xref: /dflybsd-src/sys/vm/vm_page.c (revision f3834e0d94a74d42752caa878a0d9060f94545d2)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. All advertising materials mentioning features or use of this software
19  *    must display the following acknowledgement:
20  *	This product includes software developed by the University of
21  *	California, Berkeley and its contributors.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
39  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
40  * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $
41  */
42 
43 /*
44  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45  * All rights reserved.
46  *
47  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
48  *
49  * Permission to use, copy, modify and distribute this software and
50  * its documentation is hereby granted, provided that both the copyright
51  * notice and this permission notice appear in all copies of the
52  * software, derivative works or modified versions, and any portions
53  * thereof, and that both notices appear in supporting documentation.
54  *
55  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
58  *
59  * Carnegie Mellon requests users of this software to return to
60  *
61  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
62  *  School of Computer Science
63  *  Carnegie Mellon University
64  *  Pittsburgh PA 15213-3890
65  *
66  * any improvements or extensions that they make and grant Carnegie the
67  * rights to redistribute these changes.
68  */
69 /*
70  * Resident memory management module.  The module manipulates 'VM pages'.
71  * A VM page is the core building block for memory management.
72  */
73 
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/vnode.h>
80 #include <sys/kernel.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <sys/lock.h>
85 #include <vm/vm_kern.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 
95 #include <machine/md_var.h>
96 
97 #include <vm/vm_page2.h>
98 
99 #define VMACTION_HSIZE	256
100 #define VMACTION_HMASK	(VMACTION_HSIZE - 1)
101 
102 static void vm_page_queue_init(void);
103 static void vm_page_free_wakeup(void);
104 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
105 static vm_page_t _vm_page_list_find2(int basequeue, int index);
106 
107 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
108 
109 LIST_HEAD(vm_page_action_list, vm_page_action);
110 struct vm_page_action_list	action_list[VMACTION_HSIZE];
111 static volatile int vm_pages_waiting;
112 
113 
114 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
115 	     vm_pindex_t, pindex);
116 
117 static void
118 vm_page_queue_init(void)
119 {
120 	int i;
121 
122 	for (i = 0; i < PQ_L2_SIZE; i++)
123 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
124 	for (i = 0; i < PQ_L2_SIZE; i++)
125 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
126 
127 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
128 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
129 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
130 	/* PQ_NONE has no queue */
131 
132 	for (i = 0; i < PQ_COUNT; i++)
133 		TAILQ_INIT(&vm_page_queues[i].pl);
134 
135 	for (i = 0; i < VMACTION_HSIZE; i++)
136 		LIST_INIT(&action_list[i]);
137 }
138 
139 /*
140  * note: place in initialized data section?  Is this necessary?
141  */
142 long first_page = 0;
143 int vm_page_array_size = 0;
144 int vm_page_zero_count = 0;
145 vm_page_t vm_page_array = 0;
146 
147 /*
148  * (low level boot)
149  *
150  * Sets the page size, perhaps based upon the memory size.
151  * Must be called before any use of page-size dependent functions.
152  */
153 void
154 vm_set_page_size(void)
155 {
156 	if (vmstats.v_page_size == 0)
157 		vmstats.v_page_size = PAGE_SIZE;
158 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
159 		panic("vm_set_page_size: page size not a power of two");
160 }
161 
162 /*
163  * (low level boot)
164  *
165  * Add a new page to the freelist for use by the system.  New pages
166  * are added to both the head and tail of the associated free page
167  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
168  * requests pull 'recent' adds (higher physical addresses) first.
169  *
170  * Must be called in a critical section.
171  */
172 vm_page_t
173 vm_add_new_page(vm_paddr_t pa)
174 {
175 	struct vpgqueues *vpq;
176 	vm_page_t m;
177 
178 	++vmstats.v_page_count;
179 	++vmstats.v_free_count;
180 	m = PHYS_TO_VM_PAGE(pa);
181 	m->phys_addr = pa;
182 	m->flags = 0;
183 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
184 	m->queue = m->pc + PQ_FREE;
185 	KKASSERT(m->dirty == 0);
186 
187 	vpq = &vm_page_queues[m->queue];
188 	if (vpq->flipflop)
189 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
190 	else
191 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
192 	vpq->flipflop = 1 - vpq->flipflop;
193 
194 	vm_page_queues[m->queue].lcnt++;
195 	return (m);
196 }
197 
198 /*
199  * (low level boot)
200  *
201  * Initializes the resident memory module.
202  *
203  * Preallocates memory for critical VM structures and arrays prior to
204  * kernel_map becoming available.
205  *
206  * Memory is allocated from (virtual2_start, virtual2_end) if available,
207  * otherwise memory is allocated from (virtual_start, virtual_end).
208  *
209  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
210  * large enough to hold vm_page_array & other structures for machines with
211  * large amounts of ram, so we want to use virtual2* when available.
212  */
213 void
214 vm_page_startup(void)
215 {
216 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
217 	vm_offset_t mapped;
218 	vm_size_t npages;
219 	vm_paddr_t page_range;
220 	vm_paddr_t new_end;
221 	int i;
222 	vm_paddr_t pa;
223 	int nblocks;
224 	vm_paddr_t last_pa;
225 	vm_paddr_t end;
226 	vm_paddr_t biggestone, biggestsize;
227 	vm_paddr_t total;
228 
229 	total = 0;
230 	biggestsize = 0;
231 	biggestone = 0;
232 	nblocks = 0;
233 	vaddr = round_page(vaddr);
234 
235 	for (i = 0; phys_avail[i + 1]; i += 2) {
236 		phys_avail[i] = round_page64(phys_avail[i]);
237 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
238 	}
239 
240 	for (i = 0; phys_avail[i + 1]; i += 2) {
241 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
242 
243 		if (size > biggestsize) {
244 			biggestone = i;
245 			biggestsize = size;
246 		}
247 		++nblocks;
248 		total += size;
249 	}
250 
251 	end = phys_avail[biggestone+1];
252 	end = trunc_page(end);
253 
254 	/*
255 	 * Initialize the queue headers for the free queue, the active queue
256 	 * and the inactive queue.
257 	 */
258 
259 	vm_page_queue_init();
260 
261 	/* VKERNELs don't support minidumps and as such don't need vm_page_dump */
262 #if !defined(_KERNEL_VIRTUAL)
263 	/*
264 	 * Allocate a bitmap to indicate that a random physical page
265 	 * needs to be included in a minidump.
266 	 *
267 	 * The amd64 port needs this to indicate which direct map pages
268 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
269 	 *
270 	 * However, i386 still needs this workspace internally within the
271 	 * minidump code.  In theory, they are not needed on i386, but are
272 	 * included should the sf_buf code decide to use them.
273 	 */
274 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
275 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
276 	end -= vm_page_dump_size;
277 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
278 	    VM_PROT_READ | VM_PROT_WRITE);
279 	bzero((void *)vm_page_dump, vm_page_dump_size);
280 #endif
281 
282 	/*
283 	 * Compute the number of pages of memory that will be available for
284 	 * use (taking into account the overhead of a page structure per
285 	 * page).
286 	 */
287 	first_page = phys_avail[0] / PAGE_SIZE;
288 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
289 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
290 
291 	/*
292 	 * Initialize the mem entry structures now, and put them in the free
293 	 * queue.
294 	 */
295 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
296 	mapped = pmap_map(&vaddr, new_end, end,
297 	    VM_PROT_READ | VM_PROT_WRITE);
298 	vm_page_array = (vm_page_t)mapped;
299 
300 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
301 	/*
302 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
303 	 * we have to manually add these pages to the minidump tracking so
304 	 * that they can be dumped, including the vm_page_array.
