xref: /dflybsd-src/sys/vm/vm_page.c (revision fda7d3889b1114d34ad3a52a7257a2b80fe24e4c)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
35  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
36  */
37 
38 /*
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 /*
65  * Resident memory management module.  The module manipulates 'VM pages'.
66  * A VM page is the core building block for memory management.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 #include <sys/alist.h>
77 #include <sys/sysctl.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/swap_pager.h>
91 
92 #include <machine/inttypes.h>
93 #include <machine/md_var.h>
94 
95 #include <vm/vm_page2.h>
96 #include <sys/spinlock2.h>
97 
98 #define VMACTION_HSIZE	256
99 #define VMACTION_HMASK	(VMACTION_HSIZE - 1)
100 
101 static void vm_page_queue_init(void);
102 static void vm_page_free_wakeup(void);
103 static vm_page_t vm_page_select_cache(u_short pg_color);
104 static vm_page_t _vm_page_list_find2(int basequeue, int index);
105 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
106 
107 /*
108  * Array of tailq lists
109  */
110 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
111 
112 LIST_HEAD(vm_page_action_list, vm_page_action);
113 struct vm_page_action_list	action_list[VMACTION_HSIZE];
114 static volatile int vm_pages_waiting;
115 
116 static struct alist vm_contig_alist;
117 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
118 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin);
119 
120 static u_long vm_dma_reserved = 0;
121 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
122 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
123 	    "Memory reserved for DMA");
124 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
125 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
126 
127 static int vm_contig_verbose = 0;
128 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
129 
130 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
131 	     vm_pindex_t, pindex);
132 
133 static void
134 vm_page_queue_init(void)
135 {
136 	int i;
137 
138 	for (i = 0; i < PQ_L2_SIZE; i++)
139 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
140 	for (i = 0; i < PQ_L2_SIZE; i++)
141 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
142 	for (i = 0; i < PQ_L2_SIZE; i++)
143 		vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
144 	for (i = 0; i < PQ_L2_SIZE; i++)
145 		vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
146 	for (i = 0; i < PQ_L2_SIZE; i++)
147 		vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
148 	/* PQ_NONE has no queue */
149 
150 	for (i = 0; i < PQ_COUNT; i++) {
151 		TAILQ_INIT(&vm_page_queues[i].pl);
152 		spin_init(&vm_page_queues[i].spin);
153 	}
154 
155 	for (i = 0; i < VMACTION_HSIZE; i++)
156 		LIST_INIT(&action_list[i]);
157 }
158 
159 /*
160  * note: place in initialized data section?  Is this necessary?
161  */
162 long first_page = 0;
163 int vm_page_array_size = 0;
164 int vm_page_zero_count = 0;
165 vm_page_t vm_page_array = NULL;
166 vm_paddr_t vm_low_phys_reserved;
167 
168 /*
169  * (low level boot)
170  *
171  * Sets the page size, perhaps based upon the memory size.
172  * Must be called before any use of page-size dependent functions.
173  */
174 void
175 vm_set_page_size(void)
176 {
177 	if (vmstats.v_page_size == 0)
178 		vmstats.v_page_size = PAGE_SIZE;
179 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
180 		panic("vm_set_page_size: page size not a power of two");
181 }
182 
183 /*
184  * (low level boot)
185  *
186  * Add a new page to the freelist for use by the system.  New pages
187  * are added to both the head and tail of the associated free page
188  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
189  * requests pull 'recent' adds (higher physical addresses) first.
190  *
191  * Beware that the page zeroing daemon will also be running soon after
192  * boot, moving pages from the head to the tail of the PQ_FREE queues.
193  *
194  * Must be called in a critical section.
195  */
196 static void
197 vm_add_new_page(vm_paddr_t pa)
198 {
199 	struct vpgqueues *vpq;
200 	vm_page_t m;
201 
202 	m = PHYS_TO_VM_PAGE(pa);
203 	m->phys_addr = pa;
204 	m->flags = 0;
205 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
206 	/*
207 	 * Twist for cpu localization in addition to page coloring, so
208 	 * different cpus selecting by m->queue get different page colors.
209 	 */
210 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
211 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
212 	/*
213 	 * Reserve a certain number of contiguous low memory pages for
214 	 * contigmalloc() to use.
215 	 */
216 	if (pa < vm_low_phys_reserved) {
217 		atomic_add_int(&vmstats.v_page_count, 1);
218 		atomic_add_int(&vmstats.v_dma_pages, 1);
219 		m->queue = PQ_NONE;
220 		m->wire_count = 1;
221 		atomic_add_int(&vmstats.v_wire_count, 1);
222 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
223 		return;
224 	}
225 
226 	/*
227 	 * General page
228 	 */
229 	m->queue = m->pc + PQ_FREE;
230 	KKASSERT(m->dirty == 0);
231 
232 	atomic_add_int(&vmstats.v_page_count, 1);
233 	atomic_add_int(&vmstats.v_free_count, 1);
234 	vpq = &vm_page_queues[m->queue];
235 	if ((vpq->flipflop & 15) == 0) {
236 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
237 		m->flags |= PG_ZERO;
238 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
239 		atomic_add_int(&vm_page_zero_count, 1);
240 	} else {
241 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
242 	}
243 	++vpq->flipflop;
244 	++vpq->lcnt;
245 }
246 
247 /*
248  * (low level boot)
249  *
250  * Initializes the resident memory module.
251  *
252  * Preallocates memory for critical VM structures and arrays prior to
253  * kernel_map becoming available.
254  *
255  * Memory is allocated from (virtual2_start, virtual2_end) if available,
256  * otherwise memory is allocated from (virtual_start, virtual_end).
257  *
258  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
259  * large enough to hold vm_page_array & other structures for machines with
260  * large amounts of ram, so we want to use virtual2* when available.
261  */
262 void
263 vm_page_startup(void)
264 {
265 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
266 	vm_offset_t mapped;
267 	vm_size_t npages;
268 	vm_paddr_t page_range;
269 	vm_paddr_t new_end;
270 	int i;
271 	vm_paddr_t pa;
272 	int nblocks;
273 	vm_paddr_t last_pa;
274 	vm_paddr_t end;
275 	vm_paddr_t biggestone, biggestsize;
276 	vm_paddr_t total;
277 
278 	total = 0;
279 	biggestsize = 0;
280 	biggestone = 0;
281 	nblocks = 0;
282 	vaddr = round_page(vaddr);
283 
284 	for (i = 0; phys_avail[i + 1]; i += 2) {
285 		phys_avail[i] = round_page64(phys_avail[i]);
286 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
287 	}
288 
289 	for (i = 0; phys_avail[i + 1]; i += 2) {
290 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
291 
292 		if (size > biggestsize) {
293 			biggestone = i;
294 			biggestsize = size;
295 		}
296 		++nblocks;
297 		total += size;
298 	}
299 
300 	end = phys_avail[biggestone+1];
301 	end = trunc_page(end);
302 
303 	/*
304 	 * Initialize the queue headers for the free queue, the active queue
305 	 * and the inactive queue.
306 	 */
307 	vm_page_queue_init();
308 
309 #if !defined(_KERNEL_VIRTUAL)
310 	/*
311 	 * VKERNELs don't support minidumps and as such don't need
312 	 * vm_page_dump
313 	 *
314 	 * Allocate a bitmap to indicate that a random physical page
315 	 * needs to be included in a minidump.
316 	 *
317 	 * The amd64 port needs this to indicate which direct map pages
318 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
319 	 *
320 	 * However, i386 still needs this workspace internally within the
321 	 * minidump code.  In theory, they are not needed on i386, but are
322 	 * included should the sf_buf code decide to use them.
323 	 */
324 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
325 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
326 	end -= vm_page_dump_size;
327 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
328 	    VM_PROT_READ | VM_PROT_WRITE);
329 	bzero((void *)vm_page_dump, vm_page_dump_size);
330 #endif
331 	/*
332 	 * Compute the number of pages of memory that will be available for
333 	 * use (taking into account the overhead of a page structure per
334 	 * page).
335 	 */
336 	first_page = phys_avail[0] / PAGE_SIZE;
337 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
338 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
339 
340 #ifndef _KERNEL_VIRTUAL
341 	/*
342 	 * (only applies to real kernels)
343 	 *
344 	 * Initialize the contiguous reserve map.  We initially reserve up
345 	 * to 1/4 available physical memory or 65536 pages (~256MB), whichever
346 	 * is lower.
347 	 *
348 	 * Once device initialization is complete we return most of the
349 	 * reserved memory back to the normal page queues but leave some
350 	 * in reserve for things like usb attachments.
351 	 */
352 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
353 	if (vm_low_phys_reserved > total / 4)
354 		vm_low_phys_reserved = total / 4;
355 	if (vm_dma_reserved == 0) {
356 		vm_dma_reserved = 16 * 1024 * 1024;	/* 16MB */
357 		if (vm_dma_reserved > total / 16)
358 			vm_dma_reserved = total / 16;
359 	}
360 #endif
361 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
362 		   ALIST_RECORDS_65536);
363 
364 	/*
365 	 * Initialize the mem entry structures now, and put them in the free
366 	 * queue.
367 	 */
368 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
369 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
370 	vm_page_array = (vm_page_t)mapped;
371 
372 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
373 	/*
374 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
375 	 * we have to manually add these pages to the minidump tracking so
376 	 * that they can be dumped, including the vm_page_array.
377 	 */
378 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
379 		dump_add_page(pa);
380 #endif
381 
382 	/*
383 	 * Clear all of the page structures
384 	 */
385 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
386 	vm_page_array_size = page_range;
387 
388 	/*
389 	 * Construct the free queue(s) in ascending order (by physical
390 	 * address) so that the first 16MB of physical memory is allocated
391 	 * last rather than first.  On large-memory machines, this avoids
392 	 * the exhaustion of low physical memory before isa_dmainit has run.
393 	 */
394 	vmstats.v_page_count = 0;
395 	vmstats.v_free_count = 0;
396 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
397 		pa = phys_avail[i];
398 		if (i == biggestone)
399 			last_pa = new_end;
400 		else
401 			last_pa = phys_avail[i + 1];
402 		while (pa < last_pa && npages-- > 0) {
403 			vm_add_new_page(pa);
404 			pa += PAGE_SIZE;
405 		}
406 	}
407 	if (virtual2_start)
408 		virtual2_start = vaddr;
409 	else
410 		virtual_start = vaddr;
411 }
412 
413 /*
414  * We tended to reserve a ton of memory for contigmalloc().  Now that most
415  * drivers have initialized we want to return most the remaining free
416  * reserve back to the VM page queues so they can be used for normal
417  * allocations.
418  *
419  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
420  */
421 static void
422 vm_page_startup_finish(void *dummy __unused)
423 {
424 	alist_blk_t blk;
425 	alist_blk_t rblk;
426 	alist_blk_t count;
427 	alist_blk_t xcount;
428 	alist_blk_t bfree;
429 	vm_page_t m;
430 
431 	spin_lock(&vm_contig_spin);
432 	for (;;) {
433 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
434 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
435 			break;
436 		if (count == 0)
437 			break;
438 
439 		/*
440 		 * Figure out how much of the initial reserve we have to
441 		 * free in order to reach our target.
442 		 */
443 		bfree -= vm_dma_reserved / PAGE_SIZE;
444 		if (count > bfree) {
445 			blk += count - bfree;
446 			count = bfree;
447 		}
448 
449 		/*
450 		 * Calculate the nearest power of 2 <= count.
451 		 */
452 		for (xcount = 1; xcount <= count; xcount <<= 1)
453 			;
454 		xcount >>= 1;
455 		blk += count - xcount;
456 		count = xcount;
457 
458 		/*
459 		 * Allocate the pages from the alist, then free them to
460 		 * the normal VM page queues.
