1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 36 */ 37 38 /* 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 /* 65 * Resident memory management module. The module manipulates 'VM pages'. 66 * A VM page is the core building block for memory management. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/vnode.h> 75 #include <sys/kernel.h> 76 #include <sys/alist.h> 77 #include <sys/sysctl.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <sys/lock.h> 82 #include <vm/vm_kern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_extern.h> 90 #include <vm/swap_pager.h> 91 92 #include <machine/inttypes.h> 93 #include <machine/md_var.h> 94 95 #include <vm/vm_page2.h> 96 #include <sys/spinlock2.h> 97 98 #define VMACTION_HSIZE 256 99 #define VMACTION_HMASK (VMACTION_HSIZE - 1) 100 101 static void vm_page_queue_init(void); 102 static void vm_page_free_wakeup(void); 103 static vm_page_t vm_page_select_cache(u_short pg_color); 104 static vm_page_t _vm_page_list_find2(int basequeue, int index); 105 static void _vm_page_deactivate_locked(vm_page_t m, int athead); 106 107 /* 108 * Array of tailq lists 109 */ 110 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT]; 111 112 LIST_HEAD(vm_page_action_list, vm_page_action); 113 struct vm_page_action_list action_list[VMACTION_HSIZE]; 114 static volatile int vm_pages_waiting; 115 116 static struct alist vm_contig_alist; 117 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536]; 118 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin); 119 120 static u_long vm_dma_reserved = 0; 121 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved); 122 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0, 123 "Memory reserved for DMA"); 124 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD, 125 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA"); 126 127 static int vm_contig_verbose = 0; 128 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose); 129 130 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 131 vm_pindex_t, pindex); 132 133 static void 134 vm_page_queue_init(void) 135 { 136 int i; 137 138 for (i = 0; i < PQ_L2_SIZE; i++) 139 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count; 140 for (i = 0; i < PQ_L2_SIZE; i++) 141 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count; 142 for (i = 0; i < PQ_L2_SIZE; i++) 143 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count; 144 for (i = 0; i < PQ_L2_SIZE; i++) 145 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count; 146 for (i = 0; i < PQ_L2_SIZE; i++) 147 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count; 148 /* PQ_NONE has no queue */ 149 150 for (i = 0; i < PQ_COUNT; i++) { 151 TAILQ_INIT(&vm_page_queues[i].pl); 152 spin_init(&vm_page_queues[i].spin); 153 } 154 155 for (i = 0; i < VMACTION_HSIZE; i++) 156 LIST_INIT(&action_list[i]); 157 } 158 159 /* 160 * note: place in initialized data section? Is this necessary? 161 */ 162 long first_page = 0; 163 int vm_page_array_size = 0; 164 int vm_page_zero_count = 0; 165 vm_page_t vm_page_array = NULL; 166 vm_paddr_t vm_low_phys_reserved; 167 168 /* 169 * (low level boot) 170 * 171 * Sets the page size, perhaps based upon the memory size. 172 * Must be called before any use of page-size dependent functions. 173 */ 174 void 175 vm_set_page_size(void) 176 { 177 if (vmstats.v_page_size == 0) 178 vmstats.v_page_size = PAGE_SIZE; 179 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 180 panic("vm_set_page_size: page size not a power of two"); 181 } 182 183 /* 184 * (low level boot) 185 * 186 * Add a new page to the freelist for use by the system. New pages 187 * are added to both the head and tail of the associated free page 188 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 189 * requests pull 'recent' adds (higher physical addresses) first. 190 * 191 * Beware that the page zeroing daemon will also be running soon after 192 * boot, moving pages from the head to the tail of the PQ_FREE queues. 193 * 194 * Must be called in a critical section. 195 */ 196 static void 197 vm_add_new_page(vm_paddr_t pa) 198 { 199 struct vpgqueues *vpq; 200 vm_page_t m; 201 202 m = PHYS_TO_VM_PAGE(pa); 203 m->phys_addr = pa; 204 m->flags = 0; 205 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK; 206 #ifdef SMP 207 /* 208 * Twist for cpu localization in addition to page coloring, so 209 * different cpus selecting by m->queue get different page colors. 210 */ 211 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK; 212 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK; 213 #endif 214 /* 215 * Reserve a certain number of contiguous low memory pages for 216 * contigmalloc() to use. 217 */ 218 if (pa < vm_low_phys_reserved) { 219 atomic_add_int(&vmstats.v_page_count, 1); 220 atomic_add_int(&vmstats.v_dma_pages, 1); 221 m->queue = PQ_NONE; 222 m->wire_count = 1; 223 atomic_add_int(&vmstats.v_wire_count, 1); 224 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1); 225 return; 226 } 227 228 /* 229 * General page 230 */ 231 m->queue = m->pc + PQ_FREE; 232 KKASSERT(m->dirty == 0); 233 234 atomic_add_int(&vmstats.v_page_count, 1); 235 atomic_add_int(&vmstats.v_free_count, 1); 236 vpq = &vm_page_queues[m->queue]; 237 if ((vpq->flipflop & 15) == 0) { 238 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 239 m->flags |= PG_ZERO; 240 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 241 atomic_add_int(&vm_page_zero_count, 1); 242 } else { 243 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 244 } 245 ++vpq->flipflop; 246 ++vpq->lcnt; 247 } 248 249 /* 250 * (low level boot) 251 * 252 * Initializes the resident memory module. 253 * 254 * Preallocates memory for critical VM structures and arrays prior to 255 * kernel_map becoming available. 256 * 257 * Memory is allocated from (virtual2_start, virtual2_end) if available, 258 * otherwise memory is allocated from (virtual_start, virtual_end). 259 * 260 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be 261 * large enough to hold vm_page_array & other structures for machines with 262 * large amounts of ram, so we want to use virtual2* when available. 263 */ 264 void 265 vm_page_startup(void) 266 { 267 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start; 268 vm_offset_t mapped; 269 vm_size_t npages; 270 vm_paddr_t page_range; 271 vm_paddr_t new_end; 272 int i; 273 vm_paddr_t pa; 274 int nblocks; 275 vm_paddr_t last_pa; 276 vm_paddr_t end; 277 vm_paddr_t biggestone, biggestsize; 278 vm_paddr_t total; 279 280 total = 0; 281 biggestsize = 0; 282 biggestone = 0; 283 nblocks = 0; 284 vaddr = round_page(vaddr); 285 286 for (i = 0; phys_avail[i + 1]; i += 2) { 287 phys_avail[i] = round_page64(phys_avail[i]); 288 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]); 289 } 290 291 for (i = 0; phys_avail[i + 1]; i += 2) { 292 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 293 294 if (size > biggestsize) { 295 biggestone = i; 296 biggestsize = size; 297 } 298 ++nblocks; 299 total += size; 300 } 301 302 end = phys_avail[biggestone+1]; 303 end = trunc_page(end); 304 305 /* 306 * Initialize the queue headers for the free queue, the active queue 307 * and the inactive queue. 308 */ 309 vm_page_queue_init(); 310 311 #if !defined(_KERNEL_VIRTUAL) 312 /* 313 * VKERNELs don't support minidumps and as such don't need 314 * vm_page_dump 315 * 316 * Allocate a bitmap to indicate that a random physical page 317 * needs to be included in a minidump. 318 * 319 * The amd64 port needs this to indicate which direct map pages 320 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 321 * 322 * However, i386 still needs this workspace internally within the 323 * minidump code. In theory, they are not needed on i386, but are 324 * included should the sf_buf code decide to use them. 325 */ 326 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 327 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 328 end -= vm_page_dump_size; 329 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size, 330 VM_PROT_READ | VM_PROT_WRITE); 331 bzero((void *)vm_page_dump, vm_page_dump_size); 332 #endif 333 /* 334 * Compute the number of pages of memory that will be available for 335 * use (taking into account the overhead of a page structure per 336 * page). 337 */ 338 first_page = phys_avail[0] / PAGE_SIZE; 339 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 340 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 341 342 #ifndef _KERNEL_VIRTUAL 343 /* 344 * (only applies to real kernels) 345 * 346 * Initialize the contiguous reserve map. We initially reserve up 347 * to 1/4 available physical memory or 65536 pages (~256MB), whichever 348 * is lower. 349 * 350 * Once device initialization is complete we return most of the 351 * reserved memory back to the normal page queues but leave some 352 * in reserve for things like usb attachments. 353 */ 354 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT; 355 if (vm_low_phys_reserved > total / 4) 356 vm_low_phys_reserved = total / 4; 357 if (vm_dma_reserved == 0) { 358 vm_dma_reserved = 16 * 1024 * 1024; /* 16MB */ 359 if (vm_dma_reserved > total / 16) 360 vm_dma_reserved = total / 16; 361 } 362 #endif 363 alist_init(&vm_contig_alist, 65536, vm_contig_ameta, 364 ALIST_RECORDS_65536); 365 366 /* 367 * Initialize the mem entry structures now, and put them in the free 368 * queue. 369 */ 370 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 371 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); 372 vm_page_array = (vm_page_t)mapped; 373 374 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL) 375 /* 376 * since pmap_map on amd64 returns stuff out of a direct-map region, 377 * we have to manually add these pages to the minidump tracking so 378 * that they can be dumped, including the vm_page_array. 