305 	 */
306 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
307 		dump_add_page(pa);
308 #endif
309 
310 	/*
311 	 * Clear all of the page structures
312 	 */
313 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
314 	vm_page_array_size = page_range;
315 
316 	/*
317 	 * Construct the free queue(s) in ascending order (by physical
318 	 * address) so that the first 16MB of physical memory is allocated
319 	 * last rather than first.  On large-memory machines, this avoids
320 	 * the exhaustion of low physical memory before isa_dmainit has run.
321 	 */
322 	vmstats.v_page_count = 0;
323 	vmstats.v_free_count = 0;
324 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
325 		pa = phys_avail[i];
326 		if (i == biggestone)
327 			last_pa = new_end;
328 		else
329 			last_pa = phys_avail[i + 1];
330 		while (pa < last_pa && npages-- > 0) {
331 			vm_add_new_page(pa);
332 			pa += PAGE_SIZE;
333 		}
334 	}
335 	if (virtual2_start)
336 		virtual2_start = vaddr;
337 	else
338 		virtual_start = vaddr;
339 }
340 
341 /*
342  * Scan comparison function for Red-Black tree scans.  An inclusive
343  * (start,end) is expected.  Other fields are not used.
344  */
345 int
346 rb_vm_page_scancmp(struct vm_page *p, void *data)
347 {
348 	struct rb_vm_page_scan_info *info = data;
349 
350 	if (p->pindex < info->start_pindex)
351 		return(-1);
352 	if (p->pindex > info->end_pindex)
353 		return(1);
354 	return(0);
355 }
356 
357 int
358 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
359 {
360 	if (p1->pindex < p2->pindex)
361 		return(-1);
362 	if (p1->pindex > p2->pindex)
363 		return(1);
364 	return(0);
365 }
366 
367 /*
368  * Holding a page keeps it from being reused.  Other parts of the system
369  * can still disassociate the page from its current object and free it, or
370  * perform read or write I/O on it and/or otherwise manipulate the page,
371  * but if the page is held the VM system will leave the page and its data
372  * intact and not reuse the page for other purposes until the last hold
373  * reference is released.  (see vm_page_wire() if you want to prevent the
374  * page from being disassociated from its object too).
375  *
376  * The caller must hold vm_token.
377  *
378  * The caller must still validate the contents of the page and, if necessary,
379  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
380  * before manipulating the page.
381  */
382 void
383 vm_page_hold(vm_page_t m)
384 {
385 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
386 	++m->hold_count;
387 }
388 
389 /*
390  * The opposite of vm_page_hold().  A page can be freed while being held,
391  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
392  * in this case to actually free it once the hold count drops to 0.
393  *
394  * The caller must hold vm_token if non-blocking operation is desired,
395  * but otherwise does not need to.
396  */
397 void
398 vm_page_unhold(vm_page_t m)
399 {
400 	lwkt_gettoken(&vm_token);
401 	--m->hold_count;
402 	KASSERT(m->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
403 	if (m->hold_count == 0 && m->queue == PQ_HOLD) {
404 		vm_page_busy(m);
405 		vm_page_free_toq(m);
406 	}
407 	lwkt_reltoken(&vm_token);
408 }
409 
410 /*
411  * Inserts the given vm_page into the object and object list.
412  *
413  * The pagetables are not updated but will presumably fault the page
414  * in if necessary, or if a kernel page the caller will at some point
415  * enter the page into the kernel's pmap.  We are not allowed to block
416  * here so we *can't* do this anyway.
417  *
418  * This routine may not block.
419  * This routine must be called with the vm_token held.
420  * This routine must be called with a critical section held.
421  */
422 void
423 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
424 {
425 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
426 	if (m->object != NULL)
427 		panic("vm_page_insert: already inserted");
428 
429 	/*
430 	 * Record the object/offset pair in this page
431 	 */
432 	m->object = object;
433 	m->pindex = pindex;
434 
435 	/*
436 	 * Insert it into the object.
437 	 */
438 	vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
439 	object->generation++;
440 
441 	/*
442 	 * show that the object has one more resident page.
443 	 */
444 	object->resident_page_count++;
445 
446 	/*
447 	 * Add the pv_list_cout of the page when its inserted in
448 	 * the object
449 	*/
450 	object->agg_pv_list_count = object->agg_pv_list_count + m->md.pv_list_count;
451 
452 	/*
453 	 * Since we are inserting a new and possibly dirty page,
454 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
455 	 */
456 	if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
457 		vm_object_set_writeable_dirty(object);
458 
459 	/*
460 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
461 	 */
462 	swap_pager_page_inserted(m);
463 }
464 
465 /*
466  * Removes the given vm_page_t from the global (object,index) hash table
467  * and from the object's memq.
468  *
469  * The underlying pmap entry (if any) is NOT removed here.
470  * This routine may not block.
471  *
472  * The page must be BUSY and will remain BUSY on return.
473  * No other requirements.
474  *
475  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
476  *	 it busy.
477  */
478 void
479 vm_page_remove(vm_page_t m)
480 {
481 	vm_object_t object;
482 
483 	lwkt_gettoken(&vm_token);
484 	if (m->object == NULL) {
485 		lwkt_reltoken(&vm_token);
486 		return;
487 	}
488 
489 	if ((m->flags & PG_BUSY) == 0)
490 		panic("vm_page_remove: page not busy");
491 
492 	object = m->object;
493 
494 	/*
495 	 * Remove the page from the object and update the object.
496 	 */
497 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
498 	object->resident_page_count--;
499 	object->agg_pv_list_count = object->agg_pv_list_count - m->md.pv_list_count;
500 	object->generation++;
501 	m->object = NULL;
502 
503 	lwkt_reltoken(&vm_token);
504 }
505 
506 /*
507  * Locate and return the page at (object, pindex), or NULL if the
508  * page could not be found.
509  *
510  * The caller must hold vm_token.
511  */
512 vm_page_t
513 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
514 {
515 	vm_page_t m;
516 
517 	/*
518 	 * Search the hash table for this object/offset pair
519 	 */
520 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
521 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
522 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
523 	return(m);
524 }
525 
526 /*
527  * vm_page_rename()
528  *
529  * Move the given memory entry from its current object to the specified
530  * target object/offset.
531  *
532  * The object must be locked.
533  * This routine may not block.
534  *
535  * Note: This routine will raise itself to splvm(), the caller need not.
536  *
537  * Note: Swap associated with the page must be invalidated by the move.  We
538  *       have to do this for several reasons:  (1) we aren't freeing the
539  *       page, (2) we are dirtying the page, (3) the VM system is probably
540  *       moving the page from object A to B, and will then later move
541  *       the backing store from A to B and we can't have a conflict.
542  *
543  * Note: We *always* dirty the page.  It is necessary both for the
544  *       fact that we moved it, and because we may be invalidating
545  *	 swap.  If the page is on the cache, we have to deactivate it
546  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
547  *	 on the cache.
548  */
549 void
550 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
551 {
552 	lwkt_gettoken(&vm_token);
553 	vm_page_remove(m);
554 	vm_page_insert(m, new_object, new_pindex);
555 	if (m->queue - m->pc == PQ_CACHE)
556 		vm_page_deactivate(m);
557 	vm_page_dirty(m);
558 	vm_page_wakeup(m);
559 	lwkt_reltoken(&vm_token);
560 }
561 
562 /*
563  * vm_page_unqueue() without any wakeup.  This routine is used when a page
564  * is being moved between queues or otherwise is to remain BUSYied by the
565  * caller.
