1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 36 */ 37 38 /* 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 /* 65 * Resident memory management module. The module manipulates 'VM pages'. 66 * A VM page is the core building block for memory management. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/vnode.h> 75 #include <sys/kernel.h> 76 #include <sys/alist.h> 77 #include <sys/sysctl.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <sys/lock.h> 82 #include <vm/vm_kern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_extern.h> 90 #include <vm/swap_pager.h> 91 92 #include <machine/inttypes.h> 93 #include <machine/md_var.h> 94 #include <machine/specialreg.h> 95 96 #include <vm/vm_page2.h> 97 #include <sys/spinlock2.h> 98 99 #define VMACTION_HSIZE 256 100 #define VMACTION_HMASK (VMACTION_HSIZE - 1) 101 102 static void vm_page_queue_init(void); 103 static void vm_page_free_wakeup(void); 104 static vm_page_t vm_page_select_cache(u_short pg_color); 105 static vm_page_t _vm_page_list_find2(int basequeue, int index); 106 static void _vm_page_deactivate_locked(vm_page_t m, int athead); 107 108 /* 109 * Array of tailq lists 110 */ 111 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT]; 112 113 LIST_HEAD(vm_page_action_list, vm_page_action); 114 struct vm_page_action_list action_list[VMACTION_HSIZE]; 115 static volatile int vm_pages_waiting; 116 117 static struct alist vm_contig_alist; 118 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536]; 119 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin); 120 121 static u_long vm_dma_reserved = 0; 122 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved); 123 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0, 124 "Memory reserved for DMA"); 125 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD, 126 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA"); 127 128 static int vm_contig_verbose = 0; 129 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose); 130 131 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 132 vm_pindex_t, pindex); 133 134 static void 135 vm_page_queue_init(void) 136 { 137 int i; 138 139 for (i = 0; i < PQ_L2_SIZE; i++) 140 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count; 141 for (i = 0; i < PQ_L2_SIZE; i++) 142 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count; 143 for (i = 0; i < PQ_L2_SIZE; i++) 144 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count; 145 for (i = 0; i < PQ_L2_SIZE; i++) 146 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count; 147 for (i = 0; i < PQ_L2_SIZE; i++) 148 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count; 149 /* PQ_NONE has no queue */ 150 151 for (i = 0; i < PQ_COUNT; i++) { 152 TAILQ_INIT(&vm_page_queues[i].pl); 153 spin_init(&vm_page_queues[i].spin); 154 } 155 156 for (i = 0; i < VMACTION_HSIZE; i++) 157 LIST_INIT(&action_list[i]); 158 } 159 160 /* 161 * note: place in initialized data section? Is this necessary? 162 */ 163 long first_page = 0; 164 int vm_page_array_size = 0; 165 int vm_page_zero_count = 0; 166 vm_page_t vm_page_array = NULL; 167 vm_paddr_t vm_low_phys_reserved; 168 169 /* 170 * (low level boot) 171 * 172 * Sets the page size, perhaps based upon the memory size. 173 * Must be called before any use of page-size dependent functions. 174 */ 175 void 176 vm_set_page_size(void) 177 { 178 if (vmstats.v_page_size == 0) 179 vmstats.v_page_size = PAGE_SIZE; 180 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 181 panic("vm_set_page_size: page size not a power of two"); 182 } 183 184 /* 185 * (low level boot) 186 * 187 * Add a new page to the freelist for use by the system. New pages 188 * are added to both the head and tail of the associated free page 189 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 190 * requests pull 'recent' adds (higher physical addresses) first. 191 * 192 * Beware that the page zeroing daemon will also be running soon after 193 * boot, moving pages from the head to the tail of the PQ_FREE queues. 194 * 195 * Must be called in a critical section. 196 */ 197 static void 198 vm_add_new_page(vm_paddr_t pa) 199 { 200 struct vpgqueues *vpq; 201 vm_page_t m; 202 203 m = PHYS_TO_VM_PAGE(pa); 204 m->phys_addr = pa; 205 m->flags = 0; 206 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK; 207 m->pat_mode = PAT_WRITE_BACK; 208 /* 209 * Twist for cpu localization in addition to page coloring, so 210 * different cpus selecting by m->queue get different page colors. 211 */ 212 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK; 213 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK; 214 /* 215 * Reserve a certain number of contiguous low memory pages for 216 * contigmalloc() to use. 217 */ 218 if (pa < vm_low_phys_reserved) { 219 atomic_add_int(&vmstats.v_page_count, 1); 220 atomic_add_int(&vmstats.v_dma_pages, 1); 221 m->queue = PQ_NONE; 222 m->wire_count = 1; 223 atomic_add_int(&vmstats.v_wire_count, 1); 224 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1); 225 return; 226 } 227 228 /* 229 * General page 230 */ 231 m->queue = m->pc + PQ_FREE; 232 KKASSERT(m->dirty == 0); 233 234 atomic_add_int(&vmstats.v_page_count, 1); 235 atomic_add_int(&vmstats.v_free_count, 1); 236 vpq = &vm_page_queues[m->queue]; 237 if ((vpq->flipflop & 15) == 0) { 238 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 239 m->flags |= PG_ZERO; 240 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 241 atomic_add_int(&vm_page_zero_count, 1); 242 } else { 243 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 244 } 245 ++vpq->flipflop; 246 ++vpq->lcnt; 247 } 248 249 /* 250 * (low level boot) 251 * 252 * Initializes the resident memory module. 253 * 254 * Preallocates memory for critical VM structures and arrays prior to 255 * kernel_map becoming available. 256 * 257 * Memory is allocated from (virtual2_start, virtual2_end) if available, 258 * otherwise memory is allocated from (virtual_start, virtual_end). 259 * 260 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be 261 * large enough to hold vm_page_array & other structures for machines with 262 * large amounts of ram, so we want to use virtual2* when available. 263 */ 264 void 265 vm_page_startup(void) 266 { 267 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start; 268 vm_offset_t mapped; 269 vm_size_t npages; 270 vm_paddr_t page_range; 271 vm_paddr_t new_end; 272 int i; 273 vm_paddr_t pa; 274 int nblocks; 275 vm_paddr_t last_pa; 276 vm_paddr_t end; 277 vm_paddr_t biggestone, biggestsize; 278 vm_paddr_t total; 279 280 total = 0; 281 biggestsize = 0; 282 biggestone = 0; 283 nblocks = 0; 284 vaddr = round_page(vaddr); 285 286 for (i = 0; phys_avail[i + 1]; i += 2) { 287 phys_avail[i] = round_page64(phys_avail[i]); 288 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]); 289 } 290 291 for (i = 0; phys_avail[i + 1]; i += 2) { 292 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 293 294 if (size > biggestsize) { 295 biggestone = i; 296 biggestsize = size; 297 } 298 ++nblocks; 299 total += size; 300 } 301 302 end = phys_avail[biggestone+1]; 303 end = trunc_page(end); 304 305 /* 306 * Initialize the queue headers for the free queue, the active queue 307 * and the inactive queue. 308 */ 309 vm_page_queue_init(); 310 311 #if !defined(_KERNEL_VIRTUAL) 312 /* 313 * VKERNELs don't support minidumps and as such don't need 314 * vm_page_dump 315 * 316 * Allocate a bitmap to indicate that a random physical page 317 * needs to be included in a minidump. 318 * 319 * The amd64 port needs this to indicate which direct map pages 320 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 321 * 322 * However, i386 still needs this workspace internally within the 323 * minidump code. In theory, they are not needed on i386, but are 324 * included should the sf_buf code decide to use them. 325 */ 326 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 327 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 328 end -= vm_page_dump_size; 329 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size, 330 VM_PROT_READ | VM_PROT_WRITE); 331 bzero((void *)vm_page_dump, vm_page_dump_size); 332 #endif 333 /* 334 * Compute the number of pages of memory that will be available for 335 * use (taking into account the overhead of a page structure per 336 * page). 337 */ 338 first_page = phys_avail[0] / PAGE_SIZE; 339 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 340 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 341 342 #ifndef _KERNEL_VIRTUAL 343 /* 344 * (only applies to real kernels) 345 * 346 * Initialize the contiguous reserve map. We initially reserve up 347 * to 1/4 available physical memory or 65536 pages (~256MB), whichever 348 * is lower. 349 * 350 * Once device initialization is complete we return most of the 351 * reserved memory back to the normal page queues but leave some 352 * in reserve for things like usb attachments. 353 */ 354 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT; 355 if (vm_low_phys_reserved > total / 4) 356 vm_low_phys_reserved = total / 4; 357 if (vm_dma_reserved == 0) { 358 vm_dma_reserved = 16 * 1024 * 1024; /* 16MB */ 359 if (vm_dma_reserved > total / 16) 360 vm_dma_reserved = total / 16; 361 } 362 #endif 363 alist_init(&vm_contig_alist, 65536, vm_contig_ameta, 364 ALIST_RECORDS_65536); 365 366 /* 367 * Initialize the mem entry structures now, and put them in the free 368 * queue. 369 */ 370 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 371 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); 372 vm_page_array = (vm_page_t)mapped; 373 374 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL) 375 /* 376 * since pmap_map on amd64 returns stuff out of a direct-map region, 377 * we have to manually add these pages to the minidump tracking so 378 * that they can be dumped, including the vm_page_array. 379 */ 380 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 381 dump_add_page(pa); 382 #endif 383 384 /* 385 * Clear all of the page structures 386 */ 387 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 388 vm_page_array_size = page_range; 389 390 /* 391 * Construct the free queue(s) in ascending order (by physical 392 * address) so that the first 16MB of physical memory is allocated 393 * last rather than first. On large-memory machines, this avoids 394 * the exhaustion of low physical memory before isa_dmainit has run. 395 */ 396 vmstats.v_page_count = 0; 397 vmstats.v_free_count = 0; 398 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 399 pa = phys_avail[i]; 400 if (i == biggestone) 401 last_pa = new_end; 402 else 403 last_pa = phys_avail[i + 1]; 404 while (pa < last_pa && npages-- > 0) { 405 vm_add_new_page(pa); 406 pa += PAGE_SIZE; 407 } 408 } 409 if (virtual2_start) 410 virtual2_start = vaddr; 411 else 412 virtual_start = vaddr; 413 } 414 415 /* 416 * We tended to reserve a ton of memory for contigmalloc(). Now that most 417 * drivers have initialized we want to return most the remaining free 418 * reserve back to the VM page queues so they can be used for normal 419 * allocations. 