1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 36 */ 37 38 /* 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 /* 65 * Resident memory management module. The module manipulates 'VM pages'. 66 * A VM page is the core building block for memory management. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/vnode.h> 75 #include <sys/kernel.h> 76 77 #include <vm/vm.h> 78 #include <vm/vm_param.h> 79 #include <sys/lock.h> 80 #include <vm/vm_kern.h> 81 #include <vm/pmap.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_pageout.h> 86 #include <vm/vm_pager.h> 87 #include <vm/vm_extern.h> 88 #include <vm/swap_pager.h> 89 90 #include <machine/inttypes.h> 91 #include <machine/md_var.h> 92 93 #include <vm/vm_page2.h> 94 #include <sys/spinlock2.h> 95 96 #define VMACTION_HSIZE 256 97 #define VMACTION_HMASK (VMACTION_HSIZE - 1) 98 99 static void vm_page_queue_init(void); 100 static void vm_page_free_wakeup(void); 101 static vm_page_t vm_page_select_cache(u_short pg_color); 102 static vm_page_t _vm_page_list_find2(int basequeue, int index); 103 static void _vm_page_deactivate_locked(vm_page_t m, int athead); 104 105 /* 106 * Array of tailq lists 107 */ 108 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT]; 109 110 LIST_HEAD(vm_page_action_list, vm_page_action); 111 struct vm_page_action_list action_list[VMACTION_HSIZE]; 112 static volatile int vm_pages_waiting; 113 114 115 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 116 vm_pindex_t, pindex); 117 118 static void 119 vm_page_queue_init(void) 120 { 121 int i; 122 123 for (i = 0; i < PQ_L2_SIZE; i++) 124 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count; 125 for (i = 0; i < PQ_L2_SIZE; i++) 126 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count; 127 for (i = 0; i < PQ_L2_SIZE; i++) 128 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count; 129 for (i = 0; i < PQ_L2_SIZE; i++) 130 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count; 131 for (i = 0; i < PQ_L2_SIZE; i++) 132 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count; 133 /* PQ_NONE has no queue */ 134 135 for (i = 0; i < PQ_COUNT; i++) { 136 TAILQ_INIT(&vm_page_queues[i].pl); 137 spin_init(&vm_page_queues[i].spin); 138 } 139 140 for (i = 0; i < VMACTION_HSIZE; i++) 141 LIST_INIT(&action_list[i]); 142 } 143 144 /* 145 * note: place in initialized data section? Is this necessary? 146 */ 147 long first_page = 0; 148 int vm_page_array_size = 0; 149 int vm_page_zero_count = 0; 150 vm_page_t vm_page_array = 0; 151 152 /* 153 * (low level boot) 154 * 155 * Sets the page size, perhaps based upon the memory size. 156 * Must be called before any use of page-size dependent functions. 157 */ 158 void 159 vm_set_page_size(void) 160 { 161 if (vmstats.v_page_size == 0) 162 vmstats.v_page_size = PAGE_SIZE; 163 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 164 panic("vm_set_page_size: page size not a power of two"); 165 } 166 167 /* 168 * (low level boot) 169 * 170 * Add a new page to the freelist for use by the system. New pages 171 * are added to both the head and tail of the associated free page 172 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 173 * requests pull 'recent' adds (higher physical addresses) first. 174 * 175 * Must be called in a critical section. 176 */ 177 static vm_page_t 178 vm_add_new_page(vm_paddr_t pa) 179 { 180 struct vpgqueues *vpq; 181 vm_page_t m; 182 183 m = PHYS_TO_VM_PAGE(pa); 184 m->phys_addr = pa; 185 m->flags = 0; 186 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK; 187 #ifdef SMP 188 /* 189 * Twist for cpu localization instead of page coloring. 190 */ 191 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK; 192 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK; 193 #endif 194 m->queue = m->pc + PQ_FREE; 195 KKASSERT(m->dirty == 0); 196 197 atomic_add_int(&vmstats.v_page_count, 1); 198 atomic_add_int(&vmstats.v_free_count, 1); 199 vpq = &vm_page_queues[m->queue]; 200 if (vpq->flipflop) 201 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 202 else 203 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 204 vpq->flipflop = 1 - vpq->flipflop; 205 ++vpq->lcnt; 206 207 return (m); 208 } 209 210 /* 211 * (low level boot) 212 * 213 * Initializes the resident memory module. 214 * 215 * Preallocates memory for critical VM structures and arrays prior to 216 * kernel_map becoming available. 217 * 218 * Memory is allocated from (virtual2_start, virtual2_end) if available, 219 * otherwise memory is allocated from (virtual_start, virtual_end). 220 * 221 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be 222 * large enough to hold vm_page_array & other structures for machines with 223 * large amounts of ram, so we want to use virtual2* when available. 224 */ 225 void 226 vm_page_startup(void) 227 { 228 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start; 229 vm_offset_t mapped; 230 vm_size_t npages; 231 vm_paddr_t page_range; 232 vm_paddr_t new_end; 233 int i; 234 vm_paddr_t pa; 235 int nblocks; 236 vm_paddr_t last_pa; 237 vm_paddr_t end; 238 vm_paddr_t biggestone, biggestsize; 239 vm_paddr_t total; 240 241 total = 0; 242 biggestsize = 0; 243 biggestone = 0; 244 nblocks = 0; 245 vaddr = round_page(vaddr); 246 247 for (i = 0; phys_avail[i + 1]; i += 2) { 248 phys_avail[i] = round_page64(phys_avail[i]); 249 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]); 250 } 251 252 for (i = 0; phys_avail[i + 1]; i += 2) { 253 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 254 255 if (size > biggestsize) { 256 biggestone = i; 257 biggestsize = size; 258 } 259 ++nblocks; 260 total += size; 261 } 262 263 end = phys_avail[biggestone+1]; 264 end = trunc_page(end); 265 266 /* 267 * Initialize the queue headers for the free queue, the active queue 268 * and the inactive queue. 269 */ 270 271 vm_page_queue_init(); 272 273 #if !defined(_KERNEL_VIRTUAL) 274 /* 275 * VKERNELs don't support minidumps and as such don't need 276 * vm_page_dump 277 * 278 * Allocate a bitmap to indicate that a random physical page 279 * needs to be included in a minidump. 280 * 281 * The amd64 port needs this to indicate which direct map pages 282 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 283 * 284 * However, i386 still needs this workspace internally within the 285 * minidump code. In theory, they are not needed on i386, but are 286 * included should the sf_buf code decide to use them. 287 */ 288 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 289 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 290 end -= vm_page_dump_size; 291 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size, 292 VM_PROT_READ | VM_PROT_WRITE); 293 bzero((void *)vm_page_dump, vm_page_dump_size); 294 #endif 295 296 /* 297 * Compute the number of pages of memory that will be available for 298 * use (taking into account the overhead of a page structure per 299 * page). 300 */ 301 first_page = phys_avail[0] / PAGE_SIZE; 302 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 303 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 304 305 /* 306 * Initialize the mem entry structures now, and put them in the free 307 * queue. 308 */ 309 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 310 mapped = pmap_map(&vaddr, new_end, end, 311 VM_PROT_READ | VM_PROT_WRITE); 312 vm_page_array = (vm_page_t)mapped; 313 314 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL) 315 /* 316 * since pmap_map on amd64 returns stuff out of a direct-map region, 317 * we have to manually add these pages to the minidump tracking so 318 * that they can be dumped, including the vm_page_array. 319 */ 320 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 321 dump_add_page(pa); 322 #endif 323 324 /* 325 * Clear all of the page structures 326 */ 327 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 328 vm_page_array_size = page_range; 329 330 /* 331 * Construct the free queue(s) in ascending order (by physical 332 * address) so that the first 16MB of physical memory is allocated 333 * last rather than first. On large-memory machines, this avoids 334 * the exhaustion of low physical memory before isa_dmainit has run. 335 */ 336 vmstats.v_page_count = 0; 337 vmstats.v_free_count = 0; 338 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 339 pa = phys_avail[i]; 340 if (i == biggestone) 341 last_pa = new_end; 342 else 343 last_pa = phys_avail[i + 1]; 344 while (pa < last_pa && npages-- > 0) { 345 vm_add_new_page(pa); 346 pa += PAGE_SIZE; 347 } 348 } 349 if (virtual2_start) 350 virtual2_start = vaddr; 351 else 352 virtual_start = vaddr; 353 } 354 355 /* 356 * Scan comparison function for Red-Black tree scans. An inclusive 357 * (start,end) is expected. Other fields are not used. 358 */ 359 int 360 rb_vm_page_scancmp(struct vm_page *p, void *data) 361 { 362 struct rb_vm_page_scan_info *info = data; 363 364 if (p->pindex < info->start_pindex) 365 return(-1); 366 if (p->pindex > info->end_pindex) 367 return(1); 368 return(0); 369 } 370 371 int 372 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 373 { 374 if (p1->pindex < p2->pindex) 375 return(-1); 376 if (p1->pindex > p2->pindex) 377 return(1); 378 return(0); 379 } 380 381 /* 382 * Each page queue has its own spin lock, which is fairly optimal for 383 * allocating and freeing pages at least. 