xref: /dflybsd-src/sys/vm/vm_page.c (revision c9e3d8f96688a159959b1af2d4fef14b744173e3)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38  * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $
39  */
40 
41 /*
42  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43  * All rights reserved.
44  *
45  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46  *
47  * Permission to use, copy, modify and distribute this software and
48  * its documentation is hereby granted, provided that both the copyright
49  * notice and this permission notice appear in all copies of the
50  * software, derivative works or modified versions, and any portions
51  * thereof, and that both notices appear in supporting documentation.
52  *
53  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56  *
57  * Carnegie Mellon requests users of this software to return to
58  *
59  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
60  *  School of Computer Science
61  *  Carnegie Mellon University
62  *  Pittsburgh PA 15213-3890
63  *
64  * any improvements or extensions that they make and grant Carnegie the
65  * rights to redistribute these changes.
66  */
67 /*
68  * Resident memory management module.  The module manipulates 'VM pages'.
69  * A VM page is the core building block for memory management.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/vnode.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_page2.h>
91 #include <vm/swap_pager.h>
92 
93 #include <machine/md_var.h>
94 
95 static void vm_page_queue_init(void);
96 static void vm_page_free_wakeup(void);
97 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
98 static vm_page_t _vm_page_list_find2(int basequeue, int index);
99 
100 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
101 
102 #define ASSERT_IN_CRIT_SECTION()	KKASSERT(crit_test(curthread));
103 
104 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
105 	     vm_pindex_t, pindex);
106 
107 static void
108 vm_page_queue_init(void)
109 {
110 	int i;
111 
112 	for (i = 0; i < PQ_L2_SIZE; i++)
113 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
114 	for (i = 0; i < PQ_L2_SIZE; i++)
115 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
116 
117 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
118 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
119 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
120 	/* PQ_NONE has no queue */
121 
122 	for (i = 0; i < PQ_COUNT; i++)
123 		TAILQ_INIT(&vm_page_queues[i].pl);
124 }
125 
126 /*
127  * note: place in initialized data section?  Is this necessary?
128  */
129 long first_page = 0;
130 int vm_page_array_size = 0;
131 int vm_page_zero_count = 0;
132 vm_page_t vm_page_array = 0;
133 
134 /*
135  * (low level boot)
136  *
137  * Sets the page size, perhaps based upon the memory size.
138  * Must be called before any use of page-size dependent functions.
139  */
140 void
141 vm_set_page_size(void)
142 {
143 	if (vmstats.v_page_size == 0)
144 		vmstats.v_page_size = PAGE_SIZE;
145 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
146 		panic("vm_set_page_size: page size not a power of two");
147 }
148 
149 /*
150  * (low level boot)
151  *
152  * Add a new page to the freelist for use by the system.  New pages
153  * are added to both the head and tail of the associated free page
154  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
155  * requests pull 'recent' adds (higher physical addresses) first.
156  *
157  * Must be called in a critical section.
158  */
159 vm_page_t
160 vm_add_new_page(vm_paddr_t pa)
161 {
162 	struct vpgqueues *vpq;
163 	vm_page_t m;
164 
165 	++vmstats.v_page_count;
166 	++vmstats.v_free_count;
167 	m = PHYS_TO_VM_PAGE(pa);
168 	m->phys_addr = pa;
169 	m->flags = 0;
170 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
171 	m->queue = m->pc + PQ_FREE;
172 	KKASSERT(m->dirty == 0);
173 
174 	vpq = &vm_page_queues[m->queue];
175 	if (vpq->flipflop)
176 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
177 	else
178 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
179 	vpq->flipflop = 1 - vpq->flipflop;
180 
181 	vm_page_queues[m->queue].lcnt++;
182 	return (m);
183 }
184 
185 /*
186  * (low level boot)
187  *
188  * Initializes the resident memory module.
189  *
190  * Allocates memory for the page cells, and for the object/offset-to-page
191  * hash table headers.  Each page cell is initialized and placed on the
192  * free list.
193  *
194  * starta/enda represents the range of physical memory addresses available
195  * for use (skipping memory already used by the kernel), subject to
196  * phys_avail[].  Note that phys_avail[] has already mapped out memory
197  * already in use by the kernel.
198  */
199 vm_offset_t
200 vm_page_startup(vm_offset_t vaddr)
201 {
202 	vm_offset_t mapped;
203 	vm_size_t npages;
204 	vm_paddr_t page_range;
205 	vm_paddr_t new_end;
206 	int i;
207 	vm_paddr_t pa;
208 	int nblocks;
209 	vm_paddr_t last_pa;
210 	vm_paddr_t end;
211 	vm_paddr_t biggestone, biggestsize;
212 	vm_paddr_t total;
213 
214 	total = 0;
215 	biggestsize = 0;
216 	biggestone = 0;
217 	nblocks = 0;
218 	vaddr = round_page(vaddr);
219 
220 	for (i = 0; phys_avail[i + 1]; i += 2) {
221 		phys_avail[i] = round_page64(phys_avail[i]);
222 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
223 	}
224 
225 	for (i = 0; phys_avail[i + 1]; i += 2) {
226 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
227 
228 		if (size > biggestsize) {
229 			biggestone = i;
230 			biggestsize = size;
231 		}
232 		++nblocks;
233 		total += size;
234 	}
235 
236 	end = phys_avail[biggestone+1];
237 	end = trunc_page(end);
238 
239 	/*
240 	 * Initialize the queue headers for the free queue, the active queue
241 	 * and the inactive queue.
242 	 */
243 
244 	vm_page_queue_init();
245 
246 	/* VKERNELs don't support minidumps and as such don't need vm_page_dump */
247 #if !defined(_KERNEL_VIRTUAL)
248 	/*
249 	 * Allocate a bitmap to indicate that a random physical page
250 	 * needs to be included in a minidump.
251 	 *
252 	 * The amd64 port needs this to indicate which direct map pages
253 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
254 	 *
255 	 * However, i386 still needs this workspace internally within the
256 	 * minidump code.  In theory, they are not needed on i386, but are
257 	 * included should the sf_buf code decide to use them.
258 	 */
259 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
260 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
261 	end -= vm_page_dump_size;
262 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
263 	    VM_PROT_READ | VM_PROT_WRITE);
264 	bzero((void *)vm_page_dump, vm_page_dump_size);
265 #endif
266 
267 	/*
268 	 * Compute the number of pages of memory that will be available for
269 	 * use (taking into account the overhead of a page structure per
270 	 * page).