379 */ 380 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 381 dump_add_page(pa); 382 #endif 383 384 /* 385 * Clear all of the page structures 386 */ 387 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 388 vm_page_array_size = page_range; 389 390 /* 391 * Construct the free queue(s) in ascending order (by physical 392 * address) so that the first 16MB of physical memory is allocated 393 * last rather than first. On large-memory machines, this avoids 394 * the exhaustion of low physical memory before isa_dmainit has run. 395 */ 396 vmstats.v_page_count = 0; 397 vmstats.v_free_count = 0; 398 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 399 pa = phys_avail[i]; 400 if (i == biggestone) 401 last_pa = new_end; 402 else 403 last_pa = phys_avail[i + 1]; 404 while (pa < last_pa && npages-- > 0) { 405 vm_add_new_page(pa); 406 pa += PAGE_SIZE; 407 } 408 } 409 if (virtual2_start) 410 virtual2_start = vaddr; 411 else 412 virtual_start = vaddr; 413 } 414 415 /* 416 * We tended to reserve a ton of memory for contigmalloc(). Now that most 417 * drivers have initialized we want to return most the remaining free 418 * reserve back to the VM page queues so they can be used for normal 419 * allocations. 420 * 421 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool. 422 */ 423 static void 424 vm_page_startup_finish(void *dummy __unused) 425 { 426 alist_blk_t blk; 427 alist_blk_t rblk; 428 alist_blk_t count; 429 alist_blk_t xcount; 430 alist_blk_t bfree; 431 vm_page_t m; 432 433 spin_lock(&vm_contig_spin); 434 for (;;) { 435 bfree = alist_free_info(&vm_contig_alist, &blk, &count); 436 if (bfree <= vm_dma_reserved / PAGE_SIZE) 437 break; 438 if (count == 0) 439 break; 440 441 /* 442 * Figure out how much of the initial reserve we have to 443 * free in order to reach our target. 444 */ 445 bfree -= vm_dma_reserved / PAGE_SIZE; 446 if (count > bfree) { 447 blk += count - bfree; 448 count = bfree; 449 } 450 451 /* 452 * Calculate the nearest power of 2 <= count. 453 */ 454 for (xcount = 1; xcount <= count; xcount <<= 1) 455 ; 456 xcount >>= 1; 457 blk += count - xcount; 458 count = xcount; 459 460 /* 461 * Allocate the pages from the alist, then free them to 462 * the normal VM page queues. 463 * 464 * Pages allocated from the alist are wired. We have to 465 * busy, unwire, and free them. We must also adjust 466 * vm_low_phys_reserved before freeing any pages to prevent 467 * confusion. 468 */ 469 rblk = alist_alloc(&vm_contig_alist, blk, count); 470 if (rblk != blk) { 471 kprintf("vm_page_startup_finish: Unable to return " 472 "dma space @0x%08x/%d -> 0x%08x\n", 473 blk, count, rblk); 474 break; 475 } 476 atomic_add_int(&vmstats.v_dma_pages, -count); 477 spin_unlock(&vm_contig_spin); 478 479 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 480 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m); 481 while (count) { 482 vm_page_busy_wait(m, FALSE, "cpgfr"); 483 vm_page_unwire(m, 0); 484 vm_page_free(m); 485 --count; 486 ++m; 487 } 488 spin_lock(&vm_contig_spin); 489 } 490 spin_unlock(&vm_contig_spin); 491 492 /* 493 * Print out how much DMA space drivers have already allocated and 494 * how much is left over. 495 */ 496 kprintf("DMA space used: %jdk, remaining available: %jdk\n", 497 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) * 498 (PAGE_SIZE / 1024), 499 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024)); 500 } 501 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY, 502 vm_page_startup_finish, NULL) 503 504 505 /* 506 * Scan comparison function for Red-Black tree scans. An inclusive 507 * (start,end) is expected. Other fields are not used. 508 */ 509 int 510 rb_vm_page_scancmp(struct vm_page *p, void *data) 511 { 512 struct rb_vm_page_scan_info *info = data; 513 514 if (p->pindex < info->start_pindex) 515 return(-1); 516 if (p->pindex > info->end_pindex) 517 return(1); 518 return(0); 519 } 520 521 int 522 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 523 { 524 if (p1->pindex < p2->pindex) 525 return(-1); 526 if (p1->pindex > p2->pindex) 527 return(1); 528 return(0); 529 } 530 531 /* 532 * Each page queue has its own spin lock, which is fairly optimal for 533 * allocating and freeing pages at least. 534 * 535 * The caller must hold the vm_page_spin_lock() before locking a vm_page's 536 * queue spinlock via this function. Also note that m->queue cannot change 537 * unless both the page and queue are locked. 538 */ 539 static __inline 540 void 541 _vm_page_queue_spin_lock(vm_page_t m) 542 { 543 u_short queue; 544 545 queue = m->queue; 546 if (queue != PQ_NONE) { 547 spin_lock(&vm_page_queues[queue].spin); 548 KKASSERT(queue == m->queue); 549 } 550 } 551 552 static __inline 553 void 554 _vm_page_queue_spin_unlock(vm_page_t m) 555 { 556 u_short queue; 557 558 queue = m->queue; 559 cpu_ccfence(); 560 if (queue != PQ_NONE) 561 spin_unlock(&vm_page_queues[queue].spin); 562 } 563 564 static __inline 565 void 566 _vm_page_queues_spin_lock(u_short queue) 567 { 568 cpu_ccfence(); 569 if (queue != PQ_NONE) 570 spin_lock(&vm_page_queues[queue].spin); 571 } 572 573 574 static __inline 575 void 576 _vm_page_queues_spin_unlock(u_short queue) 577 { 578 cpu_ccfence(); 579 if (queue != PQ_NONE) 580 spin_unlock(&vm_page_queues[queue].spin); 581 } 582 583 void 584 vm_page_queue_spin_lock(vm_page_t m) 585 { 586 _vm_page_queue_spin_lock(m); 587 } 588 589 void 590 vm_page_queues_spin_lock(u_short queue) 591 { 592 _vm_page_queues_spin_lock(queue); 593 } 594 595 void 596 vm_page_queue_spin_unlock(vm_page_t m) 597 { 598 _vm_page_queue_spin_unlock(m); 599 } 600 601 void 602 vm_page_queues_spin_unlock(u_short queue) 603 { 604 _vm_page_queues_spin_unlock(queue); 605 } 606 607 /* 608 * This locks the specified vm_page and its queue in the proper order 609 * (page first, then queue). The queue may change so the caller must 610 * recheck on return. 611 */ 612 static __inline 613 void 614 _vm_page_and_queue_spin_lock(vm_page_t m) 615 { 616 vm_page_spin_lock(m); 617 _vm_page_queue_spin_lock(m); 618 } 619 620 static __inline 621 void 622 _vm_page_and_queue_spin_unlock(vm_page_t m) 623 { 624 _vm_page_queues_spin_unlock(m->queue); 625 vm_page_spin_unlock(m); 626 } 627 628 void 629 vm_page_and_queue_spin_unlock(vm_page_t m) 630 { 631 _vm_page_and_queue_spin_unlock(m); 632 } 633 634 void 635 vm_page_and_queue_spin_lock(vm_page_t m) 636 { 637 _vm_page_and_queue_spin_lock(m); 638 } 639 640 /* 641 * Helper function removes vm_page from its current queue. 642 * Returns the base queue the page used to be on. 643 * 644 * The vm_page and the queue must be spinlocked. 645 * This function will unlock the queue but leave the page spinlocked. 646 */ 647 static __inline u_short 648 _vm_page_rem_queue_spinlocked(vm_page_t m) 649 { 650 struct vpgqueues *pq; 651 u_short queue; 652 653 queue = m->queue; 654 if (queue != PQ_NONE) { 655 pq = &vm_page_queues[queue]; 656 TAILQ_REMOVE(&pq->pl, m, pageq); 657 atomic_add_int(pq->cnt, -1); 658 pq->lcnt--; 659 m->queue = PQ_NONE; 660 vm_page_queues_spin_unlock(queue); 661 if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO)) 662 atomic_subtract_int(&vm_page_zero_count, 1); 663 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE) 664 return (queue - m->pc); 665 } 666 return queue; 667 } 668 669 /* 670 * Helper function places the vm_page on the specified queue. 671 * 672 * The vm_page must be spinlocked. 673 * This function will return with both the page and the queue locked. 674 */ 675 static __inline void 676 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead) 677 { 678 struct vpgqueues *pq; 679 680 KKASSERT(m->queue == PQ_NONE); 681 682 if (queue != PQ_NONE) { 683 vm_page_queues_spin_lock(queue); 684 pq = &vm_page_queues[queue]; 685 ++pq->lcnt; 686 atomic_add_int(pq->cnt, 1); 687 m->queue = queue; 688 689 /* 690 * Put zero'd pages on the end ( where we look for zero'd pages 691 * first ) and non-zerod pages at the head. 692 */ 693 if (queue - m->pc == PQ_FREE) { 694 if (m->flags & PG_ZERO) { 695 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 696 atomic_add_int(&vm_page_zero_count, 1); 697 } else { 698 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 699 } 700 } else if (athead) { 701 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 702 } else { 703 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 704 } 705 /* leave the queue spinlocked */ 706 } 707 } 708 709 /* 710 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 711 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we 712 * did not. Only one sleep call will be made before returning. 713 * 714 * This function does NOT busy the page and on return the page is not 715 * guaranteed to be available. 716 */ 717 void 718 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 719 { 720 u_int32_t flags; 721 722 for (;;) { 723 flags = m->flags; 724 cpu_ccfence(); 725 726 if ((flags & PG_BUSY) == 0 && 727 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) { 728 break; 729 } 730 tsleep_interlock(m, 0); 731 if (atomic_cmpset_int(&m->flags, flags, 732 flags | PG_WANTED | PG_REFERENCED)) { 733 tsleep(m, PINTERLOCKED, msg, 0); 734 break; 735 } 736 } 737 } 738 739 /* 740 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we 741 * also wait for m->busy to become 0 before setting PG_BUSY. 742 */ 743 void 744 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m, 745 int also_m_busy, const char *msg 746 VM_PAGE_DEBUG_ARGS) 747 { 748 u_int32_t flags; 749 750 for (;;) { 751 flags = m->flags; 752 cpu_ccfence(); 753 if (flags & PG_BUSY) { 754 tsleep_interlock(m, 0); 755 if (atomic_cmpset_int(&m->flags, flags, 756 flags | PG_WANTED | PG_REFERENCED)) { 757 tsleep(m, PINTERLOCKED, msg, 0); 758 } 759 } else if (also_m_busy && (flags & PG_SBUSY)) { 760 tsleep_interlock(m, 0); 761 if (atomic_cmpset_int(&m->flags, flags, 762 flags | PG_WANTED | PG_REFERENCED)) { 763 tsleep(m, PINTERLOCKED, msg, 0); 764 } 765 } else { 766 if (atomic_cmpset_int(&m->flags, flags, 767 flags | PG_BUSY)) { 768 #ifdef VM_PAGE_DEBUG 769 m->busy_func = func; 770 m->busy_line = lineno; 771 #endif 772 break; 773 } 774 } 775 } 776 } 777 778 /* 779 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy 780 * is also 0. 781 * 782 * Returns non-zero on failure. 