /* 311 * VKERNELs don't support minidumps and as such don't need 312 * vm_page_dump 313 * 314 * Allocate a bitmap to indicate that a random physical page 315 * needs to be included in a minidump. 316 * 317 * The amd64 port needs this to indicate which direct map pages 318 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 319 * 320 * However, i386 still needs this workspace internally within the 321 * minidump code. In theory, they are not needed on i386, but are 322 * included should the sf_buf code decide to use them. 323 */ 324 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 325 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 326 end -= vm_page_dump_size; 327 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size, 328 VM_PROT_READ | VM_PROT_WRITE); 329 bzero((void *)vm_page_dump, vm_page_dump_size); 330 #endif 331 /* 332 * Compute the number of pages of memory that will be available for 333 * use (taking into account the overhead of a page structure per 334 * page). 335 */ 336 first_page = phys_avail[0] / PAGE_SIZE; 337 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 338 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 339 340 #ifndef _KERNEL_VIRTUAL 341 /* 342 * (only applies to real kernels) 343 * 344 * Initialize the contiguous reserve map. We initially reserve up 345 * to 1/4 available physical memory or 65536 pages (~256MB), whichever 346 * is lower. 347 * 348 * Once device initialization is complete we return most of the 349 * reserved memory back to the normal page queues but leave some 350 * in reserve for things like usb attachments. 351 */ 352 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT; 353 if (vm_low_phys_reserved > total / 4) 354 vm_low_phys_reserved = total / 4; 355 if (vm_dma_reserved == 0) { 356 vm_dma_reserved = 16 * 1024 * 1024; /* 16MB */ 357 if (vm_dma_reserved > total / 16) 358 vm_dma_reserved = total / 16; 359 } 360 #endif 361 alist_init(&vm_contig_alist, 65536, vm_contig_ameta, 362 ALIST_RECORDS_65536); 363 364 /* 365 * Initialize the mem entry structures now, and put them in the free 366 * queue. 367 */ 368 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 369 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); 370 vm_page_array = (vm_page_t)mapped; 371 372 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL) 373 /* 374 * since pmap_map on amd64 returns stuff out of a direct-map region, 375 * we have to manually add these pages to the minidump tracking so 376 * that they can be dumped, including the vm_page_array. 377 */ 378 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 379 dump_add_page(pa); 380 #endif 381 382 /* 383 * Clear all of the page structures 384 */ 385 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 386 vm_page_array_size = page_range; 387 388 /* 389 * Construct the free queue(s) in ascending order (by physical 390 * address) so that the first 16MB of physical memory is allocated 391 * last rather than first. On large-memory machines, this avoids 392 * the exhaustion of low physical memory before isa_dmainit has run. 393 */ 394 vmstats.v_page_count = 0; 395 vmstats.v_free_count = 0; 396 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 397 pa = phys_avail[i]; 398 if (i == biggestone) 399 last_pa = new_end; 400 else 401 last_pa = phys_avail[i + 1]; 402 while (pa < last_pa && npages-- > 0) { 403 vm_add_new_page(pa); 404 pa += PAGE_SIZE; 405 } 406 } 407 if (virtual2_start) 408 virtual2_start = vaddr; 409 else 410 virtual_start = vaddr; 411 } 412 413 /* 414 * We tended to reserve a ton of memory for contigmalloc(). Now that most 415 * drivers have initialized we want to return most the remaining free 416 * reserve back to the VM page queues so they can be used for normal 417 * allocations. 418 * 419 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool. 420 */ 421 static void 422 vm_page_startup_finish(void *dummy __unused) 423 { 424 alist_blk_t blk; 425 alist_blk_t rblk; 426 alist_blk_t count; 427 alist_blk_t xcount; 428 alist_blk_t bfree; 429 vm_page_t m; 430 431 spin_lock(&vm_contig_spin); 432 for (;;) { 433 bfree = alist_free_info(&vm_contig_alist, &blk, &count); 434 if (bfree <= vm_dma_reserved / PAGE_SIZE) 435 break; 436 if (count == 0) 437 break; 438 439 /* 440 * Figure out how much of the initial reserve we have to 441 * free in order to reach our target. 442 */ 443 bfree -= vm_dma_reserved / PAGE_SIZE; 444 if (count > bfree) { 445 blk += count - bfree; 446 count = bfree; 447 } 448 449 /* 450 * Calculate the nearest power of 2 <= count. 451 */ 452 for (xcount = 1; xcount <= count; xcount <<= 1) 453 ; 454 xcount >>= 1; 455 blk += count - xcount; 456 count = xcount; 457 458 /* 459 * Allocate the pages from the alist, then free them to 460 * the normal VM page queues. 461 * 462 * Pages allocated from the alist are wired. We have to 463 * busy, unwire, and free them. We must also adjust 464 * vm_low_phys_reserved before freeing any pages to prevent 465 * confusion. 466 */ 467 rblk = alist_alloc(&vm_contig_alist, blk, count); 468 if (rblk != blk) { 469 kprintf("vm_page_startup_finish: Unable to return " 470 "dma space @0x%08x/%d -> 0x%08x\n", 471 blk, count, rblk); 472 break; 473 } 474 atomic_add_int(&vmstats.v_dma_pages, -count); 475 spin_unlock(&vm_contig_spin); 476 477 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 478 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m); 479 while (count) { 480 vm_page_busy_wait(m, FALSE, "cpgfr"); 481 vm_page_unwire(m, 0); 482 vm_page_free(m); 483 --count; 484 ++m; 485 } 486 spin_lock(&vm_contig_spin); 487 } 488 spin_unlock(&vm_contig_spin); 489 490 /* 491 * Print out how much DMA space drivers have already allocated and 492 * how much is left over. 493 */ 494 kprintf("DMA space used: %jdk, remaining available: %jdk\n", 495 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) * 496 (PAGE_SIZE / 1024), 497 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024)); 498 } 499 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY, 500 vm_page_startup_finish, NULL) 501 502 503 /* 504 * Scan comparison function for Red-Black tree scans. An inclusive 505 * (start,end) is expected. Other fields are not used. 506 */ 507 int 508 rb_vm_page_scancmp(struct vm_page *p, void *data) 509 { 510 struct rb_vm_page_scan_info *info = data; 511 512 if (p->pindex < info->start_pindex) 513 return(-1); 514 if (p->pindex > info->end_pindex) 515 return(1); 516 return(0); 517 } 518 519 int 520 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 521 { 522 if (p1->pindex < p2->pindex) 523 return(-1); 524 if (p1->pindex > p2->pindex) 525 return(1); 526 return(0); 527 } 528 529 /* 530 * Each page queue has its own spin lock, which is fairly optimal for 531 * allocating and freeing pages at least. 532 * 533 * The caller must hold the vm_page_spin_lock() before locking a vm_page's 534 * queue spinlock via this function. Also note that m->queue cannot change 535 * unless both the page and queue are locked. 536 */ 537 static __inline 538 void 539 _vm_page_queue_spin_lock(vm_page_t m) 540 { 541 u_short queue; 542 543 queue = m->queue; 544 if (queue != PQ_NONE) { 545 spin_lock(&vm_page_queues[queue].spin); 546 KKASSERT(queue == m->queue); 547 } 548 } 549 550 static __inline 551 void 552 _vm_page_queue_spin_unlock(vm_page_t m) 553 { 554 u_short queue; 555 556 queue = m->queue; 557 cpu_ccfence(); 558 if (queue != PQ_NONE) 559 spin_unlock(&vm_page_queues[queue].spin); 560 } 561 562 static __inline 563 void 564 _vm_page_queues_spin_lock(u_short queue) 565 { 566 cpu_ccfence(); 567 if (queue != PQ_NONE) 568 spin_lock(&vm_page_queues[queue].spin); 569 } 570 571 572 static __inline 573 void 574 _vm_page_queues_spin_unlock(u_short queue) 575 { 576 cpu_ccfence(); 577 if (queue != PQ_NONE) 578 spin_unlock(&vm_page_queues[queue].spin); 579 } 580 581 void 582 vm_page_queue_spin_lock(vm_page_t m) 583 { 584 _vm_page_queue_spin_lock(m); 585 } 586 587 void 588 vm_page_queues_spin_lock(u_short queue) 589 { 590 _vm_page_queues_spin_lock(queue); 591 } 592 593 void 594 vm_page_queue_spin_unlock(vm_page_t m) 595 { 596 _vm_page_queue_spin_unlock(m); 597 } 598 599 void 600 vm_page_queues_spin_unlock(u_short queue) 601 { 602 _vm_page_queues_spin_unlock(queue); 603 } 604 605 /* 606 * This locks the specified vm_page and its queue in the proper order 607 * (page first, then queue). The queue may change so the caller must 608 * recheck on return. 609 */ 610 static __inline 611 void 612 _vm_page_and_queue_spin_lock(vm_page_t m) 613 { 614 vm_page_spin_lock(m); 615 _vm_page_queue_spin_lock(m); 616 } 617 618 static __inline 619 void 620 _vm_page_and_queue_spin_unlock(vm_page_t m) 621 { 622 _vm_page_queues_spin_unlock(m->queue); 623 vm_page_spin_unlock(m); 624 } 625 626 void 627 vm_page_and_queue_spin_unlock(vm_page_t m) 628 { 629 _vm_page_and_queue_spin_unlock(m); 630 } 631 632 void 633 vm_page_and_queue_spin_lock(vm_page_t m) 634 { 635 _vm_page_and_queue_spin_lock(m); 636 } 637 638 /* 639 * Helper function removes vm_page from its current queue. 640 * Returns the base queue the page used to be on. 641 * 642 * The vm_page and the queue must be spinlocked. 643 * This function will unlock the queue but leave the page spinlocked. 644 */ 645 static __inline u_short 646 _vm_page_rem_queue_spinlocked(vm_page_t m) 647 { 648 struct vpgqueues *pq; 649 u_short queue; 650 651 queue = m->queue; 652 if (queue != PQ_NONE) { 653 pq = &vm_page_queues[queue]; 654 TAILQ_REMOVE(&pq->pl, m, pageq); 655 atomic_add_int(pq->cnt, -1); 656 pq->lcnt--; 657 m->queue = PQ_NONE; 658 vm_page_queues_spin_unlock(queue); 659 if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO)) 660 atomic_subtract_int(&vm_page_zero_count, 1); 661 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE) 662 return (queue - m->pc); 663 } 664 return queue; 665 } 666 667 /* 668 * Helper function places the vm_page on the specified queue. 