566  *
567  * The caller must hold vm_token
568  * This routine may not block.
569  */
570 void
571 vm_page_unqueue_nowakeup(vm_page_t m)
572 {
573 	int queue = m->queue;
574 	struct vpgqueues *pq;
575 
576 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
577 	if (queue != PQ_NONE) {
578 		pq = &vm_page_queues[queue];
579 		m->queue = PQ_NONE;
580 		TAILQ_REMOVE(&pq->pl, m, pageq);
581 		(*pq->cnt)--;
582 		pq->lcnt--;
583 	}
584 }
585 
586 /*
587  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
588  * if necessary.
589  *
590  * The caller must hold vm_token
591  * This routine may not block.
592  */
593 void
594 vm_page_unqueue(vm_page_t m)
595 {
596 	int queue = m->queue;
597 	struct vpgqueues *pq;
598 
599 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
600 	if (queue != PQ_NONE) {
601 		m->queue = PQ_NONE;
602 		pq = &vm_page_queues[queue];
603 		TAILQ_REMOVE(&pq->pl, m, pageq);
604 		(*pq->cnt)--;
605 		pq->lcnt--;
606 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
607 			pagedaemon_wakeup();
608 	}
609 }
610 
611 /*
612  * vm_page_list_find()
613  *
614  * Find a page on the specified queue with color optimization.
615  *
616  * The page coloring optimization attempts to locate a page that does
617  * not overload other nearby pages in the object in the cpu's L1 or L2
618  * caches.  We need this optimization because cpu caches tend to be
619  * physical caches, while object spaces tend to be virtual.
620  *
621  * Must be called with vm_token held.
622  * This routine may not block.
623  *
624  * Note that this routine is carefully inlined.  A non-inlined version
625  * is available for outside callers but the only critical path is
626  * from within this source file.
627  */
628 static __inline
629 vm_page_t
630 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
631 {
632 	vm_page_t m;
633 
634 	if (prefer_zero)
635 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
636 	else
637 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
638 	if (m == NULL)
639 		m = _vm_page_list_find2(basequeue, index);
640 	return(m);
641 }
642 
643 static vm_page_t
644 _vm_page_list_find2(int basequeue, int index)
645 {
646 	int i;
647 	vm_page_t m = NULL;
648 	struct vpgqueues *pq;
649 
650 	pq = &vm_page_queues[basequeue];
651 
652 	/*
653 	 * Note that for the first loop, index+i and index-i wind up at the
654 	 * same place.  Even though this is not totally optimal, we've already
655 	 * blown it by missing the cache case so we do not care.
656 	 */
657 
658 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
659 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
660 			break;
661 
662 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
663 			break;
664 	}
665 	return(m);
666 }
667 
668 /*
669  * Must be called with vm_token held if the caller desired non-blocking
670  * operation and a stable result.
671  */
672 vm_page_t
673 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
674 {
675 	return(_vm_page_list_find(basequeue, index, prefer_zero));
676 }
677 
678 /*
679  * Find a page on the cache queue with color optimization.  As pages
680  * might be found, but not applicable, they are deactivated.  This
681  * keeps us from using potentially busy cached pages.
682  *
683  * This routine may not block.
684  * Must be called with vm_token held.
685  */
686 vm_page_t
687 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
688 {
689 	vm_page_t m;
690 
691 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
692 	while (TRUE) {
693 		m = _vm_page_list_find(
694 		    PQ_CACHE,
695 		    (pindex + object->pg_color) & PQ_L2_MASK,
696 		    FALSE
697 		);
698 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
699 			       m->hold_count || m->wire_count)) {
700 			/* cache page found busy */
701 			vm_page_deactivate(m);
702 #ifdef INVARIANTS
703                         kprintf("Warning: busy page %p found in cache\n", m);
704 #endif
705 			continue;
706 		}
707 		return m;
708 	}
709 	/* not reached */
710 }
711 
712 /*
713  * Find a free or zero page, with specified preference.  We attempt to
714  * inline the nominal case and fall back to _vm_page_select_free()
715  * otherwise.
716  *
717  * This routine must be called with a critical section held.
718  * This routine may not block.
719  */
720 static __inline vm_page_t
721 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
722 {
723 	vm_page_t m;
724 
725 	m = _vm_page_list_find(
726 		PQ_FREE,
727 		(pindex + object->pg_color) & PQ_L2_MASK,
728 		prefer_zero
729 	);
730 	return(m);
731 }
732 
733 /*
734  * vm_page_alloc()
735  *
736  * Allocate and return a memory cell associated with this VM object/offset
737  * pair.
738  *
739  *	page_req classes:
740  *
741  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
742  *	VM_ALLOC_QUICK		like normal but cannot use cache
743  *	VM_ALLOC_SYSTEM		greater free drain
744  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
745  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page
746  *
747  * The object must be locked.
748  * This routine may not block.
749  * The returned page will be marked PG_BUSY
750  *
751  * Additional special handling is required when called from an interrupt
752  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
753  * in this case.
754  */
755 vm_page_t
756 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
757 {
758 	vm_page_t m = NULL;
759 
760 	lwkt_gettoken(&vm_token);
761 
762 	KKASSERT(object != NULL);
763 	KASSERT(!vm_page_lookup(object, pindex),
764 		("vm_page_alloc: page already allocated"));
765 	KKASSERT(page_req &
766 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
767 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
768 
769 	/*
770 	 * Certain system threads (pageout daemon, buf_daemon's) are
771 	 * allowed to eat deeper into the free page list.
772 	 */
773 	if (curthread->td_flags & TDF_SYSTHREAD)
774 		page_req |= VM_ALLOC_SYSTEM;
775 
776 loop:
777 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
778 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
779 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
780 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
781 	) {
782 		/*
783 		 * The free queue has sufficient free pages to take one out.
784 		 */
785 		if (page_req & VM_ALLOC_ZERO)
786 			m = vm_page_select_free(object, pindex, TRUE);
787 		else
788 			m = vm_page_select_free(object, pindex, FALSE);
789 	} else if (page_req & VM_ALLOC_NORMAL) {
790 		/*
791 		 * Allocatable from the cache (non-interrupt only).  On
792 		 * success, we must free the page and try again, thus
793 		 * ensuring that vmstats.v_*_free_min counters are replenished.
794 		 */
795 #ifdef INVARIANTS
796 		if (curthread->td_preempted) {
797 			kprintf("vm_page_alloc(): warning, attempt to allocate"
798 				" cache page from preempting interrupt\n");
799 			m = NULL;
800 		} else {
801 			m = vm_page_select_cache(object, pindex);
802 		}
803 #else
804 		m = vm_page_select_cache(object, pindex);
805 #endif
806 		/*
807 		 * On success move the page into the free queue and loop.
808 		 */
809 		if (m != NULL) {
810 			KASSERT(m->dirty == 0,
811 			    ("Found dirty cache page %p", m));
812 			vm_page_busy(m);
813 			vm_page_protect(m, VM_PROT_NONE);
814 			vm_page_free(m);
815 			goto loop;
816 		}
817 
818 		/*
819 		 * On failure return NULL
820 		 */
821 		lwkt_reltoken(&vm_token);
822 #if defined(DIAGNOSTIC)
823 		if (vmstats.v_cache_count > 0)
824 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
825 #endif
826 		vm_pageout_deficit++;
827 		pagedaemon_wakeup();
828 		return (NULL);
829 	} else {
830 		/*
831 		 * No pages available, wakeup the pageout daemon and give up.