461 		 *
462 		 * Pages allocated from the alist are wired.  We have to
463 		 * busy, unwire, and free them.  We must also adjust
464 		 * vm_low_phys_reserved before freeing any pages to prevent
465 		 * confusion.
466 		 */
467 		rblk = alist_alloc(&vm_contig_alist, blk, count);
468 		if (rblk != blk) {
469 			kprintf("vm_page_startup_finish: Unable to return "
470 				"dma space @0x%08x/%d -> 0x%08x\n",
471 				blk, count, rblk);
472 			break;
473 		}
474 		atomic_add_int(&vmstats.v_dma_pages, -count);
475 		spin_unlock(&vm_contig_spin);
476 
477 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
478 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
479 		while (count) {
480 			vm_page_busy_wait(m, FALSE, "cpgfr");
481 			vm_page_unwire(m, 0);
482 			vm_page_free(m);
483 			--count;
484 			++m;
485 		}
486 		spin_lock(&vm_contig_spin);
487 	}
488 	spin_unlock(&vm_contig_spin);
489 
490 	/*
491 	 * Print out how much DMA space drivers have already allocated and
492 	 * how much is left over.
493 	 */
494 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
495 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
496 		(PAGE_SIZE / 1024),
497 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
498 }
499 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
500 	vm_page_startup_finish, NULL)
501 
502 
503 /*
504  * Scan comparison function for Red-Black tree scans.  An inclusive
505  * (start,end) is expected.  Other fields are not used.
506  */
507 int
508 rb_vm_page_scancmp(struct vm_page *p, void *data)
509 {
510 	struct rb_vm_page_scan_info *info = data;
511 
512 	if (p->pindex < info->start_pindex)
513 		return(-1);
514 	if (p->pindex > info->end_pindex)
515 		return(1);
516 	return(0);
517 }
518 
519 int
520 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
521 {
522 	if (p1->pindex < p2->pindex)
523 		return(-1);
524 	if (p1->pindex > p2->pindex)
525 		return(1);
526 	return(0);
527 }
528 
529 /*
530  * Each page queue has its own spin lock, which is fairly optimal for
531  * allocating and freeing pages at least.
532  *
533  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
534  * queue spinlock via this function.  Also note that m->queue cannot change
535  * unless both the page and queue are locked.
536  */
537 static __inline
538 void
539 _vm_page_queue_spin_lock(vm_page_t m)
540 {
541 	u_short queue;
542 
543 	queue = m->queue;
544 	if (queue != PQ_NONE) {
545 		spin_lock(&vm_page_queues[queue].spin);
546 		KKASSERT(queue == m->queue);
547 	}
548 }
549 
550 static __inline
551 void
552 _vm_page_queue_spin_unlock(vm_page_t m)
553 {
554 	u_short queue;
555 
556 	queue = m->queue;
557 	cpu_ccfence();
558 	if (queue != PQ_NONE)
559 		spin_unlock(&vm_page_queues[queue].spin);
560 }
561 
562 static __inline
563 void
564 _vm_page_queues_spin_lock(u_short queue)
565 {
566 	cpu_ccfence();
567 	if (queue != PQ_NONE)
568 		spin_lock(&vm_page_queues[queue].spin);
569 }
570 
571 
572 static __inline
573 void
574 _vm_page_queues_spin_unlock(u_short queue)
575 {
576 	cpu_ccfence();
577 	if (queue != PQ_NONE)
578 		spin_unlock(&vm_page_queues[queue].spin);
579 }
580 
581 void
582 vm_page_queue_spin_lock(vm_page_t m)
583 {
584 	_vm_page_queue_spin_lock(m);
585 }
586 
587 void
588 vm_page_queues_spin_lock(u_short queue)
589 {
590 	_vm_page_queues_spin_lock(queue);
591 }
592 
593 void
594 vm_page_queue_spin_unlock(vm_page_t m)
595 {
596 	_vm_page_queue_spin_unlock(m);
597 }
598 
599 void
600 vm_page_queues_spin_unlock(u_short queue)
601 {
602 	_vm_page_queues_spin_unlock(queue);
603 }
604 
605 /*
606  * This locks the specified vm_page and its queue in the proper order
607  * (page first, then queue).  The queue may change so the caller must
608  * recheck on return.
609  */
610 static __inline
611 void
612 _vm_page_and_queue_spin_lock(vm_page_t m)
613 {
614 	vm_page_spin_lock(m);
615 	_vm_page_queue_spin_lock(m);
616 }
617 
618 static __inline
619 void
620 _vm_page_and_queue_spin_unlock(vm_page_t m)
621 {
622 	_vm_page_queues_spin_unlock(m->queue);
623 	vm_page_spin_unlock(m);
624 }
625 
626 void
627 vm_page_and_queue_spin_unlock(vm_page_t m)
628 {
629 	_vm_page_and_queue_spin_unlock(m);
630 }
631 
632 void
633 vm_page_and_queue_spin_lock(vm_page_t m)
634 {
635 	_vm_page_and_queue_spin_lock(m);
636 }
637 
638 /*
639  * Helper function removes vm_page from its current queue.
640  * Returns the base queue the page used to be on.
641  *
642  * The vm_page and the queue must be spinlocked.
643  * This function will unlock the queue but leave the page spinlocked.
644  */
645 static __inline u_short
646 _vm_page_rem_queue_spinlocked(vm_page_t m)
647 {
648 	struct vpgqueues *pq;
649 	u_short queue;
650 
651 	queue = m->queue;
652 	if (queue != PQ_NONE) {
653 		pq = &vm_page_queues[queue];
654 		TAILQ_REMOVE(&pq->pl, m, pageq);
655 		atomic_add_int(pq->cnt, -1);
656 		pq->lcnt--;
657 		m->queue = PQ_NONE;
658 		vm_page_queues_spin_unlock(queue);
659 		if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO))
660 			atomic_subtract_int(&vm_page_zero_count, 1);
661 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
662 			return (queue - m->pc);
663 	}
664 	return queue;
665 }
666 
667 /*
668  * Helper function places the vm_page on the specified queue.
669  *
670  * The vm_page must be spinlocked.
671  * This function will return with both the page and the queue locked.
672  */
673 static __inline void
674 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
675 {
676 	struct vpgqueues *pq;
677 
678 	KKASSERT(m->queue == PQ_NONE);
679 
680 	if (queue != PQ_NONE) {
681 		vm_page_queues_spin_lock(queue);
682 		pq = &vm_page_queues[queue];
683 		++pq->lcnt;
684 		atomic_add_int(pq->cnt, 1);
685 		m->queue = queue;
686 
687 		/*
688 		 * Put zero'd pages on the end ( where we look for zero'd pages
689 		 * first ) and non-zerod pages at the head.
690 		 */
691 		if (queue - m->pc == PQ_FREE) {
692 			if (m->flags & PG_ZERO) {
693 				TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
694 				atomic_add_int(&vm_page_zero_count, 1);
695 			} else {
696 				TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
697 			}
698 		} else if (athead) {
699 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
700 		} else {
701 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
702 		}
703 		/* leave the queue spinlocked */
704 	}
705 }
706 
707 /*
708  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
709  * m->busy is zero.  Returns TRUE if it had to sleep, FALSE if we
710  * did not.  Only one sleep call will be made before returning.
711  *
712  * This function does NOT busy the page and on return the page is not
713  * guaranteed to be available.
714  */
715 void
716 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
717 {
718 	u_int32_t flags;
719 
720 	for (;;) {
721 		flags = m->flags;
722 		cpu_ccfence();
723 
724 		if ((flags & PG_BUSY) == 0 &&
725 		    (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
726 			break;
727 		}
728 		tsleep_interlock(m, 0);
729 		if (atomic_cmpset_int(&m->flags, flags,
730 				      flags | PG_WANTED | PG_REFERENCED)) {
731 			tsleep(m, PINTERLOCKED, msg, 0);
732 			break;
733 		}
734 	}
735 }
736 
737 /*
738  * Wait until PG_BUSY can be set, then set it.  If also_m_busy is TRUE we
739  * also wait for m->busy to become 0 before setting PG_BUSY.
740  */
741 void
742 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
743 				     int also_m_busy, const char *msg
744 				     VM_PAGE_DEBUG_ARGS)
745 {
746 	u_int32_t flags;
747 
748 	for (;;) {
749 		flags = m->flags;
750 		cpu_ccfence();
751 		if (flags & PG_BUSY) {
752 			tsleep_interlock(m, 0);
753 			if (atomic_cmpset_int(&m->flags, flags,
754 					  flags | PG_WANTED | PG_REFERENCED)) {
755 				tsleep(m, PINTERLOCKED, msg, 0);
756 			}
757 		} else if (also_m_busy && (flags & PG_SBUSY)) {
758 			tsleep_interlock(m, 0);
759 			if (atomic_cmpset_int(&m->flags, flags,
760 					  flags | PG_WANTED | PG_REFERENCED)) {
761 				tsleep(m, PINTERLOCKED, msg, 0);
762 			}
763 		} else {
764 			if (atomic_cmpset_int(&m->flags, flags,
765 					      flags | PG_BUSY)) {
766 #ifdef VM_PAGE_DEBUG
767 				m->busy_func = func;
768 				m->busy_line = lineno;
769 #endif
770 				break;
771 			}
772 		}
773 	}
774 }
775 
776 /*
777  * Attempt to set PG_BUSY.  If also_m_busy is TRUE we only succeed if m->busy
778  * is also 0.
779  *
780  * Returns non-zero on failure.
781  */
782 int
783 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
784 				    VM_PAGE_DEBUG_ARGS)
785 {
786 	u_int32_t flags;
787 
788 	for (;;) {
789 		flags = m->flags;
790 		cpu_ccfence();
791 		if (flags & PG_BUSY)
792 			return TRUE;
793 		if (also_m_busy && (flags & PG_SBUSY))
794 			return TRUE;
795 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
796 #ifdef VM_PAGE_DEBUG
797 				m->busy_func = func;
798 				m->busy_line = lineno;
799 #endif
800 			return FALSE;
801 		}
802 	}
803 }
804 
805 /*
806  * Clear the PG_BUSY flag and return non-zero to indicate to the caller
807  * that a wakeup() should be performed.
808  *
809  * The vm_page must be spinlocked and will remain spinlocked on return.
810  * The related queue must NOT be spinlocked (which could deadlock us).
811  *
812  * (inline version)
813  */
814 static __inline
815 int
816 _vm_page_wakeup(vm_page_t m)
817 {
818 	u_int32_t flags;
819 
820 	for (;;) {
821 		flags = m->flags;
822 		cpu_ccfence();
823 		if (atomic_cmpset_int(&m->flags, flags,
824 				      flags & ~(PG_BUSY | PG_WANTED))) {
825 			break;
826 		}
827 	}
828 	return(flags & PG_WANTED);
829 }
830 
831 /*
832  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
833  * is typically the last call you make on a page before moving onto
834  * other things.
835  */
836 void
837 vm_page_wakeup(vm_page_t m)
838 {
839         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
840 	vm_page_spin_lock(m);
841 	if (_vm_page_wakeup(m)) {
842 		vm_page_spin_unlock(m);
843 		wakeup(m);
844 	} else {
845 		vm_page_spin_unlock(m);
846 	}
847 }
848 
849 /*
850  * Holding a page keeps it from being reused.  Other parts of the system
851  * can still disassociate the page from its current object and free it, or
852  * perform read or write I/O on it and/or otherwise manipulate the page,
853  * but if the page is held the VM system will leave the page and its data
854  * intact and not reuse the page for other purposes until the last hold
855  * reference is released.  (see vm_page_wire() if you want to prevent the
856  * page from being disassociated from its object too).