669 * 670 * The vm_page must be spinlocked. 671 * This function will return with both the page and the queue locked. 672 */ 673 static __inline void 674 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead) 675 { 676 struct vpgqueues *pq; 677 678 KKASSERT(m->queue == PQ_NONE); 679 680 if (queue != PQ_NONE) { 681 vm_page_queues_spin_lock(queue); 682 pq = &vm_page_queues[queue]; 683 ++pq->lcnt; 684 atomic_add_int(pq->cnt, 1); 685 m->queue = queue; 686 687 /* 688 * Put zero'd pages on the end ( where we look for zero'd pages 689 * first ) and non-zerod pages at the head. 690 */ 691 if (queue - m->pc == PQ_FREE) { 692 if (m->flags & PG_ZERO) { 693 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 694 atomic_add_int(&vm_page_zero_count, 1); 695 } else { 696 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 697 } 698 } else if (athead) { 699 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 700 } else { 701 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 702 } 703 /* leave the queue spinlocked */ 704 } 705 } 706 707 /* 708 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 709 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we 710 * did not. Only one sleep call will be made before returning. 711 * 712 * This function does NOT busy the page and on return the page is not 713 * guaranteed to be available. 714 */ 715 void 716 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 717 { 718 u_int32_t flags; 719 720 for (;;) { 721 flags = m->flags; 722 cpu_ccfence(); 723 724 if ((flags & PG_BUSY) == 0 && 725 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) { 726 break; 727 } 728 tsleep_interlock(m, 0); 729 if (atomic_cmpset_int(&m->flags, flags, 730 flags | PG_WANTED | PG_REFERENCED)) { 731 tsleep(m, PINTERLOCKED, msg, 0); 732 break; 733 } 734 } 735 } 736 737 /* 738 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we 739 * also wait for m->busy to become 0 before setting PG_BUSY. 740 */ 741 void 742 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m, 743 int also_m_busy, const char *msg 744 VM_PAGE_DEBUG_ARGS) 745 { 746 u_int32_t flags; 747 748 for (;;) { 749 flags = m->flags; 750 cpu_ccfence(); 751 if (flags & PG_BUSY) { 752 tsleep_interlock(m, 0); 753 if (atomic_cmpset_int(&m->flags, flags, 754 flags | PG_WANTED | PG_REFERENCED)) { 755 tsleep(m, PINTERLOCKED, msg, 0); 756 } 757 } else if (also_m_busy && (flags & PG_SBUSY)) { 758 tsleep_interlock(m, 0); 759 if (atomic_cmpset_int(&m->flags, flags, 760 flags | PG_WANTED | PG_REFERENCED)) { 761 tsleep(m, PINTERLOCKED, msg, 0); 762 } 763 } else { 764 if (atomic_cmpset_int(&m->flags, flags, 765 flags | PG_BUSY)) { 766 #ifdef VM_PAGE_DEBUG 767 m->busy_func = func; 768 m->busy_line = lineno; 769 #endif 770 break; 771 } 772 } 773 } 774 } 775 776 /* 777 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy 778 * is also 0. 779 * 780 * Returns non-zero on failure. 781 */ 782 int 783 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy 784 VM_PAGE_DEBUG_ARGS) 785 { 786 u_int32_t flags; 787 788 for (;;) { 789 flags = m->flags; 790 cpu_ccfence(); 791 if (flags & PG_BUSY) 792 return TRUE; 793 if (also_m_busy && (flags & PG_SBUSY)) 794 return TRUE; 795 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 796 #ifdef VM_PAGE_DEBUG 797 m->busy_func = func; 798 m->busy_line = lineno; 799 #endif 800 return FALSE; 801 } 802 } 803 } 804 805 /* 806 * Clear the PG_BUSY flag and return non-zero to indicate to the caller 807 * that a wakeup() should be performed. 808 * 809 * The vm_page must be spinlocked and will remain spinlocked on return. 810 * The related queue must NOT be spinlocked (which could deadlock us). 811 * 812 * (inline version) 813 */ 814 static __inline 815 int 816 _vm_page_wakeup(vm_page_t m) 817 { 818 u_int32_t flags; 819 820 for (;;) { 821 flags = m->flags; 822 cpu_ccfence(); 823 if (atomic_cmpset_int(&m->flags, flags, 824 flags & ~(PG_BUSY | PG_WANTED))) { 825 break; 826 } 827 } 828 return(flags & PG_WANTED); 829 } 830 831 /* 832 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This 833 * is typically the last call you make on a page before moving onto 834 * other things. 835 */ 836 void 837 vm_page_wakeup(vm_page_t m) 838 { 839 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 840 vm_page_spin_lock(m); 841 if (_vm_page_wakeup(m)) { 842 vm_page_spin_unlock(m); 843 wakeup(m); 844 } else { 845 vm_page_spin_unlock(m); 846 } 847 } 848 849 /* 850 * Holding a page keeps it from being reused. Other parts of the system 851 * can still disassociate the page from its current object and free it, or 852 * perform read or write I/O on it and/or otherwise manipulate the page, 853 * but if the page is held the VM system will leave the page and its data 854 * intact and not reuse the page for other purposes until the last hold 855 * reference is released. (see vm_page_wire() if you want to prevent the 856 * page from being disassociated from its object too). 857 * 858 * The caller must still validate the contents of the page and, if necessary, 859 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete 860 * before manipulating the page. 861 * 862 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary 863 */ 864 void 865 vm_page_hold(vm_page_t m) 866 { 867 vm_page_spin_lock(m); 868 atomic_add_int(&m->hold_count, 1); 869 if (m->queue - m->pc == PQ_FREE) { 870 _vm_page_queue_spin_lock(m); 871 _vm_page_rem_queue_spinlocked(m); 872 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 873 _vm_page_queue_spin_unlock(m); 874 } 875 vm_page_spin_unlock(m); 876 } 877 878 /* 879 * The opposite of vm_page_hold(). A page can be freed while being held, 880 * which places it on the PQ_HOLD queue. If we are able to busy the page 881 * after the hold count drops to zero we will move the page to the 882 * appropriate PQ_FREE queue by calling vm_page_free_toq(). 883 */ 884 void 885 vm_page_unhold(vm_page_t m) 886 { 887 vm_page_spin_lock(m); 888 atomic_add_int(&m->hold_count, -1); 889 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) { 890 _vm_page_queue_spin_lock(m); 891 _vm_page_rem_queue_spinlocked(m); 892 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 893 _vm_page_queue_spin_unlock(m); 894 } 895 vm_page_spin_unlock(m); 896 } 897 898 /* 899 * Inserts the given vm_page into the object and object list. 900 * 901 * The pagetables are not updated but will presumably fault the page 902 * in if necessary, or if a kernel page the caller will at some point 903 * enter the page into the kernel's pmap. We are not allowed to block 904 * here so we *can't* do this anyway. 905 * 906 * This routine may not block. 907 * This routine must be called with the vm_object held. 908 * This routine must be called with a critical section held. 909 * 910 * This routine returns TRUE if the page was inserted into the object 911 * successfully, and FALSE if the page already exists in the object. 912 */ 913 int 914 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 915 { 916 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 917 if (m->object != NULL) 918 panic("vm_page_insert: already inserted"); 919 920 object->generation++; 921 922 /* 923 * Record the object/offset pair in this page and add the 924 * pv_list_count of the page to the object. 925 * 926 * The vm_page spin lock is required for interactions with the pmap. 927 */ 928 vm_page_spin_lock(m); 929 m->object = object; 930 m->pindex = pindex; 931 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) { 932 m->object = NULL; 933 m->pindex = 0; 934 vm_page_spin_unlock(m); 935 return FALSE; 936 } 937 object->resident_page_count++; 938 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */ 939 vm_page_spin_unlock(m); 940 941 /* 942 * Since we are inserting a new and possibly dirty page, 943 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 944 */ 945 if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE)) 946 vm_object_set_writeable_dirty(object); 947 948 /* 949 * Checks for a swap assignment and sets PG_SWAPPED if appropriate. 950 */ 951 swap_pager_page_inserted(m); 952 return TRUE; 953 } 954 955 /* 956 * Removes the given vm_page_t from the (object,index) table 957 * 958 * The underlying pmap entry (if any) is NOT removed here. 959 * This routine may not block. 960 * 961 * The page must be BUSY and will remain BUSY on return. 962 * No other requirements. 963 * 964 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave 965 * it busy. 966 */ 967 void 968 vm_page_remove(vm_page_t m) 969 { 970 vm_object_t object; 971 972 if (m->object == NULL) { 973 return; 974 } 975 976 if ((m->flags & PG_BUSY) == 0) 977 panic("vm_page_remove: page not busy"); 978 979 object = m->object; 980 981 vm_object_hold(object); 982 983 /* 984 * Remove the page from the object and update the object. 985 * 986 * The vm_page spin lock is required for interactions with the pmap. 987 */ 988 vm_page_spin_lock(m); 989 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 990 object->resident_page_count--; 991 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */ 992 m->object = NULL; 993 vm_page_spin_unlock(m); 994 995 object->generation++; 996 997 vm_object_drop(object); 998 } 999 1000 /* 1001 * Locate and return the page at (object, pindex), or NULL if the 1002 * page could not be found. 1003 * 1004 * The caller must hold the vm_object token. 