832 		 */
833 		lwkt_reltoken(&vm_token);
834 		vm_pageout_deficit++;
835 		pagedaemon_wakeup();
836 		return (NULL);
837 	}
838 
839 	/*
840 	 * Good page found.  The page has not yet been busied.  We are in
841 	 * a critical section.
842 	 */
843 	KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
844 	KASSERT(m->dirty == 0,
845 		("vm_page_alloc: free/cache page %p was dirty", m));
846 
847 	/*
848 	 * Remove from free queue
849 	 */
850 	vm_page_unqueue_nowakeup(m);
851 
852 	/*
853 	 * Initialize structure.  Only the PG_ZERO flag is inherited.  Set
854 	 * the page PG_BUSY
855 	 */
856 	if (m->flags & PG_ZERO) {
857 		vm_page_zero_count--;
858 		m->flags = PG_ZERO | PG_BUSY;
859 	} else {
860 		m->flags = PG_BUSY;
861 	}
862 	m->wire_count = 0;
863 	m->hold_count = 0;
864 	m->act_count = 0;
865 	m->busy = 0;
866 	m->valid = 0;
867 
868 	/*
869 	 * vm_page_insert() is safe while holding vm_token.  Note also that
870 	 * inserting a page here does not insert it into the pmap (which
871 	 * could cause us to block allocating memory).  We cannot block
872 	 * anywhere.
873 	 */
874 	vm_page_insert(m, object, pindex);
875 
876 	/*
877 	 * Don't wakeup too often - wakeup the pageout daemon when
878 	 * we would be nearly out of memory.
879 	 */
880 	pagedaemon_wakeup();
881 
882 	lwkt_reltoken(&vm_token);
883 
884 	/*
885 	 * A PG_BUSY page is returned.
886 	 */
887 	return (m);
888 }
889 
890 /*
891  * Wait for sufficient free memory for nominal heavy memory use kernel
892  * operations.
893  */
894 void
895 vm_wait_nominal(void)
896 {
897 	while (vm_page_count_min(0))
898 		vm_wait(0);
899 }
900 
901 /*
902  * Test if vm_wait_nominal() would block.
903  */
904 int
905 vm_test_nominal(void)
906 {
907 	if (vm_page_count_min(0))
908 		return(1);
909 	return(0);
910 }
911 
912 /*
913  * Block until free pages are available for allocation, called in various
914  * places before memory allocations.
915  *
916  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
917  * more generous then that.
918  */
919 void
920 vm_wait(int timo)
921 {
922 	/*
923 	 * never wait forever
924 	 */
925 	if (timo == 0)
926 		timo = hz;
927 	lwkt_gettoken(&vm_token);
928 
929 	if (curthread == pagethread) {
930 		/*
931 		 * The pageout daemon itself needs pages, this is bad.
932 		 */
933 		if (vm_page_count_min(0)) {
934 			vm_pageout_pages_needed = 1;
935 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
936 		}
937 	} else {
938 		/*
939 		 * Wakeup the pageout daemon if necessary and wait.
940 		 */
941 		if (vm_page_count_target()) {
942 			if (vm_pages_needed == 0) {
943 				vm_pages_needed = 1;
944 				wakeup(&vm_pages_needed);
945 			}
946 			++vm_pages_waiting;	/* SMP race ok */
947 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
948 		}
949 	}
950 	lwkt_reltoken(&vm_token);
951 }
952 
953 /*
954  * Block until free pages are available for allocation
955  *
956  * Called only from vm_fault so that processes page faulting can be
957  * easily tracked.
958  */
959 void
960 vm_waitpfault(void)
961 {
962 	/*
963 	 * Wakeup the pageout daemon if necessary and wait.
964 	 */
965 	if (vm_page_count_target()) {
966 		lwkt_gettoken(&vm_token);
967 		if (vm_page_count_target()) {
968 			if (vm_pages_needed == 0) {
969 				vm_pages_needed = 1;
970 				wakeup(&vm_pages_needed);
971 			}
972 			++vm_pages_waiting;	/* SMP race ok */
973 			tsleep(&vmstats.v_free_count, 0, "pfault", hz);
974 		}
975 		lwkt_reltoken(&vm_token);
976 	}
977 }
978 
979 /*
980  * Put the specified page on the active list (if appropriate).  Ensure
981  * that act_count is at least ACT_INIT but do not otherwise mess with it.
982  *
983  * The page queues must be locked.
984  * This routine may not block.
985  */
986 void
987 vm_page_activate(vm_page_t m)
988 {
989 	lwkt_gettoken(&vm_token);
990 	if (m->queue != PQ_ACTIVE) {
991 		if ((m->queue - m->pc) == PQ_CACHE)
992 			mycpu->gd_cnt.v_reactivated++;
993 
994 		vm_page_unqueue(m);
995 
996 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
997 			m->queue = PQ_ACTIVE;
998 			vm_page_queues[PQ_ACTIVE].lcnt++;
999 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
1000 					    m, pageq);
1001 			if (m->act_count < ACT_INIT)
1002 				m->act_count = ACT_INIT;
1003 			vmstats.v_active_count++;
1004 		}
1005 	} else {
1006 		if (m->act_count < ACT_INIT)
1007 			m->act_count = ACT_INIT;
1008 	}
1009 	lwkt_reltoken(&vm_token);
1010 }
1011 
1012 /*
1013  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
1014  * routine is called when a page has been added to the cache or free
1015  * queues.
1016  *
1017  * This routine may not block.
1018  * This routine must be called at splvm()
1019  */
1020 static __inline void
1021 vm_page_free_wakeup(void)
1022 {
1023 	/*
1024 	 * If the pageout daemon itself needs pages, then tell it that
1025 	 * there are some free.
1026 	 */
1027 	if (vm_pageout_pages_needed &&
1028 	    vmstats.v_cache_count + vmstats.v_free_count >=
1029 	    vmstats.v_pageout_free_min
1030 	) {
1031 		wakeup(&vm_pageout_pages_needed);
1032 		vm_pageout_pages_needed = 0;
1033 	}
1034 
1035 	/*
1036 	 * Wakeup processes that are waiting on memory.
1037 	 *
1038 	 * NOTE: vm_paging_target() is the pageout daemon's target, while
1039 	 *	 vm_page_count_target() is somewhere inbetween.  We want
1040 	 *	 to wake processes up prior to the pageout daemon reaching
1041 	 *	 its target to provide some hysteresis.
1042 	 */
1043 	if (vm_pages_waiting) {
1044 		if (!vm_page_count_target()) {
1045 			/*
1046 			 * Plenty of pages are free, wakeup everyone.
1047 			 */
1048 			vm_pages_waiting = 0;
1049 			wakeup(&vmstats.v_free_count);
1050 			++mycpu->gd_cnt.v_ppwakeups;
1051 		} else if (!vm_page_count_min(0)) {
1052 			/*
1053 			 * Some pages are free, wakeup someone.
1054 			 */
1055 			int wcount = vm_pages_waiting;
1056 			if (wcount > 0)
1057 				--wcount;
1058 			vm_pages_waiting = wcount;
1059 			wakeup_one(&vmstats.v_free_count);
1060 			++mycpu->gd_cnt.v_ppwakeups;
1061 		}
1062 	}
1063 }
1064 
1065 /*
1066  *	vm_page_free_toq:
1067  *
1068  *	Returns the given page to the PQ_FREE list, disassociating it with
1069  *	any VM object.
1070  *
1071  *	The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
1072  *	return (the page will have been freed).  No particular spl is required
1073  *	on entry.
1074  *
1075  *	This routine may not block.
