1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 36 */ 37 38 /* 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 /* 65 * Resident memory management module. The module manipulates 'VM pages'. 66 * A VM page is the core building block for memory management. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/vnode.h> 75 #include <sys/kernel.h> 76 #include <sys/alist.h> 77 #include <sys/sysctl.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <sys/lock.h> 82 #include <vm/vm_kern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_extern.h> 90 #include <vm/swap_pager.h> 91 92 #include <machine/inttypes.h> 93 #include <machine/md_var.h> 94 95 #include <vm/vm_page2.h> 96 #include <sys/spinlock2.h> 97 98 #define VMACTION_HSIZE 256 99 #define VMACTION_HMASK (VMACTION_HSIZE - 1) 100 101 static void vm_page_queue_init(void); 102 static void vm_page_free_wakeup(void); 103 static vm_page_t vm_page_select_cache(u_short pg_color); 104 static vm_page_t _vm_page_list_find2(int basequeue, int index); 105 static void _vm_page_deactivate_locked(vm_page_t m, int athead); 106 107 /* 108 * Array of tailq lists 109 */ 110 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT]; 111 112 LIST_HEAD(vm_page_action_list, vm_page_action); 113 struct vm_page_action_list action_list[VMACTION_HSIZE]; 114 static volatile int vm_pages_waiting; 115 116 static struct alist vm_contig_alist; 117 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536]; 118 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin); 119 120 static u_long vm_dma_reserved = 0; 121 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved); 122 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0, 123 "Memory reserved for DMA"); 124 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD, 125 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA"); 126 127 static int vm_contig_verbose = 0; 128 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose); 129 130 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 131 vm_pindex_t, pindex); 132 133 static void 134 vm_page_queue_init(void) 135 { 136 int i; 137 138 for (i = 0; i < PQ_L2_SIZE; i++) 139 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count; 140 for (i = 0; i < PQ_L2_SIZE; i++) 141 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count; 142 for (i = 0; i < PQ_L2_SIZE; i++) 143 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count; 144 for (i = 0; i < PQ_L2_SIZE; i++) 145 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count; 146 for (i = 0; i < PQ_L2_SIZE; i++) 147 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count; 148 /* PQ_NONE has no queue */ 149 150 for (i = 0; i < PQ_COUNT; i++) { 151 TAILQ_INIT(&vm_page_queues[i].pl); 152 spin_init(&vm_page_queues[i].spin); 153 } 154 155 for (i = 0; i < VMACTION_HSIZE; i++) 156 LIST_INIT(&action_list[i]); 157 } 158 159 /* 160 * note: place in initialized data section? Is this necessary? 161 */ 162 long first_page = 0; 163 int vm_page_array_size = 0; 164 int vm_page_zero_count = 0; 165 vm_page_t vm_page_array = NULL; 166 vm_paddr_t vm_low_phys_reserved; 167 168 /* 169 * (low level boot) 170 * 171 * Sets the page size, perhaps based upon the memory size. 172 * Must be called before any use of page-size dependent functions. 173 */ 174 void 175 vm_set_page_size(void) 176 { 177 if (vmstats.v_page_size == 0) 178 vmstats.v_page_size = PAGE_SIZE; 179 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 180 panic("vm_set_page_size: page size not a power of two"); 181 } 182 183 /* 184 * (low level boot) 185 * 186 * Add a new page to the freelist for use by the system. New pages 187 * are added to both the head and tail of the associated free page 188 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 189 * requests pull 'recent' adds (higher physical addresses) first. 190 * 191 * Beware that the page zeroing daemon will also be running soon after 192 * boot, moving pages from the head to the tail of the PQ_FREE queues. 193 * 194 * Must be called in a critical section. 195 */ 196 static void 197 vm_add_new_page(vm_paddr_t pa) 198 { 199 struct vpgqueues *vpq; 200 vm_page_t m; 201 202 m = PHYS_TO_VM_PAGE(pa); 203 m->phys_addr = pa; 204 m->flags = 0; 205 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK; 206 /* 207 * Twist for cpu localization in addition to page coloring, so 208 * different cpus selecting by m->queue get different page colors. 209 */ 210 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK; 211 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK; 212 /* 213 * Reserve a certain number of contiguous low memory pages for 214 * contigmalloc() to use. 215 */ 216 if (pa < vm_low_phys_reserved) { 217 atomic_add_int(&vmstats.v_page_count, 1); 218 atomic_add_int(&vmstats.v_dma_pages, 1); 219 m->queue = PQ_NONE; 220 m->wire_count = 1; 221 atomic_add_int(&vmstats.v_wire_count, 1); 222 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1); 223 return; 224 } 225 226 /* 227 * General page 228 */ 229 m->queue = m->pc + PQ_FREE; 230 KKASSERT(m->dirty == 0); 231 232 atomic_add_int(&vmstats.v_page_count, 1); 233 atomic_add_int(&vmstats.v_free_count, 1); 234 vpq = &vm_page_queues[m->queue]; 235 if ((vpq->flipflop & 15) == 0) { 236 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 237 m->flags |= PG_ZERO; 238 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 239 atomic_add_int(&vm_page_zero_count, 1); 240 } else { 241 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 242 } 243 ++vpq->flipflop; 244 ++vpq->lcnt; 245 } 246 247 /* 248 * (low level boot) 249 * 250 * Initializes the resident memory module. 251 * 252 * Preallocates memory for critical VM structures and arrays prior to 253 * kernel_map becoming available. 254 * 255 * Memory is allocated from (virtual2_start, virtual2_end) if available, 256 * otherwise memory is allocated from (virtual_start, virtual_end). 257 * 258 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be 259 * large enough to hold vm_page_array & other structures for machines with 260 * large amounts of ram, so we want to use virtual2* when available. 261 */ 262 void 263 vm_page_startup(void) 264 { 265 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start; 266 vm_offset_t mapped; 267 vm_size_t npages; 268 vm_paddr_t page_range; 269 vm_paddr_t new_end; 270 int i; 271 vm_paddr_t pa; 272 int nblocks; 273 vm_paddr_t last_pa; 274 vm_paddr_t end; 275 vm_paddr_t biggestone, biggestsize; 276 vm_paddr_t total; 277 278 total = 0; 279 biggestsize = 0; 280 biggestone = 0; 281 nblocks = 0; 282 vaddr = round_page(vaddr); 283 284 for (i = 0; phys_avail[i + 1]; i += 2) { 285 phys_avail[i] = round_page64(phys_avail[i]); 286 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]); 287 } 288 289 for (i = 0; phys_avail[i + 1]; i += 2) { 290 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 291 292 if (size > biggestsize) { 293 biggestone = i; 294 biggestsize = size; 295 } 296 ++nblocks; 297 total += size; 298 } 299 300 end = phys_avail[biggestone+1]; 301 end = trunc_page(end); 302 303 /* 304 * Initialize the queue headers for the free queue, the active queue 305 * and the inactive queue. 306 */ 307 vm_page_queue_init(); 308 309 #if !defined(_KERNEL_VIRTUAL) 310 /* 311 * VKERNELs don't support minidumps and as such don't need 312 * vm_page_dump 313 * 314 * Allocate a bitmap to indicate that a random physical page 315 * needs to be included in a minidump. 316 * 317 * The amd64 port needs this to indicate which direct map pages 318 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 319 * 320 * However, i386 still needs this workspace internally within the 321 * minidump code. In theory, they are not needed on i386, but are 322 * included should the sf_buf code decide to use them. 323 */ 324 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 325 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 326 end -= vm_page_dump_size; 327 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size, 328 VM_PROT_READ | VM_PROT_WRITE); 329 bzero((void *)vm_page_dump, vm_page_dump_size); 330 #endif 331 /* 332 * Compute the number of pages of memory that will be available for 333 * use (taking into account the overhead of a page structure per 334 * page). 335 */ 336 first_page = phys_avail[0] / PAGE_SIZE; 337 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 338 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 339 340 #ifndef _KERNEL_VIRTUAL 341 /* 342 * (only applies to real kernels) 343 * 344 * Initialize the contiguous reserve map. We initially reserve up 345 * to 1/4 available physical memory or 65536 pages (~256MB), whichever 346 * is lower. 347 * 348 * Once device initialization is complete we return most of the 349 * reserved memory back to the normal page queues but leave some 350 * in reserve for things like usb attachments. 351 */ 352 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT; 353 if (vm_low_phys_reserved > total / 4) 354 vm_low_phys_reserved = total / 4; 355 if (vm_dma_reserved == 0) { 356 vm_dma_reserved = 16 * 1024 * 1024; /* 16MB */ 357 if (vm_dma_reserved > total / 16) 358 vm_dma_reserved = total / 16; 359 } 360 #endif 361 alist_init(&vm_contig_alist, 65536, vm_contig_ameta, 362 ALIST_RECORDS_65536); 363 364 /* 365 * Initialize the mem entry structures now, and put them in the free 366 * queue. 367 */ 368 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 369 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); 370 vm_page_array = (vm_page_t)mapped; 371 372 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL) 373 /* 374 * since pmap_map on amd64 returns stuff out of a direct-map region, 375 * we have to manually add these pages to the minidump tracking so 376 * that they can be dumped, including the vm_page_array. 377 */ 378 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 379 dump_add_page(pa); 380 #endif 381 382 /* 383 * Clear all of the page structures 384 */ 385 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 386 vm_page_array_size = page_range; 387 388 /* 389 * Construct the free queue(s) in ascending order (by physical 390 * address) so that the first 16MB of physical memory is allocated 391 * last rather than first. On large-memory machines, this avoids 392 * the exhaustion of low physical memory before isa_dmainit has run. 393 */ 394 vmstats.v_page_count = 0; 395 vmstats.v_free_count = 0; 396 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 397 pa = phys_avail[i]; 398 if (i == biggestone) 399 last_pa = new_end; 400 else 401 last_pa = phys_avail[i + 1]; 402 while (pa < last_pa && npages-- > 0) { 403 vm_add_new_page(pa); 404 pa += PAGE_SIZE; 405 } 406 } 407 if (virtual2_start) 408 virtual2_start = vaddr; 409 else 410 virtual_start = vaddr; 411 } 412 413 /* 414 * We tended to reserve a ton of memory for contigmalloc(). Now that most 415 * drivers have initialized we want to return most the remaining free 416 * reserve back to the VM page queues so they can be used for normal 417 * allocations. 