1005 */ 1006 vm_page_t 1007 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1008 { 1009 vm_page_t m; 1010 1011 /* 1012 * Search the hash table for this object/offset pair 1013 */ 1014 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1015 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1016 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex)); 1017 return(m); 1018 } 1019 1020 vm_page_t 1021 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object, 1022 vm_pindex_t pindex, 1023 int also_m_busy, const char *msg 1024 VM_PAGE_DEBUG_ARGS) 1025 { 1026 u_int32_t flags; 1027 vm_page_t m; 1028 1029 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1030 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1031 while (m) { 1032 KKASSERT(m->object == object && m->pindex == pindex); 1033 flags = m->flags; 1034 cpu_ccfence(); 1035 if (flags & PG_BUSY) { 1036 tsleep_interlock(m, 0); 1037 if (atomic_cmpset_int(&m->flags, flags, 1038 flags | PG_WANTED | PG_REFERENCED)) { 1039 tsleep(m, PINTERLOCKED, msg, 0); 1040 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1041 pindex); 1042 } 1043 } else if (also_m_busy && (flags & PG_SBUSY)) { 1044 tsleep_interlock(m, 0); 1045 if (atomic_cmpset_int(&m->flags, flags, 1046 flags | PG_WANTED | PG_REFERENCED)) { 1047 tsleep(m, PINTERLOCKED, msg, 0); 1048 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1049 pindex); 1050 } 1051 } else if (atomic_cmpset_int(&m->flags, flags, 1052 flags | PG_BUSY)) { 1053 #ifdef VM_PAGE_DEBUG 1054 m->busy_func = func; 1055 m->busy_line = lineno; 1056 #endif 1057 break; 1058 } 1059 } 1060 return m; 1061 } 1062 1063 /* 1064 * Attempt to lookup and busy a page. 1065 * 1066 * Returns NULL if the page could not be found 1067 * 1068 * Returns a vm_page and error == TRUE if the page exists but could not 1069 * be busied. 1070 * 1071 * Returns a vm_page and error == FALSE on success. 1072 */ 1073 vm_page_t 1074 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object, 1075 vm_pindex_t pindex, 1076 int also_m_busy, int *errorp 1077 VM_PAGE_DEBUG_ARGS) 1078 { 1079 u_int32_t flags; 1080 vm_page_t m; 1081 1082 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1083 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1084 *errorp = FALSE; 1085 while (m) { 1086 KKASSERT(m->object == object && m->pindex == pindex); 1087 flags = m->flags; 1088 cpu_ccfence(); 1089 if (flags & PG_BUSY) { 1090 *errorp = TRUE; 1091 break; 1092 } 1093 if (also_m_busy && (flags & PG_SBUSY)) { 1094 *errorp = TRUE; 1095 break; 1096 } 1097 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 1098 #ifdef VM_PAGE_DEBUG 1099 m->busy_func = func; 1100 m->busy_line = lineno; 1101 #endif 1102 break; 1103 } 1104 } 1105 return m; 1106 } 1107 1108 /* 1109 * Caller must hold the related vm_object 1110 */ 1111 vm_page_t 1112 vm_page_next(vm_page_t m) 1113 { 1114 vm_page_t next; 1115 1116 next = vm_page_rb_tree_RB_NEXT(m); 1117 if (next && next->pindex != m->pindex + 1) 1118 next = NULL; 1119 return (next); 1120 } 1121 1122 /* 1123 * vm_page_rename() 1124 * 1125 * Move the given vm_page from its current object to the specified 1126 * target object/offset. The page must be busy and will remain so 1127 * on return. 1128 * 1129 * new_object must be held. 1130 * This routine might block. XXX ? 1131 * 1132 * NOTE: Swap associated with the page must be invalidated by the move. We 1133 * have to do this for several reasons: (1) we aren't freeing the 1134 * page, (2) we are dirtying the page, (3) the VM system is probably 1135 * moving the page from object A to B, and will then later move 1136 * the backing store from A to B and we can't have a conflict. 1137 * 1138 * NOTE: We *always* dirty the page. It is necessary both for the 1139 * fact that we moved it, and because we may be invalidating 1140 * swap. If the page is on the cache, we have to deactivate it 1141 * or vm_page_dirty() will panic. Dirty pages are not allowed 1142 * on the cache. 1143 */ 1144 void 1145 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1146 { 1147 KKASSERT(m->flags & PG_BUSY); 1148 ASSERT_LWKT_TOKEN_HELD(vm_object_token(new_object)); 1149 if (m->object) { 1150 ASSERT_LWKT_TOKEN_HELD(vm_object_token(m->object)); 1151 vm_page_remove(m); 1152 } 1153 if (vm_page_insert(m, new_object, new_pindex) == FALSE) { 1154 panic("vm_page_rename: target exists (%p,%"PRIu64")", 1155 new_object, new_pindex); 1156 } 1157 if (m->queue - m->pc == PQ_CACHE) 1158 vm_page_deactivate(m); 1159 vm_page_dirty(m); 1160 } 1161 1162 /* 1163 * vm_page_unqueue() without any wakeup. This routine is used when a page 1164 * is being moved between queues or otherwise is to remain BUSYied by the 1165 * caller. 1166 * 1167 * This routine may not block. 1168 */ 1169 void 1170 vm_page_unqueue_nowakeup(vm_page_t m) 1171 { 1172 vm_page_and_queue_spin_lock(m); 1173 (void)_vm_page_rem_queue_spinlocked(m); 1174 vm_page_spin_unlock(m); 1175 } 1176 1177 /* 1178 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 1179 * if necessary. 1180 * 1181 * This routine may not block. 1182 */ 1183 void 1184 vm_page_unqueue(vm_page_t m) 1185 { 1186 u_short queue; 1187 1188 vm_page_and_queue_spin_lock(m); 1189 queue = _vm_page_rem_queue_spinlocked(m); 1190 if (queue == PQ_FREE || queue == PQ_CACHE) { 1191 vm_page_spin_unlock(m); 1192 pagedaemon_wakeup(); 1193 } else { 1194 vm_page_spin_unlock(m); 1195 } 1196 } 1197 1198 /* 1199 * vm_page_list_find() 1200 * 1201 * Find a page on the specified queue with color optimization. 1202 * 1203 * The page coloring optimization attempts to locate a page that does 1204 * not overload other nearby pages in the object in the cpu's L1 or L2 1205 * caches. We need this optimization because cpu caches tend to be 1206 * physical caches, while object spaces tend to be virtual. 1207 * 1208 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock 1209 * and the algorithm is adjusted to localize allocations on a per-core basis. 1210 * This is done by 'twisting' the colors. 1211 * 1212 * The page is returned spinlocked and removed from its queue (it will 1213 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller 1214 * is responsible for dealing with the busy-page case (usually by 1215 * deactivating the page and looping). 1216 * 1217 * NOTE: This routine is carefully inlined. A non-inlined version 1218 * is available for outside callers but the only critical path is 1219 * from within this source file. 1220 * 1221 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE 1222 * represent stable storage, allowing us to order our locks vm_page 1223 * first, then queue. 1224 */ 1225 static __inline 1226 vm_page_t 1227 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1228 { 1229 vm_page_t m; 1230 1231 for (;;) { 1232 if (prefer_zero) 1233 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist); 1234 else 1235 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl); 1236 if (m == NULL) { 1237 m = _vm_page_list_find2(basequeue, index); 1238 return(m); 1239 } 1240 vm_page_and_queue_spin_lock(m); 1241 if (m->queue == basequeue + index) { 1242 _vm_page_rem_queue_spinlocked(m); 1243 /* vm_page_t spin held, no queue spin */ 1244 break; 1245 } 1246 vm_page_and_queue_spin_unlock(m); 1247 } 1248 return(m); 1249 } 1250 1251 static vm_page_t 1252 _vm_page_list_find2(int basequeue, int index) 1253 { 1254 int i; 1255 vm_page_t m = NULL; 1256 struct vpgqueues *pq; 1257 1258 pq = &vm_page_queues[basequeue]; 1259 1260 /* 1261 * Note that for the first loop, index+i and index-i wind up at the 1262 * same place. Even though this is not totally optimal, we've already 1263 * blown it by missing the cache case so we do not care. 1264 */ 1265 for (i = PQ_L2_SIZE / 2; i > 0; --i) { 1266 for (;;) { 1267 m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl); 1268 if (m) { 1269 _vm_page_and_queue_spin_lock(m); 1270 if (m->queue == 1271 basequeue + ((index + i) & PQ_L2_MASK)) { 1272 _vm_page_rem_queue_spinlocked(m); 1273 return(m); 1274 } 1275 _vm_page_and_queue_spin_unlock(m); 1276 continue; 1277 } 1278 m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl); 1279 if (m) { 1280 _vm_page_and_queue_spin_lock(m); 1281 if (m->queue == 1282 basequeue + ((index - i) & PQ_L2_MASK)) { 1283 _vm_page_rem_queue_spinlocked(m); 1284 return(m); 1285 } 1286 _vm_page_and_queue_spin_unlock(m); 1287 continue; 1288 } 1289 break; /* next i */ 1290 } 1291 } 1292 return(m); 1293 } 1294 1295 /* 1296 * Returns a vm_page candidate for allocation. The page is not busied so 1297 * it can move around. The caller must busy the page (and typically 1298 * deactivate it if it cannot be busied!) 1299 * 1300 * Returns a spinlocked vm_page that has been removed from its queue. 1301 */ 1302 vm_page_t 1303 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1304 { 1305 return(_vm_page_list_find(basequeue, index, prefer_zero)); 1306 } 1307 1308 /* 1309 * Find a page on the cache queue with color optimization, remove it 1310 * from the queue, and busy it. The returned page will not be spinlocked. 1311 * 1312 * A candidate failure will be deactivated. Candidates can fail due to 1313 * being busied by someone else, in which case they will be deactivated. 1314 * 1315 * This routine may not block. 1316 * 1317 */ 1318 static vm_page_t 1319 vm_page_select_cache(u_short pg_color) 1320 { 1321 vm_page_t m; 1322 1323 for (;;) { 1324 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE); 1325 if (m == NULL) 1326 break; 1327 /* 1328 * (m) has been removed from its queue and spinlocked 1329 */ 1330 if (vm_page_busy_try(m, TRUE)) { 1331 _vm_page_deactivate_locked(m, 0); 1332 vm_page_spin_unlock(m); 1333 #ifdef INVARIANTS 1334 kprintf("Warning: busy page %p found in cache\n", m); 1335 #endif 1336 } else { 1337 /* 1338 * We successfully busied the page 1339 */ 1340 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 && 1341 m->hold_count == 0 && 1342 m->wire_count == 0 && 1343 (m->dirty & m->valid) == 0) { 1344 vm_page_spin_unlock(m); 1345 pagedaemon_wakeup(); 1346 return(m); 1347 } 1348 1349 /* 1350 * The page cannot be recycled, deactivate it. 1351 */ 1352 _vm_page_deactivate_locked(m, 0); 1353 if (_vm_page_wakeup(m)) { 1354 vm_page_spin_unlock(m); 1355 wakeup(m); 1356 } else { 1357 vm_page_spin_unlock(m); 1358 } 1359 } 1360 } 1361 return (m); 1362 } 1363 1364 /* 1365 * Find a free or zero page, with specified preference. We attempt to 1366 * inline the nominal case and fall back to _vm_page_select_free() 1367 * otherwise. A busied page is removed from the queue and returned. 