1076  */
1077 void
1078 vm_page_free_toq(vm_page_t m)
1079 {
1080 	struct vpgqueues *pq;
1081 
1082 	lwkt_gettoken(&vm_token);
1083 	mycpu->gd_cnt.v_tfree++;
1084 
1085 	KKASSERT((m->flags & PG_MAPPED) == 0);
1086 
1087 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1088 		kprintf(
1089 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1090 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1091 		    m->hold_count);
1092 		if ((m->queue - m->pc) == PQ_FREE)
1093 			panic("vm_page_free: freeing free page");
1094 		else
1095 			panic("vm_page_free: freeing busy page");
1096 	}
1097 
1098 	/*
1099 	 * unqueue, then remove page.  Note that we cannot destroy
1100 	 * the page here because we do not want to call the pager's
1101 	 * callback routine until after we've put the page on the
1102 	 * appropriate free queue.
1103 	 */
1104 	vm_page_unqueue_nowakeup(m);
1105 	vm_page_remove(m);
1106 
1107 	/*
1108 	 * No further management of fictitious pages occurs beyond object
1109 	 * and queue removal.
1110 	 */
1111 	if ((m->flags & PG_FICTITIOUS) != 0) {
1112 		vm_page_wakeup(m);
1113 		lwkt_reltoken(&vm_token);
1114 		return;
1115 	}
1116 
1117 	m->valid = 0;
1118 	vm_page_undirty(m);
1119 
1120 	if (m->wire_count != 0) {
1121 		if (m->wire_count > 1) {
1122 		    panic(
1123 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1124 			m->wire_count, (long)m->pindex);
1125 		}
1126 		panic("vm_page_free: freeing wired page");
1127 	}
1128 
1129 	/*
1130 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1131 	 */
1132 	if (m->flags & PG_UNMANAGED) {
1133 	    m->flags &= ~PG_UNMANAGED;
1134 	}
1135 
1136 	if (m->hold_count != 0) {
1137 		m->flags &= ~PG_ZERO;
1138 		m->queue = PQ_HOLD;
1139 	} else {
1140 		m->queue = PQ_FREE + m->pc;
1141 	}
1142 	pq = &vm_page_queues[m->queue];
1143 	pq->lcnt++;
1144 	++(*pq->cnt);
1145 
1146 	/*
1147 	 * Put zero'd pages on the end ( where we look for zero'd pages
1148 	 * first ) and non-zerod pages at the head.
1149 	 */
1150 	if (m->flags & PG_ZERO) {
1151 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1152 		++vm_page_zero_count;
1153 	} else {
1154 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1155 	}
1156 	vm_page_wakeup(m);
1157 	vm_page_free_wakeup();
1158 	lwkt_reltoken(&vm_token);
1159 }
1160 
1161 /*
1162  * vm_page_free_fromq_fast()
1163  *
1164  * Remove a non-zero page from one of the free queues; the page is removed for
1165  * zeroing, so do not issue a wakeup.
1166  *
1167  * MPUNSAFE
1168  */
1169 vm_page_t
1170 vm_page_free_fromq_fast(void)
1171 {
1172 	static int qi;
1173 	vm_page_t m;
1174 	int i;
1175 
1176 	lwkt_gettoken(&vm_token);
1177 	for (i = 0; i < PQ_L2_SIZE; ++i) {
1178 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
1179 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
1180 		if (m && (m->flags & PG_ZERO) == 0) {
1181 			KKASSERT(m->busy == 0 && (m->flags & PG_BUSY) == 0);
1182 			vm_page_unqueue_nowakeup(m);
1183 			vm_page_busy(m);
1184 			break;
1185 		}
1186 		m = NULL;
1187 	}
1188 	lwkt_reltoken(&vm_token);
1189 	return (m);
1190 }
1191 
1192 /*
1193  * vm_page_unmanage()
1194  *
1195  * Prevent PV management from being done on the page.  The page is
1196  * removed from the paging queues as if it were wired, and as a
1197  * consequence of no longer being managed the pageout daemon will not
1198  * touch it (since there is no way to locate the pte mappings for the
1199  * page).  madvise() calls that mess with the pmap will also no longer
1200  * operate on the page.
1201  *
1202  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1203  * will clear the flag.
1204  *
1205  * This routine is used by OBJT_PHYS objects - objects using unswappable
1206  * physical memory as backing store rather then swap-backed memory and
1207  * will eventually be extended to support 4MB unmanaged physical
1208  * mappings.
1209  *
1210  * Must be called with a critical section held.
1211  * Must be called with vm_token held.
1212  */
1213 void
1214 vm_page_unmanage(vm_page_t m)
1215 {
1216 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1217 	if ((m->flags & PG_UNMANAGED) == 0) {
1218 		if (m->wire_count == 0)
1219 			vm_page_unqueue(m);
1220 	}
1221 	vm_page_flag_set(m, PG_UNMANAGED);
1222 }
1223 
1224 /*
1225  * Mark this page as wired down by yet another map, removing it from
1226  * paging queues as necessary.
1227  *
1228  * The page queues must be locked.
1229  * This routine may not block.
1230  */
1231 void
1232 vm_page_wire(vm_page_t m)
1233 {
1234 	/*
1235 	 * Only bump the wire statistics if the page is not already wired,
1236 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1237 	 * it is already off the queues).  Don't do anything with fictitious
1238 	 * pages because they are always wired.
1239 	 */
1240 	lwkt_gettoken(&vm_token);
1241 	if ((m->flags & PG_FICTITIOUS) == 0) {
1242 		if (m->wire_count == 0) {
1243 			if ((m->flags & PG_UNMANAGED) == 0)
1244 				vm_page_unqueue(m);
1245 			vmstats.v_wire_count++;
1246 		}
1247 		m->wire_count++;
1248 		KASSERT(m->wire_count != 0,
1249 			("vm_page_wire: wire_count overflow m=%p", m));
1250 	}
1251 	lwkt_reltoken(&vm_token);
1252 }
1253 
1254 /*
1255  * Release one wiring of this page, potentially enabling it to be paged again.
1256  *
1257  * Many pages placed on the inactive queue should actually go
1258  * into the cache, but it is difficult to figure out which.  What
1259  * we do instead, if the inactive target is well met, is to put
1260  * clean pages at the head of the inactive queue instead of the tail.
1261  * This will cause them to be moved to the cache more quickly and
1262  * if not actively re-referenced, freed more quickly.  If we just
1263  * stick these pages at the end of the inactive queue, heavy filesystem
1264  * meta-data accesses can cause an unnecessary paging load on memory bound
1265  * processes.  This optimization causes one-time-use metadata to be
1266  * reused more quickly.
1267  *
1268  * BUT, if we are in a low-memory situation we have no choice but to
1269  * put clean pages on the cache queue.
1270  *
1271  * A number of routines use vm_page_unwire() to guarantee that the page
1272  * will go into either the inactive or active queues, and will NEVER
1273  * be placed in the cache - for example, just after dirtying a page.
1274  * dirty pages in the cache are not allowed.
1275  *
1276  * The page queues must be locked.
1277  * This routine may not block.