783 */ 784 int 785 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy 786 VM_PAGE_DEBUG_ARGS) 787 { 788 u_int32_t flags; 789 790 for (;;) { 791 flags = m->flags; 792 cpu_ccfence(); 793 if (flags & PG_BUSY) 794 return TRUE; 795 if (also_m_busy && (flags & PG_SBUSY)) 796 return TRUE; 797 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 798 #ifdef VM_PAGE_DEBUG 799 m->busy_func = func; 800 m->busy_line = lineno; 801 #endif 802 return FALSE; 803 } 804 } 805 } 806 807 /* 808 * Clear the PG_BUSY flag and return non-zero to indicate to the caller 809 * that a wakeup() should be performed. 810 * 811 * The vm_page must be spinlocked and will remain spinlocked on return. 812 * The related queue must NOT be spinlocked (which could deadlock us). 813 * 814 * (inline version) 815 */ 816 static __inline 817 int 818 _vm_page_wakeup(vm_page_t m) 819 { 820 u_int32_t flags; 821 822 for (;;) { 823 flags = m->flags; 824 cpu_ccfence(); 825 if (atomic_cmpset_int(&m->flags, flags, 826 flags & ~(PG_BUSY | PG_WANTED))) { 827 break; 828 } 829 } 830 return(flags & PG_WANTED); 831 } 832 833 /* 834 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This 835 * is typically the last call you make on a page before moving onto 836 * other things. 837 */ 838 void 839 vm_page_wakeup(vm_page_t m) 840 { 841 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 842 vm_page_spin_lock(m); 843 if (_vm_page_wakeup(m)) { 844 vm_page_spin_unlock(m); 845 wakeup(m); 846 } else { 847 vm_page_spin_unlock(m); 848 } 849 } 850 851 /* 852 * Holding a page keeps it from being reused. Other parts of the system 853 * can still disassociate the page from its current object and free it, or 854 * perform read or write I/O on it and/or otherwise manipulate the page, 855 * but if the page is held the VM system will leave the page and its data 856 * intact and not reuse the page for other purposes until the last hold 857 * reference is released. (see vm_page_wire() if you want to prevent the 858 * page from being disassociated from its object too). 859 * 860 * The caller must still validate the contents of the page and, if necessary, 861 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete 862 * before manipulating the page. 863 * 864 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary 865 */ 866 void 867 vm_page_hold(vm_page_t m) 868 { 869 vm_page_spin_lock(m); 870 atomic_add_int(&m->hold_count, 1); 871 if (m->queue - m->pc == PQ_FREE) { 872 _vm_page_queue_spin_lock(m); 873 _vm_page_rem_queue_spinlocked(m); 874 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 875 _vm_page_queue_spin_unlock(m); 876 } 877 vm_page_spin_unlock(m); 878 } 879 880 /* 881 * The opposite of vm_page_hold(). A page can be freed while being held, 882 * which places it on the PQ_HOLD queue. If we are able to busy the page 883 * after the hold count drops to zero we will move the page to the 884 * appropriate PQ_FREE queue by calling vm_page_free_toq(). 885 */ 886 void 887 vm_page_unhold(vm_page_t m) 888 { 889 vm_page_spin_lock(m); 890 atomic_add_int(&m->hold_count, -1); 891 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) { 892 _vm_page_queue_spin_lock(m); 893 _vm_page_rem_queue_spinlocked(m); 894 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 895 _vm_page_queue_spin_unlock(m); 896 } 897 vm_page_spin_unlock(m); 898 } 899 900 /* 901 * Inserts the given vm_page into the object and object list. 902 * 903 * The pagetables are not updated but will presumably fault the page 904 * in if necessary, or if a kernel page the caller will at some point 905 * enter the page into the kernel's pmap. We are not allowed to block 906 * here so we *can't* do this anyway. 907 * 908 * This routine may not block. 909 * This routine must be called with the vm_object held. 910 * This routine must be called with a critical section held. 911 * 912 * This routine returns TRUE if the page was inserted into the object 913 * successfully, and FALSE if the page already exists in the object. 914 */ 915 int 916 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 917 { 918 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 919 if (m->object != NULL) 920 panic("vm_page_insert: already inserted"); 921 922 object->generation++; 923 924 /* 925 * Record the object/offset pair in this page and add the 926 * pv_list_count of the page to the object. 927 * 928 * The vm_page spin lock is required for interactions with the pmap. 929 */ 930 vm_page_spin_lock(m); 931 m->object = object; 932 m->pindex = pindex; 933 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) { 934 m->object = NULL; 935 m->pindex = 0; 936 vm_page_spin_unlock(m); 937 return FALSE; 938 } 939 object->resident_page_count++; 940 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */ 941 vm_page_spin_unlock(m); 942 943 /* 944 * Since we are inserting a new and possibly dirty page, 945 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 946 */ 947 if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE)) 948 vm_object_set_writeable_dirty(object); 949 950 /* 951 * Checks for a swap assignment and sets PG_SWAPPED if appropriate. 952 */ 953 swap_pager_page_inserted(m); 954 return TRUE; 955 } 956 957 /* 958 * Removes the given vm_page_t from the (object,index) table 959 * 960 * The underlying pmap entry (if any) is NOT removed here. 961 * This routine may not block. 962 * 963 * The page must be BUSY and will remain BUSY on return. 964 * No other requirements. 965 * 966 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave 967 * it busy. 968 */ 969 void 970 vm_page_remove(vm_page_t m) 971 { 972 vm_object_t object; 973 974 if (m->object == NULL) { 975 return; 976 } 977 978 if ((m->flags & PG_BUSY) == 0) 979 panic("vm_page_remove: page not busy"); 980 981 object = m->object; 982 983 vm_object_hold(object); 984 985 /* 986 * Remove the page from the object and update the object. 987 * 988 * The vm_page spin lock is required for interactions with the pmap. 989 */ 990 vm_page_spin_lock(m); 991 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 992 object->resident_page_count--; 993 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */ 994 m->object = NULL; 995 vm_page_spin_unlock(m); 996 997 object->generation++; 998 999 vm_object_drop(object); 1000 } 1001 1002 /* 1003 * Locate and return the page at (object, pindex), or NULL if the 1004 * page could not be found. 1005 * 1006 * The caller must hold the vm_object token. 1007 */ 1008 vm_page_t 1009 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1010 { 1011 vm_page_t m; 1012 1013 /* 1014 * Search the hash table for this object/offset pair 1015 */ 1016 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1017 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1018 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex)); 1019 return(m); 1020 } 1021 1022 vm_page_t 1023 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object, 1024 vm_pindex_t pindex, 1025 int also_m_busy, const char *msg 1026 VM_PAGE_DEBUG_ARGS) 1027 { 1028 u_int32_t flags; 1029 vm_page_t m; 1030 1031 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1032 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1033 while (m) { 1034 KKASSERT(m->object == object && m->pindex == pindex); 1035 flags = m->flags; 1036 cpu_ccfence(); 1037 if (flags & PG_BUSY) { 1038 tsleep_interlock(m, 0); 1039 if (atomic_cmpset_int(&m->flags, flags, 1040 flags | PG_WANTED | PG_REFERENCED)) { 1041 tsleep(m, PINTERLOCKED, msg, 0); 1042 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1043 pindex); 1044 } 1045 } else if (also_m_busy && (flags & PG_SBUSY)) { 1046 tsleep_interlock(m, 0); 1047 if (atomic_cmpset_int(&m->flags, flags, 1048 flags | PG_WANTED | PG_REFERENCED)) { 1049 tsleep(m, PINTERLOCKED, msg, 0); 1050 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1051 pindex); 1052 } 1053 } else if (atomic_cmpset_int(&m->flags, flags, 1054 flags | PG_BUSY)) { 1055 #ifdef VM_PAGE_DEBUG 1056 m->busy_func = func; 1057 m->busy_line = lineno; 1058 #endif 1059 break; 1060 } 1061 } 1062 return m; 1063 } 1064 1065 /* 1066 * Attempt to lookup and busy a page. 1067 * 1068 * Returns NULL if the page could not be found 1069 * 1070 * Returns a vm_page and error == TRUE if the page exists but could not 1071 * be busied. 1072 * 1073 * Returns a vm_page and error == FALSE on success. 1074 */ 1075 vm_page_t 1076 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object, 1077 vm_pindex_t pindex, 1078 int also_m_busy, int *errorp 1079 VM_PAGE_DEBUG_ARGS) 1080 { 1081 u_int32_t flags; 1082 vm_page_t m; 1083 1084 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1085 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1086 *errorp = FALSE; 1087 while (m) { 1088 KKASSERT(m->object == object && m->pindex == pindex); 1089 flags = m->flags; 1090 cpu_ccfence(); 1091 if (flags & PG_BUSY) { 1092 *errorp = TRUE; 1093 break; 1094 } 1095 if (also_m_busy && (flags & PG_SBUSY)) { 1096 *errorp = TRUE; 1097 break; 1098 } 1099 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 1100 #ifdef VM_PAGE_DEBUG 1101 m->busy_func = func; 1102 m->busy_line = lineno; 1103 #endif 1104 break; 1105 } 1106 } 1107 return m; 1108 } 1109 1110 /* 1111 * Caller must hold the related vm_object 1112 */ 1113 vm_page_t 1114 vm_page_next(vm_page_t m) 1115 { 1116 vm_page_t next; 1117 1118 next = vm_page_rb_tree_RB_NEXT(m); 1119 if (next && next->pindex != m->pindex + 1) 1120 next = NULL; 1121 return (next); 1122 } 1123 1124 /* 1125 * vm_page_rename() 1126 * 1127 * Move the given vm_page from its current object to the specified 1128 * target object/offset. The page must be busy and will remain so 1129 * on return. 1130 * 1131 * new_object must be held. 1132 * This routine might block. XXX ? 1133 * 1134 * NOTE: Swap associated with the page must be invalidated by the move. We 1135 * have to do this for several reasons: (1) we aren't freeing the 1136 * page, (2) we are dirtying the page, (3) the VM system is probably 1137 * moving the page from object A to B, and will then later move 1138 * the backing store from A to B and we can't have a conflict. 1139 * 1140 * NOTE: We *always* dirty the page. It is necessary both for the 1141 * fact that we moved it, and because we may be invalidating 1142 * swap. If the page is on the cache, we have to deactivate it 1143 * or vm_page_dirty() will panic. Dirty pages are not allowed 1144 * on the cache. 