384 * 385 * The caller must hold the vm_page_spin_lock() before locking a vm_page's 386 * queue spinlock via this function. Also note that m->queue cannot change 387 * unless both the page and queue are locked. 388 */ 389 static __inline 390 void 391 _vm_page_queue_spin_lock(vm_page_t m) 392 { 393 u_short queue; 394 395 queue = m->queue; 396 if (queue != PQ_NONE) { 397 spin_lock(&vm_page_queues[queue].spin); 398 KKASSERT(queue == m->queue); 399 } 400 } 401 402 static __inline 403 void 404 _vm_page_queue_spin_unlock(vm_page_t m) 405 { 406 u_short queue; 407 408 queue = m->queue; 409 cpu_ccfence(); 410 if (queue != PQ_NONE) 411 spin_unlock(&vm_page_queues[queue].spin); 412 } 413 414 static __inline 415 void 416 _vm_page_queues_spin_lock(u_short queue) 417 { 418 cpu_ccfence(); 419 if (queue != PQ_NONE) 420 spin_lock(&vm_page_queues[queue].spin); 421 } 422 423 424 static __inline 425 void 426 _vm_page_queues_spin_unlock(u_short queue) 427 { 428 cpu_ccfence(); 429 if (queue != PQ_NONE) 430 spin_unlock(&vm_page_queues[queue].spin); 431 } 432 433 void 434 vm_page_queue_spin_lock(vm_page_t m) 435 { 436 _vm_page_queue_spin_lock(m); 437 } 438 439 void 440 vm_page_queues_spin_lock(u_short queue) 441 { 442 _vm_page_queues_spin_lock(queue); 443 } 444 445 void 446 vm_page_queue_spin_unlock(vm_page_t m) 447 { 448 _vm_page_queue_spin_unlock(m); 449 } 450 451 void 452 vm_page_queues_spin_unlock(u_short queue) 453 { 454 _vm_page_queues_spin_unlock(queue); 455 } 456 457 /* 458 * This locks the specified vm_page and its queue in the proper order 459 * (page first, then queue). The queue may change so the caller must 460 * recheck on return. 461 */ 462 static __inline 463 void 464 _vm_page_and_queue_spin_lock(vm_page_t m) 465 { 466 vm_page_spin_lock(m); 467 _vm_page_queue_spin_lock(m); 468 } 469 470 static __inline 471 void 472 _vm_page_and_queue_spin_unlock(vm_page_t m) 473 { 474 _vm_page_queues_spin_unlock(m->queue); 475 vm_page_spin_unlock(m); 476 } 477 478 void 479 vm_page_and_queue_spin_unlock(vm_page_t m) 480 { 481 _vm_page_and_queue_spin_unlock(m); 482 } 483 484 void 485 vm_page_and_queue_spin_lock(vm_page_t m) 486 { 487 _vm_page_and_queue_spin_lock(m); 488 } 489 490 /* 491 * Helper function removes vm_page from its current queue. 492 * Returns the base queue the page used to be on. 493 * 494 * The vm_page and the queue must be spinlocked. 495 * This function will unlock the queue but leave the page spinlocked. 496 */ 497 static __inline u_short 498 _vm_page_rem_queue_spinlocked(vm_page_t m) 499 { 500 struct vpgqueues *pq; 501 u_short queue; 502 503 queue = m->queue; 504 if (queue != PQ_NONE) { 505 pq = &vm_page_queues[queue]; 506 TAILQ_REMOVE(&pq->pl, m, pageq); 507 atomic_add_int(pq->cnt, -1); 508 pq->lcnt--; 509 m->queue = PQ_NONE; 510 vm_page_queues_spin_unlock(queue); 511 if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO)) 512 atomic_subtract_int(&vm_page_zero_count, 1); 513 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE) 514 return (queue - m->pc); 515 } 516 return queue; 517 } 518 519 /* 520 * Helper function places the vm_page on the specified queue. 521 * 522 * The vm_page must be spinlocked. 523 * This function will return with both the page and the queue locked. 524 */ 525 static __inline void 526 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead) 527 { 528 struct vpgqueues *pq; 529 530 KKASSERT(m->queue == PQ_NONE); 531 532 if (queue != PQ_NONE) { 533 vm_page_queues_spin_lock(queue); 534 pq = &vm_page_queues[queue]; 535 ++pq->lcnt; 536 atomic_add_int(pq->cnt, 1); 537 m->queue = queue; 538 539 /* 540 * Put zero'd pages on the end ( where we look for zero'd pages 541 * first ) and non-zerod pages at the head. 542 */ 543 if (queue - m->pc == PQ_FREE) { 544 if (m->flags & PG_ZERO) { 545 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 546 atomic_add_int(&vm_page_zero_count, 1); 547 } else { 548 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 549 } 550 } else if (athead) { 551 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 552 } else { 553 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 554 } 555 /* leave the queue spinlocked */ 556 } 557 } 558 559 /* 560 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 561 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we 562 * did not. Only one sleep call will be made before returning. 563 * 564 * This function does NOT busy the page and on return the page is not 565 * guaranteed to be available. 566 */ 567 void 568 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 569 { 570 u_int32_t flags; 571 572 for (;;) { 573 flags = m->flags; 574 cpu_ccfence(); 575 576 if ((flags & PG_BUSY) == 0 && 577 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) { 578 break; 579 } 580 tsleep_interlock(m, 0); 581 if (atomic_cmpset_int(&m->flags, flags, 582 flags | PG_WANTED | PG_REFERENCED)) { 583 tsleep(m, PINTERLOCKED, msg, 0); 584 break; 585 } 586 } 587 } 588 589 /* 590 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we 591 * also wait for m->busy to become 0 before setting PG_BUSY. 592 */ 593 void 594 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m, 595 int also_m_busy, const char *msg 596 VM_PAGE_DEBUG_ARGS) 597 { 598 u_int32_t flags; 599 600 for (;;) { 601 flags = m->flags; 602 cpu_ccfence(); 603 if (flags & PG_BUSY) { 604 tsleep_interlock(m, 0); 605 if (atomic_cmpset_int(&m->flags, flags, 606 flags | PG_WANTED | PG_REFERENCED)) { 607 tsleep(m, PINTERLOCKED, msg, 0); 608 } 609 } else if (also_m_busy && (flags & PG_SBUSY)) { 610 tsleep_interlock(m, 0); 611 if (atomic_cmpset_int(&m->flags, flags, 612 flags | PG_WANTED | PG_REFERENCED)) { 613 tsleep(m, PINTERLOCKED, msg, 0); 614 } 615 } else { 616 if (atomic_cmpset_int(&m->flags, flags, 617 flags | PG_BUSY)) { 618 #ifdef VM_PAGE_DEBUG 619 m->busy_func = func; 620 m->busy_line = lineno; 621 #endif 622 break; 623 } 624 } 625 } 626 } 627 628 /* 629 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy 630 * is also 0. 631 * 632 * Returns non-zero on failure. 633 */ 634 int 635 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy 636 VM_PAGE_DEBUG_ARGS) 637 { 638 u_int32_t flags; 639 640 for (;;) { 641 flags = m->flags; 642 cpu_ccfence(); 643 if (flags & PG_BUSY) 644 return TRUE; 645 if (also_m_busy && (flags & PG_SBUSY)) 646 return TRUE; 647 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 648 #ifdef VM_PAGE_DEBUG 649 m->busy_func = func; 650 m->busy_line = lineno; 651 #endif 652 return FALSE; 653 } 654 } 655 } 656 657 /* 658 * Clear the PG_BUSY flag and return non-zero to indicate to the caller 659 * that a wakeup() should be performed. 660 * 661 * The vm_page must be spinlocked and will remain spinlocked on return. 662 * The related queue must NOT be spinlocked (which could deadlock us). 663 * 664 * (inline version) 665 */ 666 static __inline 667 int 668 _vm_page_wakeup(vm_page_t m) 669 { 670 u_int32_t flags; 671 672 for (;;) { 673 flags = m->flags; 674 cpu_ccfence(); 675 if (atomic_cmpset_int(&m->flags, flags, 676 flags & ~(PG_BUSY | PG_WANTED))) { 677 break; 678 } 679 } 680 return(flags & PG_WANTED); 681 } 682 683 /* 684 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This 685 * is typically the last call you make on a page before moving onto 686 * other things. 687 */ 688 void 689 vm_page_wakeup(vm_page_t m) 690 { 691 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 692 vm_page_spin_lock(m); 693 if (_vm_page_wakeup(m)) { 694 vm_page_spin_unlock(m); 695 wakeup(m); 696 } else { 697 vm_page_spin_unlock(m); 698 } 699 } 700 701 /* 702 * Holding a page keeps it from being reused. Other parts of the system 703 * can still disassociate the page from its current object and free it, or 704 * perform read or write I/O on it and/or otherwise manipulate the page, 705 * but if the page is held the VM system will leave the page and its data 706 * intact and not reuse the page for other purposes until the last hold 707 * reference is released. (see vm_page_wire() if you want to prevent the 708 * page from being disassociated from its object too). 709 * 710 * The caller must still validate the contents of the page and, if necessary, 711 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete 712 * before manipulating the page. 713 * 714 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary 715 */ 716 void 717 vm_page_hold(vm_page_t m) 718 { 719 vm_page_spin_lock(m); 720 atomic_add_int(&m->hold_count, 1); 721 if (m->queue - m->pc == PQ_FREE) { 722 _vm_page_queue_spin_lock(m); 723 _vm_page_rem_queue_spinlocked(m); 724 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 725 _vm_page_queue_spin_unlock(m); 726 } 727 vm_page_spin_unlock(m); 728 } 729 730 /* 731 * The opposite of vm_page_hold(). A page can be freed while being held, 732 * which places it on the PQ_HOLD queue. If we are able to busy the page 733 * after the hold count drops to zero we will move the page to the 734 * appropriate PQ_FREE queue by calling vm_page_free_toq(). 