271 	 */
272 	first_page = phys_avail[0] / PAGE_SIZE;
273 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
274 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
275 
276 	/*
277 	 * Initialize the mem entry structures now, and put them in the free
278 	 * queue.
279 	 */
280 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
281 	mapped = pmap_map(&vaddr, new_end, end,
282 	    VM_PROT_READ | VM_PROT_WRITE);
283 	vm_page_array = (vm_page_t)mapped;
284 
285 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
286 	/*
287 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
288 	 * we have to manually add these pages to the minidump tracking so
289 	 * that they can be dumped, including the vm_page_array.
290 	 */
291 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
292 		dump_add_page(pa);
293 #endif
294 
295 	/*
296 	 * Clear all of the page structures
297 	 */
298 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
299 	vm_page_array_size = page_range;
300 
301 	/*
302 	 * Construct the free queue(s) in ascending order (by physical
303 	 * address) so that the first 16MB of physical memory is allocated
304 	 * last rather than first.  On large-memory machines, this avoids
305 	 * the exhaustion of low physical memory before isa_dmainit has run.
306 	 */
307 	vmstats.v_page_count = 0;
308 	vmstats.v_free_count = 0;
309 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
310 		pa = phys_avail[i];
311 		if (i == biggestone)
312 			last_pa = new_end;
313 		else
314 			last_pa = phys_avail[i + 1];
315 		while (pa < last_pa && npages-- > 0) {
316 			vm_add_new_page(pa);
317 			pa += PAGE_SIZE;
318 		}
319 	}
320 	return (vaddr);
321 }
322 
323 /*
324  * Scan comparison function for Red-Black tree scans.  An inclusive
325  * (start,end) is expected.  Other fields are not used.
326  */
327 int
328 rb_vm_page_scancmp(struct vm_page *p, void *data)
329 {
330 	struct rb_vm_page_scan_info *info = data;
331 
332 	if (p->pindex < info->start_pindex)
333 		return(-1);
334 	if (p->pindex > info->end_pindex)
335 		return(1);
336 	return(0);
337 }
338 
339 int
340 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
341 {
342 	if (p1->pindex < p2->pindex)
343 		return(-1);
344 	if (p1->pindex > p2->pindex)
345 		return(1);
346 	return(0);
347 }
348 
349 /*
350  * The opposite of vm_page_hold().  A page can be freed while being held,
351  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
352  * in this case to actually free it once the hold count drops to 0.
353  *
354  * This routine must be called at splvm().
355  */
356 void
357 vm_page_unhold(vm_page_t mem)
358 {
359 	--mem->hold_count;
360 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
361 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD) {
362 		vm_page_busy(mem);
363 		vm_page_free_toq(mem);
364 	}
365 }
366 
367 /*
368  * Inserts the given mem entry into the object and object list.
369  *
370  * The pagetables are not updated but will presumably fault the page
371  * in if necessary, or if a kernel page the caller will at some point
372  * enter the page into the kernel's pmap.  We are not allowed to block
373  * here so we *can't* do this anyway.
374  *
375  * This routine may not block.
376  * This routine must be called with a critical section held.
377  */
378 void
379 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
380 {
381 	ASSERT_IN_CRIT_SECTION();
382 	if (m->object != NULL)
383 		panic("vm_page_insert: already inserted");
384 
385 	/*
386 	 * Record the object/offset pair in this page
387 	 */
388 	m->object = object;
389 	m->pindex = pindex;
390 
391 	/*
392 	 * Insert it into the object.
393 	 */
394 	vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
395 	object->generation++;
396 
397 	/*
398 	 * show that the object has one more resident page.
399 	 */
400 	object->resident_page_count++;
401 
402 	/*
403 	 * Since we are inserting a new and possibly dirty page,
404 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
405 	 */
406 	if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
407 		vm_object_set_writeable_dirty(object);
408 
409 	/*
410 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
411 	 */
412 	swap_pager_page_inserted(m);
413 }
414 
415 /*
416  * Removes the given vm_page_t from the global (object,index) hash table
417  * and from the object's memq.
418  *
419  * The underlying pmap entry (if any) is NOT removed here.
420  * This routine may not block.
421  *
422  * The page must be BUSY and will remain BUSY on return.  No spl needs to be
423  * held on call to this routine.
424  *
425  * note: FreeBSD side effect was to unbusy the page on return.  We leave
426  * it busy.
427  */
428 void
429 vm_page_remove(vm_page_t m)
430 {
431 	vm_object_t object;
432 
433 	crit_enter();
434 	if (m->object == NULL) {
435 		crit_exit();
436 		return;
437 	}
438 
439 	if ((m->flags & PG_BUSY) == 0)
440 		panic("vm_page_remove: page not busy");
441 
442 	object = m->object;
443 
444 	/*
445 	 * Remove the page from the object and update the object.
446 	 */
447 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
448 	object->resident_page_count--;
449 	object->generation++;
450 	m->object = NULL;
451 
452 	crit_exit();
453 }
454 
455 /*
456  * Locate and return the page at (object, pindex), or NULL if the
457  * page could not be found.
458  *
459  * This routine will operate properly without spl protection, but
460  * the returned page could be in flux if it is busy.  Because an
461  * interrupt can race a caller's busy check (unbusying and freeing the
462  * page we return before the caller is able to check the busy bit),
463  * the caller should generally call this routine with a critical
464  * section held.
465  *
466  * Callers may call this routine without spl protection if they know
467  * 'for sure' that the page will not be ripped out from under them
468  * by an interrupt.
469  */
470 vm_page_t
471 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
472 {
473 	vm_page_t m;
474 
475 	/*
476 	 * Search the hash table for this object/offset pair
477 	 */
478 	crit_enter();
479 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
480 	crit_exit();
481 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
482 	return(m);
483 }
484 
485 /*
486  * vm_page_rename()
487  *
488  * Move the given memory entry from its current object to the specified
489  * target object/offset.
490  *
491  * The object must be locked.
492  * This routine may not block.
493  *
494  * Note: This routine will raise itself to splvm(), the caller need not.
495  *
496  * Note: Swap associated with the page must be invalidated by the move.  We
497  *       have to do this for several reasons:  (1) we aren't freeing the
498  *       page, (2) we are dirtying the page, (3) the VM system is probably
499  *       moving the page from object A to B, and will then later move
500  *       the backing store from A to B and we can't have a conflict.
501  *
502  * Note: We *always* dirty the page.  It is necessary both for the
503  *       fact that we moved it, and because we may be invalidating
504  *	 swap.  If the page is on the cache, we have to deactivate it
505  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
506  *	 on the cache.