1145 */ 1146 void 1147 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1148 { 1149 KKASSERT(m->flags & PG_BUSY); 1150 ASSERT_LWKT_TOKEN_HELD(vm_object_token(new_object)); 1151 if (m->object) { 1152 ASSERT_LWKT_TOKEN_HELD(vm_object_token(m->object)); 1153 vm_page_remove(m); 1154 } 1155 if (vm_page_insert(m, new_object, new_pindex) == FALSE) { 1156 panic("vm_page_rename: target exists (%p,%"PRIu64")", 1157 new_object, new_pindex); 1158 } 1159 if (m->queue - m->pc == PQ_CACHE) 1160 vm_page_deactivate(m); 1161 vm_page_dirty(m); 1162 } 1163 1164 /* 1165 * vm_page_unqueue() without any wakeup. This routine is used when a page 1166 * is being moved between queues or otherwise is to remain BUSYied by the 1167 * caller. 1168 * 1169 * This routine may not block. 1170 */ 1171 void 1172 vm_page_unqueue_nowakeup(vm_page_t m) 1173 { 1174 vm_page_and_queue_spin_lock(m); 1175 (void)_vm_page_rem_queue_spinlocked(m); 1176 vm_page_spin_unlock(m); 1177 } 1178 1179 /* 1180 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 1181 * if necessary. 1182 * 1183 * This routine may not block. 1184 */ 1185 void 1186 vm_page_unqueue(vm_page_t m) 1187 { 1188 u_short queue; 1189 1190 vm_page_and_queue_spin_lock(m); 1191 queue = _vm_page_rem_queue_spinlocked(m); 1192 if (queue == PQ_FREE || queue == PQ_CACHE) { 1193 vm_page_spin_unlock(m); 1194 pagedaemon_wakeup(); 1195 } else { 1196 vm_page_spin_unlock(m); 1197 } 1198 } 1199 1200 /* 1201 * vm_page_list_find() 1202 * 1203 * Find a page on the specified queue with color optimization. 1204 * 1205 * The page coloring optimization attempts to locate a page that does 1206 * not overload other nearby pages in the object in the cpu's L1 or L2 1207 * caches. We need this optimization because cpu caches tend to be 1208 * physical caches, while object spaces tend to be virtual. 1209 * 1210 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock 1211 * and the algorithm is adjusted to localize allocations on a per-core basis. 1212 * This is done by 'twisting' the colors. 1213 * 1214 * The page is returned spinlocked and removed from its queue (it will 1215 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller 1216 * is responsible for dealing with the busy-page case (usually by 1217 * deactivating the page and looping). 1218 * 1219 * NOTE: This routine is carefully inlined. A non-inlined version 1220 * is available for outside callers but the only critical path is 1221 * from within this source file. 1222 * 1223 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE 1224 * represent stable storage, allowing us to order our locks vm_page 1225 * first, then queue. 1226 */ 1227 static __inline 1228 vm_page_t 1229 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1230 { 1231 vm_page_t m; 1232 1233 for (;;) { 1234 if (prefer_zero) 1235 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist); 1236 else 1237 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl); 1238 if (m == NULL) { 1239 m = _vm_page_list_find2(basequeue, index); 1240 return(m); 1241 } 1242 vm_page_and_queue_spin_lock(m); 1243 if (m->queue == basequeue + index) { 1244 _vm_page_rem_queue_spinlocked(m); 1245 /* vm_page_t spin held, no queue spin */ 1246 break; 1247 } 1248 vm_page_and_queue_spin_unlock(m); 1249 } 1250 return(m); 1251 } 1252 1253 static vm_page_t 1254 _vm_page_list_find2(int basequeue, int index) 1255 { 1256 int i; 1257 vm_page_t m = NULL; 1258 struct vpgqueues *pq; 1259 1260 pq = &vm_page_queues[basequeue]; 1261 1262 /* 1263 * Note that for the first loop, index+i and index-i wind up at the 1264 * same place. Even though this is not totally optimal, we've already 1265 * blown it by missing the cache case so we do not care. 1266 */ 1267 for (i = PQ_L2_SIZE / 2; i > 0; --i) { 1268 for (;;) { 1269 m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl); 1270 if (m) { 1271 _vm_page_and_queue_spin_lock(m); 1272 if (m->queue == 1273 basequeue + ((index + i) & PQ_L2_MASK)) { 1274 _vm_page_rem_queue_spinlocked(m); 1275 return(m); 1276 } 1277 _vm_page_and_queue_spin_unlock(m); 1278 continue; 1279 } 1280 m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl); 1281 if (m) { 1282 _vm_page_and_queue_spin_lock(m); 1283 if (m->queue == 1284 basequeue + ((index - i) & PQ_L2_MASK)) { 1285 _vm_page_rem_queue_spinlocked(m); 1286 return(m); 1287 } 1288 _vm_page_and_queue_spin_unlock(m); 1289 continue; 1290 } 1291 break; /* next i */ 1292 } 1293 } 1294 return(m); 1295 } 1296 1297 /* 1298 * Returns a vm_page candidate for allocation. The page is not busied so 1299 * it can move around. The caller must busy the page (and typically 1300 * deactivate it if it cannot be busied!) 1301 * 1302 * Returns a spinlocked vm_page that has been removed from its queue. 1303 */ 1304 vm_page_t 1305 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1306 { 1307 return(_vm_page_list_find(basequeue, index, prefer_zero)); 1308 } 1309 1310 /* 1311 * Find a page on the cache queue with color optimization, remove it 1312 * from the queue, and busy it. The returned page will not be spinlocked. 1313 * 1314 * A candidate failure will be deactivated. Candidates can fail due to 1315 * being busied by someone else, in which case they will be deactivated. 1316 * 1317 * This routine may not block. 1318 * 1319 */ 1320 static vm_page_t 1321 vm_page_select_cache(u_short pg_color) 1322 { 1323 vm_page_t m; 1324 1325 for (;;) { 1326 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE); 1327 if (m == NULL) 1328 break; 1329 /* 1330 * (m) has been removed from its queue and spinlocked 1331 */ 1332 if (vm_page_busy_try(m, TRUE)) { 1333 _vm_page_deactivate_locked(m, 0); 1334 vm_page_spin_unlock(m); 1335 #ifdef INVARIANTS 1336 kprintf("Warning: busy page %p found in cache\n", m); 1337 #endif 1338 } else { 1339 /* 1340 * We successfully busied the page 1341 */ 1342 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 && 1343 m->hold_count == 0 && 1344 m->wire_count == 0 && 1345 (m->dirty & m->valid) == 0) { 1346 vm_page_spin_unlock(m); 1347 pagedaemon_wakeup(); 1348 return(m); 1349 } 1350 1351 /* 1352 * The page cannot be recycled, deactivate it. 1353 */ 1354 _vm_page_deactivate_locked(m, 0); 1355 if (_vm_page_wakeup(m)) { 1356 vm_page_spin_unlock(m); 1357 wakeup(m); 1358 } else { 1359 vm_page_spin_unlock(m); 1360 } 1361 } 1362 } 1363 return (m); 1364 } 1365 1366 /* 1367 * Find a free or zero page, with specified preference. We attempt to 1368 * inline the nominal case and fall back to _vm_page_select_free() 1369 * otherwise. A busied page is removed from the queue and returned. 1370 * 1371 * This routine may not block. 1372 */ 1373 static __inline vm_page_t 1374 vm_page_select_free(u_short pg_color, boolean_t prefer_zero) 1375 { 1376 vm_page_t m; 1377 1378 for (;;) { 1379 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK, 1380 prefer_zero); 1381 if (m == NULL) 1382 break; 1383 if (vm_page_busy_try(m, TRUE)) { 1384 /* 1385 * Various mechanisms such as a pmap_collect can 1386 * result in a busy page on the free queue. We 1387 * have to move the page out of the way so we can 1388 * retry the allocation. If the other thread is not 1389 * allocating the page then m->valid will remain 0 and 1390 * the pageout daemon will free the page later on. 1391 * 1392 * Since we could not busy the page, however, we 1393 * cannot make assumptions as to whether the page 1394 * will be allocated by the other thread or not, 1395 * so all we can do is deactivate it to move it out 1396 * of the way. In particular, if the other thread 1397 * wires the page it may wind up on the inactive 1398 * queue and the pageout daemon will have to deal 1399 * with that case too. 1400 */ 1401 _vm_page_deactivate_locked(m, 0); 1402 vm_page_spin_unlock(m); 1403 #ifdef INVARIANTS 1404 kprintf("Warning: busy page %p found in cache\n", m); 1405 #endif 1406 } else { 1407 /* 1408 * Theoretically if we are able to busy the page 1409 * atomic with the queue removal (using the vm_page 1410 * lock) nobody else should be able to mess with the 1411 * page before us. 1412 */ 1413 KKASSERT((m->flags & (PG_UNMANAGED | 1414 PG_NEED_COMMIT)) == 0); 1415 KKASSERT(m->hold_count == 0); 1416 KKASSERT(m->wire_count == 0); 1417 vm_page_spin_unlock(m); 1418 pagedaemon_wakeup(); 1419 1420 /* return busied and removed page */ 1421 return(m); 1422 } 1423 } 1424 return(m); 1425 } 1426 1427 /* 1428 * This implements a per-cpu cache of free, zero'd, ready-to-go pages. 1429 * The idea is to populate this cache prior to acquiring any locks so 1430 * we don't wind up potentially zeroing VM pages (under heavy loads) while 1431 * holding potentialy contending locks. 1432 * 1433 * Note that we allocate the page uninserted into anything and use a pindex 1434 * of 0, the vm_page_alloc() will effectively add gd_cpuid so these 1435 * allocations should wind up being uncontended. However, we still want 1436 * to rove across PQ_L2_SIZE. 1437 */ 1438 void 1439 vm_page_pcpu_cache(void) 1440 { 1441 #if 0 1442 globaldata_t gd = mycpu; 1443 vm_page_t m; 1444 1445 if (gd->gd_vmpg_count < GD_MINVMPG) { 1446 crit_enter_gd(gd); 1447 while (gd->gd_vmpg_count < GD_MAXVMPG) { 1448 m = vm_page_alloc(NULL, ticks & ~ncpus2_mask, 1449 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL | 1450 VM_ALLOC_NULL_OK | VM_ALLOC_ZERO); 1451 if (gd->gd_vmpg_count < GD_MAXVMPG) { 1452 if ((m->flags & PG_ZERO) == 0) { 1453 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 1454 vm_page_flag_set(m, PG_ZERO); 1455 } 1456 gd->gd_vmpg_array[gd->gd_vmpg_count++] = m; 1457 } else { 1458 vm_page_free(m); 1459 } 1460 } 1461 crit_exit_gd(gd); 1462 } 1463 #endif 1464 } 1465 1466 /* 1467 * vm_page_alloc() 1468 * 1469 * Allocate and return a memory cell associated with this VM object/offset 1470 * pair. If object is NULL an unassociated page will be allocated. 1471 * 1472 * The returned page will be busied and removed from its queues. This 1473 * routine can block and may return NULL if a race occurs and the page 1474 * is found to already exist at the specified (object, pindex). 