735 */ 736 void 737 vm_page_unhold(vm_page_t m) 738 { 739 vm_page_spin_lock(m); 740 atomic_add_int(&m->hold_count, -1); 741 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) { 742 _vm_page_queue_spin_lock(m); 743 _vm_page_rem_queue_spinlocked(m); 744 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 745 _vm_page_queue_spin_unlock(m); 746 } 747 vm_page_spin_unlock(m); 748 } 749 750 /* 751 * Inserts the given vm_page into the object and object list. 752 * 753 * The pagetables are not updated but will presumably fault the page 754 * in if necessary, or if a kernel page the caller will at some point 755 * enter the page into the kernel's pmap. We are not allowed to block 756 * here so we *can't* do this anyway. 757 * 758 * This routine may not block. 759 * This routine must be called with the vm_object held. 760 * This routine must be called with a critical section held. 761 * 762 * This routine returns TRUE if the page was inserted into the object 763 * successfully, and FALSE if the page already exists in the object. 764 */ 765 int 766 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 767 { 768 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 769 if (m->object != NULL) 770 panic("vm_page_insert: already inserted"); 771 772 object->generation++; 773 774 /* 775 * Record the object/offset pair in this page and add the 776 * pv_list_count of the page to the object. 777 * 778 * The vm_page spin lock is required for interactions with the pmap. 779 */ 780 vm_page_spin_lock(m); 781 m->object = object; 782 m->pindex = pindex; 783 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) { 784 m->object = NULL; 785 m->pindex = 0; 786 vm_page_spin_unlock(m); 787 return FALSE; 788 } 789 object->resident_page_count++; 790 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */ 791 vm_page_spin_unlock(m); 792 793 /* 794 * Since we are inserting a new and possibly dirty page, 795 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 796 */ 797 if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE)) 798 vm_object_set_writeable_dirty(object); 799 800 /* 801 * Checks for a swap assignment and sets PG_SWAPPED if appropriate. 802 */ 803 swap_pager_page_inserted(m); 804 return TRUE; 805 } 806 807 /* 808 * Removes the given vm_page_t from the (object,index) table 809 * 810 * The underlying pmap entry (if any) is NOT removed here. 811 * This routine may not block. 812 * 813 * The page must be BUSY and will remain BUSY on return. 814 * No other requirements. 815 * 816 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave 817 * it busy. 818 */ 819 void 820 vm_page_remove(vm_page_t m) 821 { 822 vm_object_t object; 823 824 if (m->object == NULL) { 825 return; 826 } 827 828 if ((m->flags & PG_BUSY) == 0) 829 panic("vm_page_remove: page not busy"); 830 831 object = m->object; 832 833 vm_object_hold(object); 834 835 /* 836 * Remove the page from the object and update the object. 837 * 838 * The vm_page spin lock is required for interactions with the pmap. 839 */ 840 vm_page_spin_lock(m); 841 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 842 object->resident_page_count--; 843 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */ 844 m->object = NULL; 845 vm_page_spin_unlock(m); 846 847 object->generation++; 848 849 vm_object_drop(object); 850 } 851 852 /* 853 * Locate and return the page at (object, pindex), or NULL if the 854 * page could not be found. 855 * 856 * The caller must hold the vm_object token. 857 */ 858 vm_page_t 859 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 860 { 861 vm_page_t m; 862 863 /* 864 * Search the hash table for this object/offset pair 865 */ 866 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 867 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 868 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex)); 869 return(m); 870 } 871 872 vm_page_t 873 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object, 874 vm_pindex_t pindex, 875 int also_m_busy, const char *msg 876 VM_PAGE_DEBUG_ARGS) 877 { 878 u_int32_t flags; 879 vm_page_t m; 880 881 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 882 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 883 while (m) { 884 KKASSERT(m->object == object && m->pindex == pindex); 885 flags = m->flags; 886 cpu_ccfence(); 887 if (flags & PG_BUSY) { 888 tsleep_interlock(m, 0); 889 if (atomic_cmpset_int(&m->flags, flags, 890 flags | PG_WANTED | PG_REFERENCED)) { 891 tsleep(m, PINTERLOCKED, msg, 0); 892 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 893 pindex); 894 } 895 } else if (also_m_busy && (flags & PG_SBUSY)) { 896 tsleep_interlock(m, 0); 897 if (atomic_cmpset_int(&m->flags, flags, 898 flags | PG_WANTED | PG_REFERENCED)) { 899 tsleep(m, PINTERLOCKED, msg, 0); 900 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 901 pindex); 902 } 903 } else if (atomic_cmpset_int(&m->flags, flags, 904 flags | PG_BUSY)) { 905 #ifdef VM_PAGE_DEBUG 906 m->busy_func = func; 907 m->busy_line = lineno; 908 #endif 909 break; 910 } 911 } 912 return m; 913 } 914 915 /* 916 * Attempt to lookup and busy a page. 917 * 918 * Returns NULL if the page could not be found 919 * 920 * Returns a vm_page and error == TRUE if the page exists but could not 921 * be busied. 922 * 923 * Returns a vm_page and error == FALSE on success. 924 */ 925 vm_page_t 926 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object, 927 vm_pindex_t pindex, 928 int also_m_busy, int *errorp 929 VM_PAGE_DEBUG_ARGS) 930 { 931 u_int32_t flags; 932 vm_page_t m; 933 934 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 935 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 936 *errorp = FALSE; 937 while (m) { 938 KKASSERT(m->object == object && m->pindex == pindex); 939 flags = m->flags; 940 cpu_ccfence(); 941 if (flags & PG_BUSY) { 942 *errorp = TRUE; 943 break; 944 } 945 if (also_m_busy && (flags & PG_SBUSY)) { 946 *errorp = TRUE; 947 break; 948 } 949 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 950 #ifdef VM_PAGE_DEBUG 951 m->busy_func = func; 952 m->busy_line = lineno; 953 #endif 954 break; 955 } 956 } 957 return m; 958 } 959 960 /* 961 * Caller must hold the related vm_object 962 */ 963 vm_page_t 964 vm_page_next(vm_page_t m) 965 { 966 vm_page_t next; 967 968 next = vm_page_rb_tree_RB_NEXT(m); 969 if (next && next->pindex != m->pindex + 1) 970 next = NULL; 971 return (next); 972 } 973 974 /* 975 * vm_page_rename() 976 * 977 * Move the given vm_page from its current object to the specified 978 * target object/offset. The page must be busy and will remain so 979 * on return. 980 * 981 * new_object must be held. 982 * This routine might block. XXX ? 983 * 984 * NOTE: Swap associated with the page must be invalidated by the move. We 985 * have to do this for several reasons: (1) we aren't freeing the 986 * page, (2) we are dirtying the page, (3) the VM system is probably 987 * moving the page from object A to B, and will then later move 988 * the backing store from A to B and we can't have a conflict. 989 * 990 * NOTE: We *always* dirty the page. It is necessary both for the 991 * fact that we moved it, and because we may be invalidating 992 * swap. If the page is on the cache, we have to deactivate it 993 * or vm_page_dirty() will panic. Dirty pages are not allowed 994 * on the cache. 995 */ 996 void 997 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 998 { 999 KKASSERT(m->flags & PG_BUSY); 1000 ASSERT_LWKT_TOKEN_HELD(vm_object_token(new_object)); 1001 if (m->object) { 1002 ASSERT_LWKT_TOKEN_HELD(vm_object_token(m->object)); 1003 vm_page_remove(m); 1004 } 1005 if (vm_page_insert(m, new_object, new_pindex) == FALSE) { 1006 panic("vm_page_rename: target exists (%p,%"PRIu64")", 1007 new_object, new_pindex); 1008 } 1009 if (m->queue - m->pc == PQ_CACHE) 1010 vm_page_deactivate(m); 1011 vm_page_dirty(m); 1012 } 1013 1014 /* 1015 * vm_page_unqueue() without any wakeup. This routine is used when a page 1016 * is being moved between queues or otherwise is to remain BUSYied by the 1017 * caller. 1018 * 1019 * This routine may not block. 1020 */ 1021 void 1022 vm_page_unqueue_nowakeup(vm_page_t m) 1023 { 1024 vm_page_and_queue_spin_lock(m); 1025 (void)_vm_page_rem_queue_spinlocked(m); 1026 vm_page_spin_unlock(m); 1027 } 1028 1029 /* 1030 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 1031 * if necessary. 1032 * 1033 * This routine may not block. 1034 */ 1035 void 1036 vm_page_unqueue(vm_page_t m) 1037 { 1038 u_short queue; 1039 1040 vm_page_and_queue_spin_lock(m); 1041 queue = _vm_page_rem_queue_spinlocked(m); 1042 if (queue == PQ_FREE || queue == PQ_CACHE) { 1043 vm_page_spin_unlock(m); 1044 pagedaemon_wakeup(); 1045 } else { 1046 vm_page_spin_unlock(m); 1047 } 1048 } 1049 1050 /* 1051 * vm_page_list_find() 1052 * 1053 * Find a page on the specified queue with color optimization. 1054 * 1055 * The page coloring optimization attempts to locate a page that does 1056 * not overload other nearby pages in the object in the cpu's L1 or L2 1057 * caches. We need this optimization because cpu caches tend to be 1058 * physical caches, while object spaces tend to be virtual. 