507  */
508 void
509 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
510 {
511 	crit_enter();
512 	vm_page_remove(m);
513 	vm_page_insert(m, new_object, new_pindex);
514 	if (m->queue - m->pc == PQ_CACHE)
515 		vm_page_deactivate(m);
516 	vm_page_dirty(m);
517 	vm_page_wakeup(m);
518 	crit_exit();
519 }
520 
521 /*
522  * vm_page_unqueue() without any wakeup.  This routine is used when a page
523  * is being moved between queues or otherwise is to remain BUSYied by the
524  * caller.
525  *
526  * This routine must be called at splhigh().
527  * This routine may not block.
528  */
529 void
530 vm_page_unqueue_nowakeup(vm_page_t m)
531 {
532 	int queue = m->queue;
533 	struct vpgqueues *pq;
534 
535 	if (queue != PQ_NONE) {
536 		pq = &vm_page_queues[queue];
537 		m->queue = PQ_NONE;
538 		TAILQ_REMOVE(&pq->pl, m, pageq);
539 		(*pq->cnt)--;
540 		pq->lcnt--;
541 	}
542 }
543 
544 /*
545  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
546  * if necessary.
547  *
548  * This routine must be called at splhigh().
549  * This routine may not block.
550  */
551 void
552 vm_page_unqueue(vm_page_t m)
553 {
554 	int queue = m->queue;
555 	struct vpgqueues *pq;
556 
557 	if (queue != PQ_NONE) {
558 		m->queue = PQ_NONE;
559 		pq = &vm_page_queues[queue];
560 		TAILQ_REMOVE(&pq->pl, m, pageq);
561 		(*pq->cnt)--;
562 		pq->lcnt--;
563 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
564 			pagedaemon_wakeup();
565 	}
566 }
567 
568 /*
569  * vm_page_list_find()
570  *
571  * Find a page on the specified queue with color optimization.
572  *
573  * The page coloring optimization attempts to locate a page that does
574  * not overload other nearby pages in the object in the cpu's L1 or L2
575  * caches.  We need this optimization because cpu caches tend to be
576  * physical caches, while object spaces tend to be virtual.
577  *
578  * This routine must be called at splvm().
579  * This routine may not block.
580  *
581  * Note that this routine is carefully inlined.  A non-inlined version
582  * is available for outside callers but the only critical path is
583  * from within this source file.
584  */
585 static __inline
586 vm_page_t
587 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
588 {
589 	vm_page_t m;
590 
591 	if (prefer_zero)
592 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
593 	else
594 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
595 	if (m == NULL)
596 		m = _vm_page_list_find2(basequeue, index);
597 	return(m);
598 }
599 
600 static vm_page_t
601 _vm_page_list_find2(int basequeue, int index)
602 {
603 	int i;
604 	vm_page_t m = NULL;
605 	struct vpgqueues *pq;
606 
607 	pq = &vm_page_queues[basequeue];
608 
609 	/*
610 	 * Note that for the first loop, index+i and index-i wind up at the
611 	 * same place.  Even though this is not totally optimal, we've already
612 	 * blown it by missing the cache case so we do not care.
613 	 */
614 
615 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
616 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
617 			break;
618 
619 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
620 			break;
621 	}
622 	return(m);
623 }
624 
625 vm_page_t
626 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
627 {
628 	return(_vm_page_list_find(basequeue, index, prefer_zero));
629 }
630 
631 /*
632  * Find a page on the cache queue with color optimization.  As pages
633  * might be found, but not applicable, they are deactivated.  This
634  * keeps us from using potentially busy cached pages.
635  *
636  * This routine must be called with a critical section held.
637  * This routine may not block.
638  */
639 vm_page_t
640 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
641 {
642 	vm_page_t m;
643 
644 	while (TRUE) {
645 		m = _vm_page_list_find(
646 		    PQ_CACHE,
647 		    (pindex + object->pg_color) & PQ_L2_MASK,
648 		    FALSE
649 		);
650 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
651 			       m->hold_count || m->wire_count)) {
652 			vm_page_deactivate(m);
653 			continue;
654 		}
655 		return m;
656 	}
657 	/* not reached */
658 }
659 
660 /*
661  * Find a free or zero page, with specified preference.  We attempt to
662  * inline the nominal case and fall back to _vm_page_select_free()
663  * otherwise.
664  *
665  * This routine must be called with a critical section held.
666  * This routine may not block.
667  */
668 static __inline vm_page_t
669 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
670 {
671 	vm_page_t m;
672 
673 	m = _vm_page_list_find(
674 		PQ_FREE,
675 		(pindex + object->pg_color) & PQ_L2_MASK,
676 		prefer_zero
677 	);
678 	return(m);
679 }
680 
681 /*
682  * vm_page_alloc()
683  *
684  * Allocate and return a memory cell associated with this VM object/offset
685  * pair.
686  *
687  *	page_req classes:
688  *
689  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
690  *	VM_ALLOC_QUICK		like normal but cannot use cache
691  *	VM_ALLOC_SYSTEM		greater free drain
692  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
693  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page
694  *
695  * The object must be locked.
696  * This routine may not block.
697  * The returned page will be marked PG_BUSY
698  *
699  * Additional special handling is required when called from an interrupt
700  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
701  * in this case.
702  */
703 vm_page_t
704 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
705 {
706 	vm_page_t m = NULL;
707 
708 	KKASSERT(object != NULL);
709 	KASSERT(!vm_page_lookup(object, pindex),
710 		("vm_page_alloc: page already allocated"));
711 	KKASSERT(page_req &
712 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
713 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
714 
715 	/*
716 	 * Certain system threads (pageout daemon, buf_daemon's) are
717 	 * allowed to eat deeper into the free page list.
718 	 */
719 	if (curthread->td_flags & TDF_SYSTHREAD)
720 		page_req |= VM_ALLOC_SYSTEM;
721 
722 	crit_enter();
723 loop:
724 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
725 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
726 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
727 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
728 	) {
729 		/*
730 		 * The free queue has sufficient free pages to take one out.
731 		 */
732 		if (page_req & VM_ALLOC_ZERO)
733 			m = vm_page_select_free(object, pindex, TRUE);
734 		else
735 			m = vm_page_select_free(object, pindex, FALSE);
736 	} else if (page_req & VM_ALLOC_NORMAL) {
737 		/*
738 		 * Allocatable from the cache (non-interrupt only).  On
739 		 * success, we must free the page and try again, thus
740 		 * ensuring that vmstats.v_*_free_min counters are replenished.