1278  */
1279 void
1280 vm_page_unwire(vm_page_t m, int activate)
1281 {
1282 	lwkt_gettoken(&vm_token);
1283 	if (m->flags & PG_FICTITIOUS) {
1284 		/* do nothing */
1285 	} else if (m->wire_count <= 0) {
1286 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1287 	} else {
1288 		if (--m->wire_count == 0) {
1289 			--vmstats.v_wire_count;
1290 			if (m->flags & PG_UNMANAGED) {
1291 				;
1292 			} else if (activate) {
1293 				TAILQ_INSERT_TAIL(
1294 				    &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1295 				m->queue = PQ_ACTIVE;
1296 				vm_page_queues[PQ_ACTIVE].lcnt++;
1297 				vmstats.v_active_count++;
1298 			} else {
1299 				vm_page_flag_clear(m, PG_WINATCFLS);
1300 				TAILQ_INSERT_TAIL(
1301 				    &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1302 				m->queue = PQ_INACTIVE;
1303 				vm_page_queues[PQ_INACTIVE].lcnt++;
1304 				vmstats.v_inactive_count++;
1305 				++vm_swapcache_inactive_heuristic;
1306 			}
1307 		}
1308 	}
1309 	lwkt_reltoken(&vm_token);
1310 }
1311 
1312 
1313 /*
1314  * Move the specified page to the inactive queue.  If the page has
1315  * any associated swap, the swap is deallocated.
1316  *
1317  * Normally athead is 0 resulting in LRU operation.  athead is set
1318  * to 1 if we want this page to be 'as if it were placed in the cache',
1319  * except without unmapping it from the process address space.
1320  *
1321  * This routine may not block.
1322  * The caller must hold vm_token.
1323  */
1324 static __inline void
1325 _vm_page_deactivate(vm_page_t m, int athead)
1326 {
1327 	/*
1328 	 * Ignore if already inactive.
1329 	 */
1330 	if (m->queue == PQ_INACTIVE)
1331 		return;
1332 
1333 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1334 		if ((m->queue - m->pc) == PQ_CACHE)
1335 			mycpu->gd_cnt.v_reactivated++;
1336 		vm_page_flag_clear(m, PG_WINATCFLS);
1337 		vm_page_unqueue(m);
1338 		if (athead) {
1339 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl,
1340 					  m, pageq);
1341 		} else {
1342 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl,
1343 					  m, pageq);
1344 			++vm_swapcache_inactive_heuristic;
1345 		}
1346 		m->queue = PQ_INACTIVE;
1347 		vm_page_queues[PQ_INACTIVE].lcnt++;
1348 		vmstats.v_inactive_count++;
1349 	}
1350 }
1351 
1352 /*
1353  * Attempt to deactivate a page.
1354  *
1355  * No requirements.
1356  */
1357 void
1358 vm_page_deactivate(vm_page_t m)
1359 {
1360 	lwkt_gettoken(&vm_token);
1361 	_vm_page_deactivate(m, 0);
1362 	lwkt_reltoken(&vm_token);
1363 }
1364 
1365 /*
1366  * Attempt to move a page to PQ_CACHE.
1367  * Returns 0 on failure, 1 on success
1368  *
1369  * No requirements.
1370  */
1371 int
1372 vm_page_try_to_cache(vm_page_t m)
1373 {
1374 	lwkt_gettoken(&vm_token);
1375 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1376 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1377 		lwkt_reltoken(&vm_token);
1378 		return(0);
1379 	}
1380 	vm_page_busy(m);
1381 	vm_page_test_dirty(m);
1382 	if (m->dirty) {
1383 		lwkt_reltoken(&vm_token);
1384 		return(0);
1385 	}
1386 	vm_page_cache(m);
1387 	lwkt_reltoken(&vm_token);
1388 	return(1);
1389 }
1390 
1391 /*
1392  * Attempt to free the page.  If we cannot free it, we do nothing.
1393  * 1 is returned on success, 0 on failure.
1394  *
1395  * No requirements.
1396  */
1397 int
1398 vm_page_try_to_free(vm_page_t m)
1399 {
1400 	lwkt_gettoken(&vm_token);
1401 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1402 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1403 		lwkt_reltoken(&vm_token);
1404 		return(0);
1405 	}
1406 	vm_page_test_dirty(m);
1407 	if (m->dirty) {
1408 		lwkt_reltoken(&vm_token);
1409 		return(0);
1410 	}
1411 	vm_page_busy(m);
1412 	vm_page_protect(m, VM_PROT_NONE);
1413 	vm_page_free(m);
1414 	lwkt_reltoken(&vm_token);
1415 	return(1);
1416 }
1417 
1418 /*
1419  * vm_page_cache
1420  *
1421  * Put the specified page onto the page cache queue (if appropriate).
1422  *
1423  * The caller must hold vm_token.
1424  * This routine may not block.
1425  * The page must be busy, and this routine will release the busy and
1426  * possibly even free the page.
1427  */
1428 void
1429 vm_page_cache(vm_page_t m)
1430 {
1431 	ASSERT_LWKT_TOKEN_HELD(&vm_token);
1432 
1433 	if ((m->flags & PG_UNMANAGED) || m->busy ||
1434 	    m->wire_count || m->hold_count) {
1435 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
1436 		vm_page_wakeup(m);
1437 		return;
1438 	}
1439 
1440 	/*
1441 	 * Already in the cache (and thus not mapped)
1442 	 */
1443 	if ((m->queue - m->pc) == PQ_CACHE) {
1444 		KKASSERT((m->flags & PG_MAPPED) == 0);
1445 		vm_page_wakeup(m);
1446 		return;
1447 	}
1448 
1449 	/*
1450 	 * Caller is required to test m->dirty, but note that the act of
1451 	 * removing the page from its maps can cause it to become dirty
1452 	 * on an SMP system due to another cpu running in usermode.
1453 	 */
1454 	if (m->dirty) {
1455 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1456 			(long)m->pindex);
1457 	}
1458 
1459 	/*
1460 	 * Remove all pmaps and indicate that the page is not
1461 	 * writeable or mapped.  Our vm_page_protect() call may
1462 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
1463 	 * everything.
1464 	 */
1465 	vm_page_protect(m, VM_PROT_NONE);
1466 	if ((m->flags & (PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1467 			m->wire_count || m->hold_count) {
1468 		vm_page_wakeup(m);
1469 	} else if (m->dirty) {
1470 		vm_page_deactivate(m);
1471 		vm_page_wakeup(m);
1472 	} else {
1473 		vm_page_unqueue_nowakeup(m);
1474 		m->queue = PQ_CACHE + m->pc;
1475 		vm_page_queues[m->queue].lcnt++;
1476 		TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1477 		vmstats.v_cache_count++;
1478 		vm_page_wakeup(m);
1479 		vm_page_free_wakeup();
1480 	}
1481 }
1482 
1483 /*
1484  * vm_page_dontneed()
1485  *
1486  * Cache, deactivate, or do nothing as appropriate.  This routine
1487  * is typically used by madvise() MADV_DONTNEED.
1488  *
1489  * Generally speaking we want to move the page into the cache so
1490  * it gets reused quickly.  However, this can result in a silly syndrome
1491  * due to the page recycling too quickly.  Small objects will not be
1492  * fully cached.  On the otherhand, if we move the page to the inactive
1493  * queue we wind up with a problem whereby very large objects
1494  * unnecessarily blow away our inactive and cache queues.
1495  *
1496  * The solution is to move the pages based on a fixed weighting.  We
1497  * either leave them alone, deactivate them, or move them to the cache,
1498  * where moving them to the cache has the highest weighting.
1499  * By forcing some pages into other queues we eventually force the
1500  * system to balance the queues, potentially recovering other unrelated
1501  * space from active.  The idea is to not force this to happen too
1502  * often.
1503  *
1504  * No requirements.