1475 * 1476 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 1477 * VM_ALLOC_QUICK like normal but cannot use cache 1478 * VM_ALLOC_SYSTEM greater free drain 1479 * VM_ALLOC_INTERRUPT allow free list to be completely drained 1480 * VM_ALLOC_ZERO advisory request for pre-zero'd page only 1481 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only 1482 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision 1483 * (see vm_page_grab()) 1484 * VM_ALLOC_USE_GD ok to use per-gd cache 1485 * 1486 * The object must be held if not NULL 1487 * This routine may not block 1488 * 1489 * Additional special handling is required when called from an interrupt 1490 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 1491 * in this case. 1492 */ 1493 vm_page_t 1494 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 1495 { 1496 #ifdef SMP 1497 globaldata_t gd = mycpu; 1498 #endif 1499 vm_object_t obj; 1500 vm_page_t m; 1501 u_short pg_color; 1502 1503 #if 0 1504 /* 1505 * Special per-cpu free VM page cache. The pages are pre-busied 1506 * and pre-zerod for us. 1507 */ 1508 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) { 1509 crit_enter_gd(gd); 1510 if (gd->gd_vmpg_count) { 1511 m = gd->gd_vmpg_array[--gd->gd_vmpg_count]; 1512 crit_exit_gd(gd); 1513 goto done; 1514 } 1515 crit_exit_gd(gd); 1516 } 1517 #endif 1518 m = NULL; 1519 1520 #ifdef SMP 1521 /* 1522 * Cpu twist - cpu localization algorithm 1523 */ 1524 if (object) { 1525 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) + 1526 (object->pg_color & ~ncpus_fit_mask); 1527 } else { 1528 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask); 1529 } 1530 #else 1531 /* 1532 * Normal page coloring algorithm 1533 */ 1534 if (object) { 1535 pg_color = object->pg_color + pindex; 1536 } else { 1537 pg_color = pindex; 1538 } 1539 #endif 1540 KKASSERT(page_req & 1541 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK| 1542 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 1543 1544 /* 1545 * Certain system threads (pageout daemon, buf_daemon's) are 1546 * allowed to eat deeper into the free page list. 1547 */ 1548 if (curthread->td_flags & TDF_SYSTHREAD) 1549 page_req |= VM_ALLOC_SYSTEM; 1550 1551 loop: 1552 if (vmstats.v_free_count > vmstats.v_free_reserved || 1553 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) || 1554 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 && 1555 vmstats.v_free_count > vmstats.v_interrupt_free_min) 1556 ) { 1557 /* 1558 * The free queue has sufficient free pages to take one out. 1559 */ 1560 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) 1561 m = vm_page_select_free(pg_color, TRUE); 1562 else 1563 m = vm_page_select_free(pg_color, FALSE); 1564 } else if (page_req & VM_ALLOC_NORMAL) { 1565 /* 1566 * Allocatable from the cache (non-interrupt only). On 1567 * success, we must free the page and try again, thus 1568 * ensuring that vmstats.v_*_free_min counters are replenished. 1569 */ 1570 #ifdef INVARIANTS 1571 if (curthread->td_preempted) { 1572 kprintf("vm_page_alloc(): warning, attempt to allocate" 1573 " cache page from preempting interrupt\n"); 1574 m = NULL; 1575 } else { 1576 m = vm_page_select_cache(pg_color); 1577 } 1578 #else 1579 m = vm_page_select_cache(pg_color); 1580 #endif 1581 /* 1582 * On success move the page into the free queue and loop. 1583 * 1584 * Only do this if we can safely acquire the vm_object lock, 1585 * because this is effectively a random page and the caller 1586 * might be holding the lock shared, we don't want to 1587 * deadlock. 1588 */ 1589 if (m != NULL) { 1590 KASSERT(m->dirty == 0, 1591 ("Found dirty cache page %p", m)); 1592 if ((obj = m->object) != NULL) { 1593 if (vm_object_hold_try(obj)) { 1594 vm_page_protect(m, VM_PROT_NONE); 1595 vm_page_free(m); 1596 /* m->object NULL here */ 1597 vm_object_drop(obj); 1598 } else { 1599 vm_page_deactivate(m); 1600 vm_page_wakeup(m); 1601 } 1602 } else { 1603 vm_page_protect(m, VM_PROT_NONE); 1604 vm_page_free(m); 1605 } 1606 goto loop; 1607 } 1608 1609 /* 1610 * On failure return NULL 1611 */ 1612 #if defined(DIAGNOSTIC) 1613 if (vmstats.v_cache_count > 0) 1614 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count); 1615 #endif 1616 vm_pageout_deficit++; 1617 pagedaemon_wakeup(); 1618 return (NULL); 1619 } else { 1620 /* 1621 * No pages available, wakeup the pageout daemon and give up. 1622 */ 1623 vm_pageout_deficit++; 1624 pagedaemon_wakeup(); 1625 return (NULL); 1626 } 1627 1628 /* 1629 * v_free_count can race so loop if we don't find the expected 1630 * page. 1631 */ 1632 if (m == NULL) 1633 goto loop; 1634 1635 /* 1636 * Good page found. The page has already been busied for us and 1637 * removed from its queues. 1638 */ 1639 KASSERT(m->dirty == 0, 1640 ("vm_page_alloc: free/cache page %p was dirty", m)); 1641 KKASSERT(m->queue == PQ_NONE); 1642 1643 #if 0 1644 done: 1645 #endif 1646 /* 1647 * Initialize the structure, inheriting some flags but clearing 1648 * all the rest. The page has already been busied for us. 1649 */ 1650 vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY)); 1651 KKASSERT(m->wire_count == 0); 1652 KKASSERT(m->busy == 0); 1653 m->act_count = 0; 1654 m->valid = 0; 1655 1656 /* 1657 * Caller must be holding the object lock (asserted by 1658 * vm_page_insert()). 1659 * 1660 * NOTE: Inserting a page here does not insert it into any pmaps 1661 * (which could cause us to block allocating memory). 1662 * 1663 * NOTE: If no object an unassociated page is allocated, m->pindex 1664 * can be used by the caller for any purpose. 1665 */ 1666 if (object) { 1667 if (vm_page_insert(m, object, pindex) == FALSE) { 1668 kprintf("PAGE RACE (%p:%d,%"PRIu64")\n", 1669 object, object->type, pindex); 1670 vm_page_free(m); 1671 m = NULL; 1672 if ((page_req & VM_ALLOC_NULL_OK) == 0) 1673 panic("PAGE RACE"); 1674 } 1675 } else { 1676 m->pindex = pindex; 1677 } 1678 1679 /* 1680 * Don't wakeup too often - wakeup the pageout daemon when 1681 * we would be nearly out of memory. 1682 */ 1683 pagedaemon_wakeup(); 1684 1685 /* 1686 * A PG_BUSY page is returned. 1687 */ 1688 return (m); 1689 } 1690 1691 /* 1692 * Attempt to allocate contiguous physical memory with the specified 1693 * requirements. 1694 */ 1695 vm_page_t 1696 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high, 1697 unsigned long alignment, unsigned long boundary, 1698 unsigned long size) 1699 { 1700 alist_blk_t blk; 1701 1702 alignment >>= PAGE_SHIFT; 1703 if (alignment == 0) 1704 alignment = 1; 1705 boundary >>= PAGE_SHIFT; 1706 if (boundary == 0) 1707 boundary = 1; 1708 size = (size + PAGE_MASK) >> PAGE_SHIFT; 1709 1710 spin_lock(&vm_contig_spin); 1711 blk = alist_alloc(&vm_contig_alist, 0, size); 1712 if (blk == ALIST_BLOCK_NONE) { 1713 spin_unlock(&vm_contig_spin); 1714 if (bootverbose) { 1715 kprintf("vm_page_alloc_contig: %ldk nospace\n", 1716 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1717 } 1718 return(NULL); 1719 } 1720 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) { 1721 alist_free(&vm_contig_alist, blk, size); 1722 spin_unlock(&vm_contig_spin); 1723 if (bootverbose) { 1724 kprintf("vm_page_alloc_contig: %ldk high " 1725 "%016jx failed\n", 1726 (size + PAGE_MASK) * (PAGE_SIZE / 1024), 1727 (intmax_t)high); 1728 } 1729 return(NULL); 1730 } 1731 spin_unlock(&vm_contig_spin); 1732 if (vm_contig_verbose) { 1733 kprintf("vm_page_alloc_contig: %016jx/%ldk\n", 1734 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT, 1735 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1736 } 1737 return (PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT)); 1738 } 1739 1740 /* 1741 * Free contiguously allocated pages. The pages will be wired but not busy. 1742 * When freeing to the alist we leave them wired and not busy. 1743 */ 1744 void 1745 vm_page_free_contig(vm_page_t m, unsigned long size) 1746 { 1747 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1748 vm_pindex_t start = pa >> PAGE_SHIFT; 1749 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT; 1750 1751 if (vm_contig_verbose) { 1752 kprintf("vm_page_free_contig: %016jx/%ldk\n", 1753 (intmax_t)pa, size / 1024); 1754 } 1755 if (pa < vm_low_phys_reserved) { 1756 KKASSERT(pa + size <= vm_low_phys_reserved); 1757 spin_lock(&vm_contig_spin); 1758 alist_free(&vm_contig_alist, start, pages); 1759 spin_unlock(&vm_contig_spin); 1760 } else { 1761 while (pages) { 1762 vm_page_busy_wait(m, FALSE, "cpgfr"); 1763 vm_page_unwire(m, 0); 1764 vm_page_free(m); 1765 --pages; 1766 ++m; 1767 } 1768 1769 } 1770 } 1771 1772 1773 /* 1774 * Wait for sufficient free memory for nominal heavy memory use kernel 1775 * operations. 1776 * 1777 * WARNING! Be sure never to call this in any vm_pageout code path, which 1778 * will trivially deadlock the system. 1779 */ 1780 void 1781 vm_wait_nominal(void) 1782 { 1783 while (vm_page_count_min(0)) 1784 vm_wait(0); 1785 } 1786 1787 /* 1788 * Test if vm_wait_nominal() would block. 1789 */ 1790 int 1791 vm_test_nominal(void) 1792 { 1793 if (vm_page_count_min(0)) 1794 return(1); 1795 return(0); 1796 } 1797 1798 /* 1799 * Block until free pages are available for allocation, called in various 1800 * places before memory allocations. 1801 * 1802 * The caller may loop if vm_page_count_min() == FALSE so we cannot be 1803 * more generous then that. 1804 */ 1805 void 1806 vm_wait(int timo) 1807 { 1808 /* 1809 * never wait forever 1810 */ 1811 if (timo == 0) 1812 timo = hz; 1813 lwkt_gettoken(&vm_token); 1814 1815 if (curthread == pagethread) { 1816 /* 1817 * The pageout daemon itself needs pages, this is bad. 1818 */ 1819 if (vm_page_count_min(0)) { 1820 vm_pageout_pages_needed = 1; 1821 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 1822 } 1823 } else { 1824 /* 1825 * Wakeup the pageout daemon if necessary and wait. 1826 */ 1827 if (vm_page_count_target()) { 1828 if (vm_pages_needed == 0) { 1829 vm_pages_needed = 1; 1830 wakeup(&vm_pages_needed); 1831 } 1832 ++vm_pages_waiting; /* SMP race ok */ 1833 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 1834 } 1835 } 1836 lwkt_reltoken(&vm_token); 1837 } 1838 1839 /* 1840 * Block until free pages are available for allocation 1841 * 1842 * Called only from vm_fault so that processes page faulting can be 1843 * easily tracked. 