741 		 */
742 #ifdef INVARIANTS
743 		if (curthread->td_preempted) {
744 			kprintf("vm_page_alloc(): warning, attempt to allocate"
745 				" cache page from preempting interrupt\n");
746 			m = NULL;
747 		} else {
748 			m = vm_page_select_cache(object, pindex);
749 		}
750 #else
751 		m = vm_page_select_cache(object, pindex);
752 #endif
753 		/*
754 		 * On success move the page into the free queue and loop.
755 		 */
756 		if (m != NULL) {
757 			KASSERT(m->dirty == 0,
758 			    ("Found dirty cache page %p", m));
759 			vm_page_busy(m);
760 			vm_page_protect(m, VM_PROT_NONE);
761 			vm_page_free(m);
762 			goto loop;
763 		}
764 
765 		/*
766 		 * On failure return NULL
767 		 */
768 		crit_exit();
769 #if defined(DIAGNOSTIC)
770 		if (vmstats.v_cache_count > 0)
771 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
772 #endif
773 		vm_pageout_deficit++;
774 		pagedaemon_wakeup();
775 		return (NULL);
776 	} else {
777 		/*
778 		 * No pages available, wakeup the pageout daemon and give up.
779 		 */
780 		crit_exit();
781 		vm_pageout_deficit++;
782 		pagedaemon_wakeup();
783 		return (NULL);
784 	}
785 
786 	/*
787 	 * Good page found.  The page has not yet been busied.  We are in
788 	 * a critical section.
789 	 */
790 	KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
791 	KASSERT(m->dirty == 0,
792 		("vm_page_alloc: free/cache page %p was dirty", m));
793 
794 	/*
795 	 * Remove from free queue
796 	 */
797 	vm_page_unqueue_nowakeup(m);
798 
799 	/*
800 	 * Initialize structure.  Only the PG_ZERO flag is inherited.  Set
801 	 * the page PG_BUSY
802 	 */
803 	if (m->flags & PG_ZERO) {
804 		vm_page_zero_count--;
805 		m->flags = PG_ZERO | PG_BUSY;
806 	} else {
807 		m->flags = PG_BUSY;
808 	}
809 	m->wire_count = 0;
810 	m->hold_count = 0;
811 	m->act_count = 0;
812 	m->busy = 0;
813 	m->valid = 0;
814 
815 	/*
816 	 * vm_page_insert() is safe prior to the crit_exit().  Note also that
817 	 * inserting a page here does not insert it into the pmap (which
818 	 * could cause us to block allocating memory).  We cannot block
819 	 * anywhere.
820 	 */
821 	vm_page_insert(m, object, pindex);
822 
823 	/*
824 	 * Don't wakeup too often - wakeup the pageout daemon when
825 	 * we would be nearly out of memory.
826 	 */
827 	pagedaemon_wakeup();
828 
829 	crit_exit();
830 
831 	/*
832 	 * A PG_BUSY page is returned.
833 	 */
834 	return (m);
835 }
836 
837 /*
838  * Wait for sufficient free memory for nominal heavy memory use kernel
839  * operations.
840  */
841 void
842 vm_wait_nominal(void)
843 {
844 	while (vm_page_count_min(0))
845 		vm_wait(0);
846 }
847 
848 /*
849  * Test if vm_wait_nominal() would block.
850  */
851 int
852 vm_test_nominal(void)
853 {
854 	if (vm_page_count_min(0))
855 		return(1);
856 	return(0);
857 }
858 
859 /*
860  * Block until free pages are available for allocation, called in various
861  * places before memory allocations.
862  */
863 void
864 vm_wait(int timo)
865 {
866 	crit_enter();
867 	if (curthread == pagethread) {
868 		vm_pageout_pages_needed = 1;
869 		tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
870 	} else {
871 		if (vm_pages_needed == 0) {
872 			vm_pages_needed = 1;
873 			wakeup(&vm_pages_needed);
874 		}
875 		tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
876 	}
877 	crit_exit();
878 }
879 
880 /*
881  * Block until free pages are available for allocation
882  *
883  * Called only in vm_fault so that processes page faulting can be
884  * easily tracked.
885  */
886 void
887 vm_waitpfault(void)
888 {
889 	crit_enter();
890 	if (vm_pages_needed == 0) {
891 		vm_pages_needed = 1;
892 		wakeup(&vm_pages_needed);
893 	}
894 	tsleep(&vmstats.v_free_count, 0, "pfault", 0);
895 	crit_exit();
896 }
897 
898 /*
899  * Put the specified page on the active list (if appropriate).  Ensure
900  * that act_count is at least ACT_INIT but do not otherwise mess with it.
901  *
902  * The page queues must be locked.
903  * This routine may not block.
904  */
905 void
906 vm_page_activate(vm_page_t m)
907 {
908 	crit_enter();
909 	if (m->queue != PQ_ACTIVE) {
910 		if ((m->queue - m->pc) == PQ_CACHE)
911 			mycpu->gd_cnt.v_reactivated++;
912 
913 		vm_page_unqueue(m);
914 
915 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
916 			m->queue = PQ_ACTIVE;
917 			vm_page_queues[PQ_ACTIVE].lcnt++;
918 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
919 					    m, pageq);
920 			if (m->act_count < ACT_INIT)
921 				m->act_count = ACT_INIT;
922 			vmstats.v_active_count++;
923 		}
924 	} else {
925 		if (m->act_count < ACT_INIT)
926 			m->act_count = ACT_INIT;
927 	}
928 	crit_exit();
929 }
930 
931 /*
932  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
933  * routine is called when a page has been added to the cache or free
934  * queues.
935  *
936  * This routine may not block.
937  * This routine must be called at splvm()
938  */
939 static __inline void
940 vm_page_free_wakeup(void)
941 {
942 	/*
943 	 * if pageout daemon needs pages, then tell it that there are
944 	 * some free.
945 	 */
946 	if (vm_pageout_pages_needed &&
947 	    vmstats.v_cache_count + vmstats.v_free_count >=
948 	    vmstats.v_pageout_free_min
949 	) {
950 		wakeup(&vm_pageout_pages_needed);
951 		vm_pageout_pages_needed = 0;
952 	}
953 
954 	/*
955 	 * wakeup processes that are waiting on memory if we hit a
956 	 * high water mark. And wakeup scheduler process if we have
957 	 * lots of memory. this process will swapin processes.