1059 * 1060 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock 1061 * and the algorithm is adjusted to localize allocations on a per-core basis. 1062 * This is done by 'twisting' the colors. 1063 * 1064 * The page is returned spinlocked and removed from its queue (it will 1065 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller 1066 * is responsible for dealing with the busy-page case (usually by 1067 * deactivating the page and looping). 1068 * 1069 * NOTE: This routine is carefully inlined. A non-inlined version 1070 * is available for outside callers but the only critical path is 1071 * from within this source file. 1072 * 1073 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE 1074 * represent stable storage, allowing us to order our locks vm_page 1075 * first, then queue. 1076 */ 1077 static __inline 1078 vm_page_t 1079 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1080 { 1081 vm_page_t m; 1082 1083 for (;;) { 1084 if (prefer_zero) 1085 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist); 1086 else 1087 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl); 1088 if (m == NULL) { 1089 m = _vm_page_list_find2(basequeue, index); 1090 return(m); 1091 } 1092 vm_page_and_queue_spin_lock(m); 1093 if (m->queue == basequeue + index) { 1094 _vm_page_rem_queue_spinlocked(m); 1095 /* vm_page_t spin held, no queue spin */ 1096 break; 1097 } 1098 vm_page_and_queue_spin_unlock(m); 1099 } 1100 return(m); 1101 } 1102 1103 static vm_page_t 1104 _vm_page_list_find2(int basequeue, int index) 1105 { 1106 int i; 1107 vm_page_t m = NULL; 1108 struct vpgqueues *pq; 1109 1110 pq = &vm_page_queues[basequeue]; 1111 1112 /* 1113 * Note that for the first loop, index+i and index-i wind up at the 1114 * same place. Even though this is not totally optimal, we've already 1115 * blown it by missing the cache case so we do not care. 1116 */ 1117 for (i = PQ_L2_SIZE / 2; i > 0; --i) { 1118 for (;;) { 1119 m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl); 1120 if (m) { 1121 _vm_page_and_queue_spin_lock(m); 1122 if (m->queue == 1123 basequeue + ((index + i) & PQ_L2_MASK)) { 1124 _vm_page_rem_queue_spinlocked(m); 1125 return(m); 1126 } 1127 _vm_page_and_queue_spin_unlock(m); 1128 continue; 1129 } 1130 m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl); 1131 if (m) { 1132 _vm_page_and_queue_spin_lock(m); 1133 if (m->queue == 1134 basequeue + ((index - i) & PQ_L2_MASK)) { 1135 _vm_page_rem_queue_spinlocked(m); 1136 return(m); 1137 } 1138 _vm_page_and_queue_spin_unlock(m); 1139 continue; 1140 } 1141 break; /* next i */ 1142 } 1143 } 1144 return(m); 1145 } 1146 1147 /* 1148 * Returns a vm_page candidate for allocation. The page is not busied so 1149 * it can move around. The caller must busy the page (and typically 1150 * deactivate it if it cannot be busied!) 1151 * 1152 * Returns a spinlocked vm_page that has been removed from its queue. 1153 */ 1154 vm_page_t 1155 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1156 { 1157 return(_vm_page_list_find(basequeue, index, prefer_zero)); 1158 } 1159 1160 /* 1161 * Find a page on the cache queue with color optimization, remove it 1162 * from the queue, and busy it. The returned page will not be spinlocked. 1163 * 1164 * A candidate failure will be deactivated. Candidates can fail due to 1165 * being busied by someone else, in which case they will be deactivated. 1166 * 1167 * This routine may not block. 1168 * 1169 */ 1170 static vm_page_t 1171 vm_page_select_cache(u_short pg_color) 1172 { 1173 vm_page_t m; 1174 1175 for (;;) { 1176 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE); 1177 if (m == NULL) 1178 break; 1179 /* 1180 * (m) has been removed from its queue and spinlocked 1181 */ 1182 if (vm_page_busy_try(m, TRUE)) { 1183 _vm_page_deactivate_locked(m, 0); 1184 vm_page_spin_unlock(m); 1185 #ifdef INVARIANTS 1186 kprintf("Warning: busy page %p found in cache\n", m); 1187 #endif 1188 } else { 1189 /* 1190 * We successfully busied the page 1191 */ 1192 if ((m->flags & PG_UNMANAGED) == 0 && 1193 m->hold_count == 0 && 1194 m->wire_count == 0) { 1195 vm_page_spin_unlock(m); 1196 pagedaemon_wakeup(); 1197 return(m); 1198 } 1199 _vm_page_deactivate_locked(m, 0); 1200 if (_vm_page_wakeup(m)) { 1201 vm_page_spin_unlock(m); 1202 wakeup(m); 1203 } else { 1204 vm_page_spin_unlock(m); 1205 } 1206 } 1207 } 1208 return (m); 1209 } 1210 1211 /* 1212 * Find a free or zero page, with specified preference. We attempt to 1213 * inline the nominal case and fall back to _vm_page_select_free() 1214 * otherwise. A busied page is removed from the queue and returned. 1215 * 1216 * This routine may not block. 1217 */ 1218 static __inline vm_page_t 1219 vm_page_select_free(u_short pg_color, boolean_t prefer_zero) 1220 { 1221 vm_page_t m; 1222 1223 for (;;) { 1224 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK, 1225 prefer_zero); 1226 if (m == NULL) 1227 break; 1228 if (vm_page_busy_try(m, TRUE)) { 1229 _vm_page_deactivate_locked(m, 0); 1230 vm_page_spin_unlock(m); 1231 #ifdef INVARIANTS 1232 kprintf("Warning: busy page %p found in cache\n", m); 1233 #endif 1234 } else { 1235 KKASSERT((m->flags & PG_UNMANAGED) == 0); 1236 KKASSERT(m->hold_count == 0); 1237 KKASSERT(m->wire_count == 0); 1238 vm_page_spin_unlock(m); 1239 pagedaemon_wakeup(); 1240 1241 /* return busied and removed page */ 1242 return(m); 1243 } 1244 } 1245 return(m); 1246 } 1247 1248 /* 1249 * vm_page_alloc() 1250 * 1251 * Allocate and return a memory cell associated with this VM object/offset 1252 * pair. If object is NULL an unassociated page will be allocated. 1253 * 1254 * The returned page will be busied and removed from its queues. This 1255 * routine can block and may return NULL if a race occurs and the page 1256 * is found to already exist at the specified (object, pindex). 1257 * 1258 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 1259 * VM_ALLOC_QUICK like normal but cannot use cache 1260 * VM_ALLOC_SYSTEM greater free drain 1261 * VM_ALLOC_INTERRUPT allow free list to be completely drained 1262 * VM_ALLOC_ZERO advisory request for pre-zero'd page only 1263 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only 1264 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision 1265 * (see vm_page_grab()) 1266 * The object must be held if not NULL 1267 * This routine may not block 1268 * 1269 * Additional special handling is required when called from an interrupt 1270 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 1271 * in this case. 1272 */ 1273 vm_page_t 1274 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 1275 { 1276 vm_page_t m = NULL; 1277 u_short pg_color; 1278 1279 #ifdef SMP 1280 /* 1281 * Cpu twist - cpu localization algorithm 1282 */ 1283 if (object) { 1284 pg_color = mycpu->gd_cpuid + (pindex & ~ncpus_fit_mask) + 1285 (object->pg_color & ~ncpus_fit_mask); 1286 } else { 1287 pg_color = mycpu->gd_cpuid + (pindex & ~ncpus_fit_mask); 1288 } 1289 #else 1290 /* 1291 * Normal page coloring algorithm 1292 */ 1293 if (object) { 1294 pg_color = object->pg_color + pindex; 1295 } else { 1296 pg_color = pindex; 1297 } 1298 #endif 1299 KKASSERT(page_req & 1300 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK| 1301 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 1302 1303 /* 1304 * Certain system threads (pageout daemon, buf_daemon's) are 1305 * allowed to eat deeper into the free page list. 1306 */ 1307 if (curthread->td_flags & TDF_SYSTHREAD) 1308 page_req |= VM_ALLOC_SYSTEM; 1309 1310 loop: 1311 if (vmstats.v_free_count > vmstats.v_free_reserved || 1312 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) || 1313 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 && 1314 vmstats.v_free_count > vmstats.v_interrupt_free_min) 1315 ) { 1316 /* 1317 * The free queue has sufficient free pages to take one out. 1318 */ 1319 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) 1320 m = vm_page_select_free(pg_color, TRUE); 1321 else 1322 m = vm_page_select_free(pg_color, FALSE); 1323 } else if (page_req & VM_ALLOC_NORMAL) { 1324 /* 1325 * Allocatable from the cache (non-interrupt only). On 1326 * success, we must free the page and try again, thus 1327 * ensuring that vmstats.v_*_free_min counters are replenished. 1328 */ 1329 #ifdef INVARIANTS 1330 if (curthread->td_preempted) { 1331 kprintf("vm_page_alloc(): warning, attempt to allocate" 1332 " cache page from preempting interrupt\n"); 1333 m = NULL; 1334 } else { 1335 m = vm_page_select_cache(pg_color); 1336 } 1337 #else 1338 m = vm_page_select_cache(pg_color); 1339 #endif 1340 /* 1341 * On success move the page into the free queue and loop. 1342 */ 1343 if (m != NULL) { 1344 KASSERT(m->dirty == 0, 1345 ("Found dirty cache page %p", m)); 1346 vm_page_protect(m, VM_PROT_NONE); 1347 vm_page_free(m); 1348 goto loop; 1349 } 1350 1351 /* 1352 * On failure return NULL 1353 */ 1354 #if defined(DIAGNOSTIC) 1355 if (vmstats.v_cache_count > 0) 1356 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count); 1357 #endif 1358 vm_pageout_deficit++; 1359 pagedaemon_wakeup(); 1360 return (NULL); 1361 } else { 1362 /* 1363 * No pages available, wakeup the pageout daemon and give up. 1364 */ 1365 vm_pageout_deficit++; 1366 pagedaemon_wakeup(); 1367 return (NULL); 1368 } 1369 1370 /* 1371 * v_free_count can race so loop if we don't find the expected 1372 * page. 1373 */ 1374 if (m == NULL) 1375 goto loop; 1376 1377 /* 1378 * Good page found. The page has already been busied for us and 1379 * removed from its queues. 