857  *
858  * The caller must still validate the contents of the page and, if necessary,
859  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
860  * before manipulating the page.
861  *
862  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
863  */
864 void
865 vm_page_hold(vm_page_t m)
866 {
867 	vm_page_spin_lock(m);
868 	atomic_add_int(&m->hold_count, 1);
869 	if (m->queue - m->pc == PQ_FREE) {
870 		_vm_page_queue_spin_lock(m);
871 		_vm_page_rem_queue_spinlocked(m);
872 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
873 		_vm_page_queue_spin_unlock(m);
874 	}
875 	vm_page_spin_unlock(m);
876 }
877 
878 /*
879  * The opposite of vm_page_hold().  A page can be freed while being held,
880  * which places it on the PQ_HOLD queue.  If we are able to busy the page
881  * after the hold count drops to zero we will move the page to the
882  * appropriate PQ_FREE queue by calling vm_page_free_toq().
883  */
884 void
885 vm_page_unhold(vm_page_t m)
886 {
887 	vm_page_spin_lock(m);
888 	atomic_add_int(&m->hold_count, -1);
889 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
890 		_vm_page_queue_spin_lock(m);
891 		_vm_page_rem_queue_spinlocked(m);
892 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
893 		_vm_page_queue_spin_unlock(m);
894 	}
895 	vm_page_spin_unlock(m);
896 }
897 
898 /*
899  * Inserts the given vm_page into the object and object list.
900  *
901  * The pagetables are not updated but will presumably fault the page
902  * in if necessary, or if a kernel page the caller will at some point
903  * enter the page into the kernel's pmap.  We are not allowed to block
904  * here so we *can't* do this anyway.
905  *
906  * This routine may not block.
907  * This routine must be called with the vm_object held.
908  * This routine must be called with a critical section held.
909  *
910  * This routine returns TRUE if the page was inserted into the object
911  * successfully, and FALSE if the page already exists in the object.
912  */
913 int
914 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
915 {
916 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
917 	if (m->object != NULL)
918 		panic("vm_page_insert: already inserted");
919 
920 	object->generation++;
921 
922 	/*
923 	 * Record the object/offset pair in this page and add the
924 	 * pv_list_count of the page to the object.
925 	 *
926 	 * The vm_page spin lock is required for interactions with the pmap.
927 	 */
928 	vm_page_spin_lock(m);
929 	m->object = object;
930 	m->pindex = pindex;
931 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
932 		m->object = NULL;
933 		m->pindex = 0;
934 		vm_page_spin_unlock(m);
935 		return FALSE;
936 	}
937 	object->resident_page_count++;
938 	/* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
939 	vm_page_spin_unlock(m);
940 
941 	/*
942 	 * Since we are inserting a new and possibly dirty page,
943 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
944 	 */
945 	if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
946 		vm_object_set_writeable_dirty(object);
947 
948 	/*
949 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
950 	 */
951 	swap_pager_page_inserted(m);
952 	return TRUE;
953 }
954 
955 /*
956  * Removes the given vm_page_t from the (object,index) table
957  *
958  * The underlying pmap entry (if any) is NOT removed here.
959  * This routine may not block.
960  *
961  * The page must be BUSY and will remain BUSY on return.
962  * No other requirements.
963  *
964  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
965  *	 it busy.
966  */
967 void
968 vm_page_remove(vm_page_t m)
969 {
970 	vm_object_t object;
971 
972 	if (m->object == NULL) {
973 		return;
974 	}
975 
976 	if ((m->flags & PG_BUSY) == 0)
977 		panic("vm_page_remove: page not busy");
978 
979 	object = m->object;
980 
981 	vm_object_hold(object);
982 
983 	/*
984 	 * Remove the page from the object and update the object.
985 	 *
986 	 * The vm_page spin lock is required for interactions with the pmap.
987 	 */
988 	vm_page_spin_lock(m);
989 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
990 	object->resident_page_count--;
991 	/* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
992 	m->object = NULL;
993 	vm_page_spin_unlock(m);
994 
995 	object->generation++;
996 
997 	vm_object_drop(object);
998 }
999 
1000 /*
1001  * Locate and return the page at (object, pindex), or NULL if the
1002  * page could not be found.
1003  *
1004  * The caller must hold the vm_object token.
1005  */
1006 vm_page_t
1007 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1008 {
1009 	vm_page_t m;
1010 
1011 	/*
1012 	 * Search the hash table for this object/offset pair
1013 	 */
1014 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1015 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1016 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1017 	return(m);
1018 }
1019 
1020 vm_page_t
1021 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1022 					    vm_pindex_t pindex,
1023 					    int also_m_busy, const char *msg
1024 					    VM_PAGE_DEBUG_ARGS)
1025 {
1026 	u_int32_t flags;
1027 	vm_page_t m;
1028 
1029 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1030 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1031 	while (m) {
1032 		KKASSERT(m->object == object && m->pindex == pindex);
1033 		flags = m->flags;
1034 		cpu_ccfence();
1035 		if (flags & PG_BUSY) {
1036 			tsleep_interlock(m, 0);
1037 			if (atomic_cmpset_int(&m->flags, flags,
1038 					  flags | PG_WANTED | PG_REFERENCED)) {
1039 				tsleep(m, PINTERLOCKED, msg, 0);
1040 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1041 							      pindex);
1042 			}
1043 		} else if (also_m_busy && (flags & PG_SBUSY)) {
1044 			tsleep_interlock(m, 0);
1045 			if (atomic_cmpset_int(&m->flags, flags,
1046 					  flags | PG_WANTED | PG_REFERENCED)) {
1047 				tsleep(m, PINTERLOCKED, msg, 0);
1048 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1049 							      pindex);
1050 			}
1051 		} else if (atomic_cmpset_int(&m->flags, flags,
1052 					     flags | PG_BUSY)) {
1053 #ifdef VM_PAGE_DEBUG
1054 			m->busy_func = func;
1055 			m->busy_line = lineno;
1056 #endif
1057 			break;
1058 		}
1059 	}
1060 	return m;
1061 }
1062 
1063 /*
1064  * Attempt to lookup and busy a page.
1065  *
1066  * Returns NULL if the page could not be found
1067  *
1068  * Returns a vm_page and error == TRUE if the page exists but could not
1069  * be busied.
1070  *
1071  * Returns a vm_page and error == FALSE on success.
1072  */
1073 vm_page_t
1074 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1075 					   vm_pindex_t pindex,
1076 					   int also_m_busy, int *errorp
1077 					   VM_PAGE_DEBUG_ARGS)
1078 {
1079 	u_int32_t flags;
1080 	vm_page_t m;
1081 
1082 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1083 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1084 	*errorp = FALSE;
1085 	while (m) {
1086 		KKASSERT(m->object == object && m->pindex == pindex);
1087 		flags = m->flags;
1088 		cpu_ccfence();
1089 		if (flags & PG_BUSY) {
1090 			*errorp = TRUE;
1091 			break;
1092 		}
1093 		if (also_m_busy && (flags & PG_SBUSY)) {
1094 			*errorp = TRUE;
1095 			break;
1096 		}
1097 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1098 #ifdef VM_PAGE_DEBUG
1099 			m->busy_func = func;
1100 			m->busy_line = lineno;
1101 #endif
1102 			break;
1103 		}
1104 	}
1105 	return m;
1106 }
1107 
1108 /*
1109  * Caller must hold the related vm_object
1110  */
1111 vm_page_t
1112 vm_page_next(vm_page_t m)
1113 {
1114 	vm_page_t next;
1115 
1116 	next = vm_page_rb_tree_RB_NEXT(m);
1117 	if (next && next->pindex != m->pindex + 1)
1118 		next = NULL;
1119 	return (next);
1120 }
1121 
1122 /*
1123  * vm_page_rename()
1124  *
1125  * Move the given vm_page from its current object to the specified
1126  * target object/offset.  The page must be busy and will remain so
1127  * on return.
1128  *
1129  * new_object must be held.
1130  * This routine might block. XXX ?
1131  *
1132  * NOTE: Swap associated with the page must be invalidated by the move.  We
1133  *       have to do this for several reasons:  (1) we aren't freeing the
1134  *       page, (2) we are dirtying the page, (3) the VM system is probably
1135  *       moving the page from object A to B, and will then later move
1136  *       the backing store from A to B and we can't have a conflict.
1137  *
1138  * NOTE: We *always* dirty the page.  It is necessary both for the
1139  *       fact that we moved it, and because we may be invalidating
1140  *	 swap.  If the page is on the cache, we have to deactivate it
1141  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1142  *	 on the cache.
1143  */
1144 void
1145 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1146 {
1147 	KKASSERT(m->flags & PG_BUSY);
1148 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(new_object));
1149 	if (m->object) {
1150 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(m->object));
1151 		vm_page_remove(m);
1152 	}
1153 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1154 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1155 		      new_object, new_pindex);
1156 	}
1157 	if (m->queue - m->pc == PQ_CACHE)
1158 		vm_page_deactivate(m);
1159 	vm_page_dirty(m);
1160 }
1161 
1162 /*
1163  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1164  * is being moved between queues or otherwise is to remain BUSYied by the
1165  * caller.
1166  *
1167  * This routine may not block.
1168  */
1169 void
1170 vm_page_unqueue_nowakeup(vm_page_t m)
1171 {
1172 	vm_page_and_queue_spin_lock(m);
1173 	(void)_vm_page_rem_queue_spinlocked(m);
1174 	vm_page_spin_unlock(m);
1175 }
1176 
1177 /*
1178  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1179  * if necessary.
1180  *
1181  * This routine may not block.
1182  */
1183 void
1184 vm_page_unqueue(vm_page_t m)
1185 {
1186 	u_short queue;
1187 
1188 	vm_page_and_queue_spin_lock(m);
1189 	queue = _vm_page_rem_queue_spinlocked(m);
1190 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1191 		vm_page_spin_unlock(m);
1192 		pagedaemon_wakeup();
1193 	} else {
1194 		vm_page_spin_unlock(m);
1195 	}
1196 }
1197 
1198 /*
1199  * vm_page_list_find()
1200  *
1201  * Find a page on the specified queue with color optimization.
1202  *
1203  * The page coloring optimization attempts to locate a page that does
1204  * not overload other nearby pages in the object in the cpu's L1 or L2
1205  * caches.  We need this optimization because cpu caches tend to be
1206  * physical caches, while object spaces tend to be virtual.
1207  *
1208  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1209  * and the algorithm is adjusted to localize allocations on a per-core basis.
1210  * This is done by 'twisting' the colors.
1211  *
1212  * The page is returned spinlocked and removed from its queue (it will
1213  * be on PQ_NONE), or NULL. The page is not PG_BUSY'd.  The caller
1214  * is responsible for dealing with the busy-page case (usually by
1215  * deactivating the page and looping).
1216  *
1217  * NOTE:  This routine is carefully inlined.  A non-inlined version
1218  *	  is available for outside callers but the only critical path is
1219  *	  from within this source file.
1220  *
1221  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1222  *	  represent stable storage, allowing us to order our locks vm_page
1223  *	  first, then queue.