958 	 */
959 	if (vm_pages_needed && !vm_page_count_min(0)) {
960 		vm_pages_needed = 0;
961 		wakeup(&vmstats.v_free_count);
962 	}
963 }
964 
965 /*
966  *	vm_page_free_toq:
967  *
968  *	Returns the given page to the PQ_FREE list, disassociating it with
969  *	any VM object.
970  *
971  *	The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
972  *	return (the page will have been freed).  No particular spl is required
973  *	on entry.
974  *
975  *	This routine may not block.
976  */
977 void
978 vm_page_free_toq(vm_page_t m)
979 {
980 	struct vpgqueues *pq;
981 
982 	crit_enter();
983 	mycpu->gd_cnt.v_tfree++;
984 
985 	KKASSERT((m->flags & PG_MAPPED) == 0);
986 
987 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
988 		kprintf(
989 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
990 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
991 		    m->hold_count);
992 		if ((m->queue - m->pc) == PQ_FREE)
993 			panic("vm_page_free: freeing free page");
994 		else
995 			panic("vm_page_free: freeing busy page");
996 	}
997 
998 	/*
999 	 * unqueue, then remove page.  Note that we cannot destroy
1000 	 * the page here because we do not want to call the pager's
1001 	 * callback routine until after we've put the page on the
1002 	 * appropriate free queue.
1003 	 */
1004 	vm_page_unqueue_nowakeup(m);
1005 	vm_page_remove(m);
1006 
1007 	/*
1008 	 * No further management of fictitious pages occurs beyond object
1009 	 * and queue removal.
1010 	 */
1011 	if ((m->flags & PG_FICTITIOUS) != 0) {
1012 		vm_page_wakeup(m);
1013 		crit_exit();
1014 		return;
1015 	}
1016 
1017 	m->valid = 0;
1018 	vm_page_undirty(m);
1019 
1020 	if (m->wire_count != 0) {
1021 		if (m->wire_count > 1) {
1022 		    panic(
1023 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1024 			m->wire_count, (long)m->pindex);
1025 		}
1026 		panic("vm_page_free: freeing wired page");
1027 	}
1028 
1029 	/*
1030 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1031 	 */
1032 	if (m->flags & PG_UNMANAGED) {
1033 	    m->flags &= ~PG_UNMANAGED;
1034 	}
1035 
1036 	if (m->hold_count != 0) {
1037 		m->flags &= ~PG_ZERO;
1038 		m->queue = PQ_HOLD;
1039 	} else {
1040 		m->queue = PQ_FREE + m->pc;
1041 	}
1042 	pq = &vm_page_queues[m->queue];
1043 	pq->lcnt++;
1044 	++(*pq->cnt);
1045 
1046 	/*
1047 	 * Put zero'd pages on the end ( where we look for zero'd pages
1048 	 * first ) and non-zerod pages at the head.
1049 	 */
1050 	if (m->flags & PG_ZERO) {
1051 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1052 		++vm_page_zero_count;
1053 	} else {
1054 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1055 	}
1056 	vm_page_wakeup(m);
1057 	vm_page_free_wakeup();
1058 	crit_exit();
1059 }
1060 
1061 /*
1062  * vm_page_unmanage()
1063  *
1064  * Prevent PV management from being done on the page.  The page is
1065  * removed from the paging queues as if it were wired, and as a
1066  * consequence of no longer being managed the pageout daemon will not
1067  * touch it (since there is no way to locate the pte mappings for the
1068  * page).  madvise() calls that mess with the pmap will also no longer
1069  * operate on the page.
1070  *
1071  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1072  * will clear the flag.
1073  *
1074  * This routine is used by OBJT_PHYS objects - objects using unswappable
1075  * physical memory as backing store rather then swap-backed memory and
1076  * will eventually be extended to support 4MB unmanaged physical
1077  * mappings.
1078  *
1079  * Must be called with a critical section held.
1080  */
1081 void
1082 vm_page_unmanage(vm_page_t m)
1083 {
1084 	ASSERT_IN_CRIT_SECTION();
1085 	if ((m->flags & PG_UNMANAGED) == 0) {
1086 		if (m->wire_count == 0)
1087 			vm_page_unqueue(m);
1088 	}
1089 	vm_page_flag_set(m, PG_UNMANAGED);
1090 }
1091 
1092 /*
1093  * Mark this page as wired down by yet another map, removing it from
1094  * paging queues as necessary.
1095  *
1096  * The page queues must be locked.
1097  * This routine may not block.
1098  */
1099 void
1100 vm_page_wire(vm_page_t m)
1101 {
1102 	/*
1103 	 * Only bump the wire statistics if the page is not already wired,
1104 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1105 	 * it is already off the queues).  Don't do anything with fictitious
1106 	 * pages because they are always wired.
1107 	 */
1108 	crit_enter();
1109 	if ((m->flags & PG_FICTITIOUS) == 0) {
1110 		if (m->wire_count == 0) {
1111 			if ((m->flags & PG_UNMANAGED) == 0)
1112 				vm_page_unqueue(m);
1113 			vmstats.v_wire_count++;
1114 		}
1115 		m->wire_count++;
1116 		KASSERT(m->wire_count != 0,
1117 			("vm_page_wire: wire_count overflow m=%p", m));
1118 	}
1119 	crit_exit();
1120 }
1121 
1122 /*
1123  * Release one wiring of this page, potentially enabling it to be paged again.
1124  *
1125  * Many pages placed on the inactive queue should actually go
1126  * into the cache, but it is difficult to figure out which.  What
1127  * we do instead, if the inactive target is well met, is to put
1128  * clean pages at the head of the inactive queue instead of the tail.
1129  * This will cause them to be moved to the cache more quickly and
1130  * if not actively re-referenced, freed more quickly.  If we just
1131  * stick these pages at the end of the inactive queue, heavy filesystem
1132  * meta-data accesses can cause an unnecessary paging load on memory bound
1133  * processes.  This optimization causes one-time-use metadata to be
1134  * reused more quickly.
1135  *
1136  * BUT, if we are in a low-memory situation we have no choice but to
1137  * put clean pages on the cache queue.
1138  *
1139  * A number of routines use vm_page_unwire() to guarantee that the page
1140  * will go into either the inactive or active queues, and will NEVER
1141  * be placed in the cache - for example, just after dirtying a page.
1142  * dirty pages in the cache are not allowed.
1143  *
1144  * The page queues must be locked.
1145  * This routine may not block.