418 * 419 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool. 420 */ 421 static void 422 vm_page_startup_finish(void *dummy __unused) 423 { 424 alist_blk_t blk; 425 alist_blk_t rblk; 426 alist_blk_t count; 427 alist_blk_t xcount; 428 alist_blk_t bfree; 429 vm_page_t m; 430 431 spin_lock(&vm_contig_spin); 432 for (;;) { 433 bfree = alist_free_info(&vm_contig_alist, &blk, &count); 434 if (bfree <= vm_dma_reserved / PAGE_SIZE) 435 break; 436 if (count == 0) 437 break; 438 439 /* 440 * Figure out how much of the initial reserve we have to 441 * free in order to reach our target. 442 */ 443 bfree -= vm_dma_reserved / PAGE_SIZE; 444 if (count > bfree) { 445 blk += count - bfree; 446 count = bfree; 447 } 448 449 /* 450 * Calculate the nearest power of 2 <= count. 451 */ 452 for (xcount = 1; xcount <= count; xcount <<= 1) 453 ; 454 xcount >>= 1; 455 blk += count - xcount; 456 count = xcount; 457 458 /* 459 * Allocate the pages from the alist, then free them to 460 * the normal VM page queues. 461 * 462 * Pages allocated from the alist are wired. We have to 463 * busy, unwire, and free them. We must also adjust 464 * vm_low_phys_reserved before freeing any pages to prevent 465 * confusion. 466 */ 467 rblk = alist_alloc(&vm_contig_alist, blk, count); 468 if (rblk != blk) { 469 kprintf("vm_page_startup_finish: Unable to return " 470 "dma space @0x%08x/%d -> 0x%08x\n", 471 blk, count, rblk); 472 break; 473 } 474 atomic_add_int(&vmstats.v_dma_pages, -count); 475 spin_unlock(&vm_contig_spin); 476 477 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 478 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m); 479 while (count) { 480 vm_page_busy_wait(m, FALSE, "cpgfr"); 481 vm_page_unwire(m, 0); 482 vm_page_free(m); 483 --count; 484 ++m; 485 } 486 spin_lock(&vm_contig_spin); 487 } 488 spin_unlock(&vm_contig_spin); 489 490 /* 491 * Print out how much DMA space drivers have already allocated and 492 * how much is left over. 493 */ 494 kprintf("DMA space used: %jdk, remaining available: %jdk\n", 495 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) * 496 (PAGE_SIZE / 1024), 497 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024)); 498 } 499 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY, 500 vm_page_startup_finish, NULL) 501 502 503 /* 504 * Scan comparison function for Red-Black tree scans. An inclusive 505 * (start,end) is expected. Other fields are not used. 506 */ 507 int 508 rb_vm_page_scancmp(struct vm_page *p, void *data) 509 { 510 struct rb_vm_page_scan_info *info = data; 511 512 if (p->pindex < info->start_pindex) 513 return(-1); 514 if (p->pindex > info->end_pindex) 515 return(1); 516 return(0); 517 } 518 519 int 520 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 521 { 522 if (p1->pindex < p2->pindex) 523 return(-1); 524 if (p1->pindex > p2->pindex) 525 return(1); 526 return(0); 527 } 528 529 /* 530 * Each page queue has its own spin lock, which is fairly optimal for 531 * allocating and freeing pages at least. 532 * 533 * The caller must hold the vm_page_spin_lock() before locking a vm_page's 534 * queue spinlock via this function. Also note that m->queue cannot change 535 * unless both the page and queue are locked. 536 */ 537 static __inline 538 void 539 _vm_page_queue_spin_lock(vm_page_t m) 540 { 541 u_short queue; 542 543 queue = m->queue; 544 if (queue != PQ_NONE) { 545 spin_lock(&vm_page_queues[queue].spin); 546 KKASSERT(queue == m->queue); 547 } 548 } 549 550 static __inline 551 void 552 _vm_page_queue_spin_unlock(vm_page_t m) 553 { 554 u_short queue; 555 556 queue = m->queue; 557 cpu_ccfence(); 558 if (queue != PQ_NONE) 559 spin_unlock(&vm_page_queues[queue].spin); 560 } 561 562 static __inline 563 void 564 _vm_page_queues_spin_lock(u_short queue) 565 { 566 cpu_ccfence(); 567 if (queue != PQ_NONE) 568 spin_lock(&vm_page_queues[queue].spin); 569 } 570 571 572 static __inline 573 void 574 _vm_page_queues_spin_unlock(u_short queue) 575 { 576 cpu_ccfence(); 577 if (queue != PQ_NONE) 578 spin_unlock(&vm_page_queues[queue].spin); 579 } 580 581 void 582 vm_page_queue_spin_lock(vm_page_t m) 583 { 584 _vm_page_queue_spin_lock(m); 585 } 586 587 void 588 vm_page_queues_spin_lock(u_short queue) 589 { 590 _vm_page_queues_spin_lock(queue); 591 } 592 593 void 594 vm_page_queue_spin_unlock(vm_page_t m) 595 { 596 _vm_page_queue_spin_unlock(m); 597 } 598 599 void 600 vm_page_queues_spin_unlock(u_short queue) 601 { 602 _vm_page_queues_spin_unlock(queue); 603 } 604 605 /* 606 * This locks the specified vm_page and its queue in the proper order 607 * (page first, then queue). The queue may change so the caller must 608 * recheck on return. 609 */ 610 static __inline 611 void 612 _vm_page_and_queue_spin_lock(vm_page_t m) 613 { 614 vm_page_spin_lock(m); 615 _vm_page_queue_spin_lock(m); 616 } 617 618 static __inline 619 void 620 _vm_page_and_queue_spin_unlock(vm_page_t m) 621 { 622 _vm_page_queues_spin_unlock(m->queue); 623 vm_page_spin_unlock(m); 624 } 625 626 void 627 vm_page_and_queue_spin_unlock(vm_page_t m) 628 { 629 _vm_page_and_queue_spin_unlock(m); 630 } 631 632 void 633 vm_page_and_queue_spin_lock(vm_page_t m) 634 { 635 _vm_page_and_queue_spin_lock(m); 636 } 637 638 /* 639 * Helper function removes vm_page from its current queue. 640 * Returns the base queue the page used to be on. 641 * 642 * The vm_page and the queue must be spinlocked. 643 * This function will unlock the queue but leave the page spinlocked. 644 */ 645 static __inline u_short 646 _vm_page_rem_queue_spinlocked(vm_page_t m) 647 { 648 struct vpgqueues *pq; 649 u_short queue; 650 651 queue = m->queue; 652 if (queue != PQ_NONE) { 653 pq = &vm_page_queues[queue]; 654 TAILQ_REMOVE(&pq->pl, m, pageq); 655 atomic_add_int(pq->cnt, -1); 656 pq->lcnt--; 657 m->queue = PQ_NONE; 658 vm_page_queues_spin_unlock(queue); 659 if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO)) 660 atomic_subtract_int(&vm_page_zero_count, 1); 661 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE) 662 return (queue - m->pc); 663 } 664 return queue; 665 } 666 667 /* 668 * Helper function places the vm_page on the specified queue. 669 * 670 * The vm_page must be spinlocked. 671 * This function will return with both the page and the queue locked. 672 */ 673 static __inline void 674 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead) 675 { 676 struct vpgqueues *pq; 677 678 KKASSERT(m->queue == PQ_NONE); 679 680 if (queue != PQ_NONE) { 681 vm_page_queues_spin_lock(queue); 682 pq = &vm_page_queues[queue]; 683 ++pq->lcnt; 684 atomic_add_int(pq->cnt, 1); 685 m->queue = queue; 686 687 /* 688 * Put zero'd pages on the end ( where we look for zero'd pages 689 * first ) and non-zerod pages at the head. 690 */ 691 if (queue - m->pc == PQ_FREE) { 692 if (m->flags & PG_ZERO) { 693 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 694 atomic_add_int(&vm_page_zero_count, 1); 695 } else { 696 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 697 } 698 } else if (athead) { 699 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 700 } else { 701 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 702 } 703 /* leave the queue spinlocked */ 704 } 705 } 706 707 /* 708 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 709 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we 710 * did not. Only one sleep call will be made before returning. 711 * 712 * This function does NOT busy the page and on return the page is not 713 * guaranteed to be available. 714 */ 715 void 716 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 717 { 718 u_int32_t flags; 719 720 for (;;) { 721 flags = m->flags; 722 cpu_ccfence(); 723 724 if ((flags & PG_BUSY) == 0 && 725 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) { 726 break; 727 } 728 tsleep_interlock(m, 0); 729 if (atomic_cmpset_int(&m->flags, flags, 730 flags | PG_WANTED | PG_REFERENCED)) { 731 tsleep(m, PINTERLOCKED, msg, 0); 732 break; 733 } 734 } 735 } 736 737 /* 738 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we 739 * also wait for m->busy to become 0 before setting PG_BUSY. 740 */ 741 void 742 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m, 743 int also_m_busy, const char *msg 744 VM_PAGE_DEBUG_ARGS) 745 { 746 u_int32_t flags; 747 748 for (;;) { 749 flags = m->flags; 750 cpu_ccfence(); 751 if (flags & PG_BUSY) { 752 tsleep_interlock(m, 0); 753 if (atomic_cmpset_int(&m->flags, flags, 754 flags | PG_WANTED | PG_REFERENCED)) { 755 tsleep(m, PINTERLOCKED, msg, 0); 756 } 757 } else if (also_m_busy && (flags & PG_SBUSY)) { 758 tsleep_interlock(m, 0); 759 if (atomic_cmpset_int(&m->flags, flags, 760 flags | PG_WANTED | PG_REFERENCED)) { 761 tsleep(m, PINTERLOCKED, msg, 0); 762 } 763 } else { 764 if (atomic_cmpset_int(&m->flags, flags, 765 flags | PG_BUSY)) { 766 #ifdef VM_PAGE_DEBUG 767 m->busy_func = func; 768 m->busy_line = lineno; 769 #endif 770 break; 771 } 772 } 773 } 774 } 775 776 /* 777 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy 778 * is also 0. 779 * 780 * Returns non-zero on failure. 781 */ 782 int 783 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy 784 VM_PAGE_DEBUG_ARGS) 785 { 786 u_int32_t flags; 787 788 for (;;) { 789 flags = m->flags; 790 cpu_ccfence(); 791 if (flags & PG_BUSY) 792 return TRUE; 793 if (also_m_busy && (flags & PG_SBUSY)) 794 return TRUE; 795 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 796 #ifdef VM_PAGE_DEBUG 797 m->busy_func = func; 798 m->busy_line = lineno; 799 #endif 800 return FALSE; 801 } 802 } 803 } 804 805 /* 806 * Clear the PG_BUSY flag and return non-zero to indicate to the caller 807 * that a wakeup() should be performed. 808 * 809 * The vm_page must be spinlocked and will remain spinlocked on return. 810 * The related queue must NOT be spinlocked (which could deadlock us). 811 * 812 * (inline version) 813 */ 814 static __inline 815 int 816 _vm_page_wakeup(vm_page_t m) 817 { 818 u_int32_t flags; 819 820 for (;;) { 821 flags = m->flags; 822 cpu_ccfence(); 823 if (atomic_cmpset_int(&m->flags, flags, 824 flags & ~(PG_BUSY | PG_WANTED))) { 825 break; 826 } 827 } 828 return(flags & PG_WANTED); 829 } 830 831 /* 832 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This 833 * is typically the last call you make on a page before moving onto 834 * other things. 