1224  */
1225 static __inline
1226 vm_page_t
1227 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1228 {
1229 	vm_page_t m;
1230 
1231 	for (;;) {
1232 		if (prefer_zero)
1233 			m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
1234 		else
1235 			m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1236 		if (m == NULL) {
1237 			m = _vm_page_list_find2(basequeue, index);
1238 			return(m);
1239 		}
1240 		vm_page_and_queue_spin_lock(m);
1241 		if (m->queue == basequeue + index) {
1242 			_vm_page_rem_queue_spinlocked(m);
1243 			/* vm_page_t spin held, no queue spin */
1244 			break;
1245 		}
1246 		vm_page_and_queue_spin_unlock(m);
1247 	}
1248 	return(m);
1249 }
1250 
1251 static vm_page_t
1252 _vm_page_list_find2(int basequeue, int index)
1253 {
1254 	int i;
1255 	vm_page_t m = NULL;
1256 	struct vpgqueues *pq;
1257 
1258 	pq = &vm_page_queues[basequeue];
1259 
1260 	/*
1261 	 * Note that for the first loop, index+i and index-i wind up at the
1262 	 * same place.  Even though this is not totally optimal, we've already
1263 	 * blown it by missing the cache case so we do not care.
1264 	 */
1265 	for (i = PQ_L2_SIZE / 2; i > 0; --i) {
1266 		for (;;) {
1267 			m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl);
1268 			if (m) {
1269 				_vm_page_and_queue_spin_lock(m);
1270 				if (m->queue ==
1271 				    basequeue + ((index + i) & PQ_L2_MASK)) {
1272 					_vm_page_rem_queue_spinlocked(m);
1273 					return(m);
1274 				}
1275 				_vm_page_and_queue_spin_unlock(m);
1276 				continue;
1277 			}
1278 			m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl);
1279 			if (m) {
1280 				_vm_page_and_queue_spin_lock(m);
1281 				if (m->queue ==
1282 				    basequeue + ((index - i) & PQ_L2_MASK)) {
1283 					_vm_page_rem_queue_spinlocked(m);
1284 					return(m);
1285 				}
1286 				_vm_page_and_queue_spin_unlock(m);
1287 				continue;
1288 			}
1289 			break;	/* next i */
1290 		}
1291 	}
1292 	return(m);
1293 }
1294 
1295 /*
1296  * Returns a vm_page candidate for allocation.  The page is not busied so
1297  * it can move around.  The caller must busy the page (and typically
1298  * deactivate it if it cannot be busied!)
1299  *
1300  * Returns a spinlocked vm_page that has been removed from its queue.
1301  */
1302 vm_page_t
1303 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1304 {
1305 	return(_vm_page_list_find(basequeue, index, prefer_zero));
1306 }
1307 
1308 /*
1309  * Find a page on the cache queue with color optimization, remove it
1310  * from the queue, and busy it.  The returned page will not be spinlocked.
1311  *
1312  * A candidate failure will be deactivated.  Candidates can fail due to
1313  * being busied by someone else, in which case they will be deactivated.
1314  *
1315  * This routine may not block.
1316  *
1317  */
1318 static vm_page_t
1319 vm_page_select_cache(u_short pg_color)
1320 {
1321 	vm_page_t m;
1322 
1323 	for (;;) {
1324 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1325 		if (m == NULL)
1326 			break;
1327 		/*
1328 		 * (m) has been removed from its queue and spinlocked
1329 		 */
1330 		if (vm_page_busy_try(m, TRUE)) {
1331 			_vm_page_deactivate_locked(m, 0);
1332 			vm_page_spin_unlock(m);
1333 #ifdef INVARIANTS
1334                         kprintf("Warning: busy page %p found in cache\n", m);
1335 #endif
1336 		} else {
1337 			/*
1338 			 * We successfully busied the page
1339 			 */
1340 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1341 			    m->hold_count == 0 &&
1342 			    m->wire_count == 0 &&
1343 			    (m->dirty & m->valid) == 0) {
1344 				vm_page_spin_unlock(m);
1345 				pagedaemon_wakeup();
1346 				return(m);
1347 			}
1348 
1349 			/*
1350 			 * The page cannot be recycled, deactivate it.
1351 			 */
1352 			_vm_page_deactivate_locked(m, 0);
1353 			if (_vm_page_wakeup(m)) {
1354 				vm_page_spin_unlock(m);
1355 				wakeup(m);
1356 			} else {
1357 				vm_page_spin_unlock(m);
1358 			}
1359 		}
1360 	}
1361 	return (m);
1362 }
1363 
1364 /*
1365  * Find a free or zero page, with specified preference.  We attempt to
1366  * inline the nominal case and fall back to _vm_page_select_free()
1367  * otherwise.  A busied page is removed from the queue and returned.
1368  *
1369  * This routine may not block.
1370  */
1371 static __inline vm_page_t
1372 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1373 {
1374 	vm_page_t m;
1375 
1376 	for (;;) {
1377 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1378 				       prefer_zero);
1379 		if (m == NULL)
1380 			break;
1381 		if (vm_page_busy_try(m, TRUE)) {
1382 			/*
1383 			 * Various mechanisms such as a pmap_collect can
1384 			 * result in a busy page on the free queue.  We
1385 			 * have to move the page out of the way so we can
1386 			 * retry the allocation.  If the other thread is not
1387 			 * allocating the page then m->valid will remain 0 and
1388 			 * the pageout daemon will free the page later on.
1389 			 *
1390 			 * Since we could not busy the page, however, we
1391 			 * cannot make assumptions as to whether the page
1392 			 * will be allocated by the other thread or not,
1393 			 * so all we can do is deactivate it to move it out
1394 			 * of the way.  In particular, if the other thread
1395 			 * wires the page it may wind up on the inactive
1396 			 * queue and the pageout daemon will have to deal
1397 			 * with that case too.
1398 			 */
1399 			_vm_page_deactivate_locked(m, 0);
1400 			vm_page_spin_unlock(m);
1401 #ifdef INVARIANTS
1402                         kprintf("Warning: busy page %p found in cache\n", m);
1403 #endif
1404 		} else {
1405 			/*
1406 			 * Theoretically if we are able to busy the page
1407 			 * atomic with the queue removal (using the vm_page
1408 			 * lock) nobody else should be able to mess with the
1409 			 * page before us.
1410 			 */
1411 			KKASSERT((m->flags & (PG_UNMANAGED |
1412 					      PG_NEED_COMMIT)) == 0);
1413 			KKASSERT(m->hold_count == 0);
1414 			KKASSERT(m->wire_count == 0);
1415 			vm_page_spin_unlock(m);
1416 			pagedaemon_wakeup();
1417 
1418 			/* return busied and removed page */
1419 			return(m);
1420 		}
1421 	}
1422 	return(m);
1423 }
1424 
1425 /*
1426  * This implements a per-cpu cache of free, zero'd, ready-to-go pages.
1427  * The idea is to populate this cache prior to acquiring any locks so
1428  * we don't wind up potentially zeroing VM pages (under heavy loads) while
1429  * holding potentialy contending locks.
1430  *
1431  * Note that we allocate the page uninserted into anything and use a pindex
1432  * of 0, the vm_page_alloc() will effectively add gd_cpuid so these
1433  * allocations should wind up being uncontended.  However, we still want
1434  * to rove across PQ_L2_SIZE.
1435  */
1436 void
1437 vm_page_pcpu_cache(void)
1438 {
1439 #if 0
1440 	globaldata_t gd = mycpu;
1441 	vm_page_t m;
1442 
1443 	if (gd->gd_vmpg_count < GD_MINVMPG) {
1444 		crit_enter_gd(gd);
1445 		while (gd->gd_vmpg_count < GD_MAXVMPG) {
1446 			m = vm_page_alloc(NULL, ticks & ~ncpus2_mask,
1447 					  VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1448 					  VM_ALLOC_NULL_OK | VM_ALLOC_ZERO);
1449 			if (gd->gd_vmpg_count < GD_MAXVMPG) {
1450 				if ((m->flags & PG_ZERO) == 0) {
1451 					pmap_zero_page(VM_PAGE_TO_PHYS(m));
1452 					vm_page_flag_set(m, PG_ZERO);
1453 				}
1454 				gd->gd_vmpg_array[gd->gd_vmpg_count++] = m;
1455 			} else {
1456 				vm_page_free(m);
1457 			}
1458 		}
1459 		crit_exit_gd(gd);
1460 	}
1461 #endif
1462 }
1463 
1464 /*
1465  * vm_page_alloc()
1466  *
1467  * Allocate and return a memory cell associated with this VM object/offset
1468  * pair.  If object is NULL an unassociated page will be allocated.
1469  *
1470  * The returned page will be busied and removed from its queues.  This
1471  * routine can block and may return NULL if a race occurs and the page
1472  * is found to already exist at the specified (object, pindex).
1473  *
1474  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1475  *	VM_ALLOC_QUICK		like normal but cannot use cache
1476  *	VM_ALLOC_SYSTEM		greater free drain
1477  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1478  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1479  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1480  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1481  *				(see vm_page_grab())
1482  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1483  *
1484  * The object must be held if not NULL
1485  * This routine may not block
1486  *
1487  * Additional special handling is required when called from an interrupt
1488  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1489  * in this case.
1490  */
1491 vm_page_t
1492 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1493 {
1494 	globaldata_t gd = mycpu;
1495 	vm_object_t obj;
1496 	vm_page_t m;
1497 	u_short pg_color;
1498 
1499 #if 0
1500 	/*
1501 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1502 	 * and pre-zerod for us.
1503 	 */
1504 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1505 		crit_enter_gd(gd);
1506 		if (gd->gd_vmpg_count) {
1507 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1508 			crit_exit_gd(gd);
1509 			goto done;
1510                 }
1511 		crit_exit_gd(gd);
1512         }
1513 #endif
1514 	m = NULL;
1515 
1516 	/*
1517 	 * Cpu twist - cpu localization algorithm
1518 	 */
1519 	if (object) {
1520 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) +
1521 			   (object->pg_color & ~ncpus_fit_mask);
1522 	} else {
1523 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask);
1524 	}
1525 	KKASSERT(page_req &
1526 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1527 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1528 
1529 	/*
1530 	 * Certain system threads (pageout daemon, buf_daemon's) are
1531 	 * allowed to eat deeper into the free page list.
1532 	 */
1533 	if (curthread->td_flags & TDF_SYSTHREAD)
1534 		page_req |= VM_ALLOC_SYSTEM;
1535 
1536 loop:
1537 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
1538 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1539 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1540 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
1541 	) {
1542 		/*
1543 		 * The free queue has sufficient free pages to take one out.
1544 		 */
1545 		if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1546 			m = vm_page_select_free(pg_color, TRUE);
1547 		else
1548 			m = vm_page_select_free(pg_color, FALSE);
1549 	} else if (page_req & VM_ALLOC_NORMAL) {
1550 		/*
1551 		 * Allocatable from the cache (non-interrupt only).  On
1552 		 * success, we must free the page and try again, thus
1553 		 * ensuring that vmstats.v_*_free_min counters are replenished.
1554 		 */
1555 #ifdef INVARIANTS
1556 		if (curthread->td_preempted) {
1557 			kprintf("vm_page_alloc(): warning, attempt to allocate"
1558 				" cache page from preempting interrupt\n");
1559 			m = NULL;
1560 		} else {
1561 			m = vm_page_select_cache(pg_color);
1562 		}
1563 #else
1564 		m = vm_page_select_cache(pg_color);
1565 #endif
1566 		/*
1567 		 * On success move the page into the free queue and loop.
1568 		 *
1569 		 * Only do this if we can safely acquire the vm_object lock,
1570 		 * because this is effectively a random page and the caller
1571 		 * might be holding the lock shared, we don't want to
1572 		 * deadlock.