1146  */
1147 void
1148 vm_page_unwire(vm_page_t m, int activate)
1149 {
1150 	crit_enter();
1151 	if (m->flags & PG_FICTITIOUS) {
1152 		/* do nothing */
1153 	} else if (m->wire_count <= 0) {
1154 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1155 	} else {
1156 		if (--m->wire_count == 0) {
1157 			--vmstats.v_wire_count;
1158 			if (m->flags & PG_UNMANAGED) {
1159 				;
1160 			} else if (activate) {
1161 				TAILQ_INSERT_TAIL(
1162 				    &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1163 				m->queue = PQ_ACTIVE;
1164 				vm_page_queues[PQ_ACTIVE].lcnt++;
1165 				vmstats.v_active_count++;
1166 			} else {
1167 				vm_page_flag_clear(m, PG_WINATCFLS);
1168 				TAILQ_INSERT_TAIL(
1169 				    &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1170 				m->queue = PQ_INACTIVE;
1171 				vm_page_queues[PQ_INACTIVE].lcnt++;
1172 				vmstats.v_inactive_count++;
1173 				++vm_swapcache_inactive_heuristic;
1174 			}
1175 		}
1176 	}
1177 	crit_exit();
1178 }
1179 
1180 
1181 /*
1182  * Move the specified page to the inactive queue.  If the page has
1183  * any associated swap, the swap is deallocated.
1184  *
1185  * Normally athead is 0 resulting in LRU operation.  athead is set
1186  * to 1 if we want this page to be 'as if it were placed in the cache',
1187  * except without unmapping it from the process address space.
1188  *
1189  * This routine may not block.
1190  */
1191 static __inline void
1192 _vm_page_deactivate(vm_page_t m, int athead)
1193 {
1194 	/*
1195 	 * Ignore if already inactive.
1196 	 */
1197 	if (m->queue == PQ_INACTIVE)
1198 		return;
1199 
1200 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1201 		if ((m->queue - m->pc) == PQ_CACHE)
1202 			mycpu->gd_cnt.v_reactivated++;
1203 		vm_page_flag_clear(m, PG_WINATCFLS);
1204 		vm_page_unqueue(m);
1205 		if (athead) {
1206 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl,
1207 					  m, pageq);
1208 		} else {
1209 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl,
1210 					  m, pageq);
1211 			++vm_swapcache_inactive_heuristic;
1212 		}
1213 		m->queue = PQ_INACTIVE;
1214 		vm_page_queues[PQ_INACTIVE].lcnt++;
1215 		vmstats.v_inactive_count++;
1216 	}
1217 }
1218 
1219 void
1220 vm_page_deactivate(vm_page_t m)
1221 {
1222     crit_enter();
1223     _vm_page_deactivate(m, 0);
1224     crit_exit();
1225 }
1226 
1227 /*
1228  * vm_page_try_to_cache:
1229  *
1230  * Returns 0 on failure, 1 on success
1231  */
1232 int
1233 vm_page_try_to_cache(vm_page_t m)
1234 {
1235 	crit_enter();
1236 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1237 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1238 		crit_exit();
1239 		return(0);
1240 	}
1241 	vm_page_test_dirty(m);
1242 	if (m->dirty) {
1243 		crit_exit();
1244 		return(0);
1245 	}
1246 	vm_page_cache(m);
1247 	crit_exit();
1248 	return(1);
1249 }
1250 
1251 /*
1252  * Attempt to free the page.  If we cannot free it, we do nothing.
1253  * 1 is returned on success, 0 on failure.
1254  */
1255 int
1256 vm_page_try_to_free(vm_page_t m)
1257 {
1258 	crit_enter();
1259 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1260 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1261 		crit_exit();
1262 		return(0);
1263 	}
1264 	vm_page_test_dirty(m);
1265 	if (m->dirty) {
1266 		crit_exit();
1267 		return(0);
1268 	}
1269 	vm_page_busy(m);
1270 	vm_page_protect(m, VM_PROT_NONE);
1271 	vm_page_free(m);
1272 	crit_exit();
1273 	return(1);
1274 }
1275 
1276 /*
1277  * vm_page_cache
1278  *
1279  * Put the specified page onto the page cache queue (if appropriate).
1280  *
1281  * This routine may not block.
1282  */
1283 void
1284 vm_page_cache(vm_page_t m)
1285 {
1286 	ASSERT_IN_CRIT_SECTION();
1287 
1288 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1289 			m->wire_count || m->hold_count) {
1290 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
1291 		return;
1292 	}
1293 
1294 	/*
1295 	 * Already in the cache (and thus not mapped)
1296 	 */
1297 	if ((m->queue - m->pc) == PQ_CACHE) {
1298 		KKASSERT((m->flags & PG_MAPPED) == 0);
1299 		return;
1300 	}
1301 
1302 	/*
1303 	 * Caller is required to test m->dirty, but note that the act of
1304 	 * removing the page from its maps can cause it to become dirty
1305 	 * on an SMP system due to another cpu running in usermode.
1306 	 */
1307 	if (m->dirty) {
1308 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1309 			(long)m->pindex);
1310 	}
1311 
1312 	/*
1313 	 * Remove all pmaps and indicate that the page is not
1314 	 * writeable or mapped.  Our vm_page_protect() call may
1315 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
1316 	 * everything.
1317 	 */
1318 	vm_page_busy(m);
1319 	vm_page_protect(m, VM_PROT_NONE);
1320 	vm_page_wakeup(m);
1321 	if ((m->flags & (PG_BUSY|PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1322 			m->wire_count || m->hold_count) {
1323 		/* do nothing */
1324 	} else if (m->dirty) {
1325 		vm_page_deactivate(m);
1326 	} else {
1327 		vm_page_unqueue_nowakeup(m);
1328 		m->queue = PQ_CACHE + m->pc;
1329 		vm_page_queues[m->queue].lcnt++;
1330 		TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1331 		vmstats.v_cache_count++;
1332 		vm_page_free_wakeup();
1333 	}
1334 }
1335 
1336 /*
1337  * vm_page_dontneed()
1338  *
1339  * Cache, deactivate, or do nothing as appropriate.  This routine
1340  * is typically used by madvise() MADV_DONTNEED.
1341  *
1342  * Generally speaking we want to move the page into the cache so
1343  * it gets reused quickly.  However, this can result in a silly syndrome
1344  * due to the page recycling too quickly.  Small objects will not be
1345  * fully cached.  On the otherhand, if we move the page to the inactive
1346  * queue we wind up with a problem whereby very large objects
1347  * unnecessarily blow away our inactive and cache queues.