420 * 421 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool. 422 */ 423 static void 424 vm_page_startup_finish(void *dummy __unused) 425 { 426 alist_blk_t blk; 427 alist_blk_t rblk; 428 alist_blk_t count; 429 alist_blk_t xcount; 430 alist_blk_t bfree; 431 vm_page_t m; 432 433 spin_lock(&vm_contig_spin); 434 for (;;) { 435 bfree = alist_free_info(&vm_contig_alist, &blk, &count); 436 if (bfree <= vm_dma_reserved / PAGE_SIZE) 437 break; 438 if (count == 0) 439 break; 440 441 /* 442 * Figure out how much of the initial reserve we have to 443 * free in order to reach our target. 444 */ 445 bfree -= vm_dma_reserved / PAGE_SIZE; 446 if (count > bfree) { 447 blk += count - bfree; 448 count = bfree; 449 } 450 451 /* 452 * Calculate the nearest power of 2 <= count. 453 */ 454 for (xcount = 1; xcount <= count; xcount <<= 1) 455 ; 456 xcount >>= 1; 457 blk += count - xcount; 458 count = xcount; 459 460 /* 461 * Allocate the pages from the alist, then free them to 462 * the normal VM page queues. 463 * 464 * Pages allocated from the alist are wired. We have to 465 * busy, unwire, and free them. We must also adjust 466 * vm_low_phys_reserved before freeing any pages to prevent 467 * confusion. 468 */ 469 rblk = alist_alloc(&vm_contig_alist, blk, count); 470 if (rblk != blk) { 471 kprintf("vm_page_startup_finish: Unable to return " 472 "dma space @0x%08x/%d -> 0x%08x\n", 473 blk, count, rblk); 474 break; 475 } 476 atomic_add_int(&vmstats.v_dma_pages, -count); 477 spin_unlock(&vm_contig_spin); 478 479 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 480 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m); 481 while (count) { 482 vm_page_busy_wait(m, FALSE, "cpgfr"); 483 vm_page_unwire(m, 0); 484 vm_page_free(m); 485 --count; 486 ++m; 487 } 488 spin_lock(&vm_contig_spin); 489 } 490 spin_unlock(&vm_contig_spin); 491 492 /* 493 * Print out how much DMA space drivers have already allocated and 494 * how much is left over. 495 */ 496 kprintf("DMA space used: %jdk, remaining available: %jdk\n", 497 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) * 498 (PAGE_SIZE / 1024), 499 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024)); 500 } 501 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY, 502 vm_page_startup_finish, NULL) 503 504 505 /* 506 * Scan comparison function for Red-Black tree scans. An inclusive 507 * (start,end) is expected. Other fields are not used. 508 */ 509 int 510 rb_vm_page_scancmp(struct vm_page *p, void *data) 511 { 512 struct rb_vm_page_scan_info *info = data; 513 514 if (p->pindex < info->start_pindex) 515 return(-1); 516 if (p->pindex > info->end_pindex) 517 return(1); 518 return(0); 519 } 520 521 int 522 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 523 { 524 if (p1->pindex < p2->pindex) 525 return(-1); 526 if (p1->pindex > p2->pindex) 527 return(1); 528 return(0); 529 } 530 531 void 532 vm_page_init(vm_page_t m) 533 { 534 /* do nothing for now. Called from pmap_page_init() */ 535 } 536 537 /* 538 * Each page queue has its own spin lock, which is fairly optimal for 539 * allocating and freeing pages at least. 540 * 541 * The caller must hold the vm_page_spin_lock() before locking a vm_page's 542 * queue spinlock via this function. Also note that m->queue cannot change 543 * unless both the page and queue are locked. 544 */ 545 static __inline 546 void 547 _vm_page_queue_spin_lock(vm_page_t m) 548 { 549 u_short queue; 550 551 queue = m->queue; 552 if (queue != PQ_NONE) { 553 spin_lock(&vm_page_queues[queue].spin); 554 KKASSERT(queue == m->queue); 555 } 556 } 557 558 static __inline 559 void 560 _vm_page_queue_spin_unlock(vm_page_t m) 561 { 562 u_short queue; 563 564 queue = m->queue; 565 cpu_ccfence(); 566 if (queue != PQ_NONE) 567 spin_unlock(&vm_page_queues[queue].spin); 568 } 569 570 static __inline 571 void 572 _vm_page_queues_spin_lock(u_short queue) 573 { 574 cpu_ccfence(); 575 if (queue != PQ_NONE) 576 spin_lock(&vm_page_queues[queue].spin); 577 } 578 579 580 static __inline 581 void 582 _vm_page_queues_spin_unlock(u_short queue) 583 { 584 cpu_ccfence(); 585 if (queue != PQ_NONE) 586 spin_unlock(&vm_page_queues[queue].spin); 587 } 588 589 void 590 vm_page_queue_spin_lock(vm_page_t m) 591 { 592 _vm_page_queue_spin_lock(m); 593 } 594 595 void 596 vm_page_queues_spin_lock(u_short queue) 597 { 598 _vm_page_queues_spin_lock(queue); 599 } 600 601 void 602 vm_page_queue_spin_unlock(vm_page_t m) 603 { 604 _vm_page_queue_spin_unlock(m); 605 } 606 607 void 608 vm_page_queues_spin_unlock(u_short queue) 609 { 610 _vm_page_queues_spin_unlock(queue); 611 } 612 613 /* 614 * This locks the specified vm_page and its queue in the proper order 615 * (page first, then queue). The queue may change so the caller must 616 * recheck on return. 617 */ 618 static __inline 619 void 620 _vm_page_and_queue_spin_lock(vm_page_t m) 621 { 622 vm_page_spin_lock(m); 623 _vm_page_queue_spin_lock(m); 624 } 625 626 static __inline 627 void 628 _vm_page_and_queue_spin_unlock(vm_page_t m) 629 { 630 _vm_page_queues_spin_unlock(m->queue); 631 vm_page_spin_unlock(m); 632 } 633 634 void 635 vm_page_and_queue_spin_unlock(vm_page_t m) 636 { 637 _vm_page_and_queue_spin_unlock(m); 638 } 639 640 void 641 vm_page_and_queue_spin_lock(vm_page_t m) 642 { 643 _vm_page_and_queue_spin_lock(m); 644 } 645 646 /* 647 * Helper function removes vm_page from its current queue. 648 * Returns the base queue the page used to be on. 649 * 650 * The vm_page and the queue must be spinlocked. 651 * This function will unlock the queue but leave the page spinlocked. 652 */ 653 static __inline u_short 654 _vm_page_rem_queue_spinlocked(vm_page_t m) 655 { 656 struct vpgqueues *pq; 657 u_short queue; 658 659 queue = m->queue; 660 if (queue != PQ_NONE) { 661 pq = &vm_page_queues[queue]; 662 TAILQ_REMOVE(&pq->pl, m, pageq); 663 atomic_add_int(pq->cnt, -1); 664 pq->lcnt--; 665 m->queue = PQ_NONE; 666 vm_page_queues_spin_unlock(queue); 667 if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO)) 668 atomic_subtract_int(&vm_page_zero_count, 1); 669 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE) 670 return (queue - m->pc); 671 } 672 return queue; 673 } 674 675 /* 676 * Helper function places the vm_page on the specified queue. 677 * 678 * The vm_page must be spinlocked. 679 * This function will return with both the page and the queue locked. 680 */ 681 static __inline void 682 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead) 683 { 684 struct vpgqueues *pq; 685 686 KKASSERT(m->queue == PQ_NONE); 687 688 if (queue != PQ_NONE) { 689 vm_page_queues_spin_lock(queue); 690 pq = &vm_page_queues[queue]; 691 ++pq->lcnt; 692 atomic_add_int(pq->cnt, 1); 693 m->queue = queue; 694 695 /* 696 * Put zero'd pages on the end ( where we look for zero'd pages 697 * first ) and non-zerod pages at the head. 698 */ 699 if (queue - m->pc == PQ_FREE) { 700 if (m->flags & PG_ZERO) { 701 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 702 atomic_add_int(&vm_page_zero_count, 1); 703 } else { 704 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 705 } 706 } else if (athead) { 707 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 708 } else { 709 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 710 } 711 /* leave the queue spinlocked */ 712 } 713 } 714 715 /* 716 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 717 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we 718 * did not. Only one sleep call will be made before returning. 719 * 720 * This function does NOT busy the page and on return the page is not 721 * guaranteed to be available. 722 */ 723 void 724 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 725 { 726 u_int32_t flags; 727 728 for (;;) { 729 flags = m->flags; 730 cpu_ccfence(); 731 732 if ((flags & PG_BUSY) == 0 && 733 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) { 734 break; 735 } 736 tsleep_interlock(m, 0); 737 if (atomic_cmpset_int(&m->flags, flags, 738 flags | PG_WANTED | PG_REFERENCED)) { 739 tsleep(m, PINTERLOCKED, msg, 0); 740 break; 741 } 742 } 743 } 744 745 /* 746 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we 747 * also wait for m->busy to become 0 before setting PG_BUSY. 748 */ 749 void 750 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m, 751 int also_m_busy, const char *msg 752 VM_PAGE_DEBUG_ARGS) 753 { 754 u_int32_t flags; 755 756 for (;;) { 757 flags = m->flags; 758 cpu_ccfence(); 759 if (flags & PG_BUSY) { 760 tsleep_interlock(m, 0); 761 if (atomic_cmpset_int(&m->flags, flags, 762 flags | PG_WANTED | PG_REFERENCED)) { 763 tsleep(m, PINTERLOCKED, msg, 0); 764 } 765 } else if (also_m_busy && (flags & PG_SBUSY)) { 766 tsleep_interlock(m, 0); 767 if (atomic_cmpset_int(&m->flags, flags, 768 flags | PG_WANTED | PG_REFERENCED)) { 769 tsleep(m, PINTERLOCKED, msg, 0); 770 } 771 } else { 772 if (atomic_cmpset_int(&m->flags, flags, 773 flags | PG_BUSY)) { 774 #ifdef VM_PAGE_DEBUG 775 m->busy_func = func; 776 m->busy_line = lineno; 777 #endif 778 break; 779 } 780 } 781 } 782 } 783 784 /* 785 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy 786 * is also 0. 787 * 788 * Returns non-zero on failure. 789 */ 790 int 791 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy 792 VM_PAGE_DEBUG_ARGS) 793 { 794 u_int32_t flags; 795 796 for (;;) { 797 flags = m->flags; 798 cpu_ccfence(); 799 if (flags & PG_BUSY) 800 return TRUE; 801 if (also_m_busy && (flags & PG_SBUSY)) 802 return TRUE; 803 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 804 #ifdef VM_PAGE_DEBUG 805 m->busy_func = func; 806 m->busy_line = lineno; 807 #endif 808 return FALSE; 809 } 810 } 811 } 812 813 /* 814 * Clear the PG_BUSY flag and return non-zero to indicate to the caller 815 * that a wakeup() should be performed. 816 * 817 * The vm_page must be spinlocked and will remain spinlocked on return. 818 * The related queue must NOT be spinlocked (which could deadlock us). 819 * 820 * (inline version) 821 */ 822 static __inline 823 int 824 _vm_page_wakeup(vm_page_t m) 825 { 826 u_int32_t flags; 827 828 for (;;) { 829 flags = m->flags; 830 cpu_ccfence(); 831 if (atomic_cmpset_int(&m->flags, flags, 832 flags & ~(PG_BUSY | PG_WANTED))) { 833 break; 834 } 835 } 836 return(flags & PG_WANTED); 837 } 838 839 /* 840 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This 841 * is typically the last call you make on a page before moving onto 842 * other things. 