1844 */ 1845 void 1846 vm_waitpfault(void) 1847 { 1848 /* 1849 * Wakeup the pageout daemon if necessary and wait. 1850 */ 1851 if (vm_page_count_target()) { 1852 lwkt_gettoken(&vm_token); 1853 if (vm_page_count_target()) { 1854 if (vm_pages_needed == 0) { 1855 vm_pages_needed = 1; 1856 wakeup(&vm_pages_needed); 1857 } 1858 ++vm_pages_waiting; /* SMP race ok */ 1859 tsleep(&vmstats.v_free_count, 0, "pfault", hz); 1860 } 1861 lwkt_reltoken(&vm_token); 1862 } 1863 } 1864 1865 /* 1866 * Put the specified page on the active list (if appropriate). Ensure 1867 * that act_count is at least ACT_INIT but do not otherwise mess with it. 1868 * 1869 * The caller should be holding the page busied ? XXX 1870 * This routine may not block. 1871 */ 1872 void 1873 vm_page_activate(vm_page_t m) 1874 { 1875 u_short oqueue; 1876 1877 vm_page_spin_lock(m); 1878 if (m->queue - m->pc != PQ_ACTIVE) { 1879 _vm_page_queue_spin_lock(m); 1880 oqueue = _vm_page_rem_queue_spinlocked(m); 1881 /* page is left spinlocked, queue is unlocked */ 1882 1883 if (oqueue == PQ_CACHE) 1884 mycpu->gd_cnt.v_reactivated++; 1885 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1886 if (m->act_count < ACT_INIT) 1887 m->act_count = ACT_INIT; 1888 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0); 1889 } 1890 _vm_page_and_queue_spin_unlock(m); 1891 if (oqueue == PQ_CACHE || oqueue == PQ_FREE) 1892 pagedaemon_wakeup(); 1893 } else { 1894 if (m->act_count < ACT_INIT) 1895 m->act_count = ACT_INIT; 1896 vm_page_spin_unlock(m); 1897 } 1898 } 1899 1900 /* 1901 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1902 * routine is called when a page has been added to the cache or free 1903 * queues. 1904 * 1905 * This routine may not block. 1906 */ 1907 static __inline void 1908 vm_page_free_wakeup(void) 1909 { 1910 /* 1911 * If the pageout daemon itself needs pages, then tell it that 1912 * there are some free. 1913 */ 1914 if (vm_pageout_pages_needed && 1915 vmstats.v_cache_count + vmstats.v_free_count >= 1916 vmstats.v_pageout_free_min 1917 ) { 1918 wakeup(&vm_pageout_pages_needed); 1919 vm_pageout_pages_needed = 0; 1920 } 1921 1922 /* 1923 * Wakeup processes that are waiting on memory. 1924 * 1925 * NOTE: vm_paging_target() is the pageout daemon's target, while 1926 * vm_page_count_target() is somewhere inbetween. We want 1927 * to wake processes up prior to the pageout daemon reaching 1928 * its target to provide some hysteresis. 1929 */ 1930 if (vm_pages_waiting) { 1931 if (!vm_page_count_target()) { 1932 /* 1933 * Plenty of pages are free, wakeup everyone. 1934 */ 1935 vm_pages_waiting = 0; 1936 wakeup(&vmstats.v_free_count); 1937 ++mycpu->gd_cnt.v_ppwakeups; 1938 } else if (!vm_page_count_min(0)) { 1939 /* 1940 * Some pages are free, wakeup someone. 1941 */ 1942 int wcount = vm_pages_waiting; 1943 if (wcount > 0) 1944 --wcount; 1945 vm_pages_waiting = wcount; 1946 wakeup_one(&vmstats.v_free_count); 1947 ++mycpu->gd_cnt.v_ppwakeups; 1948 } 1949 } 1950 } 1951 1952 /* 1953 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates 1954 * it from its VM object. 1955 * 1956 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on 1957 * return (the page will have been freed). 1958 */ 1959 void 1960 vm_page_free_toq(vm_page_t m) 1961 { 1962 mycpu->gd_cnt.v_tfree++; 1963 KKASSERT((m->flags & PG_MAPPED) == 0); 1964 KKASSERT(m->flags & PG_BUSY); 1965 1966 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1967 kprintf("vm_page_free: pindex(%lu), busy(%d), " 1968 "PG_BUSY(%d), hold(%d)\n", 1969 (u_long)m->pindex, m->busy, 1970 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count); 1971 if ((m->queue - m->pc) == PQ_FREE) 1972 panic("vm_page_free: freeing free page"); 1973 else 1974 panic("vm_page_free: freeing busy page"); 1975 } 1976 1977 /* 1978 * Remove from object, spinlock the page and its queues and 1979 * remove from any queue. No queue spinlock will be held 1980 * after this section (because the page was removed from any 1981 * queue). 1982 */ 1983 vm_page_remove(m); 1984 vm_page_and_queue_spin_lock(m); 1985 _vm_page_rem_queue_spinlocked(m); 1986 1987 /* 1988 * No further management of fictitious pages occurs beyond object 1989 * and queue removal. 1990 */ 1991 if ((m->flags & PG_FICTITIOUS) != 0) { 1992 vm_page_spin_unlock(m); 1993 vm_page_wakeup(m); 1994 return; 1995 } 1996 1997 m->valid = 0; 1998 vm_page_undirty(m); 1999 2000 if (m->wire_count != 0) { 2001 if (m->wire_count > 1) { 2002 panic( 2003 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 2004 m->wire_count, (long)m->pindex); 2005 } 2006 panic("vm_page_free: freeing wired page"); 2007 } 2008 2009 /* 2010 * Clear the UNMANAGED flag when freeing an unmanaged page. 2011 * Clear the NEED_COMMIT flag 2012 */ 2013 if (m->flags & PG_UNMANAGED) 2014 vm_page_flag_clear(m, PG_UNMANAGED); 2015 if (m->flags & PG_NEED_COMMIT) 2016 vm_page_flag_clear(m, PG_NEED_COMMIT); 2017 2018 if (m->hold_count != 0) { 2019 vm_page_flag_clear(m, PG_ZERO); 2020 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 2021 } else { 2022 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 2023 } 2024 2025 /* 2026 * This sequence allows us to clear PG_BUSY while still holding 2027 * its spin lock, which reduces contention vs allocators. We 2028 * must not leave the queue locked or _vm_page_wakeup() may 2029 * deadlock. 2030 */ 2031 _vm_page_queue_spin_unlock(m); 2032 if (_vm_page_wakeup(m)) { 2033 vm_page_spin_unlock(m); 2034 wakeup(m); 2035 } else { 2036 vm_page_spin_unlock(m); 2037 } 2038 vm_page_free_wakeup(); 2039 } 2040 2041 /* 2042 * vm_page_free_fromq_fast() 2043 * 2044 * Remove a non-zero page from one of the free queues; the page is removed for 2045 * zeroing, so do not issue a wakeup. 2046 */ 2047 vm_page_t 2048 vm_page_free_fromq_fast(void) 2049 { 2050 static int qi; 2051 vm_page_t m; 2052 int i; 2053 2054 for (i = 0; i < PQ_L2_SIZE; ++i) { 2055 m = vm_page_list_find(PQ_FREE, qi, FALSE); 2056 /* page is returned spinlocked and removed from its queue */ 2057 if (m) { 2058 if (vm_page_busy_try(m, TRUE)) { 2059 /* 2060 * We were unable to busy the page, deactivate 2061 * it and loop. 2062 */ 2063 _vm_page_deactivate_locked(m, 0); 2064 vm_page_spin_unlock(m); 2065 } else if (m->flags & PG_ZERO) { 2066 /* 2067 * The page is PG_ZERO, requeue it and loop 2068 */ 2069 _vm_page_add_queue_spinlocked(m, 2070 PQ_FREE + m->pc, 2071 0); 2072 vm_page_queue_spin_unlock(m); 2073 if (_vm_page_wakeup(m)) { 2074 vm_page_spin_unlock(m); 2075 wakeup(m); 2076 } else { 2077 vm_page_spin_unlock(m); 2078 } 2079 } else { 2080 /* 2081 * The page is not PG_ZERO'd so return it. 2082 */ 2083 vm_page_spin_unlock(m); 2084 KKASSERT((m->flags & (PG_UNMANAGED | 2085 PG_NEED_COMMIT)) == 0); 2086 KKASSERT(m->hold_count == 0); 2087 KKASSERT(m->wire_count == 0); 2088 break; 2089 } 2090 m = NULL; 2091 } 2092 qi = (qi + PQ_PRIME2) & PQ_L2_MASK; 2093 } 2094 return (m); 2095 } 2096 2097 /* 2098 * vm_page_unmanage() 2099 * 2100 * Prevent PV management from being done on the page. The page is 2101 * removed from the paging queues as if it were wired, and as a 2102 * consequence of no longer being managed the pageout daemon will not 2103 * touch it (since there is no way to locate the pte mappings for the 2104 * page). madvise() calls that mess with the pmap will also no longer 2105 * operate on the page. 2106 * 2107 * Beyond that the page is still reasonably 'normal'. Freeing the page 2108 * will clear the flag. 2109 * 2110 * This routine is used by OBJT_PHYS objects - objects using unswappable 2111 * physical memory as backing store rather then swap-backed memory and 2112 * will eventually be extended to support 4MB unmanaged physical 2113 * mappings. 2114 * 2115 * Caller must be holding the page busy. 2116 */ 2117 void 2118 vm_page_unmanage(vm_page_t m) 2119 { 2120 KKASSERT(m->flags & PG_BUSY); 2121 if ((m->flags & PG_UNMANAGED) == 0) { 2122 if (m->wire_count == 0) 2123 vm_page_unqueue(m); 2124 } 2125 vm_page_flag_set(m, PG_UNMANAGED); 2126 } 2127 2128 /* 2129 * Mark this page as wired down by yet another map, removing it from 2130 * paging queues as necessary. 2131 * 2132 * Caller must be holding the page busy. 2133 */ 2134 void 2135 vm_page_wire(vm_page_t m) 2136 { 2137 /* 2138 * Only bump the wire statistics if the page is not already wired, 2139 * and only unqueue the page if it is on some queue (if it is unmanaged 2140 * it is already off the queues). Don't do anything with fictitious 2141 * pages because they are always wired. 2142 */ 2143 KKASSERT(m->flags & PG_BUSY); 2144 if ((m->flags & PG_FICTITIOUS) == 0) { 2145 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) { 2146 if ((m->flags & PG_UNMANAGED) == 0) 2147 vm_page_unqueue(m); 2148 atomic_add_int(&vmstats.v_wire_count, 1); 2149 } 2150 KASSERT(m->wire_count != 0, 2151 ("vm_page_wire: wire_count overflow m=%p", m)); 2152 } 2153 } 2154 2155 /* 2156 * Release one wiring of this page, potentially enabling it to be paged again. 2157 * 2158 * Many pages placed on the inactive queue should actually go 2159 * into the cache, but it is difficult to figure out which. What 2160 * we do instead, if the inactive target is well met, is to put 2161 * clean pages at the head of the inactive queue instead of the tail. 2162 * This will cause them to be moved to the cache more quickly and 2163 * if not actively re-referenced, freed more quickly. If we just 2164 * stick these pages at the end of the inactive queue, heavy filesystem 2165 * meta-data accesses can cause an unnecessary paging load on memory bound 2166 * processes. This optimization causes one-time-use metadata to be 2167 * reused more quickly. 2168 * 2169 * Pages marked PG_NEED_COMMIT are always activated and never placed on 2170 * the inactive queue. This helps the pageout daemon determine memory 2171 * pressure and act on out-of-memory situations more quickly. 