1505  */
1506 void
1507 vm_page_dontneed(vm_page_t m)
1508 {
1509 	static int dnweight;
1510 	int dnw;
1511 	int head;
1512 
1513 	dnw = ++dnweight;
1514 
1515 	/*
1516 	 * occassionally leave the page alone
1517 	 */
1518 	lwkt_gettoken(&vm_token);
1519 	if ((dnw & 0x01F0) == 0 ||
1520 	    m->queue == PQ_INACTIVE ||
1521 	    m->queue - m->pc == PQ_CACHE
1522 	) {
1523 		if (m->act_count >= ACT_INIT)
1524 			--m->act_count;
1525 		lwkt_reltoken(&vm_token);
1526 		return;
1527 	}
1528 
1529 	if (m->dirty == 0)
1530 		vm_page_test_dirty(m);
1531 
1532 	if (m->dirty || (dnw & 0x0070) == 0) {
1533 		/*
1534 		 * Deactivate the page 3 times out of 32.
1535 		 */
1536 		head = 0;
1537 	} else {
1538 		/*
1539 		 * Cache the page 28 times out of every 32.  Note that
1540 		 * the page is deactivated instead of cached, but placed
1541 		 * at the head of the queue instead of the tail.
1542 		 */
1543 		head = 1;
1544 	}
1545 	_vm_page_deactivate(m, head);
1546 	lwkt_reltoken(&vm_token);
1547 }
1548 
1549 /*
1550  * Grab a page, blocking if it is busy and allocating a page if necessary.
1551  * A busy page is returned or NULL.
1552  *
1553  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1554  * If VM_ALLOC_RETRY is not specified
1555  *
1556  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1557  * always returned if we had blocked.
1558  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1559  * This routine may not be called from an interrupt.
1560  * The returned page may not be entirely valid.
1561  *
1562  * This routine may be called from mainline code without spl protection and
1563  * be guarenteed a busied page associated with the object at the specified
1564  * index.
1565  *
1566  * No requirements.
1567  */
1568 vm_page_t
1569 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1570 {
1571 	vm_page_t m;
1572 	int generation;
1573 
1574 	KKASSERT(allocflags &
1575 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1576 	lwkt_gettoken(&vm_token);
1577 retrylookup:
1578 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1579 		if (m->busy || (m->flags & PG_BUSY)) {
1580 			generation = object->generation;
1581 
1582 			while ((object->generation == generation) &&
1583 					(m->busy || (m->flags & PG_BUSY))) {
1584 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1585 				tsleep(m, 0, "pgrbwt", 0);
1586 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1587 					m = NULL;
1588 					goto done;
1589 				}
1590 			}
1591 			goto retrylookup;
1592 		} else {
1593 			vm_page_busy(m);
1594 			goto done;
1595 		}
1596 	}
1597 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1598 	if (m == NULL) {
1599 		vm_wait(0);
1600 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1601 			goto done;
1602 		goto retrylookup;
1603 	}
1604 done:
1605 	lwkt_reltoken(&vm_token);
1606 	return(m);
1607 }
1608 
1609 /*
1610  * Mapping function for valid bits or for dirty bits in
1611  * a page.  May not block.
1612  *
1613  * Inputs are required to range within a page.
1614  *
1615  * No requirements.
1616  * Non blocking.
1617  */
1618 int
1619 vm_page_bits(int base, int size)
1620 {
1621 	int first_bit;
1622 	int last_bit;
1623 
1624 	KASSERT(
1625 	    base + size <= PAGE_SIZE,
1626 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1627 	);
1628 
1629 	if (size == 0)		/* handle degenerate case */
1630 		return(0);
1631 
1632 	first_bit = base >> DEV_BSHIFT;
1633 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1634 
1635 	return ((2 << last_bit) - (1 << first_bit));
1636 }
1637 
1638 /*
1639  * Sets portions of a page valid and clean.  The arguments are expected
1640  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1641  * of any partial chunks touched by the range.  The invalid portion of
1642  * such chunks will be zero'd.
1643  *
1644  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
1645  *	 align base to DEV_BSIZE so as not to mark clean a partially
1646  *	 truncated device block.  Otherwise the dirty page status might be
1647  *	 lost.
1648  *
1649  * This routine may not block.
1650  *
1651  * (base + size) must be less then or equal to PAGE_SIZE.
1652  */
1653 static void
1654 _vm_page_zero_valid(vm_page_t m, int base, int size)
1655 {
1656 	int frag;
1657 	int endoff;
1658 
1659 	if (size == 0)	/* handle degenerate case */
1660 		return;
1661 
1662 	/*
1663 	 * If the base is not DEV_BSIZE aligned and the valid
1664 	 * bit is clear, we have to zero out a portion of the
1665 	 * first block.
1666 	 */
1667 
1668 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1669 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1670 	) {
1671 		pmap_zero_page_area(
1672 		    VM_PAGE_TO_PHYS(m),
1673 		    frag,
1674 		    base - frag
1675 		);
1676 	}
1677 
1678 	/*
1679 	 * If the ending offset is not DEV_BSIZE aligned and the
1680 	 * valid bit is clear, we have to zero out a portion of
1681 	 * the last block.
1682 	 */
1683 
1684 	endoff = base + size;
1685 
1686 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1687 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1688 	) {
1689 		pmap_zero_page_area(
1690 		    VM_PAGE_TO_PHYS(m),
1691 		    endoff,
1692 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1693 		);
1694 	}
1695 }
1696 
1697 /*
1698  * Set valid, clear dirty bits.  If validating the entire
1699  * page we can safely clear the pmap modify bit.  We also
1700  * use this opportunity to clear the PG_NOSYNC flag.  If a process
1701  * takes a write fault on a MAP_NOSYNC memory area the flag will
1702  * be set again.
1703  *
1704  * We set valid bits inclusive of any overlap, but we can only
1705  * clear dirty bits for DEV_BSIZE chunks that are fully within
1706  * the range.
1707  *
1708  * Page must be busied?
1709  * No other requirements.
1710  */
1711 void
1712 vm_page_set_valid(vm_page_t m, int base, int size)
1713 {
1714 	_vm_page_zero_valid(m, base, size);
1715 	m->valid |= vm_page_bits(base, size);
1716 }
1717 
1718 
1719 /*
1720  * Set valid bits and clear dirty bits.
1721  *
1722  * NOTE: This function does not clear the pmap modified bit.
1723  *	 Also note that e.g. NFS may use a byte-granular base
1724  *	 and size.
1725  *
1726  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
1727  *	    this without necessarily busying the page (via bdwrite()).
1728  *	    So for now vm_token must also be held.
1729  *
1730  * No other requirements.
1731  */
1732 void
1733 vm_page_set_validclean(vm_page_t m, int base, int size)
1734 {
1735 	int pagebits;
1736 
1737 	_vm_page_zero_valid(m, base, size);
1738 	pagebits = vm_page_bits(base, size);
1739 	m->valid |= pagebits;
1740 	m->dirty &= ~pagebits;
1741 	if (base == 0 && size == PAGE_SIZE) {
1742 		/*pmap_clear_modify(m);*/
1743 		vm_page_flag_clear(m, PG_NOSYNC);
1744 	}
1745 }
1746 
1747 /*
1748  * Set valid & dirty.  Used by buwrite()
1749  *
1750  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
1751  *	    call this function in buwrite() so for now vm_token must
1752  * 	    be held.
1753  *
1754  * No other requirements.
1755  */
1756 void
1757 vm_page_set_validdirty(vm_page_t m, int base, int size)
1758 {
1759 	int pagebits;
1760 
1761 	pagebits = vm_page_bits(base, size);
1762 	m->valid |= pagebits;
1763 	m->dirty |= pagebits;
1764 	if (m->object)
1765 		vm_object_set_writeable_dirty(m->object);
1766 }
1767 
1768 /*
1769  * Clear dirty bits.