1368 * 1369 * This routine may not block. 1370 */ 1371 static __inline vm_page_t 1372 vm_page_select_free(u_short pg_color, boolean_t prefer_zero) 1373 { 1374 vm_page_t m; 1375 1376 for (;;) { 1377 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK, 1378 prefer_zero); 1379 if (m == NULL) 1380 break; 1381 if (vm_page_busy_try(m, TRUE)) { 1382 /* 1383 * Various mechanisms such as a pmap_collect can 1384 * result in a busy page on the free queue. We 1385 * have to move the page out of the way so we can 1386 * retry the allocation. If the other thread is not 1387 * allocating the page then m->valid will remain 0 and 1388 * the pageout daemon will free the page later on. 1389 * 1390 * Since we could not busy the page, however, we 1391 * cannot make assumptions as to whether the page 1392 * will be allocated by the other thread or not, 1393 * so all we can do is deactivate it to move it out 1394 * of the way. In particular, if the other thread 1395 * wires the page it may wind up on the inactive 1396 * queue and the pageout daemon will have to deal 1397 * with that case too. 1398 */ 1399 _vm_page_deactivate_locked(m, 0); 1400 vm_page_spin_unlock(m); 1401 #ifdef INVARIANTS 1402 kprintf("Warning: busy page %p found in cache\n", m); 1403 #endif 1404 } else { 1405 /* 1406 * Theoretically if we are able to busy the page 1407 * atomic with the queue removal (using the vm_page 1408 * lock) nobody else should be able to mess with the 1409 * page before us. 1410 */ 1411 KKASSERT((m->flags & (PG_UNMANAGED | 1412 PG_NEED_COMMIT)) == 0); 1413 KKASSERT(m->hold_count == 0); 1414 KKASSERT(m->wire_count == 0); 1415 vm_page_spin_unlock(m); 1416 pagedaemon_wakeup(); 1417 1418 /* return busied and removed page */ 1419 return(m); 1420 } 1421 } 1422 return(m); 1423 } 1424 1425 /* 1426 * This implements a per-cpu cache of free, zero'd, ready-to-go pages. 1427 * The idea is to populate this cache prior to acquiring any locks so 1428 * we don't wind up potentially zeroing VM pages (under heavy loads) while 1429 * holding potentialy contending locks. 1430 * 1431 * Note that we allocate the page uninserted into anything and use a pindex 1432 * of 0, the vm_page_alloc() will effectively add gd_cpuid so these 1433 * allocations should wind up being uncontended. However, we still want 1434 * to rove across PQ_L2_SIZE. 1435 */ 1436 void 1437 vm_page_pcpu_cache(void) 1438 { 1439 #if 0 1440 globaldata_t gd = mycpu; 1441 vm_page_t m; 1442 1443 if (gd->gd_vmpg_count < GD_MINVMPG) { 1444 crit_enter_gd(gd); 1445 while (gd->gd_vmpg_count < GD_MAXVMPG) { 1446 m = vm_page_alloc(NULL, ticks & ~ncpus2_mask, 1447 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL | 1448 VM_ALLOC_NULL_OK | VM_ALLOC_ZERO); 1449 if (gd->gd_vmpg_count < GD_MAXVMPG) { 1450 if ((m->flags & PG_ZERO) == 0) { 1451 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 1452 vm_page_flag_set(m, PG_ZERO); 1453 } 1454 gd->gd_vmpg_array[gd->gd_vmpg_count++] = m; 1455 } else { 1456 vm_page_free(m); 1457 } 1458 } 1459 crit_exit_gd(gd); 1460 } 1461 #endif 1462 } 1463 1464 /* 1465 * vm_page_alloc() 1466 * 1467 * Allocate and return a memory cell associated with this VM object/offset 1468 * pair. If object is NULL an unassociated page will be allocated. 1469 * 1470 * The returned page will be busied and removed from its queues. This 1471 * routine can block and may return NULL if a race occurs and the page 1472 * is found to already exist at the specified (object, pindex). 1473 * 1474 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 1475 * VM_ALLOC_QUICK like normal but cannot use cache 1476 * VM_ALLOC_SYSTEM greater free drain 1477 * VM_ALLOC_INTERRUPT allow free list to be completely drained 1478 * VM_ALLOC_ZERO advisory request for pre-zero'd page only 1479 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only 1480 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision 1481 * (see vm_page_grab()) 1482 * VM_ALLOC_USE_GD ok to use per-gd cache 1483 * 1484 * The object must be held if not NULL 1485 * This routine may not block 1486 * 1487 * Additional special handling is required when called from an interrupt 1488 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 1489 * in this case. 1490 */ 1491 vm_page_t 1492 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 1493 { 1494 globaldata_t gd = mycpu; 1495 vm_object_t obj; 1496 vm_page_t m; 1497 u_short pg_color; 1498 1499 #if 0 1500 /* 1501 * Special per-cpu free VM page cache. The pages are pre-busied 1502 * and pre-zerod for us. 1503 */ 1504 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) { 1505 crit_enter_gd(gd); 1506 if (gd->gd_vmpg_count) { 1507 m = gd->gd_vmpg_array[--gd->gd_vmpg_count]; 1508 crit_exit_gd(gd); 1509 goto done; 1510 } 1511 crit_exit_gd(gd); 1512 } 1513 #endif 1514 m = NULL; 1515 1516 /* 1517 * Cpu twist - cpu localization algorithm 1518 */ 1519 if (object) { 1520 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) + 1521 (object->pg_color & ~ncpus_fit_mask); 1522 } else { 1523 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask); 1524 } 1525 KKASSERT(page_req & 1526 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK| 1527 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 1528 1529 /* 1530 * Certain system threads (pageout daemon, buf_daemon's) are 1531 * allowed to eat deeper into the free page list. 1532 */ 1533 if (curthread->td_flags & TDF_SYSTHREAD) 1534 page_req |= VM_ALLOC_SYSTEM; 1535 1536 loop: 1537 if (vmstats.v_free_count > vmstats.v_free_reserved || 1538 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) || 1539 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 && 1540 vmstats.v_free_count > vmstats.v_interrupt_free_min) 1541 ) { 1542 /* 1543 * The free queue has sufficient free pages to take one out. 1544 */ 1545 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) 1546 m = vm_page_select_free(pg_color, TRUE); 1547 else 1548 m = vm_page_select_free(pg_color, FALSE); 1549 } else if (page_req & VM_ALLOC_NORMAL) { 1550 /* 1551 * Allocatable from the cache (non-interrupt only). On 1552 * success, we must free the page and try again, thus 1553 * ensuring that vmstats.v_*_free_min counters are replenished. 1554 */ 1555 #ifdef INVARIANTS 1556 if (curthread->td_preempted) { 1557 kprintf("vm_page_alloc(): warning, attempt to allocate" 1558 " cache page from preempting interrupt\n"); 1559 m = NULL; 1560 } else { 1561 m = vm_page_select_cache(pg_color); 1562 } 1563 #else 1564 m = vm_page_select_cache(pg_color); 1565 #endif 1566 /* 1567 * On success move the page into the free queue and loop. 1568 * 1569 * Only do this if we can safely acquire the vm_object lock, 1570 * because this is effectively a random page and the caller 1571 * might be holding the lock shared, we don't want to 1572 * deadlock. 1573 */ 1574 if (m != NULL) { 1575 KASSERT(m->dirty == 0, 1576 ("Found dirty cache page %p", m)); 1577 if ((obj = m->object) != NULL) { 1578 if (vm_object_hold_try(obj)) { 1579 vm_page_protect(m, VM_PROT_NONE); 1580 vm_page_free(m); 1581 /* m->object NULL here */ 1582 vm_object_drop(obj); 1583 } else { 1584 vm_page_deactivate(m); 1585 vm_page_wakeup(m); 1586 } 1587 } else { 1588 vm_page_protect(m, VM_PROT_NONE); 1589 vm_page_free(m); 1590 } 1591 goto loop; 1592 } 1593 1594 /* 1595 * On failure return NULL 1596 */ 1597 #if defined(DIAGNOSTIC) 1598 if (vmstats.v_cache_count > 0) 1599 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count); 1600 #endif 1601 vm_pageout_deficit++; 1602 pagedaemon_wakeup(); 1603 return (NULL); 1604 } else { 1605 /* 1606 * No pages available, wakeup the pageout daemon and give up. 1607 */ 1608 vm_pageout_deficit++; 1609 pagedaemon_wakeup(); 1610 return (NULL); 1611 } 1612 1613 /* 1614 * v_free_count can race so loop if we don't find the expected 1615 * page. 1616 */ 1617 if (m == NULL) 1618 goto loop; 1619 1620 /* 1621 * Good page found. The page has already been busied for us and 1622 * removed from its queues. 1623 */ 1624 KASSERT(m->dirty == 0, 1625 ("vm_page_alloc: free/cache page %p was dirty", m)); 1626 KKASSERT(m->queue == PQ_NONE); 1627 1628 #if 0 1629 done: 1630 #endif 1631 /* 1632 * Initialize the structure, inheriting some flags but clearing 1633 * all the rest. The page has already been busied for us. 1634 */ 1635 vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY)); 1636 KKASSERT(m->wire_count == 0); 1637 KKASSERT(m->busy == 0); 1638 m->act_count = 0; 1639 m->valid = 0; 1640 1641 /* 1642 * Caller must be holding the object lock (asserted by 1643 * vm_page_insert()). 1644 * 1645 * NOTE: Inserting a page here does not insert it into any pmaps 1646 * (which could cause us to block allocating memory). 1647 * 1648 * NOTE: If no object an unassociated page is allocated, m->pindex 1649 * can be used by the caller for any purpose. 1650 */ 1651 if (object) { 1652 if (vm_page_insert(m, object, pindex) == FALSE) { 1653 kprintf("PAGE RACE (%p:%d,%"PRIu64")\n", 1654 object, object->type, pindex); 1655 vm_page_free(m); 1656 m = NULL; 1657 if ((page_req & VM_ALLOC_NULL_OK) == 0) 1658 panic("PAGE RACE"); 1659 } 1660 } else { 1661 m->pindex = pindex; 1662 } 1663 1664 /* 1665 * Don't wakeup too often - wakeup the pageout daemon when 1666 * we would be nearly out of memory. 1667 */ 1668 pagedaemon_wakeup(); 1669 1670 /* 1671 * A PG_BUSY page is returned. 