2172 * 2173 * BUT, if we are in a low-memory situation we have no choice but to 2174 * put clean pages on the cache queue. 2175 * 2176 * A number of routines use vm_page_unwire() to guarantee that the page 2177 * will go into either the inactive or active queues, and will NEVER 2178 * be placed in the cache - for example, just after dirtying a page. 2179 * dirty pages in the cache are not allowed. 2180 * 2181 * The page queues must be locked. 2182 * This routine may not block. 2183 */ 2184 void 2185 vm_page_unwire(vm_page_t m, int activate) 2186 { 2187 KKASSERT(m->flags & PG_BUSY); 2188 if (m->flags & PG_FICTITIOUS) { 2189 /* do nothing */ 2190 } else if (m->wire_count <= 0) { 2191 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 2192 } else { 2193 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) { 2194 atomic_add_int(&vmstats.v_wire_count, -1); 2195 if (m->flags & PG_UNMANAGED) { 2196 ; 2197 } else if (activate || (m->flags & PG_NEED_COMMIT)) { 2198 vm_page_spin_lock(m); 2199 _vm_page_add_queue_spinlocked(m, 2200 PQ_ACTIVE + m->pc, 0); 2201 _vm_page_and_queue_spin_unlock(m); 2202 } else { 2203 vm_page_spin_lock(m); 2204 vm_page_flag_clear(m, PG_WINATCFLS); 2205 _vm_page_add_queue_spinlocked(m, 2206 PQ_INACTIVE + m->pc, 0); 2207 ++vm_swapcache_inactive_heuristic; 2208 _vm_page_and_queue_spin_unlock(m); 2209 } 2210 } 2211 } 2212 } 2213 2214 /* 2215 * Move the specified page to the inactive queue. If the page has 2216 * any associated swap, the swap is deallocated. 2217 * 2218 * Normally athead is 0 resulting in LRU operation. athead is set 2219 * to 1 if we want this page to be 'as if it were placed in the cache', 2220 * except without unmapping it from the process address space. 2221 * 2222 * vm_page's spinlock must be held on entry and will remain held on return. 2223 * This routine may not block. 2224 */ 2225 static void 2226 _vm_page_deactivate_locked(vm_page_t m, int athead) 2227 { 2228 u_short oqueue; 2229 2230 /* 2231 * Ignore if already inactive. 2232 */ 2233 if (m->queue - m->pc == PQ_INACTIVE) 2234 return; 2235 _vm_page_queue_spin_lock(m); 2236 oqueue = _vm_page_rem_queue_spinlocked(m); 2237 2238 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 2239 if (oqueue == PQ_CACHE) 2240 mycpu->gd_cnt.v_reactivated++; 2241 vm_page_flag_clear(m, PG_WINATCFLS); 2242 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead); 2243 if (athead == 0) 2244 ++vm_swapcache_inactive_heuristic; 2245 } 2246 _vm_page_queue_spin_unlock(m); 2247 /* leaves vm_page spinlocked */ 2248 } 2249 2250 /* 2251 * Attempt to deactivate a page. 2252 * 2253 * No requirements. 2254 */ 2255 void 2256 vm_page_deactivate(vm_page_t m) 2257 { 2258 vm_page_spin_lock(m); 2259 _vm_page_deactivate_locked(m, 0); 2260 vm_page_spin_unlock(m); 2261 } 2262 2263 void 2264 vm_page_deactivate_locked(vm_page_t m) 2265 { 2266 _vm_page_deactivate_locked(m, 0); 2267 } 2268 2269 /* 2270 * Attempt to move a page to PQ_CACHE. 2271 * 2272 * Returns 0 on failure, 1 on success 2273 * 2274 * The page should NOT be busied by the caller. This function will validate 2275 * whether the page can be safely moved to the cache. 2276 */ 2277 int 2278 vm_page_try_to_cache(vm_page_t m) 2279 { 2280 vm_page_spin_lock(m); 2281 if (vm_page_busy_try(m, TRUE)) { 2282 vm_page_spin_unlock(m); 2283 return(0); 2284 } 2285 if (m->dirty || m->hold_count || m->wire_count || 2286 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) { 2287 if (_vm_page_wakeup(m)) { 2288 vm_page_spin_unlock(m); 2289 wakeup(m); 2290 } else { 2291 vm_page_spin_unlock(m); 2292 } 2293 return(0); 2294 } 2295 vm_page_spin_unlock(m); 2296 2297 /* 2298 * Page busied by us and no longer spinlocked. Dirty pages cannot 2299 * be moved to the cache. 2300 */ 2301 vm_page_test_dirty(m); 2302 if (m->dirty) { 2303 vm_page_wakeup(m); 2304 return(0); 2305 } 2306 vm_page_cache(m); 2307 return(1); 2308 } 2309 2310 /* 2311 * Attempt to free the page. If we cannot free it, we do nothing. 2312 * 1 is returned on success, 0 on failure. 2313 * 2314 * No requirements. 2315 */ 2316 int 2317 vm_page_try_to_free(vm_page_t m) 2318 { 2319 vm_page_spin_lock(m); 2320 if (vm_page_busy_try(m, TRUE)) { 2321 vm_page_spin_unlock(m); 2322 return(0); 2323 } 2324 2325 /* 2326 * The page can be in any state, including already being on the free 2327 * queue. Check to see if it really can be freed. 2328 */ 2329 if (m->dirty || /* can't free if it is dirty */ 2330 m->hold_count || /* or held (XXX may be wrong) */ 2331 m->wire_count || /* or wired */ 2332 (m->flags & (PG_UNMANAGED | /* or unmanaged */ 2333 PG_NEED_COMMIT)) || /* or needs a commit */ 2334 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */ 2335 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */ 2336 if (_vm_page_wakeup(m)) { 2337 vm_page_spin_unlock(m); 2338 wakeup(m); 2339 } else { 2340 vm_page_spin_unlock(m); 2341 } 2342 return(0); 2343 } 2344 vm_page_spin_unlock(m); 2345 2346 /* 2347 * We can probably free the page. 2348 * 2349 * Page busied by us and no longer spinlocked. Dirty pages will 2350 * not be freed by this function. We have to re-test the 2351 * dirty bit after cleaning out the pmaps. 2352 */ 2353 vm_page_test_dirty(m); 2354 if (m->dirty) { 2355 vm_page_wakeup(m); 2356 return(0); 2357 } 2358 vm_page_protect(m, VM_PROT_NONE); 2359 if (m->dirty) { 2360 vm_page_wakeup(m); 2361 return(0); 2362 } 2363 vm_page_free(m); 2364 return(1); 2365 } 2366 2367 /* 2368 * vm_page_cache 2369 * 2370 * Put the specified page onto the page cache queue (if appropriate). 2371 * 2372 * The page must be busy, and this routine will release the busy and 2373 * possibly even free the page. 2374 */ 2375 void 2376 vm_page_cache(vm_page_t m) 2377 { 2378 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 2379 m->busy || m->wire_count || m->hold_count) { 2380 kprintf("vm_page_cache: attempting to cache busy/held page\n"); 2381 vm_page_wakeup(m); 2382 return; 2383 } 2384 2385 /* 2386 * Already in the cache (and thus not mapped) 2387 */ 2388 if ((m->queue - m->pc) == PQ_CACHE) { 2389 KKASSERT((m->flags & PG_MAPPED) == 0); 2390 vm_page_wakeup(m); 2391 return; 2392 } 2393 2394 /* 2395 * Caller is required to test m->dirty, but note that the act of 2396 * removing the page from its maps can cause it to become dirty 2397 * on an SMP system due to another cpu running in usermode. 2398 */ 2399 if (m->dirty) { 2400 panic("vm_page_cache: caching a dirty page, pindex: %ld", 2401 (long)m->pindex); 2402 } 2403 2404 /* 2405 * Remove all pmaps and indicate that the page is not 2406 * writeable or mapped. Our vm_page_protect() call may 2407 * have blocked (especially w/ VM_PROT_NONE), so recheck 2408 * everything. 2409 */ 2410 vm_page_protect(m, VM_PROT_NONE); 2411 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) || 2412 m->busy || m->wire_count || m->hold_count) { 2413 vm_page_wakeup(m); 2414 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2415 vm_page_deactivate(m); 2416 vm_page_wakeup(m); 2417 } else { 2418 _vm_page_and_queue_spin_lock(m); 2419 _vm_page_rem_queue_spinlocked(m); 2420 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0); 2421 _vm_page_queue_spin_unlock(m); 2422 if (_vm_page_wakeup(m)) { 2423 vm_page_spin_unlock(m); 2424 wakeup(m); 2425 } else { 2426 vm_page_spin_unlock(m); 2427 } 2428 vm_page_free_wakeup(); 2429 } 2430 } 2431 2432 /* 2433 * vm_page_dontneed() 2434 * 2435 * Cache, deactivate, or do nothing as appropriate. This routine 2436 * is typically used by madvise() MADV_DONTNEED. 2437 * 2438 * Generally speaking we want to move the page into the cache so 2439 * it gets reused quickly. However, this can result in a silly syndrome 2440 * due to the page recycling too quickly. Small objects will not be 2441 * fully cached. On the otherhand, if we move the page to the inactive 2442 * queue we wind up with a problem whereby very large objects 2443 * unnecessarily blow away our inactive and cache queues. 2444 * 2445 * The solution is to move the pages based on a fixed weighting. We 2446 * either leave them alone, deactivate them, or move them to the cache, 2447 * where moving them to the cache has the highest weighting. 2448 * By forcing some pages into other queues we eventually force the 2449 * system to balance the queues, potentially recovering other unrelated 2450 * space from active. The idea is to not force this to happen too 2451 * often. 2452 * 2453 * The page must be busied. 2454 */ 2455 void 2456 vm_page_dontneed(vm_page_t m) 2457 { 2458 static int dnweight; 2459 int dnw; 2460 int head; 2461 2462 dnw = ++dnweight; 2463 2464 /* 2465 * occassionally leave the page alone 2466 */ 2467 if ((dnw & 0x01F0) == 0 || 2468 m->queue - m->pc == PQ_INACTIVE || 2469 m->queue - m->pc == PQ_CACHE 2470 ) { 2471 if (m->act_count >= ACT_INIT) 2472 --m->act_count; 2473 return; 2474 } 2475 2476 /* 2477 * If vm_page_dontneed() is inactivating a page, it must clear 2478 * the referenced flag; otherwise the pagedaemon will see references 2479 * on the page in the inactive queue and reactivate it. Until the 2480 * page can move to the cache queue, madvise's job is not done. 2481 */ 2482 vm_page_flag_clear(m, PG_REFERENCED); 2483 pmap_clear_reference(m); 2484 2485 if (m->dirty == 0) 2486 vm_page_test_dirty(m); 2487 2488 if (m->dirty || (dnw & 0x0070) == 0) { 2489 /* 2490 * Deactivate the page 3 times out of 32. 2491 */ 2492 head = 0; 2493 } else { 2494 /* 2495 * Cache the page 28 times out of every 32. Note that 2496 * the page is deactivated instead of cached, but placed 2497 * at the head of the queue instead of the tail. 2498 */ 2499 head = 1; 2500 } 2501 vm_page_spin_lock(m); 2502 _vm_page_deactivate_locked(m, head); 2503 vm_page_spin_unlock(m); 2504 } 2505 2506 /* 2507 * These routines manipulate the 'soft busy' count for a page. A soft busy 2508 * is almost like PG_BUSY except that it allows certain compatible operations 2509 * to occur on the page while it is busy. For example, a page undergoing a 2510 * write can still be mapped read-only. 2511 * 2512 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only 2513 * adjusted while the vm_page is PG_BUSY so the flash will occur when the 2514 * busy bit is cleared. 