835 */ 836 void 837 vm_page_wakeup(vm_page_t m) 838 { 839 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 840 vm_page_spin_lock(m); 841 if (_vm_page_wakeup(m)) { 842 vm_page_spin_unlock(m); 843 wakeup(m); 844 } else { 845 vm_page_spin_unlock(m); 846 } 847 } 848 849 /* 850 * Holding a page keeps it from being reused. Other parts of the system 851 * can still disassociate the page from its current object and free it, or 852 * perform read or write I/O on it and/or otherwise manipulate the page, 853 * but if the page is held the VM system will leave the page and its data 854 * intact and not reuse the page for other purposes until the last hold 855 * reference is released. (see vm_page_wire() if you want to prevent the 856 * page from being disassociated from its object too). 857 * 858 * The caller must still validate the contents of the page and, if necessary, 859 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete 860 * before manipulating the page. 861 * 862 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary 863 */ 864 void 865 vm_page_hold(vm_page_t m) 866 { 867 vm_page_spin_lock(m); 868 atomic_add_int(&m->hold_count, 1); 869 if (m->queue - m->pc == PQ_FREE) { 870 _vm_page_queue_spin_lock(m); 871 _vm_page_rem_queue_spinlocked(m); 872 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 873 _vm_page_queue_spin_unlock(m); 874 } 875 vm_page_spin_unlock(m); 876 } 877 878 /* 879 * The opposite of vm_page_hold(). A page can be freed while being held, 880 * which places it on the PQ_HOLD queue. If we are able to busy the page 881 * after the hold count drops to zero we will move the page to the 882 * appropriate PQ_FREE queue by calling vm_page_free_toq(). 883 */ 884 void 885 vm_page_unhold(vm_page_t m) 886 { 887 vm_page_spin_lock(m); 888 atomic_add_int(&m->hold_count, -1); 889 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) { 890 _vm_page_queue_spin_lock(m); 891 _vm_page_rem_queue_spinlocked(m); 892 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 893 _vm_page_queue_spin_unlock(m); 894 } 895 vm_page_spin_unlock(m); 896 } 897 898 /* 899 * Inserts the given vm_page into the object and object list. 900 * 901 * The pagetables are not updated but will presumably fault the page 902 * in if necessary, or if a kernel page the caller will at some point 903 * enter the page into the kernel's pmap. We are not allowed to block 904 * here so we *can't* do this anyway. 905 * 906 * This routine may not block. 907 * This routine must be called with the vm_object held. 908 * This routine must be called with a critical section held. 909 * 910 * This routine returns TRUE if the page was inserted into the object 911 * successfully, and FALSE if the page already exists in the object. 912 */ 913 int 914 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 915 { 916 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object)); 917 if (m->object != NULL) 918 panic("vm_page_insert: already inserted"); 919 920 object->generation++; 921 922 /* 923 * Record the object/offset pair in this page and add the 924 * pv_list_count of the page to the object. 925 * 926 * The vm_page spin lock is required for interactions with the pmap. 927 */ 928 vm_page_spin_lock(m); 929 m->object = object; 930 m->pindex = pindex; 931 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) { 932 m->object = NULL; 933 m->pindex = 0; 934 vm_page_spin_unlock(m); 935 return FALSE; 936 } 937 object->resident_page_count++; 938 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */ 939 vm_page_spin_unlock(m); 940 941 /* 942 * Since we are inserting a new and possibly dirty page, 943 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 944 */ 945 if ((m->valid & m->dirty) || 946 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT))) 947 vm_object_set_writeable_dirty(object); 948 949 /* 950 * Checks for a swap assignment and sets PG_SWAPPED if appropriate. 951 */ 952 swap_pager_page_inserted(m); 953 return TRUE; 954 } 955 956 /* 957 * Removes the given vm_page_t from the (object,index) table 958 * 959 * The underlying pmap entry (if any) is NOT removed here. 960 * This routine may not block. 961 * 962 * The page must be BUSY and will remain BUSY on return. 963 * No other requirements. 964 * 965 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave 966 * it busy. 967 */ 968 void 969 vm_page_remove(vm_page_t m) 970 { 971 vm_object_t object; 972 973 if (m->object == NULL) { 974 return; 975 } 976 977 if ((m->flags & PG_BUSY) == 0) 978 panic("vm_page_remove: page not busy"); 979 980 object = m->object; 981 982 vm_object_hold(object); 983 984 /* 985 * Remove the page from the object and update the object. 986 * 987 * The vm_page spin lock is required for interactions with the pmap. 988 */ 989 vm_page_spin_lock(m); 990 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 991 object->resident_page_count--; 992 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */ 993 m->object = NULL; 994 vm_page_spin_unlock(m); 995 996 object->generation++; 997 998 vm_object_drop(object); 999 } 1000 1001 /* 1002 * Locate and return the page at (object, pindex), or NULL if the 1003 * page could not be found. 1004 * 1005 * The caller must hold the vm_object token. 1006 */ 1007 vm_page_t 1008 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1009 { 1010 vm_page_t m; 1011 1012 /* 1013 * Search the hash table for this object/offset pair 1014 */ 1015 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1016 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1017 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex)); 1018 return(m); 1019 } 1020 1021 vm_page_t 1022 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object, 1023 vm_pindex_t pindex, 1024 int also_m_busy, const char *msg 1025 VM_PAGE_DEBUG_ARGS) 1026 { 1027 u_int32_t flags; 1028 vm_page_t m; 1029 1030 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1031 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1032 while (m) { 1033 KKASSERT(m->object == object && m->pindex == pindex); 1034 flags = m->flags; 1035 cpu_ccfence(); 1036 if (flags & PG_BUSY) { 1037 tsleep_interlock(m, 0); 1038 if (atomic_cmpset_int(&m->flags, flags, 1039 flags | PG_WANTED | PG_REFERENCED)) { 1040 tsleep(m, PINTERLOCKED, msg, 0); 1041 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1042 pindex); 1043 } 1044 } else if (also_m_busy && (flags & PG_SBUSY)) { 1045 tsleep_interlock(m, 0); 1046 if (atomic_cmpset_int(&m->flags, flags, 1047 flags | PG_WANTED | PG_REFERENCED)) { 1048 tsleep(m, PINTERLOCKED, msg, 0); 1049 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1050 pindex); 1051 } 1052 } else if (atomic_cmpset_int(&m->flags, flags, 1053 flags | PG_BUSY)) { 1054 #ifdef VM_PAGE_DEBUG 1055 m->busy_func = func; 1056 m->busy_line = lineno; 1057 #endif 1058 break; 1059 } 1060 } 1061 return m; 1062 } 1063 1064 /* 1065 * Attempt to lookup and busy a page. 1066 * 1067 * Returns NULL if the page could not be found 1068 * 1069 * Returns a vm_page and error == TRUE if the page exists but could not 1070 * be busied. 1071 * 1072 * Returns a vm_page and error == FALSE on success. 1073 */ 1074 vm_page_t 1075 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object, 1076 vm_pindex_t pindex, 1077 int also_m_busy, int *errorp 1078 VM_PAGE_DEBUG_ARGS) 1079 { 1080 u_int32_t flags; 1081 vm_page_t m; 1082 1083 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1084 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1085 *errorp = FALSE; 1086 while (m) { 1087 KKASSERT(m->object == object && m->pindex == pindex); 1088 flags = m->flags; 1089 cpu_ccfence(); 1090 if (flags & PG_BUSY) { 1091 *errorp = TRUE; 1092 break; 1093 } 1094 if (also_m_busy && (flags & PG_SBUSY)) { 1095 *errorp = TRUE; 1096 break; 1097 } 1098 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 1099 #ifdef VM_PAGE_DEBUG 1100 m->busy_func = func; 1101 m->busy_line = lineno; 1102 #endif 1103 break; 1104 } 1105 } 1106 return m; 1107 } 1108 1109 /* 1110 * Caller must hold the related vm_object 1111 */ 1112 vm_page_t 1113 vm_page_next(vm_page_t m) 1114 { 1115 vm_page_t next; 1116 1117 next = vm_page_rb_tree_RB_NEXT(m); 1118 if (next && next->pindex != m->pindex + 1) 1119 next = NULL; 1120 return (next); 1121 } 1122 1123 /* 1124 * vm_page_rename() 1125 * 1126 * Move the given vm_page from its current object to the specified 1127 * target object/offset. The page must be busy and will remain so 1128 * on return. 1129 * 1130 * new_object must be held. 1131 * This routine might block. XXX ? 1132 * 1133 * NOTE: Swap associated with the page must be invalidated by the move. We 1134 * have to do this for several reasons: (1) we aren't freeing the 1135 * page, (2) we are dirtying the page, (3) the VM system is probably 1136 * moving the page from object A to B, and will then later move 1137 * the backing store from A to B and we can't have a conflict. 1138 * 1139 * NOTE: We *always* dirty the page. It is necessary both for the 1140 * fact that we moved it, and because we may be invalidating 1141 * swap. If the page is on the cache, we have to deactivate it 1142 * or vm_page_dirty() will panic. Dirty pages are not allowed 1143 * on the cache. 1144 */ 1145 void 1146 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1147 { 1148 KKASSERT(m->flags & PG_BUSY); 1149 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object)); 1150 if (m->object) { 1151 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object)); 1152 vm_page_remove(m); 1153 } 1154 if (vm_page_insert(m, new_object, new_pindex) == FALSE) { 1155 panic("vm_page_rename: target exists (%p,%"PRIu64")", 1156 new_object, new_pindex); 1157 } 1158 if (m->queue - m->pc == PQ_CACHE) 1159 vm_page_deactivate(m); 1160 vm_page_dirty(m); 1161 } 1162 1163 /* 1164 * vm_page_unqueue() without any wakeup. This routine is used when a page 1165 * is being moved between queues or otherwise is to remain BUSYied by the 1166 * caller. 1167 * 1168 * This routine may not block. 1169 */ 1170 void 1171 vm_page_unqueue_nowakeup(vm_page_t m) 1172 { 1173 vm_page_and_queue_spin_lock(m); 1174 (void)_vm_page_rem_queue_spinlocked(m); 1175 vm_page_spin_unlock(m); 1176 } 1177 1178 /* 1179 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 1180 * if necessary. 1181 * 1182 * This routine may not block. 1183 */ 1184 void 1185 vm_page_unqueue(vm_page_t m) 1186 { 1187 u_short queue; 1188 1189 vm_page_and_queue_spin_lock(m); 1190 queue = _vm_page_rem_queue_spinlocked(m); 1191 if (queue == PQ_FREE || queue == PQ_CACHE) { 1192 vm_page_spin_unlock(m); 1193 pagedaemon_wakeup(); 1194 } else { 1195 vm_page_spin_unlock(m); 1196 } 1197 } 1198 1199 /* 1200 * vm_page_list_find() 1201 * 1202 * Find a page on the specified queue with color optimization. 1203 * 1204 * The page coloring optimization attempts to locate a page that does 1205 * not overload other nearby pages in the object in the cpu's L1 or L2 1206 * caches. We need this optimization because cpu caches tend to be 1207 * physical caches, while object spaces tend to be virtual. 1208 * 1209 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock 1210 * and the algorithm is adjusted to localize allocations on a per-core basis. 