843 */ 844 void 845 vm_page_wakeup(vm_page_t m) 846 { 847 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 848 vm_page_spin_lock(m); 849 if (_vm_page_wakeup(m)) { 850 vm_page_spin_unlock(m); 851 wakeup(m); 852 } else { 853 vm_page_spin_unlock(m); 854 } 855 } 856 857 /* 858 * Holding a page keeps it from being reused. Other parts of the system 859 * can still disassociate the page from its current object and free it, or 860 * perform read or write I/O on it and/or otherwise manipulate the page, 861 * but if the page is held the VM system will leave the page and its data 862 * intact and not reuse the page for other purposes until the last hold 863 * reference is released. (see vm_page_wire() if you want to prevent the 864 * page from being disassociated from its object too). 865 * 866 * The caller must still validate the contents of the page and, if necessary, 867 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete 868 * before manipulating the page. 869 * 870 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary 871 */ 872 void 873 vm_page_hold(vm_page_t m) 874 { 875 vm_page_spin_lock(m); 876 atomic_add_int(&m->hold_count, 1); 877 if (m->queue - m->pc == PQ_FREE) { 878 _vm_page_queue_spin_lock(m); 879 _vm_page_rem_queue_spinlocked(m); 880 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 881 _vm_page_queue_spin_unlock(m); 882 } 883 vm_page_spin_unlock(m); 884 } 885 886 /* 887 * The opposite of vm_page_hold(). A page can be freed while being held, 888 * which places it on the PQ_HOLD queue. If we are able to busy the page 889 * after the hold count drops to zero we will move the page to the 890 * appropriate PQ_FREE queue by calling vm_page_free_toq(). 891 */ 892 void 893 vm_page_unhold(vm_page_t m) 894 { 895 vm_page_spin_lock(m); 896 atomic_add_int(&m->hold_count, -1); 897 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) { 898 _vm_page_queue_spin_lock(m); 899 _vm_page_rem_queue_spinlocked(m); 900 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 901 _vm_page_queue_spin_unlock(m); 902 } 903 vm_page_spin_unlock(m); 904 } 905 906 /* 907 * Inserts the given vm_page into the object and object list. 908 * 909 * The pagetables are not updated but will presumably fault the page 910 * in if necessary, or if a kernel page the caller will at some point 911 * enter the page into the kernel's pmap. We are not allowed to block 912 * here so we *can't* do this anyway. 913 * 914 * This routine may not block. 915 * This routine must be called with the vm_object held. 916 * This routine must be called with a critical section held. 917 * 918 * This routine returns TRUE if the page was inserted into the object 919 * successfully, and FALSE if the page already exists in the object. 920 */ 921 int 922 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 923 { 924 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object)); 925 if (m->object != NULL) 926 panic("vm_page_insert: already inserted"); 927 928 object->generation++; 929 930 /* 931 * Record the object/offset pair in this page and add the 932 * pv_list_count of the page to the object. 933 * 934 * The vm_page spin lock is required for interactions with the pmap. 935 */ 936 vm_page_spin_lock(m); 937 m->object = object; 938 m->pindex = pindex; 939 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) { 940 m->object = NULL; 941 m->pindex = 0; 942 vm_page_spin_unlock(m); 943 return FALSE; 944 } 945 object->resident_page_count++; 946 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */ 947 vm_page_spin_unlock(m); 948 949 /* 950 * Since we are inserting a new and possibly dirty page, 951 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 952 */ 953 if ((m->valid & m->dirty) || 954 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT))) 955 vm_object_set_writeable_dirty(object); 956 957 /* 958 * Checks for a swap assignment and sets PG_SWAPPED if appropriate. 959 */ 960 swap_pager_page_inserted(m); 961 return TRUE; 962 } 963 964 /* 965 * Removes the given vm_page_t from the (object,index) table 966 * 967 * The underlying pmap entry (if any) is NOT removed here. 968 * This routine may not block. 969 * 970 * The page must be BUSY and will remain BUSY on return. 971 * No other requirements. 972 * 973 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave 974 * it busy. 975 */ 976 void 977 vm_page_remove(vm_page_t m) 978 { 979 vm_object_t object; 980 981 if (m->object == NULL) { 982 return; 983 } 984 985 if ((m->flags & PG_BUSY) == 0) 986 panic("vm_page_remove: page not busy"); 987 988 object = m->object; 989 990 vm_object_hold(object); 991 992 /* 993 * Remove the page from the object and update the object. 994 * 995 * The vm_page spin lock is required for interactions with the pmap. 996 */ 997 vm_page_spin_lock(m); 998 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 999 object->resident_page_count--; 1000 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */ 1001 m->object = NULL; 1002 vm_page_spin_unlock(m); 1003 1004 object->generation++; 1005 1006 vm_object_drop(object); 1007 } 1008 1009 /* 1010 * Locate and return the page at (object, pindex), or NULL if the 1011 * page could not be found. 1012 * 1013 * The caller must hold the vm_object token. 1014 */ 1015 vm_page_t 1016 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1017 { 1018 vm_page_t m; 1019 1020 /* 1021 * Search the hash table for this object/offset pair 1022 */ 1023 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1024 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1025 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex)); 1026 return(m); 1027 } 1028 1029 vm_page_t 1030 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object, 1031 vm_pindex_t pindex, 1032 int also_m_busy, const char *msg 1033 VM_PAGE_DEBUG_ARGS) 1034 { 1035 u_int32_t flags; 1036 vm_page_t m; 1037 1038 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1039 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1040 while (m) { 1041 KKASSERT(m->object == object && m->pindex == pindex); 1042 flags = m->flags; 1043 cpu_ccfence(); 1044 if (flags & PG_BUSY) { 1045 tsleep_interlock(m, 0); 1046 if (atomic_cmpset_int(&m->flags, flags, 1047 flags | PG_WANTED | PG_REFERENCED)) { 1048 tsleep(m, PINTERLOCKED, msg, 0); 1049 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1050 pindex); 1051 } 1052 } else if (also_m_busy && (flags & PG_SBUSY)) { 1053 tsleep_interlock(m, 0); 1054 if (atomic_cmpset_int(&m->flags, flags, 1055 flags | PG_WANTED | PG_REFERENCED)) { 1056 tsleep(m, PINTERLOCKED, msg, 0); 1057 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1058 pindex); 1059 } 1060 } else if (atomic_cmpset_int(&m->flags, flags, 1061 flags | PG_BUSY)) { 1062 #ifdef VM_PAGE_DEBUG 1063 m->busy_func = func; 1064 m->busy_line = lineno; 1065 #endif 1066 break; 1067 } 1068 } 1069 return m; 1070 } 1071 1072 /* 1073 * Attempt to lookup and busy a page. 1074 * 1075 * Returns NULL if the page could not be found 1076 * 1077 * Returns a vm_page and error == TRUE if the page exists but could not 1078 * be busied. 1079 * 1080 * Returns a vm_page and error == FALSE on success. 1081 */ 1082 vm_page_t 1083 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object, 1084 vm_pindex_t pindex, 1085 int also_m_busy, int *errorp 1086 VM_PAGE_DEBUG_ARGS) 1087 { 1088 u_int32_t flags; 1089 vm_page_t m; 1090 1091 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1092 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1093 *errorp = FALSE; 1094 while (m) { 1095 KKASSERT(m->object == object && m->pindex == pindex); 1096 flags = m->flags; 1097 cpu_ccfence(); 1098 if (flags & PG_BUSY) { 1099 *errorp = TRUE; 1100 break; 1101 } 1102 if (also_m_busy && (flags & PG_SBUSY)) { 1103 *errorp = TRUE; 1104 break; 1105 } 1106 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 1107 #ifdef VM_PAGE_DEBUG 1108 m->busy_func = func; 1109 m->busy_line = lineno; 1110 #endif 1111 break; 1112 } 1113 } 1114 return m; 1115 } 1116 1117 /* 1118 * Caller must hold the related vm_object 1119 */ 1120 vm_page_t 1121 vm_page_next(vm_page_t m) 1122 { 1123 vm_page_t next; 1124 1125 next = vm_page_rb_tree_RB_NEXT(m); 1126 if (next && next->pindex != m->pindex + 1) 1127 next = NULL; 1128 return (next); 1129 } 1130 1131 /* 1132 * vm_page_rename() 1133 * 1134 * Move the given vm_page from its current object to the specified 1135 * target object/offset. The page must be busy and will remain so 1136 * on return. 1137 * 1138 * new_object must be held. 1139 * This routine might block. XXX ? 1140 * 1141 * NOTE: Swap associated with the page must be invalidated by the move. We 1142 * have to do this for several reasons: (1) we aren't freeing the 1143 * page, (2) we are dirtying the page, (3) the VM system is probably 1144 * moving the page from object A to B, and will then later move 1145 * the backing store from A to B and we can't have a conflict. 1146 * 1147 * NOTE: We *always* dirty the page. It is necessary both for the 1148 * fact that we moved it, and because we may be invalidating 1149 * swap. If the page is on the cache, we have to deactivate it 1150 * or vm_page_dirty() will panic. Dirty pages are not allowed 1151 * on the cache. 1152 */ 1153 void 1154 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1155 { 1156 KKASSERT(m->flags & PG_BUSY); 1157 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object)); 1158 if (m->object) { 1159 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object)); 1160 vm_page_remove(m); 1161 } 1162 if (vm_page_insert(m, new_object, new_pindex) == FALSE) { 1163 panic("vm_page_rename: target exists (%p,%"PRIu64")", 1164 new_object, new_pindex); 1165 } 1166 if (m->queue - m->pc == PQ_CACHE) 1167 vm_page_deactivate(m); 1168 vm_page_dirty(m); 1169 } 1170 1171 /* 1172 * vm_page_unqueue() without any wakeup. This routine is used when a page 1173 * is being moved between queues or otherwise is to remain BUSYied by the 1174 * caller. 1175 * 1176 * This routine may not block. 1177 */ 1178 void 1179 vm_page_unqueue_nowakeup(vm_page_t m) 1180 { 1181 vm_page_and_queue_spin_lock(m); 1182 (void)_vm_page_rem_queue_spinlocked(m); 1183 vm_page_spin_unlock(m); 1184 } 1185 1186 /* 1187 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 1188 * if necessary. 1189 * 1190 * This routine may not block. 1191 */ 1192 void 1193 vm_page_unqueue(vm_page_t m) 1194 { 1195 u_short queue; 1196 1197 vm_page_and_queue_spin_lock(m); 1198 queue = _vm_page_rem_queue_spinlocked(m); 1199 if (queue == PQ_FREE || queue == PQ_CACHE) { 1200 vm_page_spin_unlock(m); 1201 pagedaemon_wakeup(); 1202 } else { 1203 vm_page_spin_unlock(m); 1204 } 1205 } 1206 1207 /* 1208 * vm_page_list_find() 1209 * 1210 * Find a page on the specified queue with color optimization. 1211 * 1212 * The page coloring optimization attempts to locate a page that does 1213 * not overload other nearby pages in the object in the cpu's L1 or L2 1214 * caches. We need this optimization because cpu caches tend to be 1215 * physical caches, while object spaces tend to be virtual. 