1672 */ 1673 return (m); 1674 } 1675 1676 /* 1677 * Attempt to allocate contiguous physical memory with the specified 1678 * requirements. 1679 */ 1680 vm_page_t 1681 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high, 1682 unsigned long alignment, unsigned long boundary, 1683 unsigned long size) 1684 { 1685 alist_blk_t blk; 1686 1687 alignment >>= PAGE_SHIFT; 1688 if (alignment == 0) 1689 alignment = 1; 1690 boundary >>= PAGE_SHIFT; 1691 if (boundary == 0) 1692 boundary = 1; 1693 size = (size + PAGE_MASK) >> PAGE_SHIFT; 1694 1695 spin_lock(&vm_contig_spin); 1696 blk = alist_alloc(&vm_contig_alist, 0, size); 1697 if (blk == ALIST_BLOCK_NONE) { 1698 spin_unlock(&vm_contig_spin); 1699 if (bootverbose) { 1700 kprintf("vm_page_alloc_contig: %ldk nospace\n", 1701 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1702 } 1703 return(NULL); 1704 } 1705 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) { 1706 alist_free(&vm_contig_alist, blk, size); 1707 spin_unlock(&vm_contig_spin); 1708 if (bootverbose) { 1709 kprintf("vm_page_alloc_contig: %ldk high " 1710 "%016jx failed\n", 1711 (size + PAGE_MASK) * (PAGE_SIZE / 1024), 1712 (intmax_t)high); 1713 } 1714 return(NULL); 1715 } 1716 spin_unlock(&vm_contig_spin); 1717 if (vm_contig_verbose) { 1718 kprintf("vm_page_alloc_contig: %016jx/%ldk\n", 1719 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT, 1720 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1721 } 1722 return (PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT)); 1723 } 1724 1725 /* 1726 * Free contiguously allocated pages. The pages will be wired but not busy. 1727 * When freeing to the alist we leave them wired and not busy. 1728 */ 1729 void 1730 vm_page_free_contig(vm_page_t m, unsigned long size) 1731 { 1732 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1733 vm_pindex_t start = pa >> PAGE_SHIFT; 1734 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT; 1735 1736 if (vm_contig_verbose) { 1737 kprintf("vm_page_free_contig: %016jx/%ldk\n", 1738 (intmax_t)pa, size / 1024); 1739 } 1740 if (pa < vm_low_phys_reserved) { 1741 KKASSERT(pa + size <= vm_low_phys_reserved); 1742 spin_lock(&vm_contig_spin); 1743 alist_free(&vm_contig_alist, start, pages); 1744 spin_unlock(&vm_contig_spin); 1745 } else { 1746 while (pages) { 1747 vm_page_busy_wait(m, FALSE, "cpgfr"); 1748 vm_page_unwire(m, 0); 1749 vm_page_free(m); 1750 --pages; 1751 ++m; 1752 } 1753 1754 } 1755 } 1756 1757 1758 /* 1759 * Wait for sufficient free memory for nominal heavy memory use kernel 1760 * operations. 1761 * 1762 * WARNING! Be sure never to call this in any vm_pageout code path, which 1763 * will trivially deadlock the system. 1764 */ 1765 void 1766 vm_wait_nominal(void) 1767 { 1768 while (vm_page_count_min(0)) 1769 vm_wait(0); 1770 } 1771 1772 /* 1773 * Test if vm_wait_nominal() would block. 1774 */ 1775 int 1776 vm_test_nominal(void) 1777 { 1778 if (vm_page_count_min(0)) 1779 return(1); 1780 return(0); 1781 } 1782 1783 /* 1784 * Block until free pages are available for allocation, called in various 1785 * places before memory allocations. 1786 * 1787 * The caller may loop if vm_page_count_min() == FALSE so we cannot be 1788 * more generous then that. 1789 */ 1790 void 1791 vm_wait(int timo) 1792 { 1793 /* 1794 * never wait forever 1795 */ 1796 if (timo == 0) 1797 timo = hz; 1798 lwkt_gettoken(&vm_token); 1799 1800 if (curthread == pagethread) { 1801 /* 1802 * The pageout daemon itself needs pages, this is bad. 1803 */ 1804 if (vm_page_count_min(0)) { 1805 vm_pageout_pages_needed = 1; 1806 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 1807 } 1808 } else { 1809 /* 1810 * Wakeup the pageout daemon if necessary and wait. 1811 */ 1812 if (vm_page_count_target()) { 1813 if (vm_pages_needed == 0) { 1814 vm_pages_needed = 1; 1815 wakeup(&vm_pages_needed); 1816 } 1817 ++vm_pages_waiting; /* SMP race ok */ 1818 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 1819 } 1820 } 1821 lwkt_reltoken(&vm_token); 1822 } 1823 1824 /* 1825 * Block until free pages are available for allocation 1826 * 1827 * Called only from vm_fault so that processes page faulting can be 1828 * easily tracked. 1829 */ 1830 void 1831 vm_waitpfault(void) 1832 { 1833 /* 1834 * Wakeup the pageout daemon if necessary and wait. 1835 */ 1836 if (vm_page_count_target()) { 1837 lwkt_gettoken(&vm_token); 1838 if (vm_page_count_target()) { 1839 if (vm_pages_needed == 0) { 1840 vm_pages_needed = 1; 1841 wakeup(&vm_pages_needed); 1842 } 1843 ++vm_pages_waiting; /* SMP race ok */ 1844 tsleep(&vmstats.v_free_count, 0, "pfault", hz); 1845 } 1846 lwkt_reltoken(&vm_token); 1847 } 1848 } 1849 1850 /* 1851 * Put the specified page on the active list (if appropriate). Ensure 1852 * that act_count is at least ACT_INIT but do not otherwise mess with it. 1853 * 1854 * The caller should be holding the page busied ? XXX 1855 * This routine may not block. 1856 */ 1857 void 1858 vm_page_activate(vm_page_t m) 1859 { 1860 u_short oqueue; 1861 1862 vm_page_spin_lock(m); 1863 if (m->queue - m->pc != PQ_ACTIVE) { 1864 _vm_page_queue_spin_lock(m); 1865 oqueue = _vm_page_rem_queue_spinlocked(m); 1866 /* page is left spinlocked, queue is unlocked */ 1867 1868 if (oqueue == PQ_CACHE) 1869 mycpu->gd_cnt.v_reactivated++; 1870 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1871 if (m->act_count < ACT_INIT) 1872 m->act_count = ACT_INIT; 1873 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0); 1874 } 1875 _vm_page_and_queue_spin_unlock(m); 1876 if (oqueue == PQ_CACHE || oqueue == PQ_FREE) 1877 pagedaemon_wakeup(); 1878 } else { 1879 if (m->act_count < ACT_INIT) 1880 m->act_count = ACT_INIT; 1881 vm_page_spin_unlock(m); 1882 } 1883 } 1884 1885 /* 1886 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1887 * routine is called when a page has been added to the cache or free 1888 * queues. 1889 * 1890 * This routine may not block. 1891 */ 1892 static __inline void 1893 vm_page_free_wakeup(void) 1894 { 1895 /* 1896 * If the pageout daemon itself needs pages, then tell it that 1897 * there are some free. 1898 */ 1899 if (vm_pageout_pages_needed && 1900 vmstats.v_cache_count + vmstats.v_free_count >= 1901 vmstats.v_pageout_free_min 1902 ) { 1903 wakeup(&vm_pageout_pages_needed); 1904 vm_pageout_pages_needed = 0; 1905 } 1906 1907 /* 1908 * Wakeup processes that are waiting on memory. 1909 * 1910 * NOTE: vm_paging_target() is the pageout daemon's target, while 1911 * vm_page_count_target() is somewhere inbetween. We want 1912 * to wake processes up prior to the pageout daemon reaching 1913 * its target to provide some hysteresis. 1914 */ 1915 if (vm_pages_waiting) { 1916 if (!vm_page_count_target()) { 1917 /* 1918 * Plenty of pages are free, wakeup everyone. 1919 */ 1920 vm_pages_waiting = 0; 1921 wakeup(&vmstats.v_free_count); 1922 ++mycpu->gd_cnt.v_ppwakeups; 1923 } else if (!vm_page_count_min(0)) { 1924 /* 1925 * Some pages are free, wakeup someone. 1926 */ 1927 int wcount = vm_pages_waiting; 1928 if (wcount > 0) 1929 --wcount; 1930 vm_pages_waiting = wcount; 1931 wakeup_one(&vmstats.v_free_count); 1932 ++mycpu->gd_cnt.v_ppwakeups; 1933 } 1934 } 1935 } 1936 1937 /* 1938 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates 1939 * it from its VM object. 1940 * 1941 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on 1942 * return (the page will have been freed). 1943 */ 1944 void 1945 vm_page_free_toq(vm_page_t m) 1946 { 1947 mycpu->gd_cnt.v_tfree++; 1948 KKASSERT((m->flags & PG_MAPPED) == 0); 1949 KKASSERT(m->flags & PG_BUSY); 1950 1951 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1952 kprintf("vm_page_free: pindex(%lu), busy(%d), " 1953 "PG_BUSY(%d), hold(%d)\n", 1954 (u_long)m->pindex, m->busy, 1955 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count); 1956 if ((m->queue - m->pc) == PQ_FREE) 1957 panic("vm_page_free: freeing free page"); 1958 else 1959 panic("vm_page_free: freeing busy page"); 1960 } 1961 1962 /* 1963 * Remove from object, spinlock the page and its queues and 1964 * remove from any queue. No queue spinlock will be held 1965 * after this section (because the page was removed from any 1966 * queue). 1967 */ 1968 vm_page_remove(m); 1969 vm_page_and_queue_spin_lock(m); 1970 _vm_page_rem_queue_spinlocked(m); 1971 1972 /* 1973 * No further management of fictitious pages occurs beyond object 1974 * and queue removal. 1975 */ 1976 if ((m->flags & PG_FICTITIOUS) != 0) { 1977 vm_page_spin_unlock(m); 1978 vm_page_wakeup(m); 1979 return; 1980 } 1981 1982 m->valid = 0; 1983 vm_page_undirty(m); 1984 1985 if (m->wire_count != 0) { 1986 if (m->wire_count > 1) { 1987 panic( 1988 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1989 m->wire_count, (long)m->pindex); 1990 } 1991 panic("vm_page_free: freeing wired page"); 1992 } 1993 1994 /* 1995 * Clear the UNMANAGED flag when freeing an unmanaged page. 1996 * Clear the NEED_COMMIT flag 1997 */ 1998 if (m->flags & PG_UNMANAGED) 1999 vm_page_flag_clear(m, PG_UNMANAGED); 2000 if (m->flags & PG_NEED_COMMIT) 2001 vm_page_flag_clear(m, PG_NEED_COMMIT); 2002 2003 if (m->hold_count != 0) { 2004 vm_page_flag_clear(m, PG_ZERO); 2005 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 2006 } else { 2007 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 2008 } 2009 2010 /* 2011 * This sequence allows us to clear PG_BUSY while still holding 2012 * its spin lock, which reduces contention vs allocators. We 2013 * must not leave the queue locked or _vm_page_wakeup() may 2014 * deadlock. 2015 */ 2016 _vm_page_queue_spin_unlock(m); 2017 if (_vm_page_wakeup(m)) { 2018 vm_page_spin_unlock(m); 2019 wakeup(m); 2020 } else { 2021 vm_page_spin_unlock(m); 2022 } 2023 vm_page_free_wakeup(); 2024 } 2025 2026 /* 2027 * vm_page_free_fromq_fast() 2028 * 2029 * Remove a non-zero page from one of the free queues; the page is removed for 2030 * zeroing, so do not issue a wakeup. 