1573 		 */
1574 		if (m != NULL) {
1575 			KASSERT(m->dirty == 0,
1576 				("Found dirty cache page %p", m));
1577 			if ((obj = m->object) != NULL) {
1578 				if (vm_object_hold_try(obj)) {
1579 					vm_page_protect(m, VM_PROT_NONE);
1580 					vm_page_free(m);
1581 					/* m->object NULL here */
1582 					vm_object_drop(obj);
1583 				} else {
1584 					vm_page_deactivate(m);
1585 					vm_page_wakeup(m);
1586 				}
1587 			} else {
1588 				vm_page_protect(m, VM_PROT_NONE);
1589 				vm_page_free(m);
1590 			}
1591 			goto loop;
1592 		}
1593 
1594 		/*
1595 		 * On failure return NULL
1596 		 */
1597 #if defined(DIAGNOSTIC)
1598 		if (vmstats.v_cache_count > 0)
1599 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1600 #endif
1601 		vm_pageout_deficit++;
1602 		pagedaemon_wakeup();
1603 		return (NULL);
1604 	} else {
1605 		/*
1606 		 * No pages available, wakeup the pageout daemon and give up.
1607 		 */
1608 		vm_pageout_deficit++;
1609 		pagedaemon_wakeup();
1610 		return (NULL);
1611 	}
1612 
1613 	/*
1614 	 * v_free_count can race so loop if we don't find the expected
1615 	 * page.
1616 	 */
1617 	if (m == NULL)
1618 		goto loop;
1619 
1620 	/*
1621 	 * Good page found.  The page has already been busied for us and
1622 	 * removed from its queues.
1623 	 */
1624 	KASSERT(m->dirty == 0,
1625 		("vm_page_alloc: free/cache page %p was dirty", m));
1626 	KKASSERT(m->queue == PQ_NONE);
1627 
1628 #if 0
1629 done:
1630 #endif
1631 	/*
1632 	 * Initialize the structure, inheriting some flags but clearing
1633 	 * all the rest.  The page has already been busied for us.
1634 	 */
1635 	vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY));
1636 	KKASSERT(m->wire_count == 0);
1637 	KKASSERT(m->busy == 0);
1638 	m->act_count = 0;
1639 	m->valid = 0;
1640 
1641 	/*
1642 	 * Caller must be holding the object lock (asserted by
1643 	 * vm_page_insert()).
1644 	 *
1645 	 * NOTE: Inserting a page here does not insert it into any pmaps
1646 	 *	 (which could cause us to block allocating memory).
1647 	 *
1648 	 * NOTE: If no object an unassociated page is allocated, m->pindex
1649 	 *	 can be used by the caller for any purpose.
1650 	 */
1651 	if (object) {
1652 		if (vm_page_insert(m, object, pindex) == FALSE) {
1653 			kprintf("PAGE RACE (%p:%d,%"PRIu64")\n",
1654 				object, object->type, pindex);
1655 			vm_page_free(m);
1656 			m = NULL;
1657 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
1658 				panic("PAGE RACE");
1659 		}
1660 	} else {
1661 		m->pindex = pindex;
1662 	}
1663 
1664 	/*
1665 	 * Don't wakeup too often - wakeup the pageout daemon when
1666 	 * we would be nearly out of memory.
1667 	 */
1668 	pagedaemon_wakeup();
1669 
1670 	/*
1671 	 * A PG_BUSY page is returned.
1672 	 */
1673 	return (m);
1674 }
1675 
1676 /*
1677  * Attempt to allocate contiguous physical memory with the specified
1678  * requirements.
1679  */
1680 vm_page_t
1681 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1682 		     unsigned long alignment, unsigned long boundary,
1683 		     unsigned long size)
1684 {
1685 	alist_blk_t blk;
1686 
1687 	alignment >>= PAGE_SHIFT;
1688 	if (alignment == 0)
1689 		alignment = 1;
1690 	boundary >>= PAGE_SHIFT;
1691 	if (boundary == 0)
1692 		boundary = 1;
1693 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
1694 
1695 	spin_lock(&vm_contig_spin);
1696 	blk = alist_alloc(&vm_contig_alist, 0, size);
1697 	if (blk == ALIST_BLOCK_NONE) {
1698 		spin_unlock(&vm_contig_spin);
1699 		if (bootverbose) {
1700 			kprintf("vm_page_alloc_contig: %ldk nospace\n",
1701 				(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1702 		}
1703 		return(NULL);
1704 	}
1705 	if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1706 		alist_free(&vm_contig_alist, blk, size);
1707 		spin_unlock(&vm_contig_spin);
1708 		if (bootverbose) {
1709 			kprintf("vm_page_alloc_contig: %ldk high "
1710 				"%016jx failed\n",
1711 				(size + PAGE_MASK) * (PAGE_SIZE / 1024),
1712 				(intmax_t)high);
1713 		}
1714 		return(NULL);
1715 	}
1716 	spin_unlock(&vm_contig_spin);
1717 	if (vm_contig_verbose) {
1718 		kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1719 			(intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1720 			(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1721 	}
1722 	return (PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT));
1723 }
1724 
1725 /*
1726  * Free contiguously allocated pages.  The pages will be wired but not busy.
1727  * When freeing to the alist we leave them wired and not busy.
1728  */
1729 void
1730 vm_page_free_contig(vm_page_t m, unsigned long size)
1731 {
1732 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1733 	vm_pindex_t start = pa >> PAGE_SHIFT;
1734 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1735 
1736 	if (vm_contig_verbose) {
1737 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
1738 			(intmax_t)pa, size / 1024);
1739 	}
1740 	if (pa < vm_low_phys_reserved) {
1741 		KKASSERT(pa + size <= vm_low_phys_reserved);
1742 		spin_lock(&vm_contig_spin);
1743 		alist_free(&vm_contig_alist, start, pages);
1744 		spin_unlock(&vm_contig_spin);
1745 	} else {
1746 		while (pages) {
1747 			vm_page_busy_wait(m, FALSE, "cpgfr");
1748 			vm_page_unwire(m, 0);
1749 			vm_page_free(m);
1750 			--pages;
1751 			++m;
1752 		}
1753 
1754 	}
1755 }
1756 
1757 
1758 /*
1759  * Wait for sufficient free memory for nominal heavy memory use kernel
1760  * operations.
1761  *
1762  * WARNING!  Be sure never to call this in any vm_pageout code path, which
1763  *	     will trivially deadlock the system.
1764  */
1765 void
1766 vm_wait_nominal(void)
1767 {
1768 	while (vm_page_count_min(0))
1769 		vm_wait(0);
1770 }
1771 
1772 /*
1773  * Test if vm_wait_nominal() would block.
1774  */
1775 int
1776 vm_test_nominal(void)
1777 {
1778 	if (vm_page_count_min(0))
1779 		return(1);
1780 	return(0);
1781 }
1782 
1783 /*
1784  * Block until free pages are available for allocation, called in various
1785  * places before memory allocations.
1786  *
1787  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1788  * more generous then that.
1789  */
1790 void
1791 vm_wait(int timo)
1792 {
1793 	/*
1794 	 * never wait forever
1795 	 */
1796 	if (timo == 0)
1797 		timo = hz;
1798 	lwkt_gettoken(&vm_token);
1799 
1800 	if (curthread == pagethread) {
1801 		/*
1802 		 * The pageout daemon itself needs pages, this is bad.
1803 		 */
1804 		if (vm_page_count_min(0)) {
1805 			vm_pageout_pages_needed = 1;
1806 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1807 		}
1808 	} else {
1809 		/*
1810 		 * Wakeup the pageout daemon if necessary and wait.
1811 		 */
1812 		if (vm_page_count_target()) {
1813 			if (vm_pages_needed == 0) {
1814 				vm_pages_needed = 1;
1815 				wakeup(&vm_pages_needed);
1816 			}
1817 			++vm_pages_waiting;	/* SMP race ok */
1818 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
1819 		}
1820 	}
1821 	lwkt_reltoken(&vm_token);
1822 }
1823 
1824 /*
1825  * Block until free pages are available for allocation
1826  *
1827  * Called only from vm_fault so that processes page faulting can be
1828  * easily tracked.
1829  */
1830 void
1831 vm_waitpfault(void)
1832 {
1833 	/*
1834 	 * Wakeup the pageout daemon if necessary and wait.
1835 	 */
1836 	if (vm_page_count_target()) {
1837 		lwkt_gettoken(&vm_token);
1838 		if (vm_page_count_target()) {
1839 			if (vm_pages_needed == 0) {
1840 				vm_pages_needed = 1;
1841 				wakeup(&vm_pages_needed);
1842 			}
1843 			++vm_pages_waiting;	/* SMP race ok */
1844 			tsleep(&vmstats.v_free_count, 0, "pfault", hz);
1845 		}
1846 		lwkt_reltoken(&vm_token);
1847 	}
1848 }
1849 
1850 /*
1851  * Put the specified page on the active list (if appropriate).  Ensure
1852  * that act_count is at least ACT_INIT but do not otherwise mess with it.
1853  *
1854  * The caller should be holding the page busied ? XXX
1855  * This routine may not block.
1856  */
1857 void
1858 vm_page_activate(vm_page_t m)
1859 {
1860 	u_short oqueue;
1861 
1862 	vm_page_spin_lock(m);
1863 	if (m->queue - m->pc != PQ_ACTIVE) {
1864 		_vm_page_queue_spin_lock(m);
1865 		oqueue = _vm_page_rem_queue_spinlocked(m);
1866 		/* page is left spinlocked, queue is unlocked */
1867 
1868 		if (oqueue == PQ_CACHE)
1869 			mycpu->gd_cnt.v_reactivated++;
1870 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1871 			if (m->act_count < ACT_INIT)
1872 				m->act_count = ACT_INIT;
1873 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
1874 		}
1875 		_vm_page_and_queue_spin_unlock(m);
1876 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
1877 			pagedaemon_wakeup();
1878 	} else {
1879 		if (m->act_count < ACT_INIT)
1880 			m->act_count = ACT_INIT;
1881 		vm_page_spin_unlock(m);
1882 	}
1883 }
1884 
1885 /*
1886  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
1887  * routine is called when a page has been added to the cache or free
1888  * queues.
1889  *
1890  * This routine may not block.
1891  */
1892 static __inline void
1893 vm_page_free_wakeup(void)
1894 {
1895 	/*
1896 	 * If the pageout daemon itself needs pages, then tell it that
1897 	 * there are some free.
1898 	 */
1899 	if (vm_pageout_pages_needed &&
1900 	    vmstats.v_cache_count + vmstats.v_free_count >=
1901 	    vmstats.v_pageout_free_min
1902 	) {
1903 		wakeup(&vm_pageout_pages_needed);
1904 		vm_pageout_pages_needed = 0;
1905 	}
1906 
1907 	/*
1908 	 * Wakeup processes that are waiting on memory.
1909 	 *
1910 	 * NOTE: vm_paging_target() is the pageout daemon's target, while
1911 	 *	 vm_page_count_target() is somewhere inbetween.  We want
1912 	 *	 to wake processes up prior to the pageout daemon reaching
1913 	 *	 its target to provide some hysteresis.
1914 	 */
1915 	if (vm_pages_waiting) {
1916 		if (!vm_page_count_target()) {
1917 			/*
1918 			 * Plenty of pages are free, wakeup everyone.
1919 			 */
1920 			vm_pages_waiting = 0;
1921 			wakeup(&vmstats.v_free_count);
1922 			++mycpu->gd_cnt.v_ppwakeups;
1923 		} else if (!vm_page_count_min(0)) {
1924 			/*
1925 			 * Some pages are free, wakeup someone.
1926 			 */
1927 			int wcount = vm_pages_waiting;
1928 			if (wcount > 0)
1929 				--wcount;
1930 			vm_pages_waiting = wcount;
1931 			wakeup_one(&vmstats.v_free_count);
1932 			++mycpu->gd_cnt.v_ppwakeups;
1933 		}
1934 	}
1935 }
1936 
1937 /*
1938  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
1939  * it from its VM object.
1940  *
1941  * The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
1942  * return (the page will have been freed).