1216 * 1217 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock 1218 * and the algorithm is adjusted to localize allocations on a per-core basis. 1219 * This is done by 'twisting' the colors. 1220 * 1221 * The page is returned spinlocked and removed from its queue (it will 1222 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller 1223 * is responsible for dealing with the busy-page case (usually by 1224 * deactivating the page and looping). 1225 * 1226 * NOTE: This routine is carefully inlined. A non-inlined version 1227 * is available for outside callers but the only critical path is 1228 * from within this source file. 1229 * 1230 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE 1231 * represent stable storage, allowing us to order our locks vm_page 1232 * first, then queue. 1233 */ 1234 static __inline 1235 vm_page_t 1236 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1237 { 1238 vm_page_t m; 1239 1240 for (;;) { 1241 if (prefer_zero) 1242 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist); 1243 else 1244 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl); 1245 if (m == NULL) { 1246 m = _vm_page_list_find2(basequeue, index); 1247 return(m); 1248 } 1249 vm_page_and_queue_spin_lock(m); 1250 if (m->queue == basequeue + index) { 1251 _vm_page_rem_queue_spinlocked(m); 1252 /* vm_page_t spin held, no queue spin */ 1253 break; 1254 } 1255 vm_page_and_queue_spin_unlock(m); 1256 } 1257 return(m); 1258 } 1259 1260 static vm_page_t 1261 _vm_page_list_find2(int basequeue, int index) 1262 { 1263 int i; 1264 vm_page_t m = NULL; 1265 struct vpgqueues *pq; 1266 1267 pq = &vm_page_queues[basequeue]; 1268 1269 /* 1270 * Note that for the first loop, index+i and index-i wind up at the 1271 * same place. Even though this is not totally optimal, we've already 1272 * blown it by missing the cache case so we do not care. 1273 */ 1274 for (i = PQ_L2_SIZE / 2; i > 0; --i) { 1275 for (;;) { 1276 m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl); 1277 if (m) { 1278 _vm_page_and_queue_spin_lock(m); 1279 if (m->queue == 1280 basequeue + ((index + i) & PQ_L2_MASK)) { 1281 _vm_page_rem_queue_spinlocked(m); 1282 return(m); 1283 } 1284 _vm_page_and_queue_spin_unlock(m); 1285 continue; 1286 } 1287 m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl); 1288 if (m) { 1289 _vm_page_and_queue_spin_lock(m); 1290 if (m->queue == 1291 basequeue + ((index - i) & PQ_L2_MASK)) { 1292 _vm_page_rem_queue_spinlocked(m); 1293 return(m); 1294 } 1295 _vm_page_and_queue_spin_unlock(m); 1296 continue; 1297 } 1298 break; /* next i */ 1299 } 1300 } 1301 return(m); 1302 } 1303 1304 /* 1305 * Returns a vm_page candidate for allocation. The page is not busied so 1306 * it can move around. The caller must busy the page (and typically 1307 * deactivate it if it cannot be busied!) 1308 * 1309 * Returns a spinlocked vm_page that has been removed from its queue. 1310 */ 1311 vm_page_t 1312 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1313 { 1314 return(_vm_page_list_find(basequeue, index, prefer_zero)); 1315 } 1316 1317 /* 1318 * Find a page on the cache queue with color optimization, remove it 1319 * from the queue, and busy it. The returned page will not be spinlocked. 1320 * 1321 * A candidate failure will be deactivated. Candidates can fail due to 1322 * being busied by someone else, in which case they will be deactivated. 1323 * 1324 * This routine may not block. 1325 * 1326 */ 1327 static vm_page_t 1328 vm_page_select_cache(u_short pg_color) 1329 { 1330 vm_page_t m; 1331 1332 for (;;) { 1333 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE); 1334 if (m == NULL) 1335 break; 1336 /* 1337 * (m) has been removed from its queue and spinlocked 1338 */ 1339 if (vm_page_busy_try(m, TRUE)) { 1340 _vm_page_deactivate_locked(m, 0); 1341 vm_page_spin_unlock(m); 1342 } else { 1343 /* 1344 * We successfully busied the page 1345 */ 1346 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 && 1347 m->hold_count == 0 && 1348 m->wire_count == 0 && 1349 (m->dirty & m->valid) == 0) { 1350 vm_page_spin_unlock(m); 1351 pagedaemon_wakeup(); 1352 return(m); 1353 } 1354 1355 /* 1356 * The page cannot be recycled, deactivate it. 1357 */ 1358 _vm_page_deactivate_locked(m, 0); 1359 if (_vm_page_wakeup(m)) { 1360 vm_page_spin_unlock(m); 1361 wakeup(m); 1362 } else { 1363 vm_page_spin_unlock(m); 1364 } 1365 } 1366 } 1367 return (m); 1368 } 1369 1370 /* 1371 * Find a free or zero page, with specified preference. We attempt to 1372 * inline the nominal case and fall back to _vm_page_select_free() 1373 * otherwise. A busied page is removed from the queue and returned. 1374 * 1375 * This routine may not block. 1376 */ 1377 static __inline vm_page_t 1378 vm_page_select_free(u_short pg_color, boolean_t prefer_zero) 1379 { 1380 vm_page_t m; 1381 1382 for (;;) { 1383 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK, 1384 prefer_zero); 1385 if (m == NULL) 1386 break; 1387 if (vm_page_busy_try(m, TRUE)) { 1388 /* 1389 * Various mechanisms such as a pmap_collect can 1390 * result in a busy page on the free queue. We 1391 * have to move the page out of the way so we can 1392 * retry the allocation. If the other thread is not 1393 * allocating the page then m->valid will remain 0 and 1394 * the pageout daemon will free the page later on. 1395 * 1396 * Since we could not busy the page, however, we 1397 * cannot make assumptions as to whether the page 1398 * will be allocated by the other thread or not, 1399 * so all we can do is deactivate it to move it out 1400 * of the way. In particular, if the other thread 1401 * wires the page it may wind up on the inactive 1402 * queue and the pageout daemon will have to deal 1403 * with that case too. 1404 */ 1405 _vm_page_deactivate_locked(m, 0); 1406 vm_page_spin_unlock(m); 1407 } else { 1408 /* 1409 * Theoretically if we are able to busy the page 1410 * atomic with the queue removal (using the vm_page 1411 * lock) nobody else should be able to mess with the 1412 * page before us. 1413 */ 1414 KKASSERT((m->flags & (PG_UNMANAGED | 1415 PG_NEED_COMMIT)) == 0); 1416 KKASSERT(m->hold_count == 0); 1417 KKASSERT(m->wire_count == 0); 1418 vm_page_spin_unlock(m); 1419 pagedaemon_wakeup(); 1420 1421 /* return busied and removed page */ 1422 return(m); 1423 } 1424 } 1425 return(m); 1426 } 1427 1428 /* 1429 * This implements a per-cpu cache of free, zero'd, ready-to-go pages. 1430 * The idea is to populate this cache prior to acquiring any locks so 1431 * we don't wind up potentially zeroing VM pages (under heavy loads) while 1432 * holding potentialy contending locks. 1433 * 1434 * Note that we allocate the page uninserted into anything and use a pindex 1435 * of 0, the vm_page_alloc() will effectively add gd_cpuid so these 1436 * allocations should wind up being uncontended. However, we still want 1437 * to rove across PQ_L2_SIZE. 1438 */ 1439 void 1440 vm_page_pcpu_cache(void) 1441 { 1442 #if 0 1443 globaldata_t gd = mycpu; 1444 vm_page_t m; 1445 1446 if (gd->gd_vmpg_count < GD_MINVMPG) { 1447 crit_enter_gd(gd); 1448 while (gd->gd_vmpg_count < GD_MAXVMPG) { 1449 m = vm_page_alloc(NULL, ticks & ~ncpus2_mask, 1450 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL | 1451 VM_ALLOC_NULL_OK | VM_ALLOC_ZERO); 1452 if (gd->gd_vmpg_count < GD_MAXVMPG) { 1453 if ((m->flags & PG_ZERO) == 0) { 1454 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 1455 vm_page_flag_set(m, PG_ZERO); 1456 } 1457 gd->gd_vmpg_array[gd->gd_vmpg_count++] = m; 1458 } else { 1459 vm_page_free(m); 1460 } 1461 } 1462 crit_exit_gd(gd); 1463 } 1464 #endif 1465 } 1466 1467 /* 1468 * vm_page_alloc() 1469 * 1470 * Allocate and return a memory cell associated with this VM object/offset 1471 * pair. If object is NULL an unassociated page will be allocated. 1472 * 1473 * The returned page will be busied and removed from its queues. This 1474 * routine can block and may return NULL if a race occurs and the page 1475 * is found to already exist at the specified (object, pindex). 1476 * 1477 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 1478 * VM_ALLOC_QUICK like normal but cannot use cache 1479 * VM_ALLOC_SYSTEM greater free drain 1480 * VM_ALLOC_INTERRUPT allow free list to be completely drained 1481 * VM_ALLOC_ZERO advisory request for pre-zero'd page only 1482 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only 1483 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision 1484 * (see vm_page_grab()) 1485 * VM_ALLOC_USE_GD ok to use per-gd cache 1486 * 1487 * The object must be held if not NULL 1488 * This routine may not block 1489 * 1490 * Additional special handling is required when called from an interrupt 1491 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 1492 * in this case. 1493 */ 1494 vm_page_t 1495 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 1496 { 1497 globaldata_t gd = mycpu; 1498 vm_object_t obj; 1499 vm_page_t m; 1500 u_short pg_color; 1501 1502 #if 0 1503 /* 1504 * Special per-cpu free VM page cache. The pages are pre-busied 1505 * and pre-zerod for us. 1506 */ 1507 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) { 1508 crit_enter_gd(gd); 1509 if (gd->gd_vmpg_count) { 1510 m = gd->gd_vmpg_array[--gd->gd_vmpg_count]; 1511 crit_exit_gd(gd); 1512 goto done; 1513 } 1514 crit_exit_gd(gd); 1515 } 1516 #endif 1517 m = NULL; 1518 1519 /* 1520 * Cpu twist - cpu localization algorithm 1521 */ 1522 if (object) { 1523 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) + 1524 (object->pg_color & ~ncpus_fit_mask); 1525 } else { 1526 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask); 1527 } 1528 KKASSERT(page_req & 1529 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK| 1530 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 1531 1532 /* 1533 * Certain system threads (pageout daemon, buf_daemon's) are 1534 * allowed to eat deeper into the free page list. 1535 */ 1536 if (curthread->td_flags & TDF_SYSTHREAD) 1537 page_req |= VM_ALLOC_SYSTEM; 1538 1539 loop: 1540 if (vmstats.v_free_count > vmstats.v_free_reserved || 1541 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) || 1542 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 && 1543 vmstats.v_free_count > vmstats.v_interrupt_free_min) 1544 ) { 1545 /* 1546 * The free queue has sufficient free pages to take one out. 1547 */ 1548 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) 1549 m = vm_page_select_free(pg_color, TRUE); 1550 else 1551 m = vm_page_select_free(pg_color, FALSE); 1552 } else if (page_req & VM_ALLOC_NORMAL) { 1553 /* 1554 * Allocatable from the cache (non-interrupt only). On 1555 * success, we must free the page and try again, thus 1556 * ensuring that vmstats.v_*_free_min counters are replenished. 