2031 */ 2032 vm_page_t 2033 vm_page_free_fromq_fast(void) 2034 { 2035 static int qi; 2036 vm_page_t m; 2037 int i; 2038 2039 for (i = 0; i < PQ_L2_SIZE; ++i) { 2040 m = vm_page_list_find(PQ_FREE, qi, FALSE); 2041 /* page is returned spinlocked and removed from its queue */ 2042 if (m) { 2043 if (vm_page_busy_try(m, TRUE)) { 2044 /* 2045 * We were unable to busy the page, deactivate 2046 * it and loop. 2047 */ 2048 _vm_page_deactivate_locked(m, 0); 2049 vm_page_spin_unlock(m); 2050 } else if (m->flags & PG_ZERO) { 2051 /* 2052 * The page is PG_ZERO, requeue it and loop 2053 */ 2054 _vm_page_add_queue_spinlocked(m, 2055 PQ_FREE + m->pc, 2056 0); 2057 vm_page_queue_spin_unlock(m); 2058 if (_vm_page_wakeup(m)) { 2059 vm_page_spin_unlock(m); 2060 wakeup(m); 2061 } else { 2062 vm_page_spin_unlock(m); 2063 } 2064 } else { 2065 /* 2066 * The page is not PG_ZERO'd so return it. 2067 */ 2068 vm_page_spin_unlock(m); 2069 KKASSERT((m->flags & (PG_UNMANAGED | 2070 PG_NEED_COMMIT)) == 0); 2071 KKASSERT(m->hold_count == 0); 2072 KKASSERT(m->wire_count == 0); 2073 break; 2074 } 2075 m = NULL; 2076 } 2077 qi = (qi + PQ_PRIME2) & PQ_L2_MASK; 2078 } 2079 return (m); 2080 } 2081 2082 /* 2083 * vm_page_unmanage() 2084 * 2085 * Prevent PV management from being done on the page. The page is 2086 * removed from the paging queues as if it were wired, and as a 2087 * consequence of no longer being managed the pageout daemon will not 2088 * touch it (since there is no way to locate the pte mappings for the 2089 * page). madvise() calls that mess with the pmap will also no longer 2090 * operate on the page. 2091 * 2092 * Beyond that the page is still reasonably 'normal'. Freeing the page 2093 * will clear the flag. 2094 * 2095 * This routine is used by OBJT_PHYS objects - objects using unswappable 2096 * physical memory as backing store rather then swap-backed memory and 2097 * will eventually be extended to support 4MB unmanaged physical 2098 * mappings. 2099 * 2100 * Caller must be holding the page busy. 2101 */ 2102 void 2103 vm_page_unmanage(vm_page_t m) 2104 { 2105 KKASSERT(m->flags & PG_BUSY); 2106 if ((m->flags & PG_UNMANAGED) == 0) { 2107 if (m->wire_count == 0) 2108 vm_page_unqueue(m); 2109 } 2110 vm_page_flag_set(m, PG_UNMANAGED); 2111 } 2112 2113 /* 2114 * Mark this page as wired down by yet another map, removing it from 2115 * paging queues as necessary. 2116 * 2117 * Caller must be holding the page busy. 2118 */ 2119 void 2120 vm_page_wire(vm_page_t m) 2121 { 2122 /* 2123 * Only bump the wire statistics if the page is not already wired, 2124 * and only unqueue the page if it is on some queue (if it is unmanaged 2125 * it is already off the queues). Don't do anything with fictitious 2126 * pages because they are always wired. 2127 */ 2128 KKASSERT(m->flags & PG_BUSY); 2129 if ((m->flags & PG_FICTITIOUS) == 0) { 2130 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) { 2131 if ((m->flags & PG_UNMANAGED) == 0) 2132 vm_page_unqueue(m); 2133 atomic_add_int(&vmstats.v_wire_count, 1); 2134 } 2135 KASSERT(m->wire_count != 0, 2136 ("vm_page_wire: wire_count overflow m=%p", m)); 2137 } 2138 } 2139 2140 /* 2141 * Release one wiring of this page, potentially enabling it to be paged again. 2142 * 2143 * Many pages placed on the inactive queue should actually go 2144 * into the cache, but it is difficult to figure out which. What 2145 * we do instead, if the inactive target is well met, is to put 2146 * clean pages at the head of the inactive queue instead of the tail. 2147 * This will cause them to be moved to the cache more quickly and 2148 * if not actively re-referenced, freed more quickly. If we just 2149 * stick these pages at the end of the inactive queue, heavy filesystem 2150 * meta-data accesses can cause an unnecessary paging load on memory bound 2151 * processes. This optimization causes one-time-use metadata to be 2152 * reused more quickly. 2153 * 2154 * Pages marked PG_NEED_COMMIT are always activated and never placed on 2155 * the inactive queue. This helps the pageout daemon determine memory 2156 * pressure and act on out-of-memory situations more quickly. 2157 * 2158 * BUT, if we are in a low-memory situation we have no choice but to 2159 * put clean pages on the cache queue. 2160 * 2161 * A number of routines use vm_page_unwire() to guarantee that the page 2162 * will go into either the inactive or active queues, and will NEVER 2163 * be placed in the cache - for example, just after dirtying a page. 2164 * dirty pages in the cache are not allowed. 2165 * 2166 * The page queues must be locked. 2167 * This routine may not block. 2168 */ 2169 void 2170 vm_page_unwire(vm_page_t m, int activate) 2171 { 2172 KKASSERT(m->flags & PG_BUSY); 2173 if (m->flags & PG_FICTITIOUS) { 2174 /* do nothing */ 2175 } else if (m->wire_count <= 0) { 2176 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 2177 } else { 2178 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) { 2179 atomic_add_int(&vmstats.v_wire_count, -1); 2180 if (m->flags & PG_UNMANAGED) { 2181 ; 2182 } else if (activate || (m->flags & PG_NEED_COMMIT)) { 2183 vm_page_spin_lock(m); 2184 _vm_page_add_queue_spinlocked(m, 2185 PQ_ACTIVE + m->pc, 0); 2186 _vm_page_and_queue_spin_unlock(m); 2187 } else { 2188 vm_page_spin_lock(m); 2189 vm_page_flag_clear(m, PG_WINATCFLS); 2190 _vm_page_add_queue_spinlocked(m, 2191 PQ_INACTIVE + m->pc, 0); 2192 ++vm_swapcache_inactive_heuristic; 2193 _vm_page_and_queue_spin_unlock(m); 2194 } 2195 } 2196 } 2197 } 2198 2199 /* 2200 * Move the specified page to the inactive queue. If the page has 2201 * any associated swap, the swap is deallocated. 2202 * 2203 * Normally athead is 0 resulting in LRU operation. athead is set 2204 * to 1 if we want this page to be 'as if it were placed in the cache', 2205 * except without unmapping it from the process address space. 2206 * 2207 * vm_page's spinlock must be held on entry and will remain held on return. 2208 * This routine may not block. 2209 */ 2210 static void 2211 _vm_page_deactivate_locked(vm_page_t m, int athead) 2212 { 2213 u_short oqueue; 2214 2215 /* 2216 * Ignore if already inactive. 2217 */ 2218 if (m->queue - m->pc == PQ_INACTIVE) 2219 return; 2220 _vm_page_queue_spin_lock(m); 2221 oqueue = _vm_page_rem_queue_spinlocked(m); 2222 2223 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 2224 if (oqueue == PQ_CACHE) 2225 mycpu->gd_cnt.v_reactivated++; 2226 vm_page_flag_clear(m, PG_WINATCFLS); 2227 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead); 2228 if (athead == 0) 2229 ++vm_swapcache_inactive_heuristic; 2230 } 2231 _vm_page_queue_spin_unlock(m); 2232 /* leaves vm_page spinlocked */ 2233 } 2234 2235 /* 2236 * Attempt to deactivate a page. 2237 * 2238 * No requirements. 2239 */ 2240 void 2241 vm_page_deactivate(vm_page_t m) 2242 { 2243 vm_page_spin_lock(m); 2244 _vm_page_deactivate_locked(m, 0); 2245 vm_page_spin_unlock(m); 2246 } 2247 2248 void 2249 vm_page_deactivate_locked(vm_page_t m) 2250 { 2251 _vm_page_deactivate_locked(m, 0); 2252 } 2253 2254 /* 2255 * Attempt to move a page to PQ_CACHE. 2256 * 2257 * Returns 0 on failure, 1 on success 2258 * 2259 * The page should NOT be busied by the caller. This function will validate 2260 * whether the page can be safely moved to the cache. 2261 */ 2262 int 2263 vm_page_try_to_cache(vm_page_t m) 2264 { 2265 vm_page_spin_lock(m); 2266 if (vm_page_busy_try(m, TRUE)) { 2267 vm_page_spin_unlock(m); 2268 return(0); 2269 } 2270 if (m->dirty || m->hold_count || m->wire_count || 2271 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) { 2272 if (_vm_page_wakeup(m)) { 2273 vm_page_spin_unlock(m); 2274 wakeup(m); 2275 } else { 2276 vm_page_spin_unlock(m); 2277 } 2278 return(0); 2279 } 2280 vm_page_spin_unlock(m); 2281 2282 /* 2283 * Page busied by us and no longer spinlocked. Dirty pages cannot 2284 * be moved to the cache. 2285 */ 2286 vm_page_test_dirty(m); 2287 if (m->dirty) { 2288 vm_page_wakeup(m); 2289 return(0); 2290 } 2291 vm_page_cache(m); 2292 return(1); 2293 } 2294 2295 /* 2296 * Attempt to free the page. If we cannot free it, we do nothing. 2297 * 1 is returned on success, 0 on failure. 2298 * 2299 * No requirements. 2300 */ 2301 int 2302 vm_page_try_to_free(vm_page_t m) 2303 { 2304 vm_page_spin_lock(m); 2305 if (vm_page_busy_try(m, TRUE)) { 2306 vm_page_spin_unlock(m); 2307 return(0); 2308 } 2309 2310 /* 2311 * The page can be in any state, including already being on the free 2312 * queue. Check to see if it really can be freed. 2313 */ 2314 if (m->dirty || /* can't free if it is dirty */ 2315 m->hold_count || /* or held (XXX may be wrong) */ 2316 m->wire_count || /* or wired */ 2317 (m->flags & (PG_UNMANAGED | /* or unmanaged */ 2318 PG_NEED_COMMIT)) || /* or needs a commit */ 2319 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */ 2320 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */ 2321 if (_vm_page_wakeup(m)) { 2322 vm_page_spin_unlock(m); 2323 wakeup(m); 2324 } else { 2325 vm_page_spin_unlock(m); 2326 } 2327 return(0); 2328 } 2329 vm_page_spin_unlock(m); 2330 2331 /* 2332 * We can probably free the page. 2333 * 2334 * Page busied by us and no longer spinlocked. Dirty pages will 2335 * not be freed by this function. We have to re-test the 2336 * dirty bit after cleaning out the pmaps. 2337 */ 2338 vm_page_test_dirty(m); 2339 if (m->dirty) { 2340 vm_page_wakeup(m); 2341 return(0); 2342 } 2343 vm_page_protect(m, VM_PROT_NONE); 2344 if (m->dirty) { 2345 vm_page_wakeup(m); 2346 return(0); 2347 } 2348 vm_page_free(m); 2349 return(1); 2350 } 2351 2352 /* 2353 * vm_page_cache 2354 * 2355 * Put the specified page onto the page cache queue (if appropriate). 