1211 * This is done by 'twisting' the colors. 1212 * 1213 * The page is returned spinlocked and removed from its queue (it will 1214 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller 1215 * is responsible for dealing with the busy-page case (usually by 1216 * deactivating the page and looping). 1217 * 1218 * NOTE: This routine is carefully inlined. A non-inlined version 1219 * is available for outside callers but the only critical path is 1220 * from within this source file. 1221 * 1222 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE 1223 * represent stable storage, allowing us to order our locks vm_page 1224 * first, then queue. 1225 */ 1226 static __inline 1227 vm_page_t 1228 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1229 { 1230 vm_page_t m; 1231 1232 for (;;) { 1233 if (prefer_zero) 1234 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist); 1235 else 1236 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl); 1237 if (m == NULL) { 1238 m = _vm_page_list_find2(basequeue, index); 1239 return(m); 1240 } 1241 vm_page_and_queue_spin_lock(m); 1242 if (m->queue == basequeue + index) { 1243 _vm_page_rem_queue_spinlocked(m); 1244 /* vm_page_t spin held, no queue spin */ 1245 break; 1246 } 1247 vm_page_and_queue_spin_unlock(m); 1248 } 1249 return(m); 1250 } 1251 1252 static vm_page_t 1253 _vm_page_list_find2(int basequeue, int index) 1254 { 1255 int i; 1256 vm_page_t m = NULL; 1257 struct vpgqueues *pq; 1258 1259 pq = &vm_page_queues[basequeue]; 1260 1261 /* 1262 * Note that for the first loop, index+i and index-i wind up at the 1263 * same place. Even though this is not totally optimal, we've already 1264 * blown it by missing the cache case so we do not care. 1265 */ 1266 for (i = PQ_L2_SIZE / 2; i > 0; --i) { 1267 for (;;) { 1268 m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl); 1269 if (m) { 1270 _vm_page_and_queue_spin_lock(m); 1271 if (m->queue == 1272 basequeue + ((index + i) & PQ_L2_MASK)) { 1273 _vm_page_rem_queue_spinlocked(m); 1274 return(m); 1275 } 1276 _vm_page_and_queue_spin_unlock(m); 1277 continue; 1278 } 1279 m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl); 1280 if (m) { 1281 _vm_page_and_queue_spin_lock(m); 1282 if (m->queue == 1283 basequeue + ((index - i) & PQ_L2_MASK)) { 1284 _vm_page_rem_queue_spinlocked(m); 1285 return(m); 1286 } 1287 _vm_page_and_queue_spin_unlock(m); 1288 continue; 1289 } 1290 break; /* next i */ 1291 } 1292 } 1293 return(m); 1294 } 1295 1296 /* 1297 * Returns a vm_page candidate for allocation. The page is not busied so 1298 * it can move around. The caller must busy the page (and typically 1299 * deactivate it if it cannot be busied!) 1300 * 1301 * Returns a spinlocked vm_page that has been removed from its queue. 1302 */ 1303 vm_page_t 1304 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1305 { 1306 return(_vm_page_list_find(basequeue, index, prefer_zero)); 1307 } 1308 1309 /* 1310 * Find a page on the cache queue with color optimization, remove it 1311 * from the queue, and busy it. The returned page will not be spinlocked. 1312 * 1313 * A candidate failure will be deactivated. Candidates can fail due to 1314 * being busied by someone else, in which case they will be deactivated. 1315 * 1316 * This routine may not block. 1317 * 1318 */ 1319 static vm_page_t 1320 vm_page_select_cache(u_short pg_color) 1321 { 1322 vm_page_t m; 1323 1324 for (;;) { 1325 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE); 1326 if (m == NULL) 1327 break; 1328 /* 1329 * (m) has been removed from its queue and spinlocked 1330 */ 1331 if (vm_page_busy_try(m, TRUE)) { 1332 _vm_page_deactivate_locked(m, 0); 1333 vm_page_spin_unlock(m); 1334 #ifdef INVARIANTS 1335 kprintf("Warning: busy page %p found in cache\n", m); 1336 #endif 1337 } else { 1338 /* 1339 * We successfully busied the page 1340 */ 1341 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 && 1342 m->hold_count == 0 && 1343 m->wire_count == 0 && 1344 (m->dirty & m->valid) == 0) { 1345 vm_page_spin_unlock(m); 1346 pagedaemon_wakeup(); 1347 return(m); 1348 } 1349 1350 /* 1351 * The page cannot be recycled, deactivate it. 1352 */ 1353 _vm_page_deactivate_locked(m, 0); 1354 if (_vm_page_wakeup(m)) { 1355 vm_page_spin_unlock(m); 1356 wakeup(m); 1357 } else { 1358 vm_page_spin_unlock(m); 1359 } 1360 } 1361 } 1362 return (m); 1363 } 1364 1365 /* 1366 * Find a free or zero page, with specified preference. We attempt to 1367 * inline the nominal case and fall back to _vm_page_select_free() 1368 * otherwise. A busied page is removed from the queue and returned. 1369 * 1370 * This routine may not block. 1371 */ 1372 static __inline vm_page_t 1373 vm_page_select_free(u_short pg_color, boolean_t prefer_zero) 1374 { 1375 vm_page_t m; 1376 1377 for (;;) { 1378 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK, 1379 prefer_zero); 1380 if (m == NULL) 1381 break; 1382 if (vm_page_busy_try(m, TRUE)) { 1383 /* 1384 * Various mechanisms such as a pmap_collect can 1385 * result in a busy page on the free queue. We 1386 * have to move the page out of the way so we can 1387 * retry the allocation. If the other thread is not 1388 * allocating the page then m->valid will remain 0 and 1389 * the pageout daemon will free the page later on. 1390 * 1391 * Since we could not busy the page, however, we 1392 * cannot make assumptions as to whether the page 1393 * will be allocated by the other thread or not, 1394 * so all we can do is deactivate it to move it out 1395 * of the way. In particular, if the other thread 1396 * wires the page it may wind up on the inactive 1397 * queue and the pageout daemon will have to deal 1398 * with that case too. 1399 */ 1400 _vm_page_deactivate_locked(m, 0); 1401 vm_page_spin_unlock(m); 1402 #ifdef INVARIANTS 1403 kprintf("Warning: busy page %p found in cache\n", m); 1404 #endif 1405 } else { 1406 /* 1407 * Theoretically if we are able to busy the page 1408 * atomic with the queue removal (using the vm_page 1409 * lock) nobody else should be able to mess with the 1410 * page before us. 1411 */ 1412 KKASSERT((m->flags & (PG_UNMANAGED | 1413 PG_NEED_COMMIT)) == 0); 1414 KKASSERT(m->hold_count == 0); 1415 KKASSERT(m->wire_count == 0); 1416 vm_page_spin_unlock(m); 1417 pagedaemon_wakeup(); 1418 1419 /* return busied and removed page */ 1420 return(m); 1421 } 1422 } 1423 return(m); 1424 } 1425 1426 /* 1427 * This implements a per-cpu cache of free, zero'd, ready-to-go pages. 1428 * The idea is to populate this cache prior to acquiring any locks so 1429 * we don't wind up potentially zeroing VM pages (under heavy loads) while 1430 * holding potentialy contending locks. 1431 * 1432 * Note that we allocate the page uninserted into anything and use a pindex 1433 * of 0, the vm_page_alloc() will effectively add gd_cpuid so these 1434 * allocations should wind up being uncontended. However, we still want 1435 * to rove across PQ_L2_SIZE. 1436 */ 1437 void 1438 vm_page_pcpu_cache(void) 1439 { 1440 #if 0 1441 globaldata_t gd = mycpu; 1442 vm_page_t m; 1443 1444 if (gd->gd_vmpg_count < GD_MINVMPG) { 1445 crit_enter_gd(gd); 1446 while (gd->gd_vmpg_count < GD_MAXVMPG) { 1447 m = vm_page_alloc(NULL, ticks & ~ncpus2_mask, 1448 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL | 1449 VM_ALLOC_NULL_OK | VM_ALLOC_ZERO); 1450 if (gd->gd_vmpg_count < GD_MAXVMPG) { 1451 if ((m->flags & PG_ZERO) == 0) { 1452 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 1453 vm_page_flag_set(m, PG_ZERO); 1454 } 1455 gd->gd_vmpg_array[gd->gd_vmpg_count++] = m; 1456 } else { 1457 vm_page_free(m); 1458 } 1459 } 1460 crit_exit_gd(gd); 1461 } 1462 #endif 1463 } 1464 1465 /* 1466 * vm_page_alloc() 1467 * 1468 * Allocate and return a memory cell associated with this VM object/offset 1469 * pair. If object is NULL an unassociated page will be allocated. 1470 * 1471 * The returned page will be busied and removed from its queues. This 1472 * routine can block and may return NULL if a race occurs and the page 1473 * is found to already exist at the specified (object, pindex). 1474 * 1475 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 1476 * VM_ALLOC_QUICK like normal but cannot use cache 1477 * VM_ALLOC_SYSTEM greater free drain 1478 * VM_ALLOC_INTERRUPT allow free list to be completely drained 1479 * VM_ALLOC_ZERO advisory request for pre-zero'd page only 1480 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only 1481 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision 1482 * (see vm_page_grab()) 1483 * VM_ALLOC_USE_GD ok to use per-gd cache 1484 * 1485 * The object must be held if not NULL 1486 * This routine may not block 1487 * 1488 * Additional special handling is required when called from an interrupt 1489 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 1490 * in this case. 1491 */ 1492 vm_page_t 1493 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 1494 { 1495 globaldata_t gd = mycpu; 1496 vm_object_t obj; 1497 vm_page_t m; 1498 u_short pg_color; 1499 1500 #if 0 1501 /* 1502 * Special per-cpu free VM page cache. The pages are pre-busied 1503 * and pre-zerod for us. 1504 */ 1505 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) { 1506 crit_enter_gd(gd); 1507 if (gd->gd_vmpg_count) { 1508 m = gd->gd_vmpg_array[--gd->gd_vmpg_count]; 1509 crit_exit_gd(gd); 1510 goto done; 1511 } 1512 crit_exit_gd(gd); 1513 } 1514 #endif 1515 m = NULL; 1516 1517 /* 1518 * Cpu twist - cpu localization algorithm 1519 */ 1520 if (object) { 1521 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) + 1522 (object->pg_color & ~ncpus_fit_mask); 1523 } else { 1524 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask); 1525 } 1526 KKASSERT(page_req & 1527 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK| 1528 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 1529 1530 /* 1531 * Certain system threads (pageout daemon, buf_daemon's) are 1532 * allowed to eat deeper into the free page list. 1533 */ 1534 if (curthread->td_flags & TDF_SYSTHREAD) 1535 page_req |= VM_ALLOC_SYSTEM; 1536 1537 loop: 1538 if (vmstats.v_free_count > vmstats.v_free_reserved || 1539 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) || 1540 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 && 1541 vmstats.v_free_count > vmstats.v_interrupt_free_min) 1542 ) { 1543 /* 1544 * The free queue has sufficient free pages to take one out. 1545 */ 1546 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) 1547 m = vm_page_select_free(pg_color, TRUE); 1548 else 1549 m = vm_page_select_free(pg_color, FALSE); 1550 } else if (page_req & VM_ALLOC_NORMAL) { 1551 /* 1552 * Allocatable from the cache (non-interrupt only). On 1553 * success, we must free the page and try again, thus 1554 * ensuring that vmstats.v_*_free_min counters are replenished. 