1557 */ 1558 #ifdef INVARIANTS 1559 if (curthread->td_preempted) { 1560 kprintf("vm_page_alloc(): warning, attempt to allocate" 1561 " cache page from preempting interrupt\n"); 1562 m = NULL; 1563 } else { 1564 m = vm_page_select_cache(pg_color); 1565 } 1566 #else 1567 m = vm_page_select_cache(pg_color); 1568 #endif 1569 /* 1570 * On success move the page into the free queue and loop. 1571 * 1572 * Only do this if we can safely acquire the vm_object lock, 1573 * because this is effectively a random page and the caller 1574 * might be holding the lock shared, we don't want to 1575 * deadlock. 1576 */ 1577 if (m != NULL) { 1578 KASSERT(m->dirty == 0, 1579 ("Found dirty cache page %p", m)); 1580 if ((obj = m->object) != NULL) { 1581 if (vm_object_hold_try(obj)) { 1582 vm_page_protect(m, VM_PROT_NONE); 1583 vm_page_free(m); 1584 /* m->object NULL here */ 1585 vm_object_drop(obj); 1586 } else { 1587 vm_page_deactivate(m); 1588 vm_page_wakeup(m); 1589 } 1590 } else { 1591 vm_page_protect(m, VM_PROT_NONE); 1592 vm_page_free(m); 1593 } 1594 goto loop; 1595 } 1596 1597 /* 1598 * On failure return NULL 1599 */ 1600 #if defined(DIAGNOSTIC) 1601 if (vmstats.v_cache_count > 0) 1602 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count); 1603 #endif 1604 vm_pageout_deficit++; 1605 pagedaemon_wakeup(); 1606 return (NULL); 1607 } else { 1608 /* 1609 * No pages available, wakeup the pageout daemon and give up. 1610 */ 1611 vm_pageout_deficit++; 1612 pagedaemon_wakeup(); 1613 return (NULL); 1614 } 1615 1616 /* 1617 * v_free_count can race so loop if we don't find the expected 1618 * page. 1619 */ 1620 if (m == NULL) 1621 goto loop; 1622 1623 /* 1624 * Good page found. The page has already been busied for us and 1625 * removed from its queues. 1626 */ 1627 KASSERT(m->dirty == 0, 1628 ("vm_page_alloc: free/cache page %p was dirty", m)); 1629 KKASSERT(m->queue == PQ_NONE); 1630 1631 #if 0 1632 done: 1633 #endif 1634 /* 1635 * Initialize the structure, inheriting some flags but clearing 1636 * all the rest. The page has already been busied for us. 1637 */ 1638 vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY)); 1639 KKASSERT(m->wire_count == 0); 1640 KKASSERT(m->busy == 0); 1641 m->act_count = 0; 1642 m->valid = 0; 1643 1644 /* 1645 * Caller must be holding the object lock (asserted by 1646 * vm_page_insert()). 1647 * 1648 * NOTE: Inserting a page here does not insert it into any pmaps 1649 * (which could cause us to block allocating memory). 1650 * 1651 * NOTE: If no object an unassociated page is allocated, m->pindex 1652 * can be used by the caller for any purpose. 1653 */ 1654 if (object) { 1655 if (vm_page_insert(m, object, pindex) == FALSE) { 1656 vm_page_free(m); 1657 if ((page_req & VM_ALLOC_NULL_OK) == 0) 1658 panic("PAGE RACE %p[%ld]/%p", 1659 object, (long)pindex, m); 1660 m = NULL; 1661 } 1662 } else { 1663 m->pindex = pindex; 1664 } 1665 1666 /* 1667 * Don't wakeup too often - wakeup the pageout daemon when 1668 * we would be nearly out of memory. 1669 */ 1670 pagedaemon_wakeup(); 1671 1672 /* 1673 * A PG_BUSY page is returned. 1674 */ 1675 return (m); 1676 } 1677 1678 /* 1679 * Attempt to allocate contiguous physical memory with the specified 1680 * requirements. 1681 */ 1682 vm_page_t 1683 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high, 1684 unsigned long alignment, unsigned long boundary, 1685 unsigned long size, vm_memattr_t memattr) 1686 { 1687 alist_blk_t blk; 1688 vm_page_t m; 1689 int i; 1690 1691 alignment >>= PAGE_SHIFT; 1692 if (alignment == 0) 1693 alignment = 1; 1694 boundary >>= PAGE_SHIFT; 1695 if (boundary == 0) 1696 boundary = 1; 1697 size = (size + PAGE_MASK) >> PAGE_SHIFT; 1698 1699 spin_lock(&vm_contig_spin); 1700 blk = alist_alloc(&vm_contig_alist, 0, size); 1701 if (blk == ALIST_BLOCK_NONE) { 1702 spin_unlock(&vm_contig_spin); 1703 if (bootverbose) { 1704 kprintf("vm_page_alloc_contig: %ldk nospace\n", 1705 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1706 } 1707 return(NULL); 1708 } 1709 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) { 1710 alist_free(&vm_contig_alist, blk, size); 1711 spin_unlock(&vm_contig_spin); 1712 if (bootverbose) { 1713 kprintf("vm_page_alloc_contig: %ldk high " 1714 "%016jx failed\n", 1715 (size + PAGE_MASK) * (PAGE_SIZE / 1024), 1716 (intmax_t)high); 1717 } 1718 return(NULL); 1719 } 1720 spin_unlock(&vm_contig_spin); 1721 if (vm_contig_verbose) { 1722 kprintf("vm_page_alloc_contig: %016jx/%ldk\n", 1723 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT, 1724 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1725 } 1726 1727 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 1728 if (memattr != VM_MEMATTR_DEFAULT) 1729 for (i = 0;i < size;i++) 1730 pmap_page_set_memattr(&m[i], memattr); 1731 return m; 1732 } 1733 1734 /* 1735 * Free contiguously allocated pages. The pages will be wired but not busy. 1736 * When freeing to the alist we leave them wired and not busy. 1737 */ 1738 void 1739 vm_page_free_contig(vm_page_t m, unsigned long size) 1740 { 1741 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1742 vm_pindex_t start = pa >> PAGE_SHIFT; 1743 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT; 1744 1745 if (vm_contig_verbose) { 1746 kprintf("vm_page_free_contig: %016jx/%ldk\n", 1747 (intmax_t)pa, size / 1024); 1748 } 1749 if (pa < vm_low_phys_reserved) { 1750 KKASSERT(pa + size <= vm_low_phys_reserved); 1751 spin_lock(&vm_contig_spin); 1752 alist_free(&vm_contig_alist, start, pages); 1753 spin_unlock(&vm_contig_spin); 1754 } else { 1755 while (pages) { 1756 vm_page_busy_wait(m, FALSE, "cpgfr"); 1757 vm_page_unwire(m, 0); 1758 vm_page_free(m); 1759 --pages; 1760 ++m; 1761 } 1762 1763 } 1764 } 1765 1766 1767 /* 1768 * Wait for sufficient free memory for nominal heavy memory use kernel 1769 * operations. 1770 * 1771 * WARNING! Be sure never to call this in any vm_pageout code path, which 1772 * will trivially deadlock the system. 1773 */ 1774 void 1775 vm_wait_nominal(void) 1776 { 1777 while (vm_page_count_min(0)) 1778 vm_wait(0); 1779 } 1780 1781 /* 1782 * Test if vm_wait_nominal() would block. 1783 */ 1784 int 1785 vm_test_nominal(void) 1786 { 1787 if (vm_page_count_min(0)) 1788 return(1); 1789 return(0); 1790 } 1791 1792 /* 1793 * Block until free pages are available for allocation, called in various 1794 * places before memory allocations. 1795 * 1796 * The caller may loop if vm_page_count_min() == FALSE so we cannot be 1797 * more generous then that. 1798 */ 1799 void 1800 vm_wait(int timo) 1801 { 1802 /* 1803 * never wait forever 1804 */ 1805 if (timo == 0) 1806 timo = hz; 1807 lwkt_gettoken(&vm_token); 1808 1809 if (curthread == pagethread) { 1810 /* 1811 * The pageout daemon itself needs pages, this is bad. 1812 */ 1813 if (vm_page_count_min(0)) { 1814 vm_pageout_pages_needed = 1; 1815 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 1816 } 1817 } else { 1818 /* 1819 * Wakeup the pageout daemon if necessary and wait. 1820 * 1821 * Do not wait indefinitely for the target to be reached, 1822 * as load might prevent it from being reached any time soon. 1823 * But wait a little to try to slow down page allocations 1824 * and to give more important threads (the pagedaemon) 1825 * allocation priority. 1826 */ 1827 if (vm_page_count_target()) { 1828 if (vm_pages_needed == 0) { 1829 vm_pages_needed = 1; 1830 wakeup(&vm_pages_needed); 1831 } 1832 ++vm_pages_waiting; /* SMP race ok */ 1833 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 1834 } 1835 } 1836 lwkt_reltoken(&vm_token); 1837 } 1838 1839 /* 1840 * Block until free pages are available for allocation 1841 * 1842 * Called only from vm_fault so that processes page faulting can be 1843 * easily tracked. 1844 */ 1845 void 1846 vm_wait_pfault(void) 1847 { 1848 /* 1849 * Wakeup the pageout daemon if necessary and wait. 1850 * 1851 * Do not wait indefinitely for the target to be reached, 1852 * as load might prevent it from being reached any time soon. 1853 * But wait a little to try to slow down page allocations 1854 * and to give more important threads (the pagedaemon) 1855 * allocation priority. 1856 */ 1857 if (vm_page_count_min(0)) { 1858 lwkt_gettoken(&vm_token); 1859 while (vm_page_count_severe()) { 1860 if (vm_page_count_target()) { 1861 if (vm_pages_needed == 0) { 1862 vm_pages_needed = 1; 1863 wakeup(&vm_pages_needed); 1864 } 1865 ++vm_pages_waiting; /* SMP race ok */ 1866 tsleep(&vmstats.v_free_count, 0, "pfault", hz); 1867 } 1868 } 1869 lwkt_reltoken(&vm_token); 1870 } 1871 } 1872 1873 /* 1874 * Put the specified page on the active list (if appropriate). Ensure 1875 * that act_count is at least ACT_INIT but do not otherwise mess with it. 1876 * 1877 * The caller should be holding the page busied ? XXX 1878 * This routine may not block. 1879 */ 1880 void 1881 vm_page_activate(vm_page_t m) 1882 { 1883 u_short oqueue; 1884 1885 vm_page_spin_lock(m); 1886 if (m->queue - m->pc != PQ_ACTIVE) { 1887 _vm_page_queue_spin_lock(m); 1888 oqueue = _vm_page_rem_queue_spinlocked(m); 1889 /* page is left spinlocked, queue is unlocked */ 1890 1891 if (oqueue == PQ_CACHE) 1892 mycpu->gd_cnt.v_reactivated++; 1893 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1894 if (m->act_count < ACT_INIT) 1895 m->act_count = ACT_INIT; 1896 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0); 1897 } 1898 _vm_page_and_queue_spin_unlock(m); 1899 if (oqueue == PQ_CACHE || oqueue == PQ_FREE) 1900 pagedaemon_wakeup(); 1901 } else { 1902 if (m->act_count < ACT_INIT) 1903 m->act_count = ACT_INIT; 1904 vm_page_spin_unlock(m); 1905 } 1906 } 1907 1908 /* 1909 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1910 * routine is called when a page has been added to the cache or free 1911 * queues. 1912 * 1913 * This routine may not block. 1914 */ 1915 static __inline void 1916 vm_page_free_wakeup(void) 1917 { 1918 /* 1919 * If the pageout daemon itself needs pages, then tell it that 1920 * there are some free. 1921 */ 1922 if (vm_pageout_pages_needed && 1923 vmstats.v_cache_count + vmstats.v_free_count >= 1924 vmstats.v_pageout_free_min 1925 ) { 1926 vm_pageout_pages_needed = 0; 1927 wakeup(&vm_pageout_pages_needed); 1928 } 1929 1930 /* 1931 * Wakeup processes that are waiting on memory. 1932 * 1933 * Generally speaking we want to wakeup stuck processes as soon as 1934 * possible. !vm_page_count_min(0) is the absolute minimum point 1935 * where we can do this. Wait a bit longer to reduce degenerate 1936 * re-blocking (vm_page_free_hysteresis). The target check is just 1937 * to make sure the min-check w/hysteresis does not exceed the 1938 * normal target. 1939 */ 1940 if (vm_pages_waiting) { 1941 if (!vm_page_count_min(vm_page_free_hysteresis) || 1942 !vm_page_count_target()) { 1943 vm_pages_waiting = 0; 1944 wakeup(&vmstats.v_free_count); 1945 ++mycpu->gd_cnt.v_ppwakeups; 1946 } 1947 #if 0 1948 if (!vm_page_count_target()) { 1949 /* 1950 * Plenty of pages are free, wakeup everyone. 