2356 * 2357 * The page must be busy, and this routine will release the busy and 2358 * possibly even free the page. 2359 */ 2360 void 2361 vm_page_cache(vm_page_t m) 2362 { 2363 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 2364 m->busy || m->wire_count || m->hold_count) { 2365 kprintf("vm_page_cache: attempting to cache busy/held page\n"); 2366 vm_page_wakeup(m); 2367 return; 2368 } 2369 2370 /* 2371 * Already in the cache (and thus not mapped) 2372 */ 2373 if ((m->queue - m->pc) == PQ_CACHE) { 2374 KKASSERT((m->flags & PG_MAPPED) == 0); 2375 vm_page_wakeup(m); 2376 return; 2377 } 2378 2379 /* 2380 * Caller is required to test m->dirty, but note that the act of 2381 * removing the page from its maps can cause it to become dirty 2382 * on an SMP system due to another cpu running in usermode. 2383 */ 2384 if (m->dirty) { 2385 panic("vm_page_cache: caching a dirty page, pindex: %ld", 2386 (long)m->pindex); 2387 } 2388 2389 /* 2390 * Remove all pmaps and indicate that the page is not 2391 * writeable or mapped. Our vm_page_protect() call may 2392 * have blocked (especially w/ VM_PROT_NONE), so recheck 2393 * everything. 2394 */ 2395 vm_page_protect(m, VM_PROT_NONE); 2396 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) || 2397 m->busy || m->wire_count || m->hold_count) { 2398 vm_page_wakeup(m); 2399 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2400 vm_page_deactivate(m); 2401 vm_page_wakeup(m); 2402 } else { 2403 _vm_page_and_queue_spin_lock(m); 2404 _vm_page_rem_queue_spinlocked(m); 2405 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0); 2406 _vm_page_queue_spin_unlock(m); 2407 if (_vm_page_wakeup(m)) { 2408 vm_page_spin_unlock(m); 2409 wakeup(m); 2410 } else { 2411 vm_page_spin_unlock(m); 2412 } 2413 vm_page_free_wakeup(); 2414 } 2415 } 2416 2417 /* 2418 * vm_page_dontneed() 2419 * 2420 * Cache, deactivate, or do nothing as appropriate. This routine 2421 * is typically used by madvise() MADV_DONTNEED. 2422 * 2423 * Generally speaking we want to move the page into the cache so 2424 * it gets reused quickly. However, this can result in a silly syndrome 2425 * due to the page recycling too quickly. Small objects will not be 2426 * fully cached. On the otherhand, if we move the page to the inactive 2427 * queue we wind up with a problem whereby very large objects 2428 * unnecessarily blow away our inactive and cache queues. 2429 * 2430 * The solution is to move the pages based on a fixed weighting. We 2431 * either leave them alone, deactivate them, or move them to the cache, 2432 * where moving them to the cache has the highest weighting. 2433 * By forcing some pages into other queues we eventually force the 2434 * system to balance the queues, potentially recovering other unrelated 2435 * space from active. The idea is to not force this to happen too 2436 * often. 2437 * 2438 * The page must be busied. 2439 */ 2440 void 2441 vm_page_dontneed(vm_page_t m) 2442 { 2443 static int dnweight; 2444 int dnw; 2445 int head; 2446 2447 dnw = ++dnweight; 2448 2449 /* 2450 * occassionally leave the page alone 2451 */ 2452 if ((dnw & 0x01F0) == 0 || 2453 m->queue - m->pc == PQ_INACTIVE || 2454 m->queue - m->pc == PQ_CACHE 2455 ) { 2456 if (m->act_count >= ACT_INIT) 2457 --m->act_count; 2458 return; 2459 } 2460 2461 /* 2462 * If vm_page_dontneed() is inactivating a page, it must clear 2463 * the referenced flag; otherwise the pagedaemon will see references 2464 * on the page in the inactive queue and reactivate it. Until the 2465 * page can move to the cache queue, madvise's job is not done. 2466 */ 2467 vm_page_flag_clear(m, PG_REFERENCED); 2468 pmap_clear_reference(m); 2469 2470 if (m->dirty == 0) 2471 vm_page_test_dirty(m); 2472 2473 if (m->dirty || (dnw & 0x0070) == 0) { 2474 /* 2475 * Deactivate the page 3 times out of 32. 2476 */ 2477 head = 0; 2478 } else { 2479 /* 2480 * Cache the page 28 times out of every 32. Note that 2481 * the page is deactivated instead of cached, but placed 2482 * at the head of the queue instead of the tail. 2483 */ 2484 head = 1; 2485 } 2486 vm_page_spin_lock(m); 2487 _vm_page_deactivate_locked(m, head); 2488 vm_page_spin_unlock(m); 2489 } 2490 2491 /* 2492 * These routines manipulate the 'soft busy' count for a page. A soft busy 2493 * is almost like PG_BUSY except that it allows certain compatible operations 2494 * to occur on the page while it is busy. For example, a page undergoing a 2495 * write can still be mapped read-only. 2496 * 2497 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only 2498 * adjusted while the vm_page is PG_BUSY so the flash will occur when the 2499 * busy bit is cleared. 2500 */ 2501 void 2502 vm_page_io_start(vm_page_t m) 2503 { 2504 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!")); 2505 atomic_add_char(&m->busy, 1); 2506 vm_page_flag_set(m, PG_SBUSY); 2507 } 2508 2509 void 2510 vm_page_io_finish(vm_page_t m) 2511 { 2512 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!")); 2513 atomic_subtract_char(&m->busy, 1); 2514 if (m->busy == 0) 2515 vm_page_flag_clear(m, PG_SBUSY); 2516 } 2517 2518 /* 2519 * Indicate that a clean VM page requires a filesystem commit and cannot 2520 * be reused. Used by tmpfs. 2521 */ 2522 void 2523 vm_page_need_commit(vm_page_t m) 2524 { 2525 vm_page_flag_set(m, PG_NEED_COMMIT); 2526 } 2527 2528 void 2529 vm_page_clear_commit(vm_page_t m) 2530 { 2531 vm_page_flag_clear(m, PG_NEED_COMMIT); 2532 } 2533 2534 /* 2535 * Grab a page, blocking if it is busy and allocating a page if necessary. 2536 * A busy page is returned or NULL. The page may or may not be valid and 2537 * might not be on a queue (the caller is responsible for the disposition of 2538 * the page). 2539 * 2540 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the 2541 * page will be zero'd and marked valid. 2542 * 2543 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked 2544 * valid even if it already exists. 2545 * 2546 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also 2547 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified. 2548 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified. 2549 * 2550 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 2551 * always returned if we had blocked. 2552 * 2553 * This routine may not be called from an interrupt. 2554 * 2555 * PG_ZERO is *ALWAYS* cleared by this routine. 2556 * 2557 * No other requirements. 2558 */ 2559 vm_page_t 2560 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2561 { 2562 vm_page_t m; 2563 int error; 2564 2565 KKASSERT(allocflags & 2566 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 2567 vm_object_hold(object); 2568 for (;;) { 2569 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 2570 if (error) { 2571 vm_page_sleep_busy(m, TRUE, "pgrbwt"); 2572 if ((allocflags & VM_ALLOC_RETRY) == 0) { 2573 m = NULL; 2574 break; 2575 } 2576 /* retry */ 2577 } else if (m == NULL) { 2578 if (allocflags & VM_ALLOC_RETRY) 2579 allocflags |= VM_ALLOC_NULL_OK; 2580 m = vm_page_alloc(object, pindex, 2581 allocflags & ~VM_ALLOC_RETRY); 2582 if (m) 2583 break; 2584 vm_wait(0); 2585 if ((allocflags & VM_ALLOC_RETRY) == 0) 2586 goto failed; 2587 } else { 2588 /* m found */ 2589 break; 2590 } 2591 } 2592 2593 /* 2594 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid. 2595 * 2596 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set 2597 * valid even if already valid. 2598 */ 2599 if (m->valid == 0) { 2600 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) { 2601 if ((m->flags & PG_ZERO) == 0) 2602 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2603 m->valid = VM_PAGE_BITS_ALL; 2604 } 2605 } else if (allocflags & VM_ALLOC_FORCE_ZERO) { 2606 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2607 m->valid = VM_PAGE_BITS_ALL; 2608 } 2609 vm_page_flag_clear(m, PG_ZERO); 2610 failed: 2611 vm_object_drop(object); 2612 return(m); 2613 } 2614 2615 /* 2616 * Mapping function for valid bits or for dirty bits in 2617 * a page. May not block. 2618 * 2619 * Inputs are required to range within a page. 2620 * 2621 * No requirements. 2622 * Non blocking. 2623 */ 2624 int 2625 vm_page_bits(int base, int size) 2626 { 2627 int first_bit; 2628 int last_bit; 2629 2630 KASSERT( 2631 base + size <= PAGE_SIZE, 2632 ("vm_page_bits: illegal base/size %d/%d", base, size) 2633 ); 2634 2635 if (size == 0) /* handle degenerate case */ 2636 return(0); 2637 2638 first_bit = base >> DEV_BSHIFT; 2639 last_bit = (base + size - 1) >> DEV_BSHIFT; 2640 2641 return ((2 << last_bit) - (1 << first_bit)); 2642 } 2643 2644 /* 2645 * Sets portions of a page valid and clean. The arguments are expected 2646 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2647 * of any partial chunks touched by the range. The invalid portion of 2648 * such chunks will be zero'd. 2649 * 2650 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically 2651 * align base to DEV_BSIZE so as not to mark clean a partially 2652 * truncated device block. Otherwise the dirty page status might be 2653 * lost. 2654 * 2655 * This routine may not block. 2656 * 2657 * (base + size) must be less then or equal to PAGE_SIZE. 2658 */ 2659 static void 2660 _vm_page_zero_valid(vm_page_t m, int base, int size) 2661 { 2662 int frag; 2663 int endoff; 2664 2665 if (size == 0) /* handle degenerate case */ 2666 return; 2667 2668 /* 2669 * If the base is not DEV_BSIZE aligned and the valid 2670 * bit is clear, we have to zero out a portion of the 2671 * first block. 2672 */ 2673 2674 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2675 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 2676 ) { 2677 pmap_zero_page_area( 2678 VM_PAGE_TO_PHYS(m), 2679 frag, 2680 base - frag 2681 ); 2682 } 2683 2684 /* 2685 * If the ending offset is not DEV_BSIZE aligned and the 2686 * valid bit is clear, we have to zero out a portion of 2687 * the last block. 