1555 */ 1556 #ifdef INVARIANTS 1557 if (curthread->td_preempted) { 1558 kprintf("vm_page_alloc(): warning, attempt to allocate" 1559 " cache page from preempting interrupt\n"); 1560 m = NULL; 1561 } else { 1562 m = vm_page_select_cache(pg_color); 1563 } 1564 #else 1565 m = vm_page_select_cache(pg_color); 1566 #endif 1567 /* 1568 * On success move the page into the free queue and loop. 1569 * 1570 * Only do this if we can safely acquire the vm_object lock, 1571 * because this is effectively a random page and the caller 1572 * might be holding the lock shared, we don't want to 1573 * deadlock. 1574 */ 1575 if (m != NULL) { 1576 KASSERT(m->dirty == 0, 1577 ("Found dirty cache page %p", m)); 1578 if ((obj = m->object) != NULL) { 1579 if (vm_object_hold_try(obj)) { 1580 vm_page_protect(m, VM_PROT_NONE); 1581 vm_page_free(m); 1582 /* m->object NULL here */ 1583 vm_object_drop(obj); 1584 } else { 1585 vm_page_deactivate(m); 1586 vm_page_wakeup(m); 1587 } 1588 } else { 1589 vm_page_protect(m, VM_PROT_NONE); 1590 vm_page_free(m); 1591 } 1592 goto loop; 1593 } 1594 1595 /* 1596 * On failure return NULL 1597 */ 1598 #if defined(DIAGNOSTIC) 1599 if (vmstats.v_cache_count > 0) 1600 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count); 1601 #endif 1602 vm_pageout_deficit++; 1603 pagedaemon_wakeup(); 1604 return (NULL); 1605 } else { 1606 /* 1607 * No pages available, wakeup the pageout daemon and give up. 1608 */ 1609 vm_pageout_deficit++; 1610 pagedaemon_wakeup(); 1611 return (NULL); 1612 } 1613 1614 /* 1615 * v_free_count can race so loop if we don't find the expected 1616 * page. 1617 */ 1618 if (m == NULL) 1619 goto loop; 1620 1621 /* 1622 * Good page found. The page has already been busied for us and 1623 * removed from its queues. 1624 */ 1625 KASSERT(m->dirty == 0, 1626 ("vm_page_alloc: free/cache page %p was dirty", m)); 1627 KKASSERT(m->queue == PQ_NONE); 1628 1629 #if 0 1630 done: 1631 #endif 1632 /* 1633 * Initialize the structure, inheriting some flags but clearing 1634 * all the rest. The page has already been busied for us. 1635 */ 1636 vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY)); 1637 KKASSERT(m->wire_count == 0); 1638 KKASSERT(m->busy == 0); 1639 m->act_count = 0; 1640 m->valid = 0; 1641 1642 /* 1643 * Caller must be holding the object lock (asserted by 1644 * vm_page_insert()). 1645 * 1646 * NOTE: Inserting a page here does not insert it into any pmaps 1647 * (which could cause us to block allocating memory). 1648 * 1649 * NOTE: If no object an unassociated page is allocated, m->pindex 1650 * can be used by the caller for any purpose. 1651 */ 1652 if (object) { 1653 if (vm_page_insert(m, object, pindex) == FALSE) { 1654 vm_page_free(m); 1655 if ((page_req & VM_ALLOC_NULL_OK) == 0) 1656 panic("PAGE RACE %p[%ld]/%p", 1657 object, (long)pindex, m); 1658 m = NULL; 1659 } 1660 } else { 1661 m->pindex = pindex; 1662 } 1663 1664 /* 1665 * Don't wakeup too often - wakeup the pageout daemon when 1666 * we would be nearly out of memory. 1667 */ 1668 pagedaemon_wakeup(); 1669 1670 /* 1671 * A PG_BUSY page is returned. 1672 */ 1673 return (m); 1674 } 1675 1676 /* 1677 * Attempt to allocate contiguous physical memory with the specified 1678 * requirements. 1679 */ 1680 vm_page_t 1681 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high, 1682 unsigned long alignment, unsigned long boundary, 1683 unsigned long size) 1684 { 1685 alist_blk_t blk; 1686 1687 alignment >>= PAGE_SHIFT; 1688 if (alignment == 0) 1689 alignment = 1; 1690 boundary >>= PAGE_SHIFT; 1691 if (boundary == 0) 1692 boundary = 1; 1693 size = (size + PAGE_MASK) >> PAGE_SHIFT; 1694 1695 spin_lock(&vm_contig_spin); 1696 blk = alist_alloc(&vm_contig_alist, 0, size); 1697 if (blk == ALIST_BLOCK_NONE) { 1698 spin_unlock(&vm_contig_spin); 1699 if (bootverbose) { 1700 kprintf("vm_page_alloc_contig: %ldk nospace\n", 1701 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1702 } 1703 return(NULL); 1704 } 1705 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) { 1706 alist_free(&vm_contig_alist, blk, size); 1707 spin_unlock(&vm_contig_spin); 1708 if (bootverbose) { 1709 kprintf("vm_page_alloc_contig: %ldk high " 1710 "%016jx failed\n", 1711 (size + PAGE_MASK) * (PAGE_SIZE / 1024), 1712 (intmax_t)high); 1713 } 1714 return(NULL); 1715 } 1716 spin_unlock(&vm_contig_spin); 1717 if (vm_contig_verbose) { 1718 kprintf("vm_page_alloc_contig: %016jx/%ldk\n", 1719 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT, 1720 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1721 } 1722 return (PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT)); 1723 } 1724 1725 /* 1726 * Free contiguously allocated pages. The pages will be wired but not busy. 1727 * When freeing to the alist we leave them wired and not busy. 1728 */ 1729 void 1730 vm_page_free_contig(vm_page_t m, unsigned long size) 1731 { 1732 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1733 vm_pindex_t start = pa >> PAGE_SHIFT; 1734 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT; 1735 1736 if (vm_contig_verbose) { 1737 kprintf("vm_page_free_contig: %016jx/%ldk\n", 1738 (intmax_t)pa, size / 1024); 1739 } 1740 if (pa < vm_low_phys_reserved) { 1741 KKASSERT(pa + size <= vm_low_phys_reserved); 1742 spin_lock(&vm_contig_spin); 1743 alist_free(&vm_contig_alist, start, pages); 1744 spin_unlock(&vm_contig_spin); 1745 } else { 1746 while (pages) { 1747 vm_page_busy_wait(m, FALSE, "cpgfr"); 1748 vm_page_unwire(m, 0); 1749 vm_page_free(m); 1750 --pages; 1751 ++m; 1752 } 1753 1754 } 1755 } 1756 1757 1758 /* 1759 * Wait for sufficient free memory for nominal heavy memory use kernel 1760 * operations. 1761 * 1762 * WARNING! Be sure never to call this in any vm_pageout code path, which 1763 * will trivially deadlock the system. 1764 */ 1765 void 1766 vm_wait_nominal(void) 1767 { 1768 while (vm_page_count_min(0)) 1769 vm_wait(0); 1770 } 1771 1772 /* 1773 * Test if vm_wait_nominal() would block. 1774 */ 1775 int 1776 vm_test_nominal(void) 1777 { 1778 if (vm_page_count_min(0)) 1779 return(1); 1780 return(0); 1781 } 1782 1783 /* 1784 * Block until free pages are available for allocation, called in various 1785 * places before memory allocations. 1786 * 1787 * The caller may loop if vm_page_count_min() == FALSE so we cannot be 1788 * more generous then that. 1789 */ 1790 void 1791 vm_wait(int timo) 1792 { 1793 /* 1794 * never wait forever 1795 */ 1796 if (timo == 0) 1797 timo = hz; 1798 lwkt_gettoken(&vm_token); 1799 1800 if (curthread == pagethread) { 1801 /* 1802 * The pageout daemon itself needs pages, this is bad. 1803 */ 1804 if (vm_page_count_min(0)) { 1805 vm_pageout_pages_needed = 1; 1806 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 1807 } 1808 } else { 1809 /* 1810 * Wakeup the pageout daemon if necessary and wait. 1811 * 1812 * Do not wait indefinitely for the target to be reached, 1813 * as load might prevent it from being reached any time soon. 1814 * But wait a little to try to slow down page allocations 1815 * and to give more important threads (the pagedaemon) 1816 * allocation priority. 1817 */ 1818 if (vm_page_count_target()) { 1819 if (vm_pages_needed == 0) { 1820 vm_pages_needed = 1; 1821 wakeup(&vm_pages_needed); 1822 } 1823 ++vm_pages_waiting; /* SMP race ok */ 1824 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 1825 } 1826 } 1827 lwkt_reltoken(&vm_token); 1828 } 1829 1830 /* 1831 * Block until free pages are available for allocation 1832 * 1833 * Called only from vm_fault so that processes page faulting can be 1834 * easily tracked. 1835 */ 1836 void 1837 vm_wait_pfault(void) 1838 { 1839 /* 1840 * Wakeup the pageout daemon if necessary and wait. 1841 * 1842 * Do not wait indefinitely for the target to be reached, 1843 * as load might prevent it from being reached any time soon. 1844 * But wait a little to try to slow down page allocations 1845 * and to give more important threads (the pagedaemon) 1846 * allocation priority. 1847 */ 1848 if (vm_page_count_min(0)) { 1849 lwkt_gettoken(&vm_token); 1850 while (vm_page_count_severe()) { 1851 if (vm_page_count_target()) { 1852 if (vm_pages_needed == 0) { 1853 vm_pages_needed = 1; 1854 wakeup(&vm_pages_needed); 1855 } 1856 ++vm_pages_waiting; /* SMP race ok */ 1857 tsleep(&vmstats.v_free_count, 0, "pfault", hz); 1858 } 1859 } 1860 lwkt_reltoken(&vm_token); 1861 } 1862 } 1863 1864 /* 1865 * Put the specified page on the active list (if appropriate). Ensure 1866 * that act_count is at least ACT_INIT but do not otherwise mess with it. 1867 * 1868 * The caller should be holding the page busied ? XXX 1869 * This routine may not block. 1870 */ 1871 void 1872 vm_page_activate(vm_page_t m) 1873 { 1874 u_short oqueue; 1875 1876 vm_page_spin_lock(m); 1877 if (m->queue - m->pc != PQ_ACTIVE) { 1878 _vm_page_queue_spin_lock(m); 1879 oqueue = _vm_page_rem_queue_spinlocked(m); 1880 /* page is left spinlocked, queue is unlocked */ 1881 1882 if (oqueue == PQ_CACHE) 1883 mycpu->gd_cnt.v_reactivated++; 1884 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1885 if (m->act_count < ACT_INIT) 1886 m->act_count = ACT_INIT; 1887 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0); 1888 } 1889 _vm_page_and_queue_spin_unlock(m); 1890 if (oqueue == PQ_CACHE || oqueue == PQ_FREE) 1891 pagedaemon_wakeup(); 1892 } else { 1893 if (m->act_count < ACT_INIT) 1894 m->act_count = ACT_INIT; 1895 vm_page_spin_unlock(m); 1896 } 1897 } 1898 1899 /* 1900 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1901 * routine is called when a page has been added to the cache or free 1902 * queues. 1903 * 1904 * This routine may not block. 1905 */ 1906 static __inline void 1907 vm_page_free_wakeup(void) 1908 { 1909 /* 1910 * If the pageout daemon itself needs pages, then tell it that 1911 * there are some free. 1912 */ 1913 if (vm_pageout_pages_needed && 1914 vmstats.v_cache_count + vmstats.v_free_count >= 1915 vmstats.v_pageout_free_min 1916 ) { 1917 vm_pageout_pages_needed = 0; 1918 wakeup(&vm_pageout_pages_needed); 1919 } 1920 1921 /* 1922 * Wakeup processes that are waiting on memory. 1923 * 1924 * Generally speaking we want to wakeup stuck processes as soon as 1925 * possible. !vm_page_count_min(0) is the absolute minimum point 1926 * where we can do this. Wait a bit longer to reduce degenerate 1927 * re-blocking (vm_page_free_hysteresis). The target check is just 1928 * to make sure the min-check w/hysteresis does not exceed the 1929 * normal target. 1930 */ 1931 if (vm_pages_waiting) { 1932 if (!vm_page_count_min(vm_page_free_hysteresis) || 1933 !vm_page_count_target()) { 1934 vm_pages_waiting = 0; 1935 wakeup(&vmstats.v_free_count); 1936 ++mycpu->gd_cnt.v_ppwakeups; 1937 } 1938 #if 0 1939 if (!vm_page_count_target()) { 1940 /* 1941 * Plenty of pages are free, wakeup everyone. 1942 */ 1943 vm_pages_waiting = 0; 1944 wakeup(&vmstats.v_free_count); 1945 ++mycpu->gd_cnt.v_ppwakeups; 1946 } else if (!vm_page_count_min(0)) { 1947 /* 1948 * Some pages are free, wakeup someone. 