1951 */ 1952 vm_pages_waiting = 0; 1953 wakeup(&vmstats.v_free_count); 1954 ++mycpu->gd_cnt.v_ppwakeups; 1955 } else if (!vm_page_count_min(0)) { 1956 /* 1957 * Some pages are free, wakeup someone. 1958 */ 1959 int wcount = vm_pages_waiting; 1960 if (wcount > 0) 1961 --wcount; 1962 vm_pages_waiting = wcount; 1963 wakeup_one(&vmstats.v_free_count); 1964 ++mycpu->gd_cnt.v_ppwakeups; 1965 } 1966 #endif 1967 } 1968 } 1969 1970 /* 1971 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates 1972 * it from its VM object. 1973 * 1974 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on 1975 * return (the page will have been freed). 1976 */ 1977 void 1978 vm_page_free_toq(vm_page_t m) 1979 { 1980 mycpu->gd_cnt.v_tfree++; 1981 KKASSERT((m->flags & PG_MAPPED) == 0); 1982 KKASSERT(m->flags & PG_BUSY); 1983 1984 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1985 kprintf("vm_page_free: pindex(%lu), busy(%d), " 1986 "PG_BUSY(%d), hold(%d)\n", 1987 (u_long)m->pindex, m->busy, 1988 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count); 1989 if ((m->queue - m->pc) == PQ_FREE) 1990 panic("vm_page_free: freeing free page"); 1991 else 1992 panic("vm_page_free: freeing busy page"); 1993 } 1994 1995 /* 1996 * Remove from object, spinlock the page and its queues and 1997 * remove from any queue. No queue spinlock will be held 1998 * after this section (because the page was removed from any 1999 * queue). 2000 */ 2001 vm_page_remove(m); 2002 vm_page_and_queue_spin_lock(m); 2003 _vm_page_rem_queue_spinlocked(m); 2004 2005 /* 2006 * No further management of fictitious pages occurs beyond object 2007 * and queue removal. 2008 */ 2009 if ((m->flags & PG_FICTITIOUS) != 0) { 2010 vm_page_spin_unlock(m); 2011 vm_page_wakeup(m); 2012 return; 2013 } 2014 2015 m->valid = 0; 2016 vm_page_undirty(m); 2017 2018 if (m->wire_count != 0) { 2019 if (m->wire_count > 1) { 2020 panic( 2021 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 2022 m->wire_count, (long)m->pindex); 2023 } 2024 panic("vm_page_free: freeing wired page"); 2025 } 2026 2027 /* 2028 * Clear the UNMANAGED flag when freeing an unmanaged page. 2029 * Clear the NEED_COMMIT flag 2030 */ 2031 if (m->flags & PG_UNMANAGED) 2032 vm_page_flag_clear(m, PG_UNMANAGED); 2033 if (m->flags & PG_NEED_COMMIT) 2034 vm_page_flag_clear(m, PG_NEED_COMMIT); 2035 2036 if (m->hold_count != 0) { 2037 vm_page_flag_clear(m, PG_ZERO); 2038 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 2039 } else { 2040 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 2041 } 2042 2043 /* 2044 * This sequence allows us to clear PG_BUSY while still holding 2045 * its spin lock, which reduces contention vs allocators. We 2046 * must not leave the queue locked or _vm_page_wakeup() may 2047 * deadlock. 2048 */ 2049 _vm_page_queue_spin_unlock(m); 2050 if (_vm_page_wakeup(m)) { 2051 vm_page_spin_unlock(m); 2052 wakeup(m); 2053 } else { 2054 vm_page_spin_unlock(m); 2055 } 2056 vm_page_free_wakeup(); 2057 } 2058 2059 /* 2060 * vm_page_free_fromq_fast() 2061 * 2062 * Remove a non-zero page from one of the free queues; the page is removed for 2063 * zeroing, so do not issue a wakeup. 2064 */ 2065 vm_page_t 2066 vm_page_free_fromq_fast(void) 2067 { 2068 static int qi; 2069 vm_page_t m; 2070 int i; 2071 2072 for (i = 0; i < PQ_L2_SIZE; ++i) { 2073 m = vm_page_list_find(PQ_FREE, qi, FALSE); 2074 /* page is returned spinlocked and removed from its queue */ 2075 if (m) { 2076 if (vm_page_busy_try(m, TRUE)) { 2077 /* 2078 * We were unable to busy the page, deactivate 2079 * it and loop. 2080 */ 2081 _vm_page_deactivate_locked(m, 0); 2082 vm_page_spin_unlock(m); 2083 } else if (m->flags & PG_ZERO) { 2084 /* 2085 * The page is PG_ZERO, requeue it and loop 2086 */ 2087 _vm_page_add_queue_spinlocked(m, 2088 PQ_FREE + m->pc, 2089 0); 2090 vm_page_queue_spin_unlock(m); 2091 if (_vm_page_wakeup(m)) { 2092 vm_page_spin_unlock(m); 2093 wakeup(m); 2094 } else { 2095 vm_page_spin_unlock(m); 2096 } 2097 } else { 2098 /* 2099 * The page is not PG_ZERO'd so return it. 2100 */ 2101 vm_page_spin_unlock(m); 2102 KKASSERT((m->flags & (PG_UNMANAGED | 2103 PG_NEED_COMMIT)) == 0); 2104 KKASSERT(m->hold_count == 0); 2105 KKASSERT(m->wire_count == 0); 2106 break; 2107 } 2108 m = NULL; 2109 } 2110 qi = (qi + PQ_PRIME2) & PQ_L2_MASK; 2111 } 2112 return (m); 2113 } 2114 2115 /* 2116 * vm_page_unmanage() 2117 * 2118 * Prevent PV management from being done on the page. The page is 2119 * removed from the paging queues as if it were wired, and as a 2120 * consequence of no longer being managed the pageout daemon will not 2121 * touch it (since there is no way to locate the pte mappings for the 2122 * page). madvise() calls that mess with the pmap will also no longer 2123 * operate on the page. 2124 * 2125 * Beyond that the page is still reasonably 'normal'. Freeing the page 2126 * will clear the flag. 2127 * 2128 * This routine is used by OBJT_PHYS objects - objects using unswappable 2129 * physical memory as backing store rather then swap-backed memory and 2130 * will eventually be extended to support 4MB unmanaged physical 2131 * mappings. 2132 * 2133 * Caller must be holding the page busy. 2134 */ 2135 void 2136 vm_page_unmanage(vm_page_t m) 2137 { 2138 KKASSERT(m->flags & PG_BUSY); 2139 if ((m->flags & PG_UNMANAGED) == 0) { 2140 if (m->wire_count == 0) 2141 vm_page_unqueue(m); 2142 } 2143 vm_page_flag_set(m, PG_UNMANAGED); 2144 } 2145 2146 /* 2147 * Mark this page as wired down by yet another map, removing it from 2148 * paging queues as necessary. 2149 * 2150 * Caller must be holding the page busy. 2151 */ 2152 void 2153 vm_page_wire(vm_page_t m) 2154 { 2155 /* 2156 * Only bump the wire statistics if the page is not already wired, 2157 * and only unqueue the page if it is on some queue (if it is unmanaged 2158 * it is already off the queues). Don't do anything with fictitious 2159 * pages because they are always wired. 2160 */ 2161 KKASSERT(m->flags & PG_BUSY); 2162 if ((m->flags & PG_FICTITIOUS) == 0) { 2163 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) { 2164 if ((m->flags & PG_UNMANAGED) == 0) 2165 vm_page_unqueue(m); 2166 atomic_add_int(&vmstats.v_wire_count, 1); 2167 } 2168 KASSERT(m->wire_count != 0, 2169 ("vm_page_wire: wire_count overflow m=%p", m)); 2170 } 2171 } 2172 2173 /* 2174 * Release one wiring of this page, potentially enabling it to be paged again. 2175 * 2176 * Many pages placed on the inactive queue should actually go 2177 * into the cache, but it is difficult to figure out which. What 2178 * we do instead, if the inactive target is well met, is to put 2179 * clean pages at the head of the inactive queue instead of the tail. 2180 * This will cause them to be moved to the cache more quickly and 2181 * if not actively re-referenced, freed more quickly. If we just 2182 * stick these pages at the end of the inactive queue, heavy filesystem 2183 * meta-data accesses can cause an unnecessary paging load on memory bound 2184 * processes. This optimization causes one-time-use metadata to be 2185 * reused more quickly. 2186 * 2187 * Pages marked PG_NEED_COMMIT are always activated and never placed on 2188 * the inactive queue. This helps the pageout daemon determine memory 2189 * pressure and act on out-of-memory situations more quickly. 2190 * 2191 * BUT, if we are in a low-memory situation we have no choice but to 2192 * put clean pages on the cache queue. 2193 * 2194 * A number of routines use vm_page_unwire() to guarantee that the page 2195 * will go into either the inactive or active queues, and will NEVER 2196 * be placed in the cache - for example, just after dirtying a page. 2197 * dirty pages in the cache are not allowed. 2198 * 2199 * The page queues must be locked. 2200 * This routine may not block. 2201 */ 2202 void 2203 vm_page_unwire(vm_page_t m, int activate) 2204 { 2205 KKASSERT(m->flags & PG_BUSY); 2206 if (m->flags & PG_FICTITIOUS) { 2207 /* do nothing */ 2208 } else if (m->wire_count <= 0) { 2209 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 2210 } else { 2211 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) { 2212 atomic_add_int(&vmstats.v_wire_count, -1); 2213 if (m->flags & PG_UNMANAGED) { 2214 ; 2215 } else if (activate || (m->flags & PG_NEED_COMMIT)) { 2216 vm_page_spin_lock(m); 2217 _vm_page_add_queue_spinlocked(m, 2218 PQ_ACTIVE + m->pc, 0); 2219 _vm_page_and_queue_spin_unlock(m); 2220 } else { 2221 vm_page_spin_lock(m); 2222 vm_page_flag_clear(m, PG_WINATCFLS); 2223 _vm_page_add_queue_spinlocked(m, 2224 PQ_INACTIVE + m->pc, 0); 2225 ++vm_swapcache_inactive_heuristic; 2226 _vm_page_and_queue_spin_unlock(m); 2227 } 2228 } 2229 } 2230 } 2231 2232 /* 2233 * Move the specified page to the inactive queue. If the page has 2234 * any associated swap, the swap is deallocated. 2235 * 2236 * Normally athead is 0 resulting in LRU operation. athead is set 2237 * to 1 if we want this page to be 'as if it were placed in the cache', 2238 * except without unmapping it from the process address space. 2239 * 2240 * vm_page's spinlock must be held on entry and will remain held on return. 2241 * This routine may not block. 2242 */ 2243 static void 2244 _vm_page_deactivate_locked(vm_page_t m, int athead) 2245 { 2246 u_short oqueue; 2247 2248 /* 2249 * Ignore if already inactive. 2250 */ 2251 if (m->queue - m->pc == PQ_INACTIVE) 2252 return; 2253 _vm_page_queue_spin_lock(m); 2254 oqueue = _vm_page_rem_queue_spinlocked(m); 2255 2256 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 2257 if (oqueue == PQ_CACHE) 2258 mycpu->gd_cnt.v_reactivated++; 2259 vm_page_flag_clear(m, PG_WINATCFLS); 2260 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead); 2261 if (athead == 0) 2262 ++vm_swapcache_inactive_heuristic; 2263 } 2264 _vm_page_queue_spin_unlock(m); 2265 /* leaves vm_page spinlocked */ 2266 } 2267 2268 /* 2269 * Attempt to deactivate a page. 2270 * 2271 * No requirements. 2272 */ 2273 void 2274 vm_page_deactivate(vm_page_t m) 2275 { 2276 vm_page_spin_lock(m); 2277 _vm_page_deactivate_locked(m, 0); 2278 vm_page_spin_unlock(m); 2279 } 2280 2281 void 2282 vm_page_deactivate_locked(vm_page_t m) 2283 { 2284 _vm_page_deactivate_locked(m, 0); 2285 } 2286 2287 /* 2288 * Attempt to move a page to PQ_CACHE. 2289 * 2290 * Returns 0 on failure, 1 on success 2291 * 2292 * The page should NOT be busied by the caller. This function will validate 2293 * whether the page can be safely moved to the cache. 2294 */ 2295 int 2296 vm_page_try_to_cache(vm_page_t m) 2297 { 2298 vm_page_spin_lock(m); 2299 if (vm_page_busy_try(m, TRUE)) { 2300 vm_page_spin_unlock(m); 2301 return(0); 2302 } 2303 if (m->dirty || m->hold_count || m->wire_count || 2304 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) { 2305 if (_vm_page_wakeup(m)) { 2306 vm_page_spin_unlock(m); 2307 wakeup(m); 2308 } else { 2309 vm_page_spin_unlock(m); 2310 } 2311 return(0); 2312 } 2313 vm_page_spin_unlock(m); 2314 2315 /* 2316 * Page busied by us and no longer spinlocked. Dirty pages cannot 2317 * be moved to the cache. 