1943  */
1944 void
1945 vm_page_free_toq(vm_page_t m)
1946 {
1947 	mycpu->gd_cnt.v_tfree++;
1948 	KKASSERT((m->flags & PG_MAPPED) == 0);
1949 	KKASSERT(m->flags & PG_BUSY);
1950 
1951 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1952 		kprintf("vm_page_free: pindex(%lu), busy(%d), "
1953 			"PG_BUSY(%d), hold(%d)\n",
1954 			(u_long)m->pindex, m->busy,
1955 			((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
1956 		if ((m->queue - m->pc) == PQ_FREE)
1957 			panic("vm_page_free: freeing free page");
1958 		else
1959 			panic("vm_page_free: freeing busy page");
1960 	}
1961 
1962 	/*
1963 	 * Remove from object, spinlock the page and its queues and
1964 	 * remove from any queue.  No queue spinlock will be held
1965 	 * after this section (because the page was removed from any
1966 	 * queue).
1967 	 */
1968 	vm_page_remove(m);
1969 	vm_page_and_queue_spin_lock(m);
1970 	_vm_page_rem_queue_spinlocked(m);
1971 
1972 	/*
1973 	 * No further management of fictitious pages occurs beyond object
1974 	 * and queue removal.
1975 	 */
1976 	if ((m->flags & PG_FICTITIOUS) != 0) {
1977 		vm_page_spin_unlock(m);
1978 		vm_page_wakeup(m);
1979 		return;
1980 	}
1981 
1982 	m->valid = 0;
1983 	vm_page_undirty(m);
1984 
1985 	if (m->wire_count != 0) {
1986 		if (m->wire_count > 1) {
1987 		    panic(
1988 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1989 			m->wire_count, (long)m->pindex);
1990 		}
1991 		panic("vm_page_free: freeing wired page");
1992 	}
1993 
1994 	/*
1995 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1996 	 * Clear the NEED_COMMIT flag
1997 	 */
1998 	if (m->flags & PG_UNMANAGED)
1999 		vm_page_flag_clear(m, PG_UNMANAGED);
2000 	if (m->flags & PG_NEED_COMMIT)
2001 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2002 
2003 	if (m->hold_count != 0) {
2004 		vm_page_flag_clear(m, PG_ZERO);
2005 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2006 	} else {
2007 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2008 	}
2009 
2010 	/*
2011 	 * This sequence allows us to clear PG_BUSY while still holding
2012 	 * its spin lock, which reduces contention vs allocators.  We
2013 	 * must not leave the queue locked or _vm_page_wakeup() may
2014 	 * deadlock.
2015 	 */
2016 	_vm_page_queue_spin_unlock(m);
2017 	if (_vm_page_wakeup(m)) {
2018 		vm_page_spin_unlock(m);
2019 		wakeup(m);
2020 	} else {
2021 		vm_page_spin_unlock(m);
2022 	}
2023 	vm_page_free_wakeup();
2024 }
2025 
2026 /*
2027  * vm_page_free_fromq_fast()
2028  *
2029  * Remove a non-zero page from one of the free queues; the page is removed for
2030  * zeroing, so do not issue a wakeup.
2031  */
2032 vm_page_t
2033 vm_page_free_fromq_fast(void)
2034 {
2035 	static int qi;
2036 	vm_page_t m;
2037 	int i;
2038 
2039 	for (i = 0; i < PQ_L2_SIZE; ++i) {
2040 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
2041 		/* page is returned spinlocked and removed from its queue */
2042 		if (m) {
2043 			if (vm_page_busy_try(m, TRUE)) {
2044 				/*
2045 				 * We were unable to busy the page, deactivate
2046 				 * it and loop.
2047 				 */
2048 				_vm_page_deactivate_locked(m, 0);
2049 				vm_page_spin_unlock(m);
2050 			} else if (m->flags & PG_ZERO) {
2051 				/*
2052 				 * The page is PG_ZERO, requeue it and loop
2053 				 */
2054 				_vm_page_add_queue_spinlocked(m,
2055 							      PQ_FREE + m->pc,
2056 							      0);
2057 				vm_page_queue_spin_unlock(m);
2058 				if (_vm_page_wakeup(m)) {
2059 					vm_page_spin_unlock(m);
2060 					wakeup(m);
2061 				} else {
2062 					vm_page_spin_unlock(m);
2063 				}
2064 			} else {
2065 				/*
2066 				 * The page is not PG_ZERO'd so return it.
2067 				 */
2068 				vm_page_spin_unlock(m);
2069 				KKASSERT((m->flags & (PG_UNMANAGED |
2070 						      PG_NEED_COMMIT)) == 0);
2071 				KKASSERT(m->hold_count == 0);
2072 				KKASSERT(m->wire_count == 0);
2073 				break;
2074 			}
2075 			m = NULL;
2076 		}
2077 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
2078 	}
2079 	return (m);
2080 }
2081 
2082 /*
2083  * vm_page_unmanage()
2084  *
2085  * Prevent PV management from being done on the page.  The page is
2086  * removed from the paging queues as if it were wired, and as a
2087  * consequence of no longer being managed the pageout daemon will not
2088  * touch it (since there is no way to locate the pte mappings for the
2089  * page).  madvise() calls that mess with the pmap will also no longer
2090  * operate on the page.
2091  *
2092  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2093  * will clear the flag.
2094  *
2095  * This routine is used by OBJT_PHYS objects - objects using unswappable
2096  * physical memory as backing store rather then swap-backed memory and
2097  * will eventually be extended to support 4MB unmanaged physical
2098  * mappings.
2099  *
2100  * Caller must be holding the page busy.
2101  */
2102 void
2103 vm_page_unmanage(vm_page_t m)
2104 {
2105 	KKASSERT(m->flags & PG_BUSY);
2106 	if ((m->flags & PG_UNMANAGED) == 0) {
2107 		if (m->wire_count == 0)
2108 			vm_page_unqueue(m);
2109 	}
2110 	vm_page_flag_set(m, PG_UNMANAGED);
2111 }
2112 
2113 /*
2114  * Mark this page as wired down by yet another map, removing it from
2115  * paging queues as necessary.
2116  *
2117  * Caller must be holding the page busy.
2118  */
2119 void
2120 vm_page_wire(vm_page_t m)
2121 {
2122 	/*
2123 	 * Only bump the wire statistics if the page is not already wired,
2124 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2125 	 * it is already off the queues).  Don't do anything with fictitious
2126 	 * pages because they are always wired.
2127 	 */
2128 	KKASSERT(m->flags & PG_BUSY);
2129 	if ((m->flags & PG_FICTITIOUS) == 0) {
2130 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2131 			if ((m->flags & PG_UNMANAGED) == 0)
2132 				vm_page_unqueue(m);
2133 			atomic_add_int(&vmstats.v_wire_count, 1);
2134 		}
2135 		KASSERT(m->wire_count != 0,
2136 			("vm_page_wire: wire_count overflow m=%p", m));
2137 	}
2138 }
2139 
2140 /*
2141  * Release one wiring of this page, potentially enabling it to be paged again.
2142  *
2143  * Many pages placed on the inactive queue should actually go
2144  * into the cache, but it is difficult to figure out which.  What
2145  * we do instead, if the inactive target is well met, is to put
2146  * clean pages at the head of the inactive queue instead of the tail.
2147  * This will cause them to be moved to the cache more quickly and
2148  * if not actively re-referenced, freed more quickly.  If we just
2149  * stick these pages at the end of the inactive queue, heavy filesystem
2150  * meta-data accesses can cause an unnecessary paging load on memory bound
2151  * processes.  This optimization causes one-time-use metadata to be
2152  * reused more quickly.
2153  *
2154  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2155  * the inactive queue.  This helps the pageout daemon determine memory
2156  * pressure and act on out-of-memory situations more quickly.
2157  *
2158  * BUT, if we are in a low-memory situation we have no choice but to
2159  * put clean pages on the cache queue.
2160  *
2161  * A number of routines use vm_page_unwire() to guarantee that the page
2162  * will go into either the inactive or active queues, and will NEVER
2163  * be placed in the cache - for example, just after dirtying a page.
2164  * dirty pages in the cache are not allowed.
2165  *
2166  * The page queues must be locked.
2167  * This routine may not block.
2168  */
2169 void
2170 vm_page_unwire(vm_page_t m, int activate)
2171 {
2172 	KKASSERT(m->flags & PG_BUSY);
2173 	if (m->flags & PG_FICTITIOUS) {
2174 		/* do nothing */
2175 	} else if (m->wire_count <= 0) {
2176 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2177 	} else {
2178 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2179 			atomic_add_int(&vmstats.v_wire_count, -1);
2180 			if (m->flags & PG_UNMANAGED) {
2181 				;
2182 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2183 				vm_page_spin_lock(m);
2184 				_vm_page_add_queue_spinlocked(m,
2185 							PQ_ACTIVE + m->pc, 0);
2186 				_vm_page_and_queue_spin_unlock(m);
2187 			} else {
2188 				vm_page_spin_lock(m);
2189 				vm_page_flag_clear(m, PG_WINATCFLS);
2190 				_vm_page_add_queue_spinlocked(m,
2191 							PQ_INACTIVE + m->pc, 0);
2192 				++vm_swapcache_inactive_heuristic;
2193 				_vm_page_and_queue_spin_unlock(m);
2194 			}
2195 		}
2196 	}
2197 }
2198 
2199 /*
2200  * Move the specified page to the inactive queue.  If the page has
2201  * any associated swap, the swap is deallocated.
2202  *
2203  * Normally athead is 0 resulting in LRU operation.  athead is set
2204  * to 1 if we want this page to be 'as if it were placed in the cache',
2205  * except without unmapping it from the process address space.
2206  *
2207  * vm_page's spinlock must be held on entry and will remain held on return.
2208  * This routine may not block.
2209  */
2210 static void
2211 _vm_page_deactivate_locked(vm_page_t m, int athead)
2212 {
2213 	u_short oqueue;
2214 
2215 	/*
2216 	 * Ignore if already inactive.
2217 	 */
2218 	if (m->queue - m->pc == PQ_INACTIVE)
2219 		return;
2220 	_vm_page_queue_spin_lock(m);
2221 	oqueue = _vm_page_rem_queue_spinlocked(m);
2222 
2223 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2224 		if (oqueue == PQ_CACHE)
2225 			mycpu->gd_cnt.v_reactivated++;
2226 		vm_page_flag_clear(m, PG_WINATCFLS);
2227 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2228 		if (athead == 0)
2229 			++vm_swapcache_inactive_heuristic;
2230 	}
2231 	_vm_page_queue_spin_unlock(m);
2232 	/* leaves vm_page spinlocked */
2233 }
2234 
2235 /*
2236  * Attempt to deactivate a page.
2237  *
2238  * No requirements.
2239  */
2240 void
2241 vm_page_deactivate(vm_page_t m)
2242 {
2243 	vm_page_spin_lock(m);
2244 	_vm_page_deactivate_locked(m, 0);
2245 	vm_page_spin_unlock(m);
2246 }
2247 
2248 void
2249 vm_page_deactivate_locked(vm_page_t m)
2250 {
2251 	_vm_page_deactivate_locked(m, 0);
2252 }
2253 
2254 /*
2255  * Attempt to move a page to PQ_CACHE.
2256  *
2257  * Returns 0 on failure, 1 on success
2258  *
2259  * The page should NOT be busied by the caller.  This function will validate
2260  * whether the page can be safely moved to the cache.