1380 */ 1381 KASSERT(m->dirty == 0, 1382 ("vm_page_alloc: free/cache page %p was dirty", m)); 1383 KKASSERT(m->queue == PQ_NONE); 1384 1385 /* 1386 * Initialize the structure, inheriting some flags but clearing 1387 * all the rest. The page has already been busied for us. 1388 */ 1389 vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY)); 1390 KKASSERT(m->wire_count == 0); 1391 KKASSERT(m->busy == 0); 1392 m->act_count = 0; 1393 m->valid = 0; 1394 1395 /* 1396 * Caller must be holding the object lock (asserted by 1397 * vm_page_insert()). 1398 * 1399 * NOTE: Inserting a page here does not insert it into any pmaps 1400 * (which could cause us to block allocating memory). 1401 * 1402 * NOTE: If no object an unassociated page is allocated, m->pindex 1403 * can be used by the caller for any purpose. 1404 */ 1405 if (object) { 1406 if (vm_page_insert(m, object, pindex) == FALSE) { 1407 kprintf("PAGE RACE (%p:%d,%"PRIu64")\n", 1408 object, object->type, pindex); 1409 vm_page_free(m); 1410 m = NULL; 1411 if ((page_req & VM_ALLOC_NULL_OK) == 0) 1412 panic("PAGE RACE"); 1413 } 1414 } else { 1415 m->pindex = pindex; 1416 } 1417 1418 /* 1419 * Don't wakeup too often - wakeup the pageout daemon when 1420 * we would be nearly out of memory. 1421 */ 1422 pagedaemon_wakeup(); 1423 1424 /* 1425 * A PG_BUSY page is returned. 1426 */ 1427 return (m); 1428 } 1429 1430 /* 1431 * Wait for sufficient free memory for nominal heavy memory use kernel 1432 * operations. 1433 */ 1434 void 1435 vm_wait_nominal(void) 1436 { 1437 while (vm_page_count_min(0)) 1438 vm_wait(0); 1439 } 1440 1441 /* 1442 * Test if vm_wait_nominal() would block. 1443 */ 1444 int 1445 vm_test_nominal(void) 1446 { 1447 if (vm_page_count_min(0)) 1448 return(1); 1449 return(0); 1450 } 1451 1452 /* 1453 * Block until free pages are available for allocation, called in various 1454 * places before memory allocations. 1455 * 1456 * The caller may loop if vm_page_count_min() == FALSE so we cannot be 1457 * more generous then that. 1458 */ 1459 void 1460 vm_wait(int timo) 1461 { 1462 /* 1463 * never wait forever 1464 */ 1465 if (timo == 0) 1466 timo = hz; 1467 lwkt_gettoken(&vm_token); 1468 1469 if (curthread == pagethread) { 1470 /* 1471 * The pageout daemon itself needs pages, this is bad. 1472 */ 1473 if (vm_page_count_min(0)) { 1474 vm_pageout_pages_needed = 1; 1475 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 1476 } 1477 } else { 1478 /* 1479 * Wakeup the pageout daemon if necessary and wait. 1480 */ 1481 if (vm_page_count_target()) { 1482 if (vm_pages_needed == 0) { 1483 vm_pages_needed = 1; 1484 wakeup(&vm_pages_needed); 1485 } 1486 ++vm_pages_waiting; /* SMP race ok */ 1487 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 1488 } 1489 } 1490 lwkt_reltoken(&vm_token); 1491 } 1492 1493 /* 1494 * Block until free pages are available for allocation 1495 * 1496 * Called only from vm_fault so that processes page faulting can be 1497 * easily tracked. 1498 */ 1499 void 1500 vm_waitpfault(void) 1501 { 1502 /* 1503 * Wakeup the pageout daemon if necessary and wait. 1504 */ 1505 if (vm_page_count_target()) { 1506 lwkt_gettoken(&vm_token); 1507 if (vm_page_count_target()) { 1508 if (vm_pages_needed == 0) { 1509 vm_pages_needed = 1; 1510 wakeup(&vm_pages_needed); 1511 } 1512 ++vm_pages_waiting; /* SMP race ok */ 1513 tsleep(&vmstats.v_free_count, 0, "pfault", hz); 1514 } 1515 lwkt_reltoken(&vm_token); 1516 } 1517 } 1518 1519 /* 1520 * Put the specified page on the active list (if appropriate). Ensure 1521 * that act_count is at least ACT_INIT but do not otherwise mess with it. 1522 * 1523 * The caller should be holding the page busied ? XXX 1524 * This routine may not block. 1525 */ 1526 void 1527 vm_page_activate(vm_page_t m) 1528 { 1529 u_short oqueue; 1530 1531 vm_page_spin_lock(m); 1532 if (m->queue - m->pc != PQ_ACTIVE) { 1533 _vm_page_queue_spin_lock(m); 1534 oqueue = _vm_page_rem_queue_spinlocked(m); 1535 /* page is left spinlocked, queue is unlocked */ 1536 1537 if (oqueue == PQ_CACHE) 1538 mycpu->gd_cnt.v_reactivated++; 1539 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1540 if (m->act_count < ACT_INIT) 1541 m->act_count = ACT_INIT; 1542 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0); 1543 } 1544 _vm_page_and_queue_spin_unlock(m); 1545 if (oqueue == PQ_CACHE || oqueue == PQ_FREE) 1546 pagedaemon_wakeup(); 1547 } else { 1548 if (m->act_count < ACT_INIT) 1549 m->act_count = ACT_INIT; 1550 vm_page_spin_unlock(m); 1551 } 1552 } 1553 1554 /* 1555 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1556 * routine is called when a page has been added to the cache or free 1557 * queues. 1558 * 1559 * This routine may not block. 1560 */ 1561 static __inline void 1562 vm_page_free_wakeup(void) 1563 { 1564 /* 1565 * If the pageout daemon itself needs pages, then tell it that 1566 * there are some free. 1567 */ 1568 if (vm_pageout_pages_needed && 1569 vmstats.v_cache_count + vmstats.v_free_count >= 1570 vmstats.v_pageout_free_min 1571 ) { 1572 wakeup(&vm_pageout_pages_needed); 1573 vm_pageout_pages_needed = 0; 1574 } 1575 1576 /* 1577 * Wakeup processes that are waiting on memory. 1578 * 1579 * NOTE: vm_paging_target() is the pageout daemon's target, while 1580 * vm_page_count_target() is somewhere inbetween. We want 1581 * to wake processes up prior to the pageout daemon reaching 1582 * its target to provide some hysteresis. 1583 */ 1584 if (vm_pages_waiting) { 1585 if (!vm_page_count_target()) { 1586 /* 1587 * Plenty of pages are free, wakeup everyone. 1588 */ 1589 vm_pages_waiting = 0; 1590 wakeup(&vmstats.v_free_count); 1591 ++mycpu->gd_cnt.v_ppwakeups; 1592 } else if (!vm_page_count_min(0)) { 1593 /* 1594 * Some pages are free, wakeup someone. 1595 */ 1596 int wcount = vm_pages_waiting; 1597 if (wcount > 0) 1598 --wcount; 1599 vm_pages_waiting = wcount; 1600 wakeup_one(&vmstats.v_free_count); 1601 ++mycpu->gd_cnt.v_ppwakeups; 1602 } 1603 } 1604 } 1605 1606 /* 1607 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates 1608 * it from its VM object. 1609 * 1610 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on 1611 * return (the page will have been freed). 1612 */ 1613 void 1614 vm_page_free_toq(vm_page_t m) 1615 { 1616 mycpu->gd_cnt.v_tfree++; 1617 KKASSERT((m->flags & PG_MAPPED) == 0); 1618 KKASSERT(m->flags & PG_BUSY); 1619 1620 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1621 kprintf( 1622 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1623 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1624 m->hold_count); 1625 if ((m->queue - m->pc) == PQ_FREE) 1626 panic("vm_page_free: freeing free page"); 1627 else 1628 panic("vm_page_free: freeing busy page"); 1629 } 1630 1631 /* 1632 * Remove from object, spinlock the page and its queues and 1633 * remove from any queue. No queue spinlock will be held 1634 * after this section (because the page was removed from any 1635 * queue). 1636 */ 1637 vm_page_remove(m); 1638 vm_page_and_queue_spin_lock(m); 1639 _vm_page_rem_queue_spinlocked(m); 1640 1641 /* 1642 * No further management of fictitious pages occurs beyond object 1643 * and queue removal. 1644 */ 1645 if ((m->flags & PG_FICTITIOUS) != 0) { 1646 vm_page_spin_unlock(m); 1647 vm_page_wakeup(m); 1648 return; 1649 } 1650 1651 m->valid = 0; 1652 vm_page_undirty(m); 1653 1654 if (m->wire_count != 0) { 1655 if (m->wire_count > 1) { 1656 panic( 1657 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1658 m->wire_count, (long)m->pindex); 1659 } 1660 panic("vm_page_free: freeing wired page"); 1661 } 1662 1663 /* 1664 * Clear the UNMANAGED flag when freeing an unmanaged page. 1665 */ 1666 if (m->flags & PG_UNMANAGED) { 1667 vm_page_flag_clear(m, PG_UNMANAGED); 1668 } 1669 1670 if (m->hold_count != 0) { 1671 vm_page_flag_clear(m, PG_ZERO); 1672 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 1673 } else { 1674 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 1675 } 1676 1677 /* 1678 * This sequence allows us to clear PG_BUSY while still holding 1679 * its spin lock, which reduces contention vs allocators. We 1680 * must not leave the queue locked or _vm_page_wakeup() may 1681 * deadlock. 1682 */ 1683 _vm_page_queue_spin_unlock(m); 1684 if (_vm_page_wakeup(m)) { 1685 vm_page_spin_unlock(m); 1686 wakeup(m); 1687 } else { 1688 vm_page_spin_unlock(m); 1689 } 1690 vm_page_free_wakeup(); 1691 } 1692 1693 /* 1694 * vm_page_free_fromq_fast() 1695 * 1696 * Remove a non-zero page from one of the free queues; the page is removed for 1697 * zeroing, so do not issue a wakeup. 