1949 */ 1950 int wcount = vm_pages_waiting; 1951 if (wcount > 0) 1952 --wcount; 1953 vm_pages_waiting = wcount; 1954 wakeup_one(&vmstats.v_free_count); 1955 ++mycpu->gd_cnt.v_ppwakeups; 1956 } 1957 #endif 1958 } 1959 } 1960 1961 /* 1962 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates 1963 * it from its VM object. 1964 * 1965 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on 1966 * return (the page will have been freed). 1967 */ 1968 void 1969 vm_page_free_toq(vm_page_t m) 1970 { 1971 mycpu->gd_cnt.v_tfree++; 1972 KKASSERT((m->flags & PG_MAPPED) == 0); 1973 KKASSERT(m->flags & PG_BUSY); 1974 1975 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1976 kprintf("vm_page_free: pindex(%lu), busy(%d), " 1977 "PG_BUSY(%d), hold(%d)\n", 1978 (u_long)m->pindex, m->busy, 1979 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count); 1980 if ((m->queue - m->pc) == PQ_FREE) 1981 panic("vm_page_free: freeing free page"); 1982 else 1983 panic("vm_page_free: freeing busy page"); 1984 } 1985 1986 /* 1987 * Remove from object, spinlock the page and its queues and 1988 * remove from any queue. No queue spinlock will be held 1989 * after this section (because the page was removed from any 1990 * queue). 1991 */ 1992 vm_page_remove(m); 1993 vm_page_and_queue_spin_lock(m); 1994 _vm_page_rem_queue_spinlocked(m); 1995 1996 /* 1997 * No further management of fictitious pages occurs beyond object 1998 * and queue removal. 1999 */ 2000 if ((m->flags & PG_FICTITIOUS) != 0) { 2001 vm_page_spin_unlock(m); 2002 vm_page_wakeup(m); 2003 return; 2004 } 2005 2006 m->valid = 0; 2007 vm_page_undirty(m); 2008 2009 if (m->wire_count != 0) { 2010 if (m->wire_count > 1) { 2011 panic( 2012 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 2013 m->wire_count, (long)m->pindex); 2014 } 2015 panic("vm_page_free: freeing wired page"); 2016 } 2017 2018 /* 2019 * Clear the UNMANAGED flag when freeing an unmanaged page. 2020 * Clear the NEED_COMMIT flag 2021 */ 2022 if (m->flags & PG_UNMANAGED) 2023 vm_page_flag_clear(m, PG_UNMANAGED); 2024 if (m->flags & PG_NEED_COMMIT) 2025 vm_page_flag_clear(m, PG_NEED_COMMIT); 2026 2027 if (m->hold_count != 0) { 2028 vm_page_flag_clear(m, PG_ZERO); 2029 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 2030 } else { 2031 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 2032 } 2033 2034 /* 2035 * This sequence allows us to clear PG_BUSY while still holding 2036 * its spin lock, which reduces contention vs allocators. We 2037 * must not leave the queue locked or _vm_page_wakeup() may 2038 * deadlock. 2039 */ 2040 _vm_page_queue_spin_unlock(m); 2041 if (_vm_page_wakeup(m)) { 2042 vm_page_spin_unlock(m); 2043 wakeup(m); 2044 } else { 2045 vm_page_spin_unlock(m); 2046 } 2047 vm_page_free_wakeup(); 2048 } 2049 2050 /* 2051 * vm_page_free_fromq_fast() 2052 * 2053 * Remove a non-zero page from one of the free queues; the page is removed for 2054 * zeroing, so do not issue a wakeup. 2055 */ 2056 vm_page_t 2057 vm_page_free_fromq_fast(void) 2058 { 2059 static int qi; 2060 vm_page_t m; 2061 int i; 2062 2063 for (i = 0; i < PQ_L2_SIZE; ++i) { 2064 m = vm_page_list_find(PQ_FREE, qi, FALSE); 2065 /* page is returned spinlocked and removed from its queue */ 2066 if (m) { 2067 if (vm_page_busy_try(m, TRUE)) { 2068 /* 2069 * We were unable to busy the page, deactivate 2070 * it and loop. 2071 */ 2072 _vm_page_deactivate_locked(m, 0); 2073 vm_page_spin_unlock(m); 2074 } else if (m->flags & PG_ZERO) { 2075 /* 2076 * The page is PG_ZERO, requeue it and loop 2077 */ 2078 _vm_page_add_queue_spinlocked(m, 2079 PQ_FREE + m->pc, 2080 0); 2081 vm_page_queue_spin_unlock(m); 2082 if (_vm_page_wakeup(m)) { 2083 vm_page_spin_unlock(m); 2084 wakeup(m); 2085 } else { 2086 vm_page_spin_unlock(m); 2087 } 2088 } else { 2089 /* 2090 * The page is not PG_ZERO'd so return it. 2091 */ 2092 vm_page_spin_unlock(m); 2093 KKASSERT((m->flags & (PG_UNMANAGED | 2094 PG_NEED_COMMIT)) == 0); 2095 KKASSERT(m->hold_count == 0); 2096 KKASSERT(m->wire_count == 0); 2097 break; 2098 } 2099 m = NULL; 2100 } 2101 qi = (qi + PQ_PRIME2) & PQ_L2_MASK; 2102 } 2103 return (m); 2104 } 2105 2106 /* 2107 * vm_page_unmanage() 2108 * 2109 * Prevent PV management from being done on the page. The page is 2110 * removed from the paging queues as if it were wired, and as a 2111 * consequence of no longer being managed the pageout daemon will not 2112 * touch it (since there is no way to locate the pte mappings for the 2113 * page). madvise() calls that mess with the pmap will also no longer 2114 * operate on the page. 2115 * 2116 * Beyond that the page is still reasonably 'normal'. Freeing the page 2117 * will clear the flag. 2118 * 2119 * This routine is used by OBJT_PHYS objects - objects using unswappable 2120 * physical memory as backing store rather then swap-backed memory and 2121 * will eventually be extended to support 4MB unmanaged physical 2122 * mappings. 2123 * 2124 * Caller must be holding the page busy. 2125 */ 2126 void 2127 vm_page_unmanage(vm_page_t m) 2128 { 2129 KKASSERT(m->flags & PG_BUSY); 2130 if ((m->flags & PG_UNMANAGED) == 0) { 2131 if (m->wire_count == 0) 2132 vm_page_unqueue(m); 2133 } 2134 vm_page_flag_set(m, PG_UNMANAGED); 2135 } 2136 2137 /* 2138 * Mark this page as wired down by yet another map, removing it from 2139 * paging queues as necessary. 2140 * 2141 * Caller must be holding the page busy. 2142 */ 2143 void 2144 vm_page_wire(vm_page_t m) 2145 { 2146 /* 2147 * Only bump the wire statistics if the page is not already wired, 2148 * and only unqueue the page if it is on some queue (if it is unmanaged 2149 * it is already off the queues). Don't do anything with fictitious 2150 * pages because they are always wired. 2151 */ 2152 KKASSERT(m->flags & PG_BUSY); 2153 if ((m->flags & PG_FICTITIOUS) == 0) { 2154 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) { 2155 if ((m->flags & PG_UNMANAGED) == 0) 2156 vm_page_unqueue(m); 2157 atomic_add_int(&vmstats.v_wire_count, 1); 2158 } 2159 KASSERT(m->wire_count != 0, 2160 ("vm_page_wire: wire_count overflow m=%p", m)); 2161 } 2162 } 2163 2164 /* 2165 * Release one wiring of this page, potentially enabling it to be paged again. 2166 * 2167 * Many pages placed on the inactive queue should actually go 2168 * into the cache, but it is difficult to figure out which. What 2169 * we do instead, if the inactive target is well met, is to put 2170 * clean pages at the head of the inactive queue instead of the tail. 2171 * This will cause them to be moved to the cache more quickly and 2172 * if not actively re-referenced, freed more quickly. If we just 2173 * stick these pages at the end of the inactive queue, heavy filesystem 2174 * meta-data accesses can cause an unnecessary paging load on memory bound 2175 * processes. This optimization causes one-time-use metadata to be 2176 * reused more quickly. 2177 * 2178 * Pages marked PG_NEED_COMMIT are always activated and never placed on 2179 * the inactive queue. This helps the pageout daemon determine memory 2180 * pressure and act on out-of-memory situations more quickly. 2181 * 2182 * BUT, if we are in a low-memory situation we have no choice but to 2183 * put clean pages on the cache queue. 2184 * 2185 * A number of routines use vm_page_unwire() to guarantee that the page 2186 * will go into either the inactive or active queues, and will NEVER 2187 * be placed in the cache - for example, just after dirtying a page. 2188 * dirty pages in the cache are not allowed. 2189 * 2190 * The page queues must be locked. 2191 * This routine may not block. 2192 */ 2193 void 2194 vm_page_unwire(vm_page_t m, int activate) 2195 { 2196 KKASSERT(m->flags & PG_BUSY); 2197 if (m->flags & PG_FICTITIOUS) { 2198 /* do nothing */ 2199 } else if (m->wire_count <= 0) { 2200 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 2201 } else { 2202 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) { 2203 atomic_add_int(&vmstats.v_wire_count, -1); 2204 if (m->flags & PG_UNMANAGED) { 2205 ; 2206 } else if (activate || (m->flags & PG_NEED_COMMIT)) { 2207 vm_page_spin_lock(m); 2208 _vm_page_add_queue_spinlocked(m, 2209 PQ_ACTIVE + m->pc, 0); 2210 _vm_page_and_queue_spin_unlock(m); 2211 } else { 2212 vm_page_spin_lock(m); 2213 vm_page_flag_clear(m, PG_WINATCFLS); 2214 _vm_page_add_queue_spinlocked(m, 2215 PQ_INACTIVE + m->pc, 0); 2216 ++vm_swapcache_inactive_heuristic; 2217 _vm_page_and_queue_spin_unlock(m); 2218 } 2219 } 2220 } 2221 } 2222 2223 /* 2224 * Move the specified page to the inactive queue. If the page has 2225 * any associated swap, the swap is deallocated. 2226 * 2227 * Normally athead is 0 resulting in LRU operation. athead is set 2228 * to 1 if we want this page to be 'as if it were placed in the cache', 2229 * except without unmapping it from the process address space. 2230 * 2231 * vm_page's spinlock must be held on entry and will remain held on return. 2232 * This routine may not block. 2233 */ 2234 static void 2235 _vm_page_deactivate_locked(vm_page_t m, int athead) 2236 { 2237 u_short oqueue; 2238 2239 /* 2240 * Ignore if already inactive. 2241 */ 2242 if (m->queue - m->pc == PQ_INACTIVE) 2243 return; 2244 _vm_page_queue_spin_lock(m); 2245 oqueue = _vm_page_rem_queue_spinlocked(m); 2246 2247 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 2248 if (oqueue == PQ_CACHE) 2249 mycpu->gd_cnt.v_reactivated++; 2250 vm_page_flag_clear(m, PG_WINATCFLS); 2251 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead); 2252 if (athead == 0) 2253 ++vm_swapcache_inactive_heuristic; 2254 } 2255 _vm_page_queue_spin_unlock(m); 2256 /* leaves vm_page spinlocked */ 2257 } 2258 2259 /* 2260 * Attempt to deactivate a page. 2261 * 2262 * No requirements. 2263 */ 2264 void 2265 vm_page_deactivate(vm_page_t m) 2266 { 2267 vm_page_spin_lock(m); 2268 _vm_page_deactivate_locked(m, 0); 2269 vm_page_spin_unlock(m); 2270 } 2271 2272 void 2273 vm_page_deactivate_locked(vm_page_t m) 2274 { 2275 _vm_page_deactivate_locked(m, 0); 2276 } 2277 2278 /* 2279 * Attempt to move a page to PQ_CACHE. 2280 * 2281 * Returns 0 on failure, 1 on success 2282 * 2283 * The page should NOT be busied by the caller. This function will validate 2284 * whether the page can be safely moved to the cache. 2285 */ 2286 int 2287 vm_page_try_to_cache(vm_page_t m) 2288 { 2289 vm_page_spin_lock(m); 2290 if (vm_page_busy_try(m, TRUE)) { 2291 vm_page_spin_unlock(m); 2292 return(0); 2293 } 2294 if (m->dirty || m->hold_count || m->wire_count || 2295 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) { 2296 if (_vm_page_wakeup(m)) { 2297 vm_page_spin_unlock(m); 2298 wakeup(m); 2299 } else { 2300 vm_page_spin_unlock(m); 2301 } 2302 return(0); 2303 } 2304 vm_page_spin_unlock(m); 2305 2306 /* 2307 * Page busied by us and no longer spinlocked. Dirty pages cannot 2308 * be moved to the cache. 