1348  *
1349  * The solution is to move the pages based on a fixed weighting.  We
1350  * either leave them alone, deactivate them, or move them to the cache,
1351  * where moving them to the cache has the highest weighting.
1352  * By forcing some pages into other queues we eventually force the
1353  * system to balance the queues, potentially recovering other unrelated
1354  * space from active.  The idea is to not force this to happen too
1355  * often.
1356  */
1357 void
1358 vm_page_dontneed(vm_page_t m)
1359 {
1360 	static int dnweight;
1361 	int dnw;
1362 	int head;
1363 
1364 	dnw = ++dnweight;
1365 
1366 	/*
1367 	 * occassionally leave the page alone
1368 	 */
1369 	crit_enter();
1370 	if ((dnw & 0x01F0) == 0 ||
1371 	    m->queue == PQ_INACTIVE ||
1372 	    m->queue - m->pc == PQ_CACHE
1373 	) {
1374 		if (m->act_count >= ACT_INIT)
1375 			--m->act_count;
1376 		crit_exit();
1377 		return;
1378 	}
1379 
1380 	if (m->dirty == 0)
1381 		vm_page_test_dirty(m);
1382 
1383 	if (m->dirty || (dnw & 0x0070) == 0) {
1384 		/*
1385 		 * Deactivate the page 3 times out of 32.
1386 		 */
1387 		head = 0;
1388 	} else {
1389 		/*
1390 		 * Cache the page 28 times out of every 32.  Note that
1391 		 * the page is deactivated instead of cached, but placed
1392 		 * at the head of the queue instead of the tail.
1393 		 */
1394 		head = 1;
1395 	}
1396 	_vm_page_deactivate(m, head);
1397 	crit_exit();
1398 }
1399 
1400 /*
1401  * Grab a page, blocking if it is busy and allocating a page if necessary.
1402  * A busy page is returned or NULL.
1403  *
1404  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1405  * If VM_ALLOC_RETRY is not specified
1406  *
1407  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1408  * always returned if we had blocked.
1409  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1410  * This routine may not be called from an interrupt.
1411  * The returned page may not be entirely valid.
1412  *
1413  * This routine may be called from mainline code without spl protection and
1414  * be guarenteed a busied page associated with the object at the specified
1415  * index.
1416  */
1417 vm_page_t
1418 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1419 {
1420 	vm_page_t m;
1421 	int generation;
1422 
1423 	KKASSERT(allocflags &
1424 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1425 	crit_enter();
1426 retrylookup:
1427 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1428 		if (m->busy || (m->flags & PG_BUSY)) {
1429 			generation = object->generation;
1430 
1431 			while ((object->generation == generation) &&
1432 					(m->busy || (m->flags & PG_BUSY))) {
1433 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1434 				tsleep(m, 0, "pgrbwt", 0);
1435 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1436 					m = NULL;
1437 					goto done;
1438 				}
1439 			}
1440 			goto retrylookup;
1441 		} else {
1442 			vm_page_busy(m);
1443 			goto done;
1444 		}
1445 	}
1446 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1447 	if (m == NULL) {
1448 		vm_wait(0);
1449 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1450 			goto done;
1451 		goto retrylookup;
1452 	}
1453 done:
1454 	crit_exit();
1455 	return(m);
1456 }
1457 
1458 /*
1459  * Mapping function for valid bits or for dirty bits in
1460  * a page.  May not block.
1461  *
1462  * Inputs are required to range within a page.
1463  */
1464 __inline int
1465 vm_page_bits(int base, int size)
1466 {
1467 	int first_bit;
1468 	int last_bit;
1469 
1470 	KASSERT(
1471 	    base + size <= PAGE_SIZE,
1472 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1473 	);
1474 
1475 	if (size == 0)		/* handle degenerate case */
1476 		return(0);
1477 
1478 	first_bit = base >> DEV_BSHIFT;
1479 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1480 
1481 	return ((2 << last_bit) - (1 << first_bit));
1482 }
1483 
1484 /*
1485  * Sets portions of a page valid and clean.  The arguments are expected
1486  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1487  * of any partial chunks touched by the range.  The invalid portion of
1488  * such chunks will be zero'd.
1489  *
1490  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
1491  *	 align base to DEV_BSIZE so as not to mark clean a partially
1492  *	 truncated device block.  Otherwise the dirty page status might be
1493  *	 lost.
1494  *
1495  * This routine may not block.
1496  *
1497  * (base + size) must be less then or equal to PAGE_SIZE.
1498  */
1499 static void
1500 _vm_page_zero_valid(vm_page_t m, int base, int size)
1501 {
1502 	int frag;
1503 	int endoff;
1504 
1505 	if (size == 0)	/* handle degenerate case */
1506 		return;
1507 
1508 	/*
1509 	 * If the base is not DEV_BSIZE aligned and the valid
1510 	 * bit is clear, we have to zero out a portion of the
1511 	 * first block.
1512 	 */
1513 
1514 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1515 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1516 	) {
1517 		pmap_zero_page_area(
1518 		    VM_PAGE_TO_PHYS(m),
1519 		    frag,
1520 		    base - frag
1521 		);
1522 	}
1523 
1524 	/*
1525 	 * If the ending offset is not DEV_BSIZE aligned and the
1526 	 * valid bit is clear, we have to zero out a portion of
1527 	 * the last block.
1528 	 */
1529 
1530 	endoff = base + size;
1531 
1532 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1533 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1534 	) {
1535 		pmap_zero_page_area(
1536 		    VM_PAGE_TO_PHYS(m),
1537 		    endoff,
1538 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1539 		);
1540 	}
1541 }
1542 
1543 /*
1544  * Set valid, clear dirty bits.  If validating the entire
1545  * page we can safely clear the pmap modify bit.  We also
1546  * use this opportunity to clear the PG_NOSYNC flag.  If a process
1547  * takes a write fault on a MAP_NOSYNC memory area the flag will
1548  * be set again.
1549  *
1550  * We set valid bits inclusive of any overlap, but we can only
1551  * clear dirty bits for DEV_BSIZE chunks that are fully within
1552  * the range.
1553  */
1554 void
1555 vm_page_set_valid(vm_page_t m, int base, int size)
1556 {
1557 	_vm_page_zero_valid(m, base, size);
1558 	m->valid |= vm_page_bits(base, size);
1559 }
1560 
1561 
1562 /*
1563  * Set valid bits and clear dirty bits.
1564  *
1565  * NOTE: This function does not clear the pmap modified bit.
1566  *	 Also note that e.g. NFS may use a byte-granular base
1567  *	 and size.