1698 */ 1699 vm_page_t 1700 vm_page_free_fromq_fast(void) 1701 { 1702 static int qi; 1703 vm_page_t m; 1704 int i; 1705 1706 for (i = 0; i < PQ_L2_SIZE; ++i) { 1707 m = vm_page_list_find(PQ_FREE, qi, FALSE); 1708 /* page is returned spinlocked and removed from its queue */ 1709 if (m) { 1710 if (vm_page_busy_try(m, TRUE)) { 1711 /* 1712 * We were unable to busy the page, deactivate 1713 * it and loop. 1714 */ 1715 _vm_page_deactivate_locked(m, 0); 1716 vm_page_spin_unlock(m); 1717 } else if ((m->flags & PG_ZERO) == 0) { 1718 /* 1719 * The page is not PG_ZERO'd so return it. 1720 */ 1721 vm_page_spin_unlock(m); 1722 break; 1723 } else { 1724 /* 1725 * The page is PG_ZERO, requeue it and loop 1726 */ 1727 _vm_page_add_queue_spinlocked(m, 1728 PQ_FREE + m->pc, 1729 0); 1730 vm_page_queue_spin_unlock(m); 1731 if (_vm_page_wakeup(m)) { 1732 vm_page_spin_unlock(m); 1733 wakeup(m); 1734 } else { 1735 vm_page_spin_unlock(m); 1736 } 1737 } 1738 m = NULL; 1739 } 1740 qi = (qi + PQ_PRIME2) & PQ_L2_MASK; 1741 } 1742 return (m); 1743 } 1744 1745 /* 1746 * vm_page_unmanage() 1747 * 1748 * Prevent PV management from being done on the page. The page is 1749 * removed from the paging queues as if it were wired, and as a 1750 * consequence of no longer being managed the pageout daemon will not 1751 * touch it (since there is no way to locate the pte mappings for the 1752 * page). madvise() calls that mess with the pmap will also no longer 1753 * operate on the page. 1754 * 1755 * Beyond that the page is still reasonably 'normal'. Freeing the page 1756 * will clear the flag. 1757 * 1758 * This routine is used by OBJT_PHYS objects - objects using unswappable 1759 * physical memory as backing store rather then swap-backed memory and 1760 * will eventually be extended to support 4MB unmanaged physical 1761 * mappings. 1762 * 1763 * Caller must be holding the page busy. 1764 */ 1765 void 1766 vm_page_unmanage(vm_page_t m) 1767 { 1768 KKASSERT(m->flags & PG_BUSY); 1769 if ((m->flags & PG_UNMANAGED) == 0) { 1770 if (m->wire_count == 0) 1771 vm_page_unqueue(m); 1772 } 1773 vm_page_flag_set(m, PG_UNMANAGED); 1774 } 1775 1776 /* 1777 * Mark this page as wired down by yet another map, removing it from 1778 * paging queues as necessary. 1779 * 1780 * Caller must be holding the page busy. 1781 */ 1782 void 1783 vm_page_wire(vm_page_t m) 1784 { 1785 /* 1786 * Only bump the wire statistics if the page is not already wired, 1787 * and only unqueue the page if it is on some queue (if it is unmanaged 1788 * it is already off the queues). Don't do anything with fictitious 1789 * pages because they are always wired. 1790 */ 1791 KKASSERT(m->flags & PG_BUSY); 1792 if ((m->flags & PG_FICTITIOUS) == 0) { 1793 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) { 1794 if ((m->flags & PG_UNMANAGED) == 0) 1795 vm_page_unqueue(m); 1796 atomic_add_int(&vmstats.v_wire_count, 1); 1797 } 1798 KASSERT(m->wire_count != 0, 1799 ("vm_page_wire: wire_count overflow m=%p", m)); 1800 } 1801 } 1802 1803 /* 1804 * Release one wiring of this page, potentially enabling it to be paged again. 1805 * 1806 * Many pages placed on the inactive queue should actually go 1807 * into the cache, but it is difficult to figure out which. What 1808 * we do instead, if the inactive target is well met, is to put 1809 * clean pages at the head of the inactive queue instead of the tail. 1810 * This will cause them to be moved to the cache more quickly and 1811 * if not actively re-referenced, freed more quickly. If we just 1812 * stick these pages at the end of the inactive queue, heavy filesystem 1813 * meta-data accesses can cause an unnecessary paging load on memory bound 1814 * processes. This optimization causes one-time-use metadata to be 1815 * reused more quickly. 1816 * 1817 * BUT, if we are in a low-memory situation we have no choice but to 1818 * put clean pages on the cache queue. 1819 * 1820 * A number of routines use vm_page_unwire() to guarantee that the page 1821 * will go into either the inactive or active queues, and will NEVER 1822 * be placed in the cache - for example, just after dirtying a page. 1823 * dirty pages in the cache are not allowed. 1824 * 1825 * The page queues must be locked. 1826 * This routine may not block. 1827 */ 1828 void 1829 vm_page_unwire(vm_page_t m, int activate) 1830 { 1831 KKASSERT(m->flags & PG_BUSY); 1832 if (m->flags & PG_FICTITIOUS) { 1833 /* do nothing */ 1834 } else if (m->wire_count <= 0) { 1835 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1836 } else { 1837 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) { 1838 atomic_add_int(&vmstats.v_wire_count, -1); 1839 if (m->flags & PG_UNMANAGED) { 1840 ; 1841 } else if (activate) { 1842 vm_page_spin_lock(m); 1843 _vm_page_add_queue_spinlocked(m, 1844 PQ_ACTIVE + m->pc, 0); 1845 _vm_page_and_queue_spin_unlock(m); 1846 } else { 1847 vm_page_spin_lock(m); 1848 vm_page_flag_clear(m, PG_WINATCFLS); 1849 _vm_page_add_queue_spinlocked(m, 1850 PQ_INACTIVE + m->pc, 0); 1851 ++vm_swapcache_inactive_heuristic; 1852 _vm_page_and_queue_spin_unlock(m); 1853 } 1854 } 1855 } 1856 } 1857 1858 /* 1859 * Move the specified page to the inactive queue. If the page has 1860 * any associated swap, the swap is deallocated. 1861 * 1862 * Normally athead is 0 resulting in LRU operation. athead is set 1863 * to 1 if we want this page to be 'as if it were placed in the cache', 1864 * except without unmapping it from the process address space. 1865 * 1866 * vm_page's spinlock must be held on entry and will remain held on return. 1867 * This routine may not block. 1868 */ 1869 static void 1870 _vm_page_deactivate_locked(vm_page_t m, int athead) 1871 { 1872 u_short oqueue; 1873 1874 /* 1875 * Ignore if already inactive. 1876 */ 1877 if (m->queue - m->pc == PQ_INACTIVE) 1878 return; 1879 _vm_page_queue_spin_lock(m); 1880 oqueue = _vm_page_rem_queue_spinlocked(m); 1881 1882 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1883 if (oqueue == PQ_CACHE) 1884 mycpu->gd_cnt.v_reactivated++; 1885 vm_page_flag_clear(m, PG_WINATCFLS); 1886 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead); 1887 if (athead == 0) 1888 ++vm_swapcache_inactive_heuristic; 1889 } 1890 _vm_page_queue_spin_unlock(m); 1891 /* leaves vm_page spinlocked */ 1892 } 1893 1894 /* 1895 * Attempt to deactivate a page. 1896 * 1897 * No requirements. 1898 */ 1899 void 1900 vm_page_deactivate(vm_page_t m) 1901 { 1902 vm_page_spin_lock(m); 1903 _vm_page_deactivate_locked(m, 0); 1904 vm_page_spin_unlock(m); 1905 } 1906 1907 void 1908 vm_page_deactivate_locked(vm_page_t m) 1909 { 1910 _vm_page_deactivate_locked(m, 0); 1911 } 1912 1913 /* 1914 * Attempt to move a page to PQ_CACHE. 1915 * 1916 * Returns 0 on failure, 1 on success 1917 * 1918 * The page should NOT be busied by the caller. This function will validate 1919 * whether the page can be safely moved to the cache. 1920 */ 1921 int 1922 vm_page_try_to_cache(vm_page_t m) 1923 { 1924 vm_page_spin_lock(m); 1925 if (vm_page_busy_try(m, TRUE)) { 1926 vm_page_spin_unlock(m); 1927 return(0); 1928 } 1929 if (m->dirty || m->hold_count || m->wire_count || 1930 (m->flags & PG_UNMANAGED)) { 1931 if (_vm_page_wakeup(m)) { 1932 vm_page_spin_unlock(m); 1933 wakeup(m); 1934 } else { 1935 vm_page_spin_unlock(m); 1936 } 1937 return(0); 1938 } 1939 vm_page_spin_unlock(m); 1940 1941 /* 1942 * Page busied by us and no longer spinlocked. Dirty pages cannot 1943 * be moved to the cache. 1944 */ 1945 vm_page_test_dirty(m); 1946 if (m->dirty) { 1947 vm_page_wakeup(m); 1948 return(0); 1949 } 1950 vm_page_cache(m); 1951 return(1); 1952 } 1953 1954 /* 1955 * Attempt to free the page. If we cannot free it, we do nothing. 1956 * 1 is returned on success, 0 on failure. 1957 * 1958 * No requirements. 1959 */ 1960 int 1961 vm_page_try_to_free(vm_page_t m) 1962 { 1963 vm_page_spin_lock(m); 1964 if (vm_page_busy_try(m, TRUE)) { 1965 vm_page_spin_unlock(m); 1966 return(0); 1967 } 1968 if (m->dirty || m->hold_count || m->wire_count || 1969 (m->flags & PG_UNMANAGED)) { 1970 if (_vm_page_wakeup(m)) { 1971 vm_page_spin_unlock(m); 1972 wakeup(m); 1973 } else { 1974 vm_page_spin_unlock(m); 1975 } 1976 return(0); 1977 } 1978 vm_page_spin_unlock(m); 1979 1980 /* 1981 * Page busied by us and no longer spinlocked. Dirty pages will 1982 * not be freed by this function. We have to re-test the 1983 * dirty bit after cleaning out the pmaps. 1984 */ 1985 vm_page_test_dirty(m); 1986 if (m->dirty) { 1987 vm_page_wakeup(m); 1988 return(0); 1989 } 1990 vm_page_protect(m, VM_PROT_NONE); 1991 if (m->dirty) { 1992 vm_page_wakeup(m); 1993 return(0); 1994 } 1995 vm_page_free(m); 1996 return(1); 1997 } 1998 1999 /* 2000 * vm_page_cache 2001 * 2002 * Put the specified page onto the page cache queue (if appropriate). 2003 * 2004 * The page must be busy, and this routine will release the busy and 2005 * possibly even free the page. 2006 */ 2007 void 2008 vm_page_cache(vm_page_t m) 2009 { 2010 if ((m->flags & PG_UNMANAGED) || m->busy || 2011 m->wire_count || m->hold_count) { 2012 kprintf("vm_page_cache: attempting to cache busy/held page\n"); 2013 vm_page_wakeup(m); 2014 return; 2015 } 2016 2017 /* 2018 * Already in the cache (and thus not mapped) 2019 */ 2020 if ((m->queue - m->pc) == PQ_CACHE) { 2021 KKASSERT((m->flags & PG_MAPPED) == 0); 2022 vm_page_wakeup(m); 2023 return; 2024 } 2025 2026 /* 2027 * Caller is required to test m->dirty, but note that the act of 2028 * removing the page from its maps can cause it to become dirty 2029 * on an SMP system due to another cpu running in usermode. 