2309 */ 2310 vm_page_test_dirty(m); 2311 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2312 vm_page_wakeup(m); 2313 return(0); 2314 } 2315 vm_page_cache(m); 2316 return(1); 2317 } 2318 2319 /* 2320 * Attempt to free the page. If we cannot free it, we do nothing. 2321 * 1 is returned on success, 0 on failure. 2322 * 2323 * No requirements. 2324 */ 2325 int 2326 vm_page_try_to_free(vm_page_t m) 2327 { 2328 vm_page_spin_lock(m); 2329 if (vm_page_busy_try(m, TRUE)) { 2330 vm_page_spin_unlock(m); 2331 return(0); 2332 } 2333 2334 /* 2335 * The page can be in any state, including already being on the free 2336 * queue. Check to see if it really can be freed. 2337 */ 2338 if (m->dirty || /* can't free if it is dirty */ 2339 m->hold_count || /* or held (XXX may be wrong) */ 2340 m->wire_count || /* or wired */ 2341 (m->flags & (PG_UNMANAGED | /* or unmanaged */ 2342 PG_NEED_COMMIT)) || /* or needs a commit */ 2343 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */ 2344 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */ 2345 if (_vm_page_wakeup(m)) { 2346 vm_page_spin_unlock(m); 2347 wakeup(m); 2348 } else { 2349 vm_page_spin_unlock(m); 2350 } 2351 return(0); 2352 } 2353 vm_page_spin_unlock(m); 2354 2355 /* 2356 * We can probably free the page. 2357 * 2358 * Page busied by us and no longer spinlocked. Dirty pages will 2359 * not be freed by this function. We have to re-test the 2360 * dirty bit after cleaning out the pmaps. 2361 */ 2362 vm_page_test_dirty(m); 2363 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2364 vm_page_wakeup(m); 2365 return(0); 2366 } 2367 vm_page_protect(m, VM_PROT_NONE); 2368 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2369 vm_page_wakeup(m); 2370 return(0); 2371 } 2372 vm_page_free(m); 2373 return(1); 2374 } 2375 2376 /* 2377 * vm_page_cache 2378 * 2379 * Put the specified page onto the page cache queue (if appropriate). 2380 * 2381 * The page must be busy, and this routine will release the busy and 2382 * possibly even free the page. 2383 */ 2384 void 2385 vm_page_cache(vm_page_t m) 2386 { 2387 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 2388 m->busy || m->wire_count || m->hold_count) { 2389 kprintf("vm_page_cache: attempting to cache busy/held page\n"); 2390 vm_page_wakeup(m); 2391 return; 2392 } 2393 2394 /* 2395 * Already in the cache (and thus not mapped) 2396 */ 2397 if ((m->queue - m->pc) == PQ_CACHE) { 2398 KKASSERT((m->flags & PG_MAPPED) == 0); 2399 vm_page_wakeup(m); 2400 return; 2401 } 2402 2403 /* 2404 * Caller is required to test m->dirty, but note that the act of 2405 * removing the page from its maps can cause it to become dirty 2406 * on an SMP system due to another cpu running in usermode. 2407 */ 2408 if (m->dirty) { 2409 panic("vm_page_cache: caching a dirty page, pindex: %ld", 2410 (long)m->pindex); 2411 } 2412 2413 /* 2414 * Remove all pmaps and indicate that the page is not 2415 * writeable or mapped. Our vm_page_protect() call may 2416 * have blocked (especially w/ VM_PROT_NONE), so recheck 2417 * everything. 2418 */ 2419 vm_page_protect(m, VM_PROT_NONE); 2420 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) || 2421 m->busy || m->wire_count || m->hold_count) { 2422 vm_page_wakeup(m); 2423 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2424 vm_page_deactivate(m); 2425 vm_page_wakeup(m); 2426 } else { 2427 _vm_page_and_queue_spin_lock(m); 2428 _vm_page_rem_queue_spinlocked(m); 2429 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0); 2430 _vm_page_queue_spin_unlock(m); 2431 if (_vm_page_wakeup(m)) { 2432 vm_page_spin_unlock(m); 2433 wakeup(m); 2434 } else { 2435 vm_page_spin_unlock(m); 2436 } 2437 vm_page_free_wakeup(); 2438 } 2439 } 2440 2441 /* 2442 * vm_page_dontneed() 2443 * 2444 * Cache, deactivate, or do nothing as appropriate. This routine 2445 * is typically used by madvise() MADV_DONTNEED. 2446 * 2447 * Generally speaking we want to move the page into the cache so 2448 * it gets reused quickly. However, this can result in a silly syndrome 2449 * due to the page recycling too quickly. Small objects will not be 2450 * fully cached. On the otherhand, if we move the page to the inactive 2451 * queue we wind up with a problem whereby very large objects 2452 * unnecessarily blow away our inactive and cache queues. 2453 * 2454 * The solution is to move the pages based on a fixed weighting. We 2455 * either leave them alone, deactivate them, or move them to the cache, 2456 * where moving them to the cache has the highest weighting. 2457 * By forcing some pages into other queues we eventually force the 2458 * system to balance the queues, potentially recovering other unrelated 2459 * space from active. The idea is to not force this to happen too 2460 * often. 2461 * 2462 * The page must be busied. 2463 */ 2464 void 2465 vm_page_dontneed(vm_page_t m) 2466 { 2467 static int dnweight; 2468 int dnw; 2469 int head; 2470 2471 dnw = ++dnweight; 2472 2473 /* 2474 * occassionally leave the page alone 2475 */ 2476 if ((dnw & 0x01F0) == 0 || 2477 m->queue - m->pc == PQ_INACTIVE || 2478 m->queue - m->pc == PQ_CACHE 2479 ) { 2480 if (m->act_count >= ACT_INIT) 2481 --m->act_count; 2482 return; 2483 } 2484 2485 /* 2486 * If vm_page_dontneed() is inactivating a page, it must clear 2487 * the referenced flag; otherwise the pagedaemon will see references 2488 * on the page in the inactive queue and reactivate it. Until the 2489 * page can move to the cache queue, madvise's job is not done. 2490 */ 2491 vm_page_flag_clear(m, PG_REFERENCED); 2492 pmap_clear_reference(m); 2493 2494 if (m->dirty == 0) 2495 vm_page_test_dirty(m); 2496 2497 if (m->dirty || (dnw & 0x0070) == 0) { 2498 /* 2499 * Deactivate the page 3 times out of 32. 2500 */ 2501 head = 0; 2502 } else { 2503 /* 2504 * Cache the page 28 times out of every 32. Note that 2505 * the page is deactivated instead of cached, but placed 2506 * at the head of the queue instead of the tail. 2507 */ 2508 head = 1; 2509 } 2510 vm_page_spin_lock(m); 2511 _vm_page_deactivate_locked(m, head); 2512 vm_page_spin_unlock(m); 2513 } 2514 2515 /* 2516 * These routines manipulate the 'soft busy' count for a page. A soft busy 2517 * is almost like PG_BUSY except that it allows certain compatible operations 2518 * to occur on the page while it is busy. For example, a page undergoing a 2519 * write can still be mapped read-only. 2520 * 2521 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only 2522 * adjusted while the vm_page is PG_BUSY so the flash will occur when the 2523 * busy bit is cleared. 2524 */ 2525 void 2526 vm_page_io_start(vm_page_t m) 2527 { 2528 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!")); 2529 atomic_add_char(&m->busy, 1); 2530 vm_page_flag_set(m, PG_SBUSY); 2531 } 2532 2533 void 2534 vm_page_io_finish(vm_page_t m) 2535 { 2536 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!")); 2537 atomic_subtract_char(&m->busy, 1); 2538 if (m->busy == 0) 2539 vm_page_flag_clear(m, PG_SBUSY); 2540 } 2541 2542 /* 2543 * Indicate that a clean VM page requires a filesystem commit and cannot 2544 * be reused. Used by tmpfs. 2545 */ 2546 void 2547 vm_page_need_commit(vm_page_t m) 2548 { 2549 vm_page_flag_set(m, PG_NEED_COMMIT); 2550 vm_object_set_writeable_dirty(m->object); 2551 } 2552 2553 void 2554 vm_page_clear_commit(vm_page_t m) 2555 { 2556 vm_page_flag_clear(m, PG_NEED_COMMIT); 2557 } 2558 2559 /* 2560 * Grab a page, blocking if it is busy and allocating a page if necessary. 2561 * A busy page is returned or NULL. The page may or may not be valid and 2562 * might not be on a queue (the caller is responsible for the disposition of 2563 * the page). 2564 * 2565 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the 2566 * page will be zero'd and marked valid. 2567 * 2568 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked 2569 * valid even if it already exists. 2570 * 2571 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also 2572 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified. 2573 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified. 2574 * 2575 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 2576 * always returned if we had blocked. 2577 * 2578 * This routine may not be called from an interrupt. 2579 * 2580 * PG_ZERO is *ALWAYS* cleared by this routine. 2581 * 2582 * No other requirements. 2583 */ 2584 vm_page_t 2585 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2586 { 2587 vm_page_t m; 2588 int error; 2589 2590 KKASSERT(allocflags & 2591 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 2592 vm_object_hold(object); 2593 for (;;) { 2594 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 2595 if (error) { 2596 vm_page_sleep_busy(m, TRUE, "pgrbwt"); 2597 if ((allocflags & VM_ALLOC_RETRY) == 0) { 2598 m = NULL; 2599 break; 2600 } 2601 /* retry */ 2602 } else if (m == NULL) { 2603 if (allocflags & VM_ALLOC_RETRY) 2604 allocflags |= VM_ALLOC_NULL_OK; 2605 m = vm_page_alloc(object, pindex, 2606 allocflags & ~VM_ALLOC_RETRY); 2607 if (m) 2608 break; 2609 vm_wait(0); 2610 if ((allocflags & VM_ALLOC_RETRY) == 0) 2611 goto failed; 2612 } else { 2613 /* m found */ 2614 break; 2615 } 2616 } 2617 2618 /* 2619 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid. 2620 * 2621 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set 2622 * valid even if already valid. 2623 */ 2624 if (m->valid == 0) { 2625 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) { 2626 if ((m->flags & PG_ZERO) == 0) 2627 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2628 m->valid = VM_PAGE_BITS_ALL; 2629 } 2630 } else if (allocflags & VM_ALLOC_FORCE_ZERO) { 2631 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2632 m->valid = VM_PAGE_BITS_ALL; 2633 } 2634 vm_page_flag_clear(m, PG_ZERO); 2635 failed: 2636 vm_object_drop(object); 2637 return(m); 2638 } 2639 2640 /* 2641 * Mapping function for valid bits or for dirty bits in 2642 * a page. May not block. 2643 * 2644 * Inputs are required to range within a page. 2645 * 2646 * No requirements. 2647 * Non blocking. 2648 */ 2649 int 2650 vm_page_bits(int base, int size) 2651 { 2652 int first_bit; 2653 int last_bit; 2654 2655 KASSERT( 2656 base + size <= PAGE_SIZE, 2657 ("vm_page_bits: illegal base/size %d/%d", base, size) 2658 ); 2659 2660 if (size == 0) /* handle degenerate case */ 2661 return(0); 2662 2663 first_bit = base >> DEV_BSHIFT; 2664 last_bit = (base + size - 1) >> DEV_BSHIFT; 2665 2666 return ((2 << last_bit) - (1 << first_bit)); 2667 } 2668 2669 /* 2670 * Sets portions of a page valid and clean. The arguments are expected 2671 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2672 * of any partial chunks touched by the range. The invalid portion of 2673 * such chunks will be zero'd. 2674 * 2675 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically 2676 * align base to DEV_BSIZE so as not to mark clean a partially 2677 * truncated device block. Otherwise the dirty page status might be 2678 * lost. 2679 * 2680 * This routine may not block. 