1770  *
1771  * NOTE: This function does not clear the pmap modified bit.
1772  *	 Also note that e.g. NFS may use a byte-granular base
1773  *	 and size.
1774  *
1775  * Page must be busied?
1776  * No other requirements.
1777  */
1778 void
1779 vm_page_clear_dirty(vm_page_t m, int base, int size)
1780 {
1781 	m->dirty &= ~vm_page_bits(base, size);
1782 	if (base == 0 && size == PAGE_SIZE) {
1783 		/*pmap_clear_modify(m);*/
1784 		vm_page_flag_clear(m, PG_NOSYNC);
1785 	}
1786 }
1787 
1788 /*
1789  * Make the page all-dirty.
1790  *
1791  * Also make sure the related object and vnode reflect the fact that the
1792  * object may now contain a dirty page.
1793  *
1794  * Page must be busied?
1795  * No other requirements.
1796  */
1797 void
1798 vm_page_dirty(vm_page_t m)
1799 {
1800 #ifdef INVARIANTS
1801         int pqtype = m->queue - m->pc;
1802 #endif
1803         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1804                 ("vm_page_dirty: page in free/cache queue!"));
1805 	if (m->dirty != VM_PAGE_BITS_ALL) {
1806 		m->dirty = VM_PAGE_BITS_ALL;
1807 		if (m->object)
1808 			vm_object_set_writeable_dirty(m->object);
1809 	}
1810 }
1811 
1812 /*
1813  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1814  * valid and dirty bits for the effected areas are cleared.
1815  *
1816  * Page must be busied?
1817  * Does not block.
1818  * No other requirements.
1819  */
1820 void
1821 vm_page_set_invalid(vm_page_t m, int base, int size)
1822 {
1823 	int bits;
1824 
1825 	bits = vm_page_bits(base, size);
1826 	m->valid &= ~bits;
1827 	m->dirty &= ~bits;
1828 	m->object->generation++;
1829 }
1830 
1831 /*
1832  * The kernel assumes that the invalid portions of a page contain
1833  * garbage, but such pages can be mapped into memory by user code.
1834  * When this occurs, we must zero out the non-valid portions of the
1835  * page so user code sees what it expects.
1836  *
1837  * Pages are most often semi-valid when the end of a file is mapped
1838  * into memory and the file's size is not page aligned.
1839  *
1840  * Page must be busied?
1841  * No other requirements.
1842  */
1843 void
1844 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1845 {
1846 	int b;
1847 	int i;
1848 
1849 	/*
1850 	 * Scan the valid bits looking for invalid sections that
1851 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1852 	 * valid bit may be set ) have already been zerod by
1853 	 * vm_page_set_validclean().
1854 	 */
1855 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1856 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1857 		    (m->valid & (1 << i))
1858 		) {
1859 			if (i > b) {
1860 				pmap_zero_page_area(
1861 				    VM_PAGE_TO_PHYS(m),
1862 				    b << DEV_BSHIFT,
1863 				    (i - b) << DEV_BSHIFT
1864 				);
1865 			}
1866 			b = i + 1;
1867 		}
1868 	}
1869 
1870 	/*
1871 	 * setvalid is TRUE when we can safely set the zero'd areas
1872 	 * as being valid.  We can do this if there are no cache consistency
1873 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1874 	 */
1875 	if (setvalid)
1876 		m->valid = VM_PAGE_BITS_ALL;
1877 }
1878 
1879 /*
1880  * Is a (partial) page valid?  Note that the case where size == 0
1881  * will return FALSE in the degenerate case where the page is entirely
1882  * invalid, and TRUE otherwise.
1883  *
1884  * Does not block.
1885  * No other requirements.
1886  */
1887 int
1888 vm_page_is_valid(vm_page_t m, int base, int size)
1889 {
1890 	int bits = vm_page_bits(base, size);
1891 
1892 	if (m->valid && ((m->valid & bits) == bits))
1893 		return 1;
1894 	else
1895 		return 0;
1896 }
1897 
1898 /*
1899  * update dirty bits from pmap/mmu.  May not block.
1900  *
1901  * Caller must hold vm_token if non-blocking operation desired.
1902  * No other requirements.
1903  */
1904 void
1905 vm_page_test_dirty(vm_page_t m)
1906 {
1907 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1908 		vm_page_dirty(m);
1909 	}
1910 }
1911 
1912 /*
1913  * Register an action, associating it with its vm_page
1914  */
1915 void
1916 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
1917 {
1918 	struct vm_page_action_list *list;
1919 	int hv;
1920 
1921 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
1922 	list = &action_list[hv];
1923 
1924 	lwkt_gettoken(&vm_token);
1925 	vm_page_flag_set(action->m, PG_ACTIONLIST);
1926 	action->event = event;
1927 	LIST_INSERT_HEAD(list, action, entry);
1928 	lwkt_reltoken(&vm_token);
1929 }
1930 
1931 /*
1932  * Unregister an action, disassociating it from its related vm_page
1933  */
1934 void
1935 vm_page_unregister_action(vm_page_action_t action)
1936 {
1937 	struct vm_page_action_list *list;
1938 	int hv;
1939 
1940 	lwkt_gettoken(&vm_token);
1941 	if (action->event != VMEVENT_NONE) {
1942 		action->event = VMEVENT_NONE;
1943 		LIST_REMOVE(action, entry);
1944 
1945 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
1946 		list = &action_list[hv];
1947 		if (LIST_EMPTY(list))
1948 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
1949 	}
1950 	lwkt_reltoken(&vm_token);
1951 }
1952 
1953 /*
1954  * Issue an event on a VM page.  Corresponding action structures are
1955  * removed from the page's list and called.
1956  *
1957  * If the vm_page has no more pending action events we clear its
1958  * PG_ACTIONLIST flag.
1959  */
1960 void
1961 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1962 {
1963 	struct vm_page_action_list *list;
1964 	struct vm_page_action *scan;
1965 	struct vm_page_action *next;
1966 	int hv;
1967 	int all;
1968 
1969 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
1970 	list = &action_list[hv];
1971 	all = 1;
1972 
1973 	lwkt_gettoken(&vm_token);
1974 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
1975 		if (scan->m == m) {
1976 			if (scan->event == event) {
1977 				scan->event = VMEVENT_NONE;
1978 				LIST_REMOVE(scan, entry);
1979 				scan->func(m, scan);
1980 				/* XXX */
1981 			} else {
1982 				all = 0;
1983 			}
1984 		}
1985 	}
1986 	if (all)
1987 		vm_page_flag_clear(m, PG_ACTIONLIST);
1988 	lwkt_reltoken(&vm_token);
1989 }
1990 
1991 
1992 #include "opt_ddb.h"
1993 #ifdef DDB
1994 #include <sys/kernel.h>
1995 
1996 #include <ddb/ddb.h>
1997 
1998 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1999 {
2000 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
2001 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
2002 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
2003 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
2004 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
2005 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
2006 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
2007 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
2008 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
2009 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
2010 }
2011 
2012 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2013 {
2014 	int i;
2015 	db_printf("PQ_FREE:");
2016 	for(i=0;i<PQ_L2_SIZE;i++) {
2017 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
2018 	}
2019 	db_printf("\n");
2020 
2021 	db_printf("PQ_CACHE:");
2022 	for(i=0;i<PQ_L2_SIZE;i++) {
2023 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
2024 	}
2025 	db_printf("\n");
2026 
2027 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
2028 		vm_page_queues[PQ_ACTIVE].lcnt,
2029 		vm_page_queues[PQ_INACTIVE].lcnt);
2030 }
2031 #endif /* DDB */
2032