2030 */ 2031 if (m->dirty) { 2032 panic("vm_page_cache: caching a dirty page, pindex: %ld", 2033 (long)m->pindex); 2034 } 2035 2036 /* 2037 * Remove all pmaps and indicate that the page is not 2038 * writeable or mapped. Our vm_page_protect() call may 2039 * have blocked (especially w/ VM_PROT_NONE), so recheck 2040 * everything. 2041 */ 2042 vm_page_protect(m, VM_PROT_NONE); 2043 if ((m->flags & (PG_UNMANAGED|PG_MAPPED)) || m->busy || 2044 m->wire_count || m->hold_count) { 2045 vm_page_wakeup(m); 2046 } else if (m->dirty) { 2047 vm_page_deactivate(m); 2048 vm_page_wakeup(m); 2049 } else { 2050 _vm_page_and_queue_spin_lock(m); 2051 _vm_page_rem_queue_spinlocked(m); 2052 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0); 2053 _vm_page_queue_spin_unlock(m); 2054 if (_vm_page_wakeup(m)) { 2055 vm_page_spin_unlock(m); 2056 wakeup(m); 2057 } else { 2058 vm_page_spin_unlock(m); 2059 } 2060 vm_page_free_wakeup(); 2061 } 2062 } 2063 2064 /* 2065 * vm_page_dontneed() 2066 * 2067 * Cache, deactivate, or do nothing as appropriate. This routine 2068 * is typically used by madvise() MADV_DONTNEED. 2069 * 2070 * Generally speaking we want to move the page into the cache so 2071 * it gets reused quickly. However, this can result in a silly syndrome 2072 * due to the page recycling too quickly. Small objects will not be 2073 * fully cached. On the otherhand, if we move the page to the inactive 2074 * queue we wind up with a problem whereby very large objects 2075 * unnecessarily blow away our inactive and cache queues. 2076 * 2077 * The solution is to move the pages based on a fixed weighting. We 2078 * either leave them alone, deactivate them, or move them to the cache, 2079 * where moving them to the cache has the highest weighting. 2080 * By forcing some pages into other queues we eventually force the 2081 * system to balance the queues, potentially recovering other unrelated 2082 * space from active. The idea is to not force this to happen too 2083 * often. 2084 * 2085 * The page must be busied. 2086 */ 2087 void 2088 vm_page_dontneed(vm_page_t m) 2089 { 2090 static int dnweight; 2091 int dnw; 2092 int head; 2093 2094 dnw = ++dnweight; 2095 2096 /* 2097 * occassionally leave the page alone 2098 */ 2099 if ((dnw & 0x01F0) == 0 || 2100 m->queue - m->pc == PQ_INACTIVE || 2101 m->queue - m->pc == PQ_CACHE 2102 ) { 2103 if (m->act_count >= ACT_INIT) 2104 --m->act_count; 2105 return; 2106 } 2107 2108 /* 2109 * If vm_page_dontneed() is inactivating a page, it must clear 2110 * the referenced flag; otherwise the pagedaemon will see references 2111 * on the page in the inactive queue and reactivate it. Until the 2112 * page can move to the cache queue, madvise's job is not done. 2113 */ 2114 vm_page_flag_clear(m, PG_REFERENCED); 2115 pmap_clear_reference(m); 2116 2117 if (m->dirty == 0) 2118 vm_page_test_dirty(m); 2119 2120 if (m->dirty || (dnw & 0x0070) == 0) { 2121 /* 2122 * Deactivate the page 3 times out of 32. 2123 */ 2124 head = 0; 2125 } else { 2126 /* 2127 * Cache the page 28 times out of every 32. Note that 2128 * the page is deactivated instead of cached, but placed 2129 * at the head of the queue instead of the tail. 2130 */ 2131 head = 1; 2132 } 2133 vm_page_spin_lock(m); 2134 _vm_page_deactivate_locked(m, head); 2135 vm_page_spin_unlock(m); 2136 } 2137 2138 /* 2139 * These routines manipulate the 'soft busy' count for a page. A soft busy 2140 * is almost like PG_BUSY except that it allows certain compatible operations 2141 * to occur on the page while it is busy. For example, a page undergoing a 2142 * write can still be mapped read-only. 2143 * 2144 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only 2145 * adjusted while the vm_page is PG_BUSY so the flash will occur when the 2146 * busy bit is cleared. 2147 */ 2148 void 2149 vm_page_io_start(vm_page_t m) 2150 { 2151 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!")); 2152 atomic_add_char(&m->busy, 1); 2153 vm_page_flag_set(m, PG_SBUSY); 2154 } 2155 2156 void 2157 vm_page_io_finish(vm_page_t m) 2158 { 2159 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!")); 2160 atomic_subtract_char(&m->busy, 1); 2161 if (m->busy == 0) 2162 vm_page_flag_clear(m, PG_SBUSY); 2163 } 2164 2165 /* 2166 * Grab a page, blocking if it is busy and allocating a page if necessary. 2167 * A busy page is returned or NULL. The page may or may not be valid and 2168 * might not be on a queue (the caller is responsible for the disposition of 2169 * the page). 2170 * 2171 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the 2172 * page will be zero'd and marked valid. 2173 * 2174 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked 2175 * valid even if it already exists. 2176 * 2177 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also 2178 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified. 2179 * 2180 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 2181 * always returned if we had blocked. 2182 * 2183 * This routine may not be called from an interrupt. 2184 * 2185 * PG_ZERO is *ALWAYS* cleared by this routine. 2186 * 2187 * No other requirements. 2188 */ 2189 vm_page_t 2190 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2191 { 2192 vm_page_t m; 2193 int error; 2194 2195 KKASSERT(allocflags & 2196 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 2197 vm_object_hold(object); 2198 for (;;) { 2199 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 2200 if (error) { 2201 vm_page_sleep_busy(m, TRUE, "pgrbwt"); 2202 if ((allocflags & VM_ALLOC_RETRY) == 0) { 2203 m = NULL; 2204 break; 2205 } 2206 /* retry */ 2207 } else if (m == NULL) { 2208 m = vm_page_alloc(object, pindex, 2209 allocflags & ~VM_ALLOC_RETRY); 2210 if (m) 2211 break; 2212 vm_wait(0); 2213 if ((allocflags & VM_ALLOC_RETRY) == 0) 2214 goto failed; 2215 } else { 2216 /* m found */ 2217 break; 2218 } 2219 } 2220 2221 /* 2222 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid. 2223 * 2224 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set 2225 * valid even if already valid. 2226 */ 2227 if (m->valid == 0) { 2228 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) { 2229 if ((m->flags & PG_ZERO) == 0) 2230 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2231 m->valid = VM_PAGE_BITS_ALL; 2232 } 2233 } else if (allocflags & VM_ALLOC_FORCE_ZERO) { 2234 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2235 m->valid = VM_PAGE_BITS_ALL; 2236 } 2237 vm_page_flag_clear(m, PG_ZERO); 2238 failed: 2239 vm_object_drop(object); 2240 return(m); 2241 } 2242 2243 /* 2244 * Mapping function for valid bits or for dirty bits in 2245 * a page. May not block. 2246 * 2247 * Inputs are required to range within a page. 2248 * 2249 * No requirements. 2250 * Non blocking. 2251 */ 2252 int 2253 vm_page_bits(int base, int size) 2254 { 2255 int first_bit; 2256 int last_bit; 2257 2258 KASSERT( 2259 base + size <= PAGE_SIZE, 2260 ("vm_page_bits: illegal base/size %d/%d", base, size) 2261 ); 2262 2263 if (size == 0) /* handle degenerate case */ 2264 return(0); 2265 2266 first_bit = base >> DEV_BSHIFT; 2267 last_bit = (base + size - 1) >> DEV_BSHIFT; 2268 2269 return ((2 << last_bit) - (1 << first_bit)); 2270 } 2271 2272 /* 2273 * Sets portions of a page valid and clean. The arguments are expected 2274 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2275 * of any partial chunks touched by the range. The invalid portion of 2276 * such chunks will be zero'd. 2277 * 2278 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically 2279 * align base to DEV_BSIZE so as not to mark clean a partially 2280 * truncated device block. Otherwise the dirty page status might be 2281 * lost. 2282 * 2283 * This routine may not block. 2284 * 2285 * (base + size) must be less then or equal to PAGE_SIZE. 2286 */ 2287 static void 2288 _vm_page_zero_valid(vm_page_t m, int base, int size) 2289 { 2290 int frag; 2291 int endoff; 2292 2293 if (size == 0) /* handle degenerate case */ 2294 return; 2295 2296 /* 2297 * If the base is not DEV_BSIZE aligned and the valid 2298 * bit is clear, we have to zero out a portion of the 2299 * first block. 2300 */ 2301 2302 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2303 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 2304 ) { 2305 pmap_zero_page_area( 2306 VM_PAGE_TO_PHYS(m), 2307 frag, 2308 base - frag 2309 ); 2310 } 2311 2312 /* 2313 * If the ending offset is not DEV_BSIZE aligned and the 2314 * valid bit is clear, we have to zero out a portion of 2315 * the last block. 2316 */ 2317 2318 endoff = base + size; 2319 2320 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2321 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 2322 ) { 2323 pmap_zero_page_area( 2324 VM_PAGE_TO_PHYS(m), 2325 endoff, 2326 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 2327 ); 2328 } 2329 } 2330 2331 /* 2332 * Set valid, clear dirty bits. If validating the entire 2333 * page we can safely clear the pmap modify bit. We also 2334 * use this opportunity to clear the PG_NOSYNC flag. If a process 2335 * takes a write fault on a MAP_NOSYNC memory area the flag will 2336 * be set again. 