2318 */ 2319 vm_page_test_dirty(m); 2320 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2321 vm_page_wakeup(m); 2322 return(0); 2323 } 2324 vm_page_cache(m); 2325 return(1); 2326 } 2327 2328 /* 2329 * Attempt to free the page. If we cannot free it, we do nothing. 2330 * 1 is returned on success, 0 on failure. 2331 * 2332 * No requirements. 2333 */ 2334 int 2335 vm_page_try_to_free(vm_page_t m) 2336 { 2337 vm_page_spin_lock(m); 2338 if (vm_page_busy_try(m, TRUE)) { 2339 vm_page_spin_unlock(m); 2340 return(0); 2341 } 2342 2343 /* 2344 * The page can be in any state, including already being on the free 2345 * queue. Check to see if it really can be freed. 2346 */ 2347 if (m->dirty || /* can't free if it is dirty */ 2348 m->hold_count || /* or held (XXX may be wrong) */ 2349 m->wire_count || /* or wired */ 2350 (m->flags & (PG_UNMANAGED | /* or unmanaged */ 2351 PG_NEED_COMMIT)) || /* or needs a commit */ 2352 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */ 2353 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */ 2354 if (_vm_page_wakeup(m)) { 2355 vm_page_spin_unlock(m); 2356 wakeup(m); 2357 } else { 2358 vm_page_spin_unlock(m); 2359 } 2360 return(0); 2361 } 2362 vm_page_spin_unlock(m); 2363 2364 /* 2365 * We can probably free the page. 2366 * 2367 * Page busied by us and no longer spinlocked. Dirty pages will 2368 * not be freed by this function. We have to re-test the 2369 * dirty bit after cleaning out the pmaps. 2370 */ 2371 vm_page_test_dirty(m); 2372 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2373 vm_page_wakeup(m); 2374 return(0); 2375 } 2376 vm_page_protect(m, VM_PROT_NONE); 2377 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2378 vm_page_wakeup(m); 2379 return(0); 2380 } 2381 vm_page_free(m); 2382 return(1); 2383 } 2384 2385 /* 2386 * vm_page_cache 2387 * 2388 * Put the specified page onto the page cache queue (if appropriate). 2389 * 2390 * The page must be busy, and this routine will release the busy and 2391 * possibly even free the page. 2392 */ 2393 void 2394 vm_page_cache(vm_page_t m) 2395 { 2396 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 2397 m->busy || m->wire_count || m->hold_count) { 2398 kprintf("vm_page_cache: attempting to cache busy/held page\n"); 2399 vm_page_wakeup(m); 2400 return; 2401 } 2402 2403 /* 2404 * Already in the cache (and thus not mapped) 2405 */ 2406 if ((m->queue - m->pc) == PQ_CACHE) { 2407 KKASSERT((m->flags & PG_MAPPED) == 0); 2408 vm_page_wakeup(m); 2409 return; 2410 } 2411 2412 /* 2413 * Caller is required to test m->dirty, but note that the act of 2414 * removing the page from its maps can cause it to become dirty 2415 * on an SMP system due to another cpu running in usermode. 2416 */ 2417 if (m->dirty) { 2418 panic("vm_page_cache: caching a dirty page, pindex: %ld", 2419 (long)m->pindex); 2420 } 2421 2422 /* 2423 * Remove all pmaps and indicate that the page is not 2424 * writeable or mapped. Our vm_page_protect() call may 2425 * have blocked (especially w/ VM_PROT_NONE), so recheck 2426 * everything. 2427 */ 2428 vm_page_protect(m, VM_PROT_NONE); 2429 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) || 2430 m->busy || m->wire_count || m->hold_count) { 2431 vm_page_wakeup(m); 2432 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2433 vm_page_deactivate(m); 2434 vm_page_wakeup(m); 2435 } else { 2436 _vm_page_and_queue_spin_lock(m); 2437 _vm_page_rem_queue_spinlocked(m); 2438 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0); 2439 _vm_page_queue_spin_unlock(m); 2440 if (_vm_page_wakeup(m)) { 2441 vm_page_spin_unlock(m); 2442 wakeup(m); 2443 } else { 2444 vm_page_spin_unlock(m); 2445 } 2446 vm_page_free_wakeup(); 2447 } 2448 } 2449 2450 /* 2451 * vm_page_dontneed() 2452 * 2453 * Cache, deactivate, or do nothing as appropriate. This routine 2454 * is typically used by madvise() MADV_DONTNEED. 2455 * 2456 * Generally speaking we want to move the page into the cache so 2457 * it gets reused quickly. However, this can result in a silly syndrome 2458 * due to the page recycling too quickly. Small objects will not be 2459 * fully cached. On the otherhand, if we move the page to the inactive 2460 * queue we wind up with a problem whereby very large objects 2461 * unnecessarily blow away our inactive and cache queues. 2462 * 2463 * The solution is to move the pages based on a fixed weighting. We 2464 * either leave them alone, deactivate them, or move them to the cache, 2465 * where moving them to the cache has the highest weighting. 2466 * By forcing some pages into other queues we eventually force the 2467 * system to balance the queues, potentially recovering other unrelated 2468 * space from active. The idea is to not force this to happen too 2469 * often. 2470 * 2471 * The page must be busied. 2472 */ 2473 void 2474 vm_page_dontneed(vm_page_t m) 2475 { 2476 static int dnweight; 2477 int dnw; 2478 int head; 2479 2480 dnw = ++dnweight; 2481 2482 /* 2483 * occassionally leave the page alone 2484 */ 2485 if ((dnw & 0x01F0) == 0 || 2486 m->queue - m->pc == PQ_INACTIVE || 2487 m->queue - m->pc == PQ_CACHE 2488 ) { 2489 if (m->act_count >= ACT_INIT) 2490 --m->act_count; 2491 return; 2492 } 2493 2494 /* 2495 * If vm_page_dontneed() is inactivating a page, it must clear 2496 * the referenced flag; otherwise the pagedaemon will see references 2497 * on the page in the inactive queue and reactivate it. Until the 2498 * page can move to the cache queue, madvise's job is not done. 2499 */ 2500 vm_page_flag_clear(m, PG_REFERENCED); 2501 pmap_clear_reference(m); 2502 2503 if (m->dirty == 0) 2504 vm_page_test_dirty(m); 2505 2506 if (m->dirty || (dnw & 0x0070) == 0) { 2507 /* 2508 * Deactivate the page 3 times out of 32. 2509 */ 2510 head = 0; 2511 } else { 2512 /* 2513 * Cache the page 28 times out of every 32. Note that 2514 * the page is deactivated instead of cached, but placed 2515 * at the head of the queue instead of the tail. 2516 */ 2517 head = 1; 2518 } 2519 vm_page_spin_lock(m); 2520 _vm_page_deactivate_locked(m, head); 2521 vm_page_spin_unlock(m); 2522 } 2523 2524 /* 2525 * These routines manipulate the 'soft busy' count for a page. A soft busy 2526 * is almost like PG_BUSY except that it allows certain compatible operations 2527 * to occur on the page while it is busy. For example, a page undergoing a 2528 * write can still be mapped read-only. 2529 * 2530 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only 2531 * adjusted while the vm_page is PG_BUSY so the flash will occur when the 2532 * busy bit is cleared. 2533 */ 2534 void 2535 vm_page_io_start(vm_page_t m) 2536 { 2537 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!")); 2538 atomic_add_char(&m->busy, 1); 2539 vm_page_flag_set(m, PG_SBUSY); 2540 } 2541 2542 void 2543 vm_page_io_finish(vm_page_t m) 2544 { 2545 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!")); 2546 atomic_subtract_char(&m->busy, 1); 2547 if (m->busy == 0) 2548 vm_page_flag_clear(m, PG_SBUSY); 2549 } 2550 2551 /* 2552 * Indicate that a clean VM page requires a filesystem commit and cannot 2553 * be reused. Used by tmpfs. 2554 */ 2555 void 2556 vm_page_need_commit(vm_page_t m) 2557 { 2558 vm_page_flag_set(m, PG_NEED_COMMIT); 2559 vm_object_set_writeable_dirty(m->object); 2560 } 2561 2562 void 2563 vm_page_clear_commit(vm_page_t m) 2564 { 2565 vm_page_flag_clear(m, PG_NEED_COMMIT); 2566 } 2567 2568 /* 2569 * Grab a page, blocking if it is busy and allocating a page if necessary. 2570 * A busy page is returned or NULL. The page may or may not be valid and 2571 * might not be on a queue (the caller is responsible for the disposition of 2572 * the page). 2573 * 2574 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the 2575 * page will be zero'd and marked valid. 2576 * 2577 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked 2578 * valid even if it already exists. 2579 * 2580 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also 2581 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified. 2582 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified. 2583 * 2584 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 2585 * always returned if we had blocked. 2586 * 2587 * This routine may not be called from an interrupt. 2588 * 2589 * PG_ZERO is *ALWAYS* cleared by this routine. 2590 * 2591 * No other requirements. 2592 */ 2593 vm_page_t 2594 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2595 { 2596 vm_page_t m; 2597 int error; 2598 2599 KKASSERT(allocflags & 2600 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 2601 vm_object_hold(object); 2602 for (;;) { 2603 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 2604 if (error) { 2605 vm_page_sleep_busy(m, TRUE, "pgrbwt"); 2606 if ((allocflags & VM_ALLOC_RETRY) == 0) { 2607 m = NULL; 2608 break; 2609 } 2610 /* retry */ 2611 } else if (m == NULL) { 2612 if (allocflags & VM_ALLOC_RETRY) 2613 allocflags |= VM_ALLOC_NULL_OK; 2614 m = vm_page_alloc(object, pindex, 2615 allocflags & ~VM_ALLOC_RETRY); 2616 if (m) 2617 break; 2618 vm_wait(0); 2619 if ((allocflags & VM_ALLOC_RETRY) == 0) 2620 goto failed; 2621 } else { 2622 /* m found */ 2623 break; 2624 } 2625 } 2626 2627 /* 2628 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid. 2629 * 2630 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set 2631 * valid even if already valid. 2632 */ 2633 if (m->valid == 0) { 2634 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) { 2635 if ((m->flags & PG_ZERO) == 0) 2636 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2637 m->valid = VM_PAGE_BITS_ALL; 2638 } 2639 } else if (allocflags & VM_ALLOC_FORCE_ZERO) { 2640 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2641 m->valid = VM_PAGE_BITS_ALL; 2642 } 2643 vm_page_flag_clear(m, PG_ZERO); 2644 failed: 2645 vm_object_drop(object); 2646 return(m); 2647 } 2648 2649 /* 2650 * Mapping function for valid bits or for dirty bits in 2651 * a page. May not block. 2652 * 2653 * Inputs are required to range within a page. 2654 * 2655 * No requirements. 2656 * Non blocking. 2657 */ 2658 int 2659 vm_page_bits(int base, int size) 2660 { 2661 int first_bit; 2662 int last_bit; 2663 2664 KASSERT( 2665 base + size <= PAGE_SIZE, 2666 ("vm_page_bits: illegal base/size %d/%d", base, size) 2667 ); 2668 2669 if (size == 0) /* handle degenerate case */ 2670 return(0); 2671 2672 first_bit = base >> DEV_BSHIFT; 2673 last_bit = (base + size - 1) >> DEV_BSHIFT; 2674 2675 return ((2 << last_bit) - (1 << first_bit)); 2676 } 2677 2678 /* 2679 * Sets portions of a page valid and clean. The arguments are expected 2680 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2681 * of any partial chunks touched by the range. The invalid portion of 2682 * such chunks will be zero'd. 2683 * 2684 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically 2685 * align base to DEV_BSIZE so as not to mark clean a partially 2686 * truncated device block. Otherwise the dirty page status might be 2687 * lost. 2688 * 2689 * This routine may not block. 