1568  */
1569 void
1570 vm_page_set_validclean(vm_page_t m, int base, int size)
1571 {
1572 	int pagebits;
1573 
1574 	_vm_page_zero_valid(m, base, size);
1575 	pagebits = vm_page_bits(base, size);
1576 	m->valid |= pagebits;
1577 	m->dirty &= ~pagebits;
1578 	if (base == 0 && size == PAGE_SIZE) {
1579 		/*pmap_clear_modify(m);*/
1580 		vm_page_flag_clear(m, PG_NOSYNC);
1581 	}
1582 }
1583 
1584 /*
1585  * Set valid & dirty.  Used by buwrite()
1586  */
1587 void
1588 vm_page_set_validdirty(vm_page_t m, int base, int size)
1589 {
1590 	int pagebits;
1591 
1592 	pagebits = vm_page_bits(base, size);
1593 	m->valid |= pagebits;
1594 	m->dirty |= pagebits;
1595 	if (m->object)
1596 		vm_object_set_writeable_dirty(m->object);
1597 }
1598 
1599 /*
1600  * Clear dirty bits.
1601  *
1602  * NOTE: This function does not clear the pmap modified bit.
1603  *	 Also note that e.g. NFS may use a byte-granular base
1604  *	 and size.
1605  */
1606 void
1607 vm_page_clear_dirty(vm_page_t m, int base, int size)
1608 {
1609 	m->dirty &= ~vm_page_bits(base, size);
1610 	if (base == 0 && size == PAGE_SIZE) {
1611 		/*pmap_clear_modify(m);*/
1612 		vm_page_flag_clear(m, PG_NOSYNC);
1613 	}
1614 }
1615 
1616 /*
1617  * Make the page all-dirty.
1618  *
1619  * Also make sure the related object and vnode reflect the fact that the
1620  * object may now contain a dirty page.
1621  */
1622 void
1623 vm_page_dirty(vm_page_t m)
1624 {
1625 #ifdef INVARIANTS
1626         int pqtype = m->queue - m->pc;
1627 #endif
1628         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1629                 ("vm_page_dirty: page in free/cache queue!"));
1630 	if (m->dirty != VM_PAGE_BITS_ALL) {
1631 		m->dirty = VM_PAGE_BITS_ALL;
1632 		if (m->object)
1633 			vm_object_set_writeable_dirty(m->object);
1634 	}
1635 }
1636 
1637 /*
1638  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1639  * valid and dirty bits for the effected areas are cleared.
1640  *
1641  * May not block.
1642  */
1643 void
1644 vm_page_set_invalid(vm_page_t m, int base, int size)
1645 {
1646 	int bits;
1647 
1648 	bits = vm_page_bits(base, size);
1649 	m->valid &= ~bits;
1650 	m->dirty &= ~bits;
1651 	m->object->generation++;
1652 }
1653 
1654 /*
1655  * The kernel assumes that the invalid portions of a page contain
1656  * garbage, but such pages can be mapped into memory by user code.
1657  * When this occurs, we must zero out the non-valid portions of the
1658  * page so user code sees what it expects.
1659  *
1660  * Pages are most often semi-valid when the end of a file is mapped
1661  * into memory and the file's size is not page aligned.
1662  */
1663 void
1664 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1665 {
1666 	int b;
1667 	int i;
1668 
1669 	/*
1670 	 * Scan the valid bits looking for invalid sections that
1671 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1672 	 * valid bit may be set ) have already been zerod by
1673 	 * vm_page_set_validclean().
1674 	 */
1675 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1676 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1677 		    (m->valid & (1 << i))
1678 		) {
1679 			if (i > b) {
1680 				pmap_zero_page_area(
1681 				    VM_PAGE_TO_PHYS(m),
1682 				    b << DEV_BSHIFT,
1683 				    (i - b) << DEV_BSHIFT
1684 				);
1685 			}
1686 			b = i + 1;
1687 		}
1688 	}
1689 
1690 	/*
1691 	 * setvalid is TRUE when we can safely set the zero'd areas
1692 	 * as being valid.  We can do this if there are no cache consistency
1693 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1694 	 */
1695 	if (setvalid)
1696 		m->valid = VM_PAGE_BITS_ALL;
1697 }
1698 
1699 /*
1700  * Is a (partial) page valid?  Note that the case where size == 0
1701  * will return FALSE in the degenerate case where the page is entirely
1702  * invalid, and TRUE otherwise.
1703  *
1704  * May not block.
1705  */
1706 int
1707 vm_page_is_valid(vm_page_t m, int base, int size)
1708 {
1709 	int bits = vm_page_bits(base, size);
1710 
1711 	if (m->valid && ((m->valid & bits) == bits))
1712 		return 1;
1713 	else
1714 		return 0;
1715 }
1716 
1717 /*
1718  * update dirty bits from pmap/mmu.  May not block.
1719  */
1720 void
1721 vm_page_test_dirty(vm_page_t m)
1722 {
1723 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1724 		vm_page_dirty(m);
1725 	}
1726 }
1727 
1728 /*
1729  * Issue an event on a VM page.  Corresponding action structures are
1730  * removed from the page's list and called.
1731  */
1732 void
1733 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1734 {
1735 	struct vm_page_action *scan, *next;
1736 
1737 	LIST_FOREACH_MUTABLE(scan, &m->action_list, entry, next) {
1738 		if (scan->event == event) {
1739 			scan->event = VMEVENT_NONE;
1740 			LIST_REMOVE(scan, entry);
1741 			scan->func(m, scan);
1742 		}
1743 	}
1744 }
1745 
1746 #include "opt_ddb.h"
1747 #ifdef DDB
1748 #include <sys/kernel.h>
1749 
1750 #include <ddb/ddb.h>
1751 
1752 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1753 {
1754 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1755 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1756 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1757 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1758 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1759 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1760 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1761 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1762 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1763 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1764 }
1765 
1766 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1767 {
1768 	int i;
1769 	db_printf("PQ_FREE:");
1770 	for(i=0;i<PQ_L2_SIZE;i++) {
1771 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1772 	}
1773 	db_printf("\n");
1774 
1775 	db_printf("PQ_CACHE:");
1776 	for(i=0;i<PQ_L2_SIZE;i++) {
1777 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1778 	}
1779 	db_printf("\n");
1780 
1781 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1782 		vm_page_queues[PQ_ACTIVE].lcnt,
1783 		vm_page_queues[PQ_INACTIVE].lcnt);
1784 }
1785 #endif /* DDB */
1786