2261  */
2262 int
2263 vm_page_try_to_cache(vm_page_t m)
2264 {
2265 	vm_page_spin_lock(m);
2266 	if (vm_page_busy_try(m, TRUE)) {
2267 		vm_page_spin_unlock(m);
2268 		return(0);
2269 	}
2270 	if (m->dirty || m->hold_count || m->wire_count ||
2271 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2272 		if (_vm_page_wakeup(m)) {
2273 			vm_page_spin_unlock(m);
2274 			wakeup(m);
2275 		} else {
2276 			vm_page_spin_unlock(m);
2277 		}
2278 		return(0);
2279 	}
2280 	vm_page_spin_unlock(m);
2281 
2282 	/*
2283 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2284 	 * be moved to the cache.
2285 	 */
2286 	vm_page_test_dirty(m);
2287 	if (m->dirty) {
2288 		vm_page_wakeup(m);
2289 		return(0);
2290 	}
2291 	vm_page_cache(m);
2292 	return(1);
2293 }
2294 
2295 /*
2296  * Attempt to free the page.  If we cannot free it, we do nothing.
2297  * 1 is returned on success, 0 on failure.
2298  *
2299  * No requirements.
2300  */
2301 int
2302 vm_page_try_to_free(vm_page_t m)
2303 {
2304 	vm_page_spin_lock(m);
2305 	if (vm_page_busy_try(m, TRUE)) {
2306 		vm_page_spin_unlock(m);
2307 		return(0);
2308 	}
2309 
2310 	/*
2311 	 * The page can be in any state, including already being on the free
2312 	 * queue.  Check to see if it really can be freed.
2313 	 */
2314 	if (m->dirty ||				/* can't free if it is dirty */
2315 	    m->hold_count ||			/* or held (XXX may be wrong) */
2316 	    m->wire_count ||			/* or wired */
2317 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2318 			 PG_NEED_COMMIT)) ||	/* or needs a commit */
2319 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2320 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2321 		if (_vm_page_wakeup(m)) {
2322 			vm_page_spin_unlock(m);
2323 			wakeup(m);
2324 		} else {
2325 			vm_page_spin_unlock(m);
2326 		}
2327 		return(0);
2328 	}
2329 	vm_page_spin_unlock(m);
2330 
2331 	/*
2332 	 * We can probably free the page.
2333 	 *
2334 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2335 	 * not be freed by this function.    We have to re-test the
2336 	 * dirty bit after cleaning out the pmaps.
2337 	 */
2338 	vm_page_test_dirty(m);
2339 	if (m->dirty) {
2340 		vm_page_wakeup(m);
2341 		return(0);
2342 	}
2343 	vm_page_protect(m, VM_PROT_NONE);
2344 	if (m->dirty) {
2345 		vm_page_wakeup(m);
2346 		return(0);
2347 	}
2348 	vm_page_free(m);
2349 	return(1);
2350 }
2351 
2352 /*
2353  * vm_page_cache
2354  *
2355  * Put the specified page onto the page cache queue (if appropriate).
2356  *
2357  * The page must be busy, and this routine will release the busy and
2358  * possibly even free the page.
2359  */
2360 void
2361 vm_page_cache(vm_page_t m)
2362 {
2363 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2364 	    m->busy || m->wire_count || m->hold_count) {
2365 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
2366 		vm_page_wakeup(m);
2367 		return;
2368 	}
2369 
2370 	/*
2371 	 * Already in the cache (and thus not mapped)
2372 	 */
2373 	if ((m->queue - m->pc) == PQ_CACHE) {
2374 		KKASSERT((m->flags & PG_MAPPED) == 0);
2375 		vm_page_wakeup(m);
2376 		return;
2377 	}
2378 
2379 	/*
2380 	 * Caller is required to test m->dirty, but note that the act of
2381 	 * removing the page from its maps can cause it to become dirty
2382 	 * on an SMP system due to another cpu running in usermode.
2383 	 */
2384 	if (m->dirty) {
2385 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2386 			(long)m->pindex);
2387 	}
2388 
2389 	/*
2390 	 * Remove all pmaps and indicate that the page is not
2391 	 * writeable or mapped.  Our vm_page_protect() call may
2392 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2393 	 * everything.
2394 	 */
2395 	vm_page_protect(m, VM_PROT_NONE);
2396 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2397 	    m->busy || m->wire_count || m->hold_count) {
2398 		vm_page_wakeup(m);
2399 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2400 		vm_page_deactivate(m);
2401 		vm_page_wakeup(m);
2402 	} else {
2403 		_vm_page_and_queue_spin_lock(m);
2404 		_vm_page_rem_queue_spinlocked(m);
2405 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2406 		_vm_page_queue_spin_unlock(m);
2407 		if (_vm_page_wakeup(m)) {
2408 			vm_page_spin_unlock(m);
2409 			wakeup(m);
2410 		} else {
2411 			vm_page_spin_unlock(m);
2412 		}
2413 		vm_page_free_wakeup();
2414 	}
2415 }
2416 
2417 /*
2418  * vm_page_dontneed()
2419  *
2420  * Cache, deactivate, or do nothing as appropriate.  This routine
2421  * is typically used by madvise() MADV_DONTNEED.
2422  *
2423  * Generally speaking we want to move the page into the cache so
2424  * it gets reused quickly.  However, this can result in a silly syndrome
2425  * due to the page recycling too quickly.  Small objects will not be
2426  * fully cached.  On the otherhand, if we move the page to the inactive
2427  * queue we wind up with a problem whereby very large objects
2428  * unnecessarily blow away our inactive and cache queues.
2429  *
2430  * The solution is to move the pages based on a fixed weighting.  We
2431  * either leave them alone, deactivate them, or move them to the cache,
2432  * where moving them to the cache has the highest weighting.
2433  * By forcing some pages into other queues we eventually force the
2434  * system to balance the queues, potentially recovering other unrelated
2435  * space from active.  The idea is to not force this to happen too
2436  * often.
2437  *
2438  * The page must be busied.
2439  */
2440 void
2441 vm_page_dontneed(vm_page_t m)
2442 {
2443 	static int dnweight;
2444 	int dnw;
2445 	int head;
2446 
2447 	dnw = ++dnweight;
2448 
2449 	/*
2450 	 * occassionally leave the page alone
2451 	 */
2452 	if ((dnw & 0x01F0) == 0 ||
2453 	    m->queue - m->pc == PQ_INACTIVE ||
2454 	    m->queue - m->pc == PQ_CACHE
2455 	) {
2456 		if (m->act_count >= ACT_INIT)
2457 			--m->act_count;
2458 		return;
2459 	}
2460 
2461 	/*
2462 	 * If vm_page_dontneed() is inactivating a page, it must clear
2463 	 * the referenced flag; otherwise the pagedaemon will see references
2464 	 * on the page in the inactive queue and reactivate it. Until the
2465 	 * page can move to the cache queue, madvise's job is not done.
2466 	 */
2467 	vm_page_flag_clear(m, PG_REFERENCED);
2468 	pmap_clear_reference(m);
2469 
2470 	if (m->dirty == 0)
2471 		vm_page_test_dirty(m);
2472 
2473 	if (m->dirty || (dnw & 0x0070) == 0) {
2474 		/*
2475 		 * Deactivate the page 3 times out of 32.
2476 		 */
2477 		head = 0;
2478 	} else {
2479 		/*
2480 		 * Cache the page 28 times out of every 32.  Note that
2481 		 * the page is deactivated instead of cached, but placed
2482 		 * at the head of the queue instead of the tail.
2483 		 */
2484 		head = 1;
2485 	}
2486 	vm_page_spin_lock(m);
2487 	_vm_page_deactivate_locked(m, head);
2488 	vm_page_spin_unlock(m);
2489 }
2490 
2491 /*
2492  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2493  * is almost like PG_BUSY except that it allows certain compatible operations
2494  * to occur on the page while it is busy.  For example, a page undergoing a
2495  * write can still be mapped read-only.
2496  *
2497  * Because vm_pages can overlap buffers m->busy can be > 1.  m->busy is only
2498  * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2499  * busy bit is cleared.
2500  */
2501 void
2502 vm_page_io_start(vm_page_t m)
2503 {
2504         KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2505         atomic_add_char(&m->busy, 1);
2506 	vm_page_flag_set(m, PG_SBUSY);
2507 }
2508 
2509 void
2510 vm_page_io_finish(vm_page_t m)
2511 {
2512         KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2513         atomic_subtract_char(&m->busy, 1);
2514 	if (m->busy == 0)
2515 		vm_page_flag_clear(m, PG_SBUSY);
2516 }
2517 
2518 /*
2519  * Indicate that a clean VM page requires a filesystem commit and cannot
2520  * be reused.  Used by tmpfs.
2521  */
2522 void
2523 vm_page_need_commit(vm_page_t m)
2524 {
2525 	vm_page_flag_set(m, PG_NEED_COMMIT);
2526 }
2527 
2528 void
2529 vm_page_clear_commit(vm_page_t m)
2530 {
2531 	vm_page_flag_clear(m, PG_NEED_COMMIT);
2532 }
2533 
2534 /*
2535  * Grab a page, blocking if it is busy and allocating a page if necessary.
2536  * A busy page is returned or NULL.  The page may or may not be valid and
2537  * might not be on a queue (the caller is responsible for the disposition of
2538  * the page).
2539  *
2540  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2541  * page will be zero'd and marked valid.
2542  *
2543  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2544  * valid even if it already exists.
2545  *
2546  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
2547  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2548  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2549  *
2550  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2551  * always returned if we had blocked.
2552  *
2553  * This routine may not be called from an interrupt.
2554  *
2555  * PG_ZERO is *ALWAYS* cleared by this routine.
2556  *
2557  * No other requirements.
2558  */
2559 vm_page_t
2560 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2561 {
2562 	vm_page_t m;
2563 	int error;
2564 
2565 	KKASSERT(allocflags &
2566 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2567 	vm_object_hold(object);
2568 	for (;;) {
2569 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2570 		if (error) {
2571 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
2572 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
2573 				m = NULL;
2574 				break;
2575 			}
2576 			/* retry */
2577 		} else if (m == NULL) {
2578 			if (allocflags & VM_ALLOC_RETRY)
2579 				allocflags |= VM_ALLOC_NULL_OK;
2580 			m = vm_page_alloc(object, pindex,
2581 					  allocflags & ~VM_ALLOC_RETRY);
2582 			if (m)
2583 				break;
2584 			vm_wait(0);
2585 			if ((allocflags & VM_ALLOC_RETRY) == 0)
2586 				goto failed;
2587 		} else {
2588 			/* m found */
2589 			break;
2590 		}
2591 	}
2592 
2593 	/*
2594 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2595 	 *
2596 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2597 	 * valid even if already valid.
2598 	 */
2599 	if (m->valid == 0) {
2600 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2601 			if ((m->flags & PG_ZERO) == 0)
2602 				pmap_zero_page(VM_PAGE_TO_PHYS(m));
2603 			m->valid = VM_PAGE_BITS_ALL;
2604 		}
2605 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2606 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
2607 		m->valid = VM_PAGE_BITS_ALL;
2608 	}
2609 	vm_page_flag_clear(m, PG_ZERO);
2610 failed:
2611 	vm_object_drop(object);
2612 	return(m);
2613 }
2614 
2615 /*
2616  * Mapping function for valid bits or for dirty bits in
2617  * a page.  May not block.
2618  *
2619  * Inputs are required to range within a page.
2620  *
2621  * No requirements.
2622  * Non blocking.
2623  */
2624 int
2625 vm_page_bits(int base, int size)
2626 {
2627 	int first_bit;
2628 	int last_bit;
2629 
2630 	KASSERT(
2631 	    base + size <= PAGE_SIZE,
2632 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2633 	);
2634 
2635 	if (size == 0)		/* handle degenerate case */
2636 		return(0);
2637 
2638 	first_bit = base >> DEV_BSHIFT;
2639 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2640 
2641 	return ((2 << last_bit) - (1 << first_bit));
2642 }
2643 
2644 /*
2645  * Sets portions of a page valid and clean.  The arguments are expected
2646  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2647  * of any partial chunks touched by the range.  The invalid portion of
2648  * such chunks will be zero'd.