2690 * 2691 * (base + size) must be less then or equal to PAGE_SIZE. 2692 */ 2693 static void 2694 _vm_page_zero_valid(vm_page_t m, int base, int size) 2695 { 2696 int frag; 2697 int endoff; 2698 2699 if (size == 0) /* handle degenerate case */ 2700 return; 2701 2702 /* 2703 * If the base is not DEV_BSIZE aligned and the valid 2704 * bit is clear, we have to zero out a portion of the 2705 * first block. 2706 */ 2707 2708 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2709 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 2710 ) { 2711 pmap_zero_page_area( 2712 VM_PAGE_TO_PHYS(m), 2713 frag, 2714 base - frag 2715 ); 2716 } 2717 2718 /* 2719 * If the ending offset is not DEV_BSIZE aligned and the 2720 * valid bit is clear, we have to zero out a portion of 2721 * the last block. 2722 */ 2723 2724 endoff = base + size; 2725 2726 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2727 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 2728 ) { 2729 pmap_zero_page_area( 2730 VM_PAGE_TO_PHYS(m), 2731 endoff, 2732 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 2733 ); 2734 } 2735 } 2736 2737 /* 2738 * Set valid, clear dirty bits. If validating the entire 2739 * page we can safely clear the pmap modify bit. We also 2740 * use this opportunity to clear the PG_NOSYNC flag. If a process 2741 * takes a write fault on a MAP_NOSYNC memory area the flag will 2742 * be set again. 2743 * 2744 * We set valid bits inclusive of any overlap, but we can only 2745 * clear dirty bits for DEV_BSIZE chunks that are fully within 2746 * the range. 2747 * 2748 * Page must be busied? 2749 * No other requirements. 2750 */ 2751 void 2752 vm_page_set_valid(vm_page_t m, int base, int size) 2753 { 2754 _vm_page_zero_valid(m, base, size); 2755 m->valid |= vm_page_bits(base, size); 2756 } 2757 2758 2759 /* 2760 * Set valid bits and clear dirty bits. 2761 * 2762 * NOTE: This function does not clear the pmap modified bit. 2763 * Also note that e.g. NFS may use a byte-granular base 2764 * and size. 2765 * 2766 * WARNING: Page must be busied? But vfs_clean_one_page() will call 2767 * this without necessarily busying the page (via bdwrite()). 2768 * So for now vm_token must also be held. 2769 * 2770 * No other requirements. 2771 */ 2772 void 2773 vm_page_set_validclean(vm_page_t m, int base, int size) 2774 { 2775 int pagebits; 2776 2777 _vm_page_zero_valid(m, base, size); 2778 pagebits = vm_page_bits(base, size); 2779 m->valid |= pagebits; 2780 m->dirty &= ~pagebits; 2781 if (base == 0 && size == PAGE_SIZE) { 2782 /*pmap_clear_modify(m);*/ 2783 vm_page_flag_clear(m, PG_NOSYNC); 2784 } 2785 } 2786 2787 /* 2788 * Set valid & dirty. Used by buwrite() 2789 * 2790 * WARNING: Page must be busied? But vfs_dirty_one_page() will 2791 * call this function in buwrite() so for now vm_token must 2792 * be held. 2793 * 2794 * No other requirements. 2795 */ 2796 void 2797 vm_page_set_validdirty(vm_page_t m, int base, int size) 2798 { 2799 int pagebits; 2800 2801 pagebits = vm_page_bits(base, size); 2802 m->valid |= pagebits; 2803 m->dirty |= pagebits; 2804 if (m->object) 2805 vm_object_set_writeable_dirty(m->object); 2806 } 2807 2808 /* 2809 * Clear dirty bits. 2810 * 2811 * NOTE: This function does not clear the pmap modified bit. 2812 * Also note that e.g. NFS may use a byte-granular base 2813 * and size. 2814 * 2815 * Page must be busied? 2816 * No other requirements. 2817 */ 2818 void 2819 vm_page_clear_dirty(vm_page_t m, int base, int size) 2820 { 2821 m->dirty &= ~vm_page_bits(base, size); 2822 if (base == 0 && size == PAGE_SIZE) { 2823 /*pmap_clear_modify(m);*/ 2824 vm_page_flag_clear(m, PG_NOSYNC); 2825 } 2826 } 2827 2828 /* 2829 * Make the page all-dirty. 2830 * 2831 * Also make sure the related object and vnode reflect the fact that the 2832 * object may now contain a dirty page. 2833 * 2834 * Page must be busied? 2835 * No other requirements. 2836 */ 2837 void 2838 vm_page_dirty(vm_page_t m) 2839 { 2840 #ifdef INVARIANTS 2841 int pqtype = m->queue - m->pc; 2842 #endif 2843 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 2844 ("vm_page_dirty: page in free/cache queue!")); 2845 if (m->dirty != VM_PAGE_BITS_ALL) { 2846 m->dirty = VM_PAGE_BITS_ALL; 2847 if (m->object) 2848 vm_object_set_writeable_dirty(m->object); 2849 } 2850 } 2851 2852 /* 2853 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2854 * valid and dirty bits for the effected areas are cleared. 2855 * 2856 * Page must be busied? 2857 * Does not block. 2858 * No other requirements. 2859 */ 2860 void 2861 vm_page_set_invalid(vm_page_t m, int base, int size) 2862 { 2863 int bits; 2864 2865 bits = vm_page_bits(base, size); 2866 m->valid &= ~bits; 2867 m->dirty &= ~bits; 2868 m->object->generation++; 2869 } 2870 2871 /* 2872 * The kernel assumes that the invalid portions of a page contain 2873 * garbage, but such pages can be mapped into memory by user code. 2874 * When this occurs, we must zero out the non-valid portions of the 2875 * page so user code sees what it expects. 2876 * 2877 * Pages are most often semi-valid when the end of a file is mapped 2878 * into memory and the file's size is not page aligned. 2879 * 2880 * Page must be busied? 2881 * No other requirements. 2882 */ 2883 void 2884 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2885 { 2886 int b; 2887 int i; 2888 2889 /* 2890 * Scan the valid bits looking for invalid sections that 2891 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2892 * valid bit may be set ) have already been zerod by 2893 * vm_page_set_validclean(). 2894 */ 2895 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2896 if (i == (PAGE_SIZE / DEV_BSIZE) || 2897 (m->valid & (1 << i)) 2898 ) { 2899 if (i > b) { 2900 pmap_zero_page_area( 2901 VM_PAGE_TO_PHYS(m), 2902 b << DEV_BSHIFT, 2903 (i - b) << DEV_BSHIFT 2904 ); 2905 } 2906 b = i + 1; 2907 } 2908 } 2909 2910 /* 2911 * setvalid is TRUE when we can safely set the zero'd areas 2912 * as being valid. We can do this if there are no cache consistency 2913 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2914 */ 2915 if (setvalid) 2916 m->valid = VM_PAGE_BITS_ALL; 2917 } 2918 2919 /* 2920 * Is a (partial) page valid? Note that the case where size == 0 2921 * will return FALSE in the degenerate case where the page is entirely 2922 * invalid, and TRUE otherwise. 2923 * 2924 * Does not block. 2925 * No other requirements. 2926 */ 2927 int 2928 vm_page_is_valid(vm_page_t m, int base, int size) 2929 { 2930 int bits = vm_page_bits(base, size); 2931 2932 if (m->valid && ((m->valid & bits) == bits)) 2933 return 1; 2934 else 2935 return 0; 2936 } 2937 2938 /* 2939 * update dirty bits from pmap/mmu. May not block. 2940 * 2941 * Caller must hold the page busy 2942 */ 2943 void 2944 vm_page_test_dirty(vm_page_t m) 2945 { 2946 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 2947 vm_page_dirty(m); 2948 } 2949 } 2950 2951 /* 2952 * Register an action, associating it with its vm_page 2953 */ 2954 void 2955 vm_page_register_action(vm_page_action_t action, vm_page_event_t event) 2956 { 2957 struct vm_page_action_list *list; 2958 int hv; 2959 2960 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2961 list = &action_list[hv]; 2962 2963 lwkt_gettoken(&vm_token); 2964 vm_page_flag_set(action->m, PG_ACTIONLIST); 2965 action->event = event; 2966 LIST_INSERT_HEAD(list, action, entry); 2967 lwkt_reltoken(&vm_token); 2968 } 2969 2970 /* 2971 * Unregister an action, disassociating it from its related vm_page 2972 */ 2973 void 2974 vm_page_unregister_action(vm_page_action_t action) 2975 { 2976 struct vm_page_action_list *list; 2977 int hv; 2978 2979 lwkt_gettoken(&vm_token); 2980 if (action->event != VMEVENT_NONE) { 2981 action->event = VMEVENT_NONE; 2982 LIST_REMOVE(action, entry); 2983 2984 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2985 list = &action_list[hv]; 2986 if (LIST_EMPTY(list)) 2987 vm_page_flag_clear(action->m, PG_ACTIONLIST); 2988 } 2989 lwkt_reltoken(&vm_token); 2990 } 2991 2992 /* 2993 * Issue an event on a VM page. Corresponding action structures are 2994 * removed from the page's list and called. 2995 * 2996 * If the vm_page has no more pending action events we clear its 2997 * PG_ACTIONLIST flag. 2998 */ 2999 void 3000 vm_page_event_internal(vm_page_t m, vm_page_event_t event) 3001 { 3002 struct vm_page_action_list *list; 3003 struct vm_page_action *scan; 3004 struct vm_page_action *next; 3005 int hv; 3006 int all; 3007 3008 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK; 3009 list = &action_list[hv]; 3010 all = 1; 3011 3012 lwkt_gettoken(&vm_token); 3013 LIST_FOREACH_MUTABLE(scan, list, entry, next) { 3014 if (scan->m == m) { 3015 if (scan->event == event) { 3016 scan->event = VMEVENT_NONE; 3017 LIST_REMOVE(scan, entry); 3018 scan->func(m, scan); 3019 /* XXX */ 3020 } else { 3021 all = 0; 3022 } 3023 } 3024 } 3025 if (all) 3026 vm_page_flag_clear(m, PG_ACTIONLIST); 3027 lwkt_reltoken(&vm_token); 3028 } 3029 3030 #include "opt_ddb.h" 3031 #ifdef DDB 3032 #include <sys/kernel.h> 3033 3034 #include <ddb/ddb.h> 3035 3036 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3037 { 3038 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count); 3039 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count); 3040 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count); 3041 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count); 3042 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count); 3043 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved); 3044 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min); 3045 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target); 3046 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min); 3047 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target); 3048 } 3049 3050 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3051 { 3052 int i; 3053 db_printf("PQ_FREE:"); 3054 for(i=0;i<PQ_L2_SIZE;i++) { 3055 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 3056 } 3057 db_printf("\n"); 3058 3059 db_printf("PQ_CACHE:"); 3060 for(i=0;i<PQ_L2_SIZE;i++) { 3061 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 3062 } 3063 db_printf("\n"); 3064 3065 db_printf("PQ_ACTIVE:"); 3066 for(i=0;i<PQ_L2_SIZE;i++) { 3067 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt); 3068 } 3069 db_printf("\n"); 3070 3071 db_printf("PQ_INACTIVE:"); 3072 for(i=0;i<PQ_L2_SIZE;i++) { 3073 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt); 3074 } 3075 db_printf("\n"); 3076 } 3077 #endif /* DDB */ 3078