2688 */ 2689 2690 endoff = base + size; 2691 2692 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2693 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 2694 ) { 2695 pmap_zero_page_area( 2696 VM_PAGE_TO_PHYS(m), 2697 endoff, 2698 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 2699 ); 2700 } 2701 } 2702 2703 /* 2704 * Set valid, clear dirty bits. If validating the entire 2705 * page we can safely clear the pmap modify bit. We also 2706 * use this opportunity to clear the PG_NOSYNC flag. If a process 2707 * takes a write fault on a MAP_NOSYNC memory area the flag will 2708 * be set again. 2709 * 2710 * We set valid bits inclusive of any overlap, but we can only 2711 * clear dirty bits for DEV_BSIZE chunks that are fully within 2712 * the range. 2713 * 2714 * Page must be busied? 2715 * No other requirements. 2716 */ 2717 void 2718 vm_page_set_valid(vm_page_t m, int base, int size) 2719 { 2720 _vm_page_zero_valid(m, base, size); 2721 m->valid |= vm_page_bits(base, size); 2722 } 2723 2724 2725 /* 2726 * Set valid bits and clear dirty bits. 2727 * 2728 * NOTE: This function does not clear the pmap modified bit. 2729 * Also note that e.g. NFS may use a byte-granular base 2730 * and size. 2731 * 2732 * WARNING: Page must be busied? But vfs_clean_one_page() will call 2733 * this without necessarily busying the page (via bdwrite()). 2734 * So for now vm_token must also be held. 2735 * 2736 * No other requirements. 2737 */ 2738 void 2739 vm_page_set_validclean(vm_page_t m, int base, int size) 2740 { 2741 int pagebits; 2742 2743 _vm_page_zero_valid(m, base, size); 2744 pagebits = vm_page_bits(base, size); 2745 m->valid |= pagebits; 2746 m->dirty &= ~pagebits; 2747 if (base == 0 && size == PAGE_SIZE) { 2748 /*pmap_clear_modify(m);*/ 2749 vm_page_flag_clear(m, PG_NOSYNC); 2750 } 2751 } 2752 2753 /* 2754 * Set valid & dirty. Used by buwrite() 2755 * 2756 * WARNING: Page must be busied? But vfs_dirty_one_page() will 2757 * call this function in buwrite() so for now vm_token must 2758 * be held. 2759 * 2760 * No other requirements. 2761 */ 2762 void 2763 vm_page_set_validdirty(vm_page_t m, int base, int size) 2764 { 2765 int pagebits; 2766 2767 pagebits = vm_page_bits(base, size); 2768 m->valid |= pagebits; 2769 m->dirty |= pagebits; 2770 if (m->object) 2771 vm_object_set_writeable_dirty(m->object); 2772 } 2773 2774 /* 2775 * Clear dirty bits. 2776 * 2777 * NOTE: This function does not clear the pmap modified bit. 2778 * Also note that e.g. NFS may use a byte-granular base 2779 * and size. 2780 * 2781 * Page must be busied? 2782 * No other requirements. 2783 */ 2784 void 2785 vm_page_clear_dirty(vm_page_t m, int base, int size) 2786 { 2787 m->dirty &= ~vm_page_bits(base, size); 2788 if (base == 0 && size == PAGE_SIZE) { 2789 /*pmap_clear_modify(m);*/ 2790 vm_page_flag_clear(m, PG_NOSYNC); 2791 } 2792 } 2793 2794 /* 2795 * Make the page all-dirty. 2796 * 2797 * Also make sure the related object and vnode reflect the fact that the 2798 * object may now contain a dirty page. 2799 * 2800 * Page must be busied? 2801 * No other requirements. 2802 */ 2803 void 2804 vm_page_dirty(vm_page_t m) 2805 { 2806 #ifdef INVARIANTS 2807 int pqtype = m->queue - m->pc; 2808 #endif 2809 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 2810 ("vm_page_dirty: page in free/cache queue!")); 2811 if (m->dirty != VM_PAGE_BITS_ALL) { 2812 m->dirty = VM_PAGE_BITS_ALL; 2813 if (m->object) 2814 vm_object_set_writeable_dirty(m->object); 2815 } 2816 } 2817 2818 /* 2819 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2820 * valid and dirty bits for the effected areas are cleared. 2821 * 2822 * Page must be busied? 2823 * Does not block. 2824 * No other requirements. 2825 */ 2826 void 2827 vm_page_set_invalid(vm_page_t m, int base, int size) 2828 { 2829 int bits; 2830 2831 bits = vm_page_bits(base, size); 2832 m->valid &= ~bits; 2833 m->dirty &= ~bits; 2834 m->object->generation++; 2835 } 2836 2837 /* 2838 * The kernel assumes that the invalid portions of a page contain 2839 * garbage, but such pages can be mapped into memory by user code. 2840 * When this occurs, we must zero out the non-valid portions of the 2841 * page so user code sees what it expects. 2842 * 2843 * Pages are most often semi-valid when the end of a file is mapped 2844 * into memory and the file's size is not page aligned. 2845 * 2846 * Page must be busied? 2847 * No other requirements. 2848 */ 2849 void 2850 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2851 { 2852 int b; 2853 int i; 2854 2855 /* 2856 * Scan the valid bits looking for invalid sections that 2857 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2858 * valid bit may be set ) have already been zerod by 2859 * vm_page_set_validclean(). 2860 */ 2861 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2862 if (i == (PAGE_SIZE / DEV_BSIZE) || 2863 (m->valid & (1 << i)) 2864 ) { 2865 if (i > b) { 2866 pmap_zero_page_area( 2867 VM_PAGE_TO_PHYS(m), 2868 b << DEV_BSHIFT, 2869 (i - b) << DEV_BSHIFT 2870 ); 2871 } 2872 b = i + 1; 2873 } 2874 } 2875 2876 /* 2877 * setvalid is TRUE when we can safely set the zero'd areas 2878 * as being valid. We can do this if there are no cache consistency 2879 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2880 */ 2881 if (setvalid) 2882 m->valid = VM_PAGE_BITS_ALL; 2883 } 2884 2885 /* 2886 * Is a (partial) page valid? Note that the case where size == 0 2887 * will return FALSE in the degenerate case where the page is entirely 2888 * invalid, and TRUE otherwise. 2889 * 2890 * Does not block. 2891 * No other requirements. 2892 */ 2893 int 2894 vm_page_is_valid(vm_page_t m, int base, int size) 2895 { 2896 int bits = vm_page_bits(base, size); 2897 2898 if (m->valid && ((m->valid & bits) == bits)) 2899 return 1; 2900 else 2901 return 0; 2902 } 2903 2904 /* 2905 * update dirty bits from pmap/mmu. May not block. 2906 * 2907 * Caller must hold the page busy 2908 */ 2909 void 2910 vm_page_test_dirty(vm_page_t m) 2911 { 2912 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 2913 vm_page_dirty(m); 2914 } 2915 } 2916 2917 /* 2918 * Register an action, associating it with its vm_page 2919 */ 2920 void 2921 vm_page_register_action(vm_page_action_t action, vm_page_event_t event) 2922 { 2923 struct vm_page_action_list *list; 2924 int hv; 2925 2926 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2927 list = &action_list[hv]; 2928 2929 lwkt_gettoken(&vm_token); 2930 vm_page_flag_set(action->m, PG_ACTIONLIST); 2931 action->event = event; 2932 LIST_INSERT_HEAD(list, action, entry); 2933 lwkt_reltoken(&vm_token); 2934 } 2935 2936 /* 2937 * Unregister an action, disassociating it from its related vm_page 2938 */ 2939 void 2940 vm_page_unregister_action(vm_page_action_t action) 2941 { 2942 struct vm_page_action_list *list; 2943 int hv; 2944 2945 lwkt_gettoken(&vm_token); 2946 if (action->event != VMEVENT_NONE) { 2947 action->event = VMEVENT_NONE; 2948 LIST_REMOVE(action, entry); 2949 2950 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2951 list = &action_list[hv]; 2952 if (LIST_EMPTY(list)) 2953 vm_page_flag_clear(action->m, PG_ACTIONLIST); 2954 } 2955 lwkt_reltoken(&vm_token); 2956 } 2957 2958 /* 2959 * Issue an event on a VM page. Corresponding action structures are 2960 * removed from the page's list and called. 2961 * 2962 * If the vm_page has no more pending action events we clear its 2963 * PG_ACTIONLIST flag. 2964 */ 2965 void 2966 vm_page_event_internal(vm_page_t m, vm_page_event_t event) 2967 { 2968 struct vm_page_action_list *list; 2969 struct vm_page_action *scan; 2970 struct vm_page_action *next; 2971 int hv; 2972 int all; 2973 2974 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK; 2975 list = &action_list[hv]; 2976 all = 1; 2977 2978 lwkt_gettoken(&vm_token); 2979 LIST_FOREACH_MUTABLE(scan, list, entry, next) { 2980 if (scan->m == m) { 2981 if (scan->event == event) { 2982 scan->event = VMEVENT_NONE; 2983 LIST_REMOVE(scan, entry); 2984 scan->func(m, scan); 2985 /* XXX */ 2986 } else { 2987 all = 0; 2988 } 2989 } 2990 } 2991 if (all) 2992 vm_page_flag_clear(m, PG_ACTIONLIST); 2993 lwkt_reltoken(&vm_token); 2994 } 2995 2996 #include "opt_ddb.h" 2997 #ifdef DDB 2998 #include <sys/kernel.h> 2999 3000 #include <ddb/ddb.h> 3001 3002 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3003 { 3004 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count); 3005 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count); 3006 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count); 3007 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count); 3008 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count); 3009 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved); 3010 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min); 3011 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target); 3012 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min); 3013 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target); 3014 } 3015 3016 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3017 { 3018 int i; 3019 db_printf("PQ_FREE:"); 3020 for(i=0;i<PQ_L2_SIZE;i++) { 3021 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 3022 } 3023 db_printf("\n"); 3024 3025 db_printf("PQ_CACHE:"); 3026 for(i=0;i<PQ_L2_SIZE;i++) { 3027 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 3028 } 3029 db_printf("\n"); 3030 3031 db_printf("PQ_ACTIVE:"); 3032 for(i=0;i<PQ_L2_SIZE;i++) { 3033 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt); 3034 } 3035 db_printf("\n"); 3036 3037 db_printf("PQ_INACTIVE:"); 3038 for(i=0;i<PQ_L2_SIZE;i++) { 3039 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt); 3040 } 3041 db_printf("\n"); 3042 } 3043 #endif /* DDB */ 3044