2649  *
2650  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2651  *	 align base to DEV_BSIZE so as not to mark clean a partially
2652  *	 truncated device block.  Otherwise the dirty page status might be
2653  *	 lost.
2654  *
2655  * This routine may not block.
2656  *
2657  * (base + size) must be less then or equal to PAGE_SIZE.
2658  */
2659 static void
2660 _vm_page_zero_valid(vm_page_t m, int base, int size)
2661 {
2662 	int frag;
2663 	int endoff;
2664 
2665 	if (size == 0)	/* handle degenerate case */
2666 		return;
2667 
2668 	/*
2669 	 * If the base is not DEV_BSIZE aligned and the valid
2670 	 * bit is clear, we have to zero out a portion of the
2671 	 * first block.
2672 	 */
2673 
2674 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2675 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2676 	) {
2677 		pmap_zero_page_area(
2678 		    VM_PAGE_TO_PHYS(m),
2679 		    frag,
2680 		    base - frag
2681 		);
2682 	}
2683 
2684 	/*
2685 	 * If the ending offset is not DEV_BSIZE aligned and the
2686 	 * valid bit is clear, we have to zero out a portion of
2687 	 * the last block.
2688 	 */
2689 
2690 	endoff = base + size;
2691 
2692 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2693 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2694 	) {
2695 		pmap_zero_page_area(
2696 		    VM_PAGE_TO_PHYS(m),
2697 		    endoff,
2698 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2699 		);
2700 	}
2701 }
2702 
2703 /*
2704  * Set valid, clear dirty bits.  If validating the entire
2705  * page we can safely clear the pmap modify bit.  We also
2706  * use this opportunity to clear the PG_NOSYNC flag.  If a process
2707  * takes a write fault on a MAP_NOSYNC memory area the flag will
2708  * be set again.
2709  *
2710  * We set valid bits inclusive of any overlap, but we can only
2711  * clear dirty bits for DEV_BSIZE chunks that are fully within
2712  * the range.
2713  *
2714  * Page must be busied?
2715  * No other requirements.
2716  */
2717 void
2718 vm_page_set_valid(vm_page_t m, int base, int size)
2719 {
2720 	_vm_page_zero_valid(m, base, size);
2721 	m->valid |= vm_page_bits(base, size);
2722 }
2723 
2724 
2725 /*
2726  * Set valid bits and clear dirty bits.
2727  *
2728  * NOTE: This function does not clear the pmap modified bit.
2729  *	 Also note that e.g. NFS may use a byte-granular base
2730  *	 and size.
2731  *
2732  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
2733  *	    this without necessarily busying the page (via bdwrite()).
2734  *	    So for now vm_token must also be held.
2735  *
2736  * No other requirements.
2737  */
2738 void
2739 vm_page_set_validclean(vm_page_t m, int base, int size)
2740 {
2741 	int pagebits;
2742 
2743 	_vm_page_zero_valid(m, base, size);
2744 	pagebits = vm_page_bits(base, size);
2745 	m->valid |= pagebits;
2746 	m->dirty &= ~pagebits;
2747 	if (base == 0 && size == PAGE_SIZE) {
2748 		/*pmap_clear_modify(m);*/
2749 		vm_page_flag_clear(m, PG_NOSYNC);
2750 	}
2751 }
2752 
2753 /*
2754  * Set valid & dirty.  Used by buwrite()
2755  *
2756  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
2757  *	    call this function in buwrite() so for now vm_token must
2758  *	    be held.
2759  *
2760  * No other requirements.
2761  */
2762 void
2763 vm_page_set_validdirty(vm_page_t m, int base, int size)
2764 {
2765 	int pagebits;
2766 
2767 	pagebits = vm_page_bits(base, size);
2768 	m->valid |= pagebits;
2769 	m->dirty |= pagebits;
2770 	if (m->object)
2771 	       vm_object_set_writeable_dirty(m->object);
2772 }
2773 
2774 /*
2775  * Clear dirty bits.
2776  *
2777  * NOTE: This function does not clear the pmap modified bit.
2778  *	 Also note that e.g. NFS may use a byte-granular base
2779  *	 and size.
2780  *
2781  * Page must be busied?
2782  * No other requirements.
2783  */
2784 void
2785 vm_page_clear_dirty(vm_page_t m, int base, int size)
2786 {
2787 	m->dirty &= ~vm_page_bits(base, size);
2788 	if (base == 0 && size == PAGE_SIZE) {
2789 		/*pmap_clear_modify(m);*/
2790 		vm_page_flag_clear(m, PG_NOSYNC);
2791 	}
2792 }
2793 
2794 /*
2795  * Make the page all-dirty.
2796  *
2797  * Also make sure the related object and vnode reflect the fact that the
2798  * object may now contain a dirty page.
2799  *
2800  * Page must be busied?
2801  * No other requirements.
2802  */
2803 void
2804 vm_page_dirty(vm_page_t m)
2805 {
2806 #ifdef INVARIANTS
2807         int pqtype = m->queue - m->pc;
2808 #endif
2809         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
2810                 ("vm_page_dirty: page in free/cache queue!"));
2811 	if (m->dirty != VM_PAGE_BITS_ALL) {
2812 		m->dirty = VM_PAGE_BITS_ALL;
2813 		if (m->object)
2814 			vm_object_set_writeable_dirty(m->object);
2815 	}
2816 }
2817 
2818 /*
2819  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
2820  * valid and dirty bits for the effected areas are cleared.
2821  *
2822  * Page must be busied?
2823  * Does not block.
2824  * No other requirements.
2825  */
2826 void
2827 vm_page_set_invalid(vm_page_t m, int base, int size)
2828 {
2829 	int bits;
2830 
2831 	bits = vm_page_bits(base, size);
2832 	m->valid &= ~bits;
2833 	m->dirty &= ~bits;
2834 	m->object->generation++;
2835 }
2836 
2837 /*
2838  * The kernel assumes that the invalid portions of a page contain
2839  * garbage, but such pages can be mapped into memory by user code.
2840  * When this occurs, we must zero out the non-valid portions of the
2841  * page so user code sees what it expects.
2842  *
2843  * Pages are most often semi-valid when the end of a file is mapped
2844  * into memory and the file's size is not page aligned.
2845  *
2846  * Page must be busied?
2847  * No other requirements.
2848  */
2849 void
2850 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2851 {
2852 	int b;
2853 	int i;
2854 
2855 	/*
2856 	 * Scan the valid bits looking for invalid sections that
2857 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2858 	 * valid bit may be set ) have already been zerod by
2859 	 * vm_page_set_validclean().
2860 	 */
2861 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2862 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2863 		    (m->valid & (1 << i))
2864 		) {
2865 			if (i > b) {
2866 				pmap_zero_page_area(
2867 				    VM_PAGE_TO_PHYS(m),
2868 				    b << DEV_BSHIFT,
2869 				    (i - b) << DEV_BSHIFT
2870 				);
2871 			}
2872 			b = i + 1;
2873 		}
2874 	}
2875 
2876 	/*
2877 	 * setvalid is TRUE when we can safely set the zero'd areas
2878 	 * as being valid.  We can do this if there are no cache consistency
2879 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2880 	 */
2881 	if (setvalid)
2882 		m->valid = VM_PAGE_BITS_ALL;
2883 }
2884 
2885 /*
2886  * Is a (partial) page valid?  Note that the case where size == 0
2887  * will return FALSE in the degenerate case where the page is entirely
2888  * invalid, and TRUE otherwise.
2889  *
2890  * Does not block.
2891  * No other requirements.
2892  */
2893 int
2894 vm_page_is_valid(vm_page_t m, int base, int size)
2895 {
2896 	int bits = vm_page_bits(base, size);
2897 
2898 	if (m->valid && ((m->valid & bits) == bits))
2899 		return 1;
2900 	else
2901 		return 0;
2902 }
2903 
2904 /*
2905  * update dirty bits from pmap/mmu.  May not block.
2906  *
2907  * Caller must hold the page busy
2908  */
2909 void
2910 vm_page_test_dirty(vm_page_t m)
2911 {
2912 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2913 		vm_page_dirty(m);
2914 	}
2915 }
2916 
2917 /*
2918  * Register an action, associating it with its vm_page
2919  */
2920 void
2921 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
2922 {
2923 	struct vm_page_action_list *list;
2924 	int hv;
2925 
2926 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2927 	list = &action_list[hv];
2928 
2929 	lwkt_gettoken(&vm_token);
2930 	vm_page_flag_set(action->m, PG_ACTIONLIST);
2931 	action->event = event;
2932 	LIST_INSERT_HEAD(list, action, entry);
2933 	lwkt_reltoken(&vm_token);
2934 }
2935 
2936 /*
2937  * Unregister an action, disassociating it from its related vm_page
2938  */
2939 void
2940 vm_page_unregister_action(vm_page_action_t action)
2941 {
2942 	struct vm_page_action_list *list;
2943 	int hv;
2944 
2945 	lwkt_gettoken(&vm_token);
2946 	if (action->event != VMEVENT_NONE) {
2947 		action->event = VMEVENT_NONE;
2948 		LIST_REMOVE(action, entry);
2949 
2950 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2951 		list = &action_list[hv];
2952 		if (LIST_EMPTY(list))
2953 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
2954 	}
2955 	lwkt_reltoken(&vm_token);
2956 }
2957 
2958 /*
2959  * Issue an event on a VM page.  Corresponding action structures are
2960  * removed from the page's list and called.
2961  *
2962  * If the vm_page has no more pending action events we clear its
2963  * PG_ACTIONLIST flag.
2964  */
2965 void
2966 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
2967 {
2968 	struct vm_page_action_list *list;
2969 	struct vm_page_action *scan;
2970 	struct vm_page_action *next;
2971 	int hv;
2972 	int all;
2973 
2974 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
2975 	list = &action_list[hv];
2976 	all = 1;
2977 
2978 	lwkt_gettoken(&vm_token);
2979 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
2980 		if (scan->m == m) {
2981 			if (scan->event == event) {
2982 				scan->event = VMEVENT_NONE;
2983 				LIST_REMOVE(scan, entry);
2984 				scan->func(m, scan);
2985 				/* XXX */
2986 			} else {
2987 				all = 0;
2988 			}
2989 		}
2990 	}
2991 	if (all)
2992 		vm_page_flag_clear(m, PG_ACTIONLIST);
2993 	lwkt_reltoken(&vm_token);
2994 }
2995 
2996 #include "opt_ddb.h"
2997 #ifdef DDB
2998 #include <sys/kernel.h>
2999 
3000 #include <ddb/ddb.h>
3001 
3002 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3003 {
3004 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3005 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3006 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3007 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3008 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3009 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3010 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3011 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3012 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3013 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3014 }
3015 
3016 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3017 {
3018 	int i;
3019 	db_printf("PQ_FREE:");
3020 	for(i=0;i<PQ_L2_SIZE;i++) {
3021 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3022 	}
3023 	db_printf("\n");
3024 
3025 	db_printf("PQ_CACHE:");
3026 	for(i=0;i<PQ_L2_SIZE;i++) {
3027 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3028 	}
3029 	db_printf("\n");
3030 
3031 	db_printf("PQ_ACTIVE:");
3032 	for(i=0;i<PQ_L2_SIZE;i++) {
3033 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3034 	}
3035 	db_printf("\n");
3036 
3037 	db_printf("PQ_INACTIVE:");
3038 	for(i=0;i<PQ_L2_SIZE;i++) {
3039 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3040 	}
3041 	db_printf("\n");
3042 }
3043 #endif /* DDB */
3044