2681 * 2682 * (base + size) must be less then or equal to PAGE_SIZE. 2683 */ 2684 static void 2685 _vm_page_zero_valid(vm_page_t m, int base, int size) 2686 { 2687 int frag; 2688 int endoff; 2689 2690 if (size == 0) /* handle degenerate case */ 2691 return; 2692 2693 /* 2694 * If the base is not DEV_BSIZE aligned and the valid 2695 * bit is clear, we have to zero out a portion of the 2696 * first block. 2697 */ 2698 2699 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2700 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 2701 ) { 2702 pmap_zero_page_area( 2703 VM_PAGE_TO_PHYS(m), 2704 frag, 2705 base - frag 2706 ); 2707 } 2708 2709 /* 2710 * If the ending offset is not DEV_BSIZE aligned and the 2711 * valid bit is clear, we have to zero out a portion of 2712 * the last block. 2713 */ 2714 2715 endoff = base + size; 2716 2717 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2718 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 2719 ) { 2720 pmap_zero_page_area( 2721 VM_PAGE_TO_PHYS(m), 2722 endoff, 2723 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 2724 ); 2725 } 2726 } 2727 2728 /* 2729 * Set valid, clear dirty bits. If validating the entire 2730 * page we can safely clear the pmap modify bit. We also 2731 * use this opportunity to clear the PG_NOSYNC flag. If a process 2732 * takes a write fault on a MAP_NOSYNC memory area the flag will 2733 * be set again. 2734 * 2735 * We set valid bits inclusive of any overlap, but we can only 2736 * clear dirty bits for DEV_BSIZE chunks that are fully within 2737 * the range. 2738 * 2739 * Page must be busied? 2740 * No other requirements. 2741 */ 2742 void 2743 vm_page_set_valid(vm_page_t m, int base, int size) 2744 { 2745 _vm_page_zero_valid(m, base, size); 2746 m->valid |= vm_page_bits(base, size); 2747 } 2748 2749 2750 /* 2751 * Set valid bits and clear dirty bits. 2752 * 2753 * NOTE: This function does not clear the pmap modified bit. 2754 * Also note that e.g. NFS may use a byte-granular base 2755 * and size. 2756 * 2757 * WARNING: Page must be busied? But vfs_clean_one_page() will call 2758 * this without necessarily busying the page (via bdwrite()). 2759 * So for now vm_token must also be held. 2760 * 2761 * No other requirements. 2762 */ 2763 void 2764 vm_page_set_validclean(vm_page_t m, int base, int size) 2765 { 2766 int pagebits; 2767 2768 _vm_page_zero_valid(m, base, size); 2769 pagebits = vm_page_bits(base, size); 2770 m->valid |= pagebits; 2771 m->dirty &= ~pagebits; 2772 if (base == 0 && size == PAGE_SIZE) { 2773 /*pmap_clear_modify(m);*/ 2774 vm_page_flag_clear(m, PG_NOSYNC); 2775 } 2776 } 2777 2778 /* 2779 * Set valid & dirty. Used by buwrite() 2780 * 2781 * WARNING: Page must be busied? But vfs_dirty_one_page() will 2782 * call this function in buwrite() so for now vm_token must 2783 * be held. 2784 * 2785 * No other requirements. 2786 */ 2787 void 2788 vm_page_set_validdirty(vm_page_t m, int base, int size) 2789 { 2790 int pagebits; 2791 2792 pagebits = vm_page_bits(base, size); 2793 m->valid |= pagebits; 2794 m->dirty |= pagebits; 2795 if (m->object) 2796 vm_object_set_writeable_dirty(m->object); 2797 } 2798 2799 /* 2800 * Clear dirty bits. 2801 * 2802 * NOTE: This function does not clear the pmap modified bit. 2803 * Also note that e.g. NFS may use a byte-granular base 2804 * and size. 2805 * 2806 * Page must be busied? 2807 * No other requirements. 2808 */ 2809 void 2810 vm_page_clear_dirty(vm_page_t m, int base, int size) 2811 { 2812 m->dirty &= ~vm_page_bits(base, size); 2813 if (base == 0 && size == PAGE_SIZE) { 2814 /*pmap_clear_modify(m);*/ 2815 vm_page_flag_clear(m, PG_NOSYNC); 2816 } 2817 } 2818 2819 /* 2820 * Make the page all-dirty. 2821 * 2822 * Also make sure the related object and vnode reflect the fact that the 2823 * object may now contain a dirty page. 2824 * 2825 * Page must be busied? 2826 * No other requirements. 2827 */ 2828 void 2829 vm_page_dirty(vm_page_t m) 2830 { 2831 #ifdef INVARIANTS 2832 int pqtype = m->queue - m->pc; 2833 #endif 2834 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 2835 ("vm_page_dirty: page in free/cache queue!")); 2836 if (m->dirty != VM_PAGE_BITS_ALL) { 2837 m->dirty = VM_PAGE_BITS_ALL; 2838 if (m->object) 2839 vm_object_set_writeable_dirty(m->object); 2840 } 2841 } 2842 2843 /* 2844 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2845 * valid and dirty bits for the effected areas are cleared. 2846 * 2847 * Page must be busied? 2848 * Does not block. 2849 * No other requirements. 2850 */ 2851 void 2852 vm_page_set_invalid(vm_page_t m, int base, int size) 2853 { 2854 int bits; 2855 2856 bits = vm_page_bits(base, size); 2857 m->valid &= ~bits; 2858 m->dirty &= ~bits; 2859 m->object->generation++; 2860 } 2861 2862 /* 2863 * The kernel assumes that the invalid portions of a page contain 2864 * garbage, but such pages can be mapped into memory by user code. 2865 * When this occurs, we must zero out the non-valid portions of the 2866 * page so user code sees what it expects. 2867 * 2868 * Pages are most often semi-valid when the end of a file is mapped 2869 * into memory and the file's size is not page aligned. 2870 * 2871 * Page must be busied? 2872 * No other requirements. 2873 */ 2874 void 2875 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2876 { 2877 int b; 2878 int i; 2879 2880 /* 2881 * Scan the valid bits looking for invalid sections that 2882 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2883 * valid bit may be set ) have already been zerod by 2884 * vm_page_set_validclean(). 2885 */ 2886 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2887 if (i == (PAGE_SIZE / DEV_BSIZE) || 2888 (m->valid & (1 << i)) 2889 ) { 2890 if (i > b) { 2891 pmap_zero_page_area( 2892 VM_PAGE_TO_PHYS(m), 2893 b << DEV_BSHIFT, 2894 (i - b) << DEV_BSHIFT 2895 ); 2896 } 2897 b = i + 1; 2898 } 2899 } 2900 2901 /* 2902 * setvalid is TRUE when we can safely set the zero'd areas 2903 * as being valid. We can do this if there are no cache consistency 2904 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2905 */ 2906 if (setvalid) 2907 m->valid = VM_PAGE_BITS_ALL; 2908 } 2909 2910 /* 2911 * Is a (partial) page valid? Note that the case where size == 0 2912 * will return FALSE in the degenerate case where the page is entirely 2913 * invalid, and TRUE otherwise. 2914 * 2915 * Does not block. 2916 * No other requirements. 2917 */ 2918 int 2919 vm_page_is_valid(vm_page_t m, int base, int size) 2920 { 2921 int bits = vm_page_bits(base, size); 2922 2923 if (m->valid && ((m->valid & bits) == bits)) 2924 return 1; 2925 else 2926 return 0; 2927 } 2928 2929 /* 2930 * update dirty bits from pmap/mmu. May not block. 2931 * 2932 * Caller must hold the page busy 2933 */ 2934 void 2935 vm_page_test_dirty(vm_page_t m) 2936 { 2937 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 2938 vm_page_dirty(m); 2939 } 2940 } 2941 2942 /* 2943 * Register an action, associating it with its vm_page 2944 */ 2945 void 2946 vm_page_register_action(vm_page_action_t action, vm_page_event_t event) 2947 { 2948 struct vm_page_action_list *list; 2949 int hv; 2950 2951 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2952 list = &action_list[hv]; 2953 2954 lwkt_gettoken(&vm_token); 2955 vm_page_flag_set(action->m, PG_ACTIONLIST); 2956 action->event = event; 2957 LIST_INSERT_HEAD(list, action, entry); 2958 lwkt_reltoken(&vm_token); 2959 } 2960 2961 /* 2962 * Unregister an action, disassociating it from its related vm_page 2963 */ 2964 void 2965 vm_page_unregister_action(vm_page_action_t action) 2966 { 2967 struct vm_page_action_list *list; 2968 int hv; 2969 2970 lwkt_gettoken(&vm_token); 2971 if (action->event != VMEVENT_NONE) { 2972 action->event = VMEVENT_NONE; 2973 LIST_REMOVE(action, entry); 2974 2975 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2976 list = &action_list[hv]; 2977 if (LIST_EMPTY(list)) 2978 vm_page_flag_clear(action->m, PG_ACTIONLIST); 2979 } 2980 lwkt_reltoken(&vm_token); 2981 } 2982 2983 /* 2984 * Issue an event on a VM page. Corresponding action structures are 2985 * removed from the page's list and called. 2986 * 2987 * If the vm_page has no more pending action events we clear its 2988 * PG_ACTIONLIST flag. 2989 */ 2990 void 2991 vm_page_event_internal(vm_page_t m, vm_page_event_t event) 2992 { 2993 struct vm_page_action_list *list; 2994 struct vm_page_action *scan; 2995 struct vm_page_action *next; 2996 int hv; 2997 int all; 2998 2999 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK; 3000 list = &action_list[hv]; 3001 all = 1; 3002 3003 lwkt_gettoken(&vm_token); 3004 LIST_FOREACH_MUTABLE(scan, list, entry, next) { 3005 if (scan->m == m) { 3006 if (scan->event == event) { 3007 scan->event = VMEVENT_NONE; 3008 LIST_REMOVE(scan, entry); 3009 scan->func(m, scan); 3010 /* XXX */ 3011 } else { 3012 all = 0; 3013 } 3014 } 3015 } 3016 if (all) 3017 vm_page_flag_clear(m, PG_ACTIONLIST); 3018 lwkt_reltoken(&vm_token); 3019 } 3020 3021 #include "opt_ddb.h" 3022 #ifdef DDB 3023 #include <sys/kernel.h> 3024 3025 #include <ddb/ddb.h> 3026 3027 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3028 { 3029 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count); 3030 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count); 3031 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count); 3032 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count); 3033 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count); 3034 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved); 3035 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min); 3036 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target); 3037 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min); 3038 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target); 3039 } 3040 3041 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3042 { 3043 int i; 3044 db_printf("PQ_FREE:"); 3045 for(i=0;i<PQ_L2_SIZE;i++) { 3046 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 3047 } 3048 db_printf("\n"); 3049 3050 db_printf("PQ_CACHE:"); 3051 for(i=0;i<PQ_L2_SIZE;i++) { 3052 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 3053 } 3054 db_printf("\n"); 3055 3056 db_printf("PQ_ACTIVE:"); 3057 for(i=0;i<PQ_L2_SIZE;i++) { 3058 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt); 3059 } 3060 db_printf("\n"); 3061 3062 db_printf("PQ_INACTIVE:"); 3063 for(i=0;i<PQ_L2_SIZE;i++) { 3064 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt); 3065 } 3066 db_printf("\n"); 3067 } 3068 #endif /* DDB */ 3069