2337 * 2338 * We set valid bits inclusive of any overlap, but we can only 2339 * clear dirty bits for DEV_BSIZE chunks that are fully within 2340 * the range. 2341 * 2342 * Page must be busied? 2343 * No other requirements. 2344 */ 2345 void 2346 vm_page_set_valid(vm_page_t m, int base, int size) 2347 { 2348 _vm_page_zero_valid(m, base, size); 2349 m->valid |= vm_page_bits(base, size); 2350 } 2351 2352 2353 /* 2354 * Set valid bits and clear dirty bits. 2355 * 2356 * NOTE: This function does not clear the pmap modified bit. 2357 * Also note that e.g. NFS may use a byte-granular base 2358 * and size. 2359 * 2360 * WARNING: Page must be busied? But vfs_clean_one_page() will call 2361 * this without necessarily busying the page (via bdwrite()). 2362 * So for now vm_token must also be held. 2363 * 2364 * No other requirements. 2365 */ 2366 void 2367 vm_page_set_validclean(vm_page_t m, int base, int size) 2368 { 2369 int pagebits; 2370 2371 _vm_page_zero_valid(m, base, size); 2372 pagebits = vm_page_bits(base, size); 2373 m->valid |= pagebits; 2374 m->dirty &= ~pagebits; 2375 if (base == 0 && size == PAGE_SIZE) { 2376 /*pmap_clear_modify(m);*/ 2377 vm_page_flag_clear(m, PG_NOSYNC); 2378 } 2379 } 2380 2381 /* 2382 * Set valid & dirty. Used by buwrite() 2383 * 2384 * WARNING: Page must be busied? But vfs_dirty_one_page() will 2385 * call this function in buwrite() so for now vm_token must 2386 * be held. 2387 * 2388 * No other requirements. 2389 */ 2390 void 2391 vm_page_set_validdirty(vm_page_t m, int base, int size) 2392 { 2393 int pagebits; 2394 2395 pagebits = vm_page_bits(base, size); 2396 m->valid |= pagebits; 2397 m->dirty |= pagebits; 2398 if (m->object) 2399 vm_object_set_writeable_dirty(m->object); 2400 } 2401 2402 /* 2403 * Clear dirty bits. 2404 * 2405 * NOTE: This function does not clear the pmap modified bit. 2406 * Also note that e.g. NFS may use a byte-granular base 2407 * and size. 2408 * 2409 * Page must be busied? 2410 * No other requirements. 2411 */ 2412 void 2413 vm_page_clear_dirty(vm_page_t m, int base, int size) 2414 { 2415 m->dirty &= ~vm_page_bits(base, size); 2416 if (base == 0 && size == PAGE_SIZE) { 2417 /*pmap_clear_modify(m);*/ 2418 vm_page_flag_clear(m, PG_NOSYNC); 2419 } 2420 } 2421 2422 /* 2423 * Make the page all-dirty. 2424 * 2425 * Also make sure the related object and vnode reflect the fact that the 2426 * object may now contain a dirty page. 2427 * 2428 * Page must be busied? 2429 * No other requirements. 2430 */ 2431 void 2432 vm_page_dirty(vm_page_t m) 2433 { 2434 #ifdef INVARIANTS 2435 int pqtype = m->queue - m->pc; 2436 #endif 2437 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 2438 ("vm_page_dirty: page in free/cache queue!")); 2439 if (m->dirty != VM_PAGE_BITS_ALL) { 2440 m->dirty = VM_PAGE_BITS_ALL; 2441 if (m->object) 2442 vm_object_set_writeable_dirty(m->object); 2443 } 2444 } 2445 2446 /* 2447 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2448 * valid and dirty bits for the effected areas are cleared. 2449 * 2450 * Page must be busied? 2451 * Does not block. 2452 * No other requirements. 2453 */ 2454 void 2455 vm_page_set_invalid(vm_page_t m, int base, int size) 2456 { 2457 int bits; 2458 2459 bits = vm_page_bits(base, size); 2460 m->valid &= ~bits; 2461 m->dirty &= ~bits; 2462 m->object->generation++; 2463 } 2464 2465 /* 2466 * The kernel assumes that the invalid portions of a page contain 2467 * garbage, but such pages can be mapped into memory by user code. 2468 * When this occurs, we must zero out the non-valid portions of the 2469 * page so user code sees what it expects. 2470 * 2471 * Pages are most often semi-valid when the end of a file is mapped 2472 * into memory and the file's size is not page aligned. 2473 * 2474 * Page must be busied? 2475 * No other requirements. 2476 */ 2477 void 2478 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2479 { 2480 int b; 2481 int i; 2482 2483 /* 2484 * Scan the valid bits looking for invalid sections that 2485 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2486 * valid bit may be set ) have already been zerod by 2487 * vm_page_set_validclean(). 2488 */ 2489 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2490 if (i == (PAGE_SIZE / DEV_BSIZE) || 2491 (m->valid & (1 << i)) 2492 ) { 2493 if (i > b) { 2494 pmap_zero_page_area( 2495 VM_PAGE_TO_PHYS(m), 2496 b << DEV_BSHIFT, 2497 (i - b) << DEV_BSHIFT 2498 ); 2499 } 2500 b = i + 1; 2501 } 2502 } 2503 2504 /* 2505 * setvalid is TRUE when we can safely set the zero'd areas 2506 * as being valid. We can do this if there are no cache consistency 2507 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2508 */ 2509 if (setvalid) 2510 m->valid = VM_PAGE_BITS_ALL; 2511 } 2512 2513 /* 2514 * Is a (partial) page valid? Note that the case where size == 0 2515 * will return FALSE in the degenerate case where the page is entirely 2516 * invalid, and TRUE otherwise. 2517 * 2518 * Does not block. 2519 * No other requirements. 2520 */ 2521 int 2522 vm_page_is_valid(vm_page_t m, int base, int size) 2523 { 2524 int bits = vm_page_bits(base, size); 2525 2526 if (m->valid && ((m->valid & bits) == bits)) 2527 return 1; 2528 else 2529 return 0; 2530 } 2531 2532 /* 2533 * update dirty bits from pmap/mmu. May not block. 2534 * 2535 * Caller must hold the page busy 2536 */ 2537 void 2538 vm_page_test_dirty(vm_page_t m) 2539 { 2540 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 2541 vm_page_dirty(m); 2542 } 2543 } 2544 2545 /* 2546 * Register an action, associating it with its vm_page 2547 */ 2548 void 2549 vm_page_register_action(vm_page_action_t action, vm_page_event_t event) 2550 { 2551 struct vm_page_action_list *list; 2552 int hv; 2553 2554 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2555 list = &action_list[hv]; 2556 2557 lwkt_gettoken(&vm_token); 2558 vm_page_flag_set(action->m, PG_ACTIONLIST); 2559 action->event = event; 2560 LIST_INSERT_HEAD(list, action, entry); 2561 lwkt_reltoken(&vm_token); 2562 } 2563 2564 /* 2565 * Unregister an action, disassociating it from its related vm_page 2566 */ 2567 void 2568 vm_page_unregister_action(vm_page_action_t action) 2569 { 2570 struct vm_page_action_list *list; 2571 int hv; 2572 2573 lwkt_gettoken(&vm_token); 2574 if (action->event != VMEVENT_NONE) { 2575 action->event = VMEVENT_NONE; 2576 LIST_REMOVE(action, entry); 2577 2578 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2579 list = &action_list[hv]; 2580 if (LIST_EMPTY(list)) 2581 vm_page_flag_clear(action->m, PG_ACTIONLIST); 2582 } 2583 lwkt_reltoken(&vm_token); 2584 } 2585 2586 /* 2587 * Issue an event on a VM page. Corresponding action structures are 2588 * removed from the page's list and called. 2589 * 2590 * If the vm_page has no more pending action events we clear its 2591 * PG_ACTIONLIST flag. 2592 */ 2593 void 2594 vm_page_event_internal(vm_page_t m, vm_page_event_t event) 2595 { 2596 struct vm_page_action_list *list; 2597 struct vm_page_action *scan; 2598 struct vm_page_action *next; 2599 int hv; 2600 int all; 2601 2602 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK; 2603 list = &action_list[hv]; 2604 all = 1; 2605 2606 lwkt_gettoken(&vm_token); 2607 LIST_FOREACH_MUTABLE(scan, list, entry, next) { 2608 if (scan->m == m) { 2609 if (scan->event == event) { 2610 scan->event = VMEVENT_NONE; 2611 LIST_REMOVE(scan, entry); 2612 scan->func(m, scan); 2613 /* XXX */ 2614 } else { 2615 all = 0; 2616 } 2617 } 2618 } 2619 if (all) 2620 vm_page_flag_clear(m, PG_ACTIONLIST); 2621 lwkt_reltoken(&vm_token); 2622 } 2623 2624 #include "opt_ddb.h" 2625 #ifdef DDB 2626 #include <sys/kernel.h> 2627 2628 #include <ddb/ddb.h> 2629 2630 DB_SHOW_COMMAND(page, vm_page_print_page_info) 2631 { 2632 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count); 2633 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count); 2634 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count); 2635 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count); 2636 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count); 2637 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved); 2638 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min); 2639 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target); 2640 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min); 2641 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target); 2642 } 2643 2644 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 2645 { 2646 int i; 2647 db_printf("PQ_FREE:"); 2648 for(i=0;i<PQ_L2_SIZE;i++) { 2649 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 2650 } 2651 db_printf("\n"); 2652 2653 db_printf("PQ_CACHE:"); 2654 for(i=0;i<PQ_L2_SIZE;i++) { 2655 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 2656 } 2657 db_printf("\n"); 2658 2659 db_printf("PQ_ACTIVE:"); 2660 for(i=0;i<PQ_L2_SIZE;i++) { 2661 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt); 2662 } 2663 db_printf("\n"); 2664 2665 db_printf("PQ_INACTIVE:"); 2666 for(i=0;i<PQ_L2_SIZE;i++) { 2667 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt); 2668 } 2669 db_printf("\n"); 2670 } 2671 #endif /* DDB */ 2672