2515 */ 2516 void 2517 vm_page_io_start(vm_page_t m) 2518 { 2519 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!")); 2520 atomic_add_char(&m->busy, 1); 2521 vm_page_flag_set(m, PG_SBUSY); 2522 } 2523 2524 void 2525 vm_page_io_finish(vm_page_t m) 2526 { 2527 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!")); 2528 atomic_subtract_char(&m->busy, 1); 2529 if (m->busy == 0) 2530 vm_page_flag_clear(m, PG_SBUSY); 2531 } 2532 2533 /* 2534 * Indicate that a clean VM page requires a filesystem commit and cannot 2535 * be reused. Used by tmpfs. 2536 */ 2537 void 2538 vm_page_need_commit(vm_page_t m) 2539 { 2540 vm_page_flag_set(m, PG_NEED_COMMIT); 2541 } 2542 2543 void 2544 vm_page_clear_commit(vm_page_t m) 2545 { 2546 vm_page_flag_clear(m, PG_NEED_COMMIT); 2547 } 2548 2549 /* 2550 * Grab a page, blocking if it is busy and allocating a page if necessary. 2551 * A busy page is returned or NULL. The page may or may not be valid and 2552 * might not be on a queue (the caller is responsible for the disposition of 2553 * the page). 2554 * 2555 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the 2556 * page will be zero'd and marked valid. 2557 * 2558 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked 2559 * valid even if it already exists. 2560 * 2561 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also 2562 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified. 2563 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified. 2564 * 2565 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 2566 * always returned if we had blocked. 2567 * 2568 * This routine may not be called from an interrupt. 2569 * 2570 * PG_ZERO is *ALWAYS* cleared by this routine. 2571 * 2572 * No other requirements. 2573 */ 2574 vm_page_t 2575 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2576 { 2577 vm_page_t m; 2578 int error; 2579 2580 KKASSERT(allocflags & 2581 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 2582 vm_object_hold(object); 2583 for (;;) { 2584 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 2585 if (error) { 2586 vm_page_sleep_busy(m, TRUE, "pgrbwt"); 2587 if ((allocflags & VM_ALLOC_RETRY) == 0) { 2588 m = NULL; 2589 break; 2590 } 2591 /* retry */ 2592 } else if (m == NULL) { 2593 if (allocflags & VM_ALLOC_RETRY) 2594 allocflags |= VM_ALLOC_NULL_OK; 2595 m = vm_page_alloc(object, pindex, 2596 allocflags & ~VM_ALLOC_RETRY); 2597 if (m) 2598 break; 2599 vm_wait(0); 2600 if ((allocflags & VM_ALLOC_RETRY) == 0) 2601 goto failed; 2602 } else { 2603 /* m found */ 2604 break; 2605 } 2606 } 2607 2608 /* 2609 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid. 2610 * 2611 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set 2612 * valid even if already valid. 2613 */ 2614 if (m->valid == 0) { 2615 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) { 2616 if ((m->flags & PG_ZERO) == 0) 2617 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2618 m->valid = VM_PAGE_BITS_ALL; 2619 } 2620 } else if (allocflags & VM_ALLOC_FORCE_ZERO) { 2621 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2622 m->valid = VM_PAGE_BITS_ALL; 2623 } 2624 vm_page_flag_clear(m, PG_ZERO); 2625 failed: 2626 vm_object_drop(object); 2627 return(m); 2628 } 2629 2630 /* 2631 * Mapping function for valid bits or for dirty bits in 2632 * a page. May not block. 2633 * 2634 * Inputs are required to range within a page. 2635 * 2636 * No requirements. 2637 * Non blocking. 2638 */ 2639 int 2640 vm_page_bits(int base, int size) 2641 { 2642 int first_bit; 2643 int last_bit; 2644 2645 KASSERT( 2646 base + size <= PAGE_SIZE, 2647 ("vm_page_bits: illegal base/size %d/%d", base, size) 2648 ); 2649 2650 if (size == 0) /* handle degenerate case */ 2651 return(0); 2652 2653 first_bit = base >> DEV_BSHIFT; 2654 last_bit = (base + size - 1) >> DEV_BSHIFT; 2655 2656 return ((2 << last_bit) - (1 << first_bit)); 2657 } 2658 2659 /* 2660 * Sets portions of a page valid and clean. The arguments are expected 2661 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2662 * of any partial chunks touched by the range. The invalid portion of 2663 * such chunks will be zero'd. 2664 * 2665 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically 2666 * align base to DEV_BSIZE so as not to mark clean a partially 2667 * truncated device block. Otherwise the dirty page status might be 2668 * lost. 2669 * 2670 * This routine may not block. 2671 * 2672 * (base + size) must be less then or equal to PAGE_SIZE. 2673 */ 2674 static void 2675 _vm_page_zero_valid(vm_page_t m, int base, int size) 2676 { 2677 int frag; 2678 int endoff; 2679 2680 if (size == 0) /* handle degenerate case */ 2681 return; 2682 2683 /* 2684 * If the base is not DEV_BSIZE aligned and the valid 2685 * bit is clear, we have to zero out a portion of the 2686 * first block. 2687 */ 2688 2689 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2690 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 2691 ) { 2692 pmap_zero_page_area( 2693 VM_PAGE_TO_PHYS(m), 2694 frag, 2695 base - frag 2696 ); 2697 } 2698 2699 /* 2700 * If the ending offset is not DEV_BSIZE aligned and the 2701 * valid bit is clear, we have to zero out a portion of 2702 * the last block. 2703 */ 2704 2705 endoff = base + size; 2706 2707 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2708 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 2709 ) { 2710 pmap_zero_page_area( 2711 VM_PAGE_TO_PHYS(m), 2712 endoff, 2713 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 2714 ); 2715 } 2716 } 2717 2718 /* 2719 * Set valid, clear dirty bits. If validating the entire 2720 * page we can safely clear the pmap modify bit. We also 2721 * use this opportunity to clear the PG_NOSYNC flag. If a process 2722 * takes a write fault on a MAP_NOSYNC memory area the flag will 2723 * be set again. 2724 * 2725 * We set valid bits inclusive of any overlap, but we can only 2726 * clear dirty bits for DEV_BSIZE chunks that are fully within 2727 * the range. 2728 * 2729 * Page must be busied? 2730 * No other requirements. 2731 */ 2732 void 2733 vm_page_set_valid(vm_page_t m, int base, int size) 2734 { 2735 _vm_page_zero_valid(m, base, size); 2736 m->valid |= vm_page_bits(base, size); 2737 } 2738 2739 2740 /* 2741 * Set valid bits and clear dirty bits. 2742 * 2743 * NOTE: This function does not clear the pmap modified bit. 2744 * Also note that e.g. NFS may use a byte-granular base 2745 * and size. 2746 * 2747 * WARNING: Page must be busied? But vfs_clean_one_page() will call 2748 * this without necessarily busying the page (via bdwrite()). 2749 * So for now vm_token must also be held. 2750 * 2751 * No other requirements. 2752 */ 2753 void 2754 vm_page_set_validclean(vm_page_t m, int base, int size) 2755 { 2756 int pagebits; 2757 2758 _vm_page_zero_valid(m, base, size); 2759 pagebits = vm_page_bits(base, size); 2760 m->valid |= pagebits; 2761 m->dirty &= ~pagebits; 2762 if (base == 0 && size == PAGE_SIZE) { 2763 /*pmap_clear_modify(m);*/ 2764 vm_page_flag_clear(m, PG_NOSYNC); 2765 } 2766 } 2767 2768 /* 2769 * Set valid & dirty. Used by buwrite() 2770 * 2771 * WARNING: Page must be busied? But vfs_dirty_one_page() will 2772 * call this function in buwrite() so for now vm_token must 2773 * be held. 2774 * 2775 * No other requirements. 2776 */ 2777 void 2778 vm_page_set_validdirty(vm_page_t m, int base, int size) 2779 { 2780 int pagebits; 2781 2782 pagebits = vm_page_bits(base, size); 2783 m->valid |= pagebits; 2784 m->dirty |= pagebits; 2785 if (m->object) 2786 vm_object_set_writeable_dirty(m->object); 2787 } 2788 2789 /* 2790 * Clear dirty bits. 2791 * 2792 * NOTE: This function does not clear the pmap modified bit. 2793 * Also note that e.g. NFS may use a byte-granular base 2794 * and size. 2795 * 2796 * Page must be busied? 2797 * No other requirements. 2798 */ 2799 void 2800 vm_page_clear_dirty(vm_page_t m, int base, int size) 2801 { 2802 m->dirty &= ~vm_page_bits(base, size); 2803 if (base == 0 && size == PAGE_SIZE) { 2804 /*pmap_clear_modify(m);*/ 2805 vm_page_flag_clear(m, PG_NOSYNC); 2806 } 2807 } 2808 2809 /* 2810 * Make the page all-dirty. 2811 * 2812 * Also make sure the related object and vnode reflect the fact that the 2813 * object may now contain a dirty page. 2814 * 2815 * Page must be busied? 2816 * No other requirements. 2817 */ 2818 void 2819 vm_page_dirty(vm_page_t m) 2820 { 2821 #ifdef INVARIANTS 2822 int pqtype = m->queue - m->pc; 2823 #endif 2824 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 2825 ("vm_page_dirty: page in free/cache queue!")); 2826 if (m->dirty != VM_PAGE_BITS_ALL) { 2827 m->dirty = VM_PAGE_BITS_ALL; 2828 if (m->object) 2829 vm_object_set_writeable_dirty(m->object); 2830 } 2831 } 2832 2833 /* 2834 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2835 * valid and dirty bits for the effected areas are cleared. 2836 * 2837 * Page must be busied? 2838 * Does not block. 2839 * No other requirements. 2840 */ 2841 void 2842 vm_page_set_invalid(vm_page_t m, int base, int size) 2843 { 2844 int bits; 2845 2846 bits = vm_page_bits(base, size); 2847 m->valid &= ~bits; 2848 m->dirty &= ~bits; 2849 m->object->generation++; 2850 } 2851 2852 /* 2853 * The kernel assumes that the invalid portions of a page contain 2854 * garbage, but such pages can be mapped into memory by user code. 2855 * When this occurs, we must zero out the non-valid portions of the 2856 * page so user code sees what it expects. 2857 * 2858 * Pages are most often semi-valid when the end of a file is mapped 2859 * into memory and the file's size is not page aligned. 2860 * 2861 * Page must be busied? 2862 * No other requirements. 2863 */ 2864 void 2865 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2866 { 2867 int b; 2868 int i; 2869 2870 /* 2871 * Scan the valid bits looking for invalid sections that 2872 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2873 * valid bit may be set ) have already been zerod by 2874 * vm_page_set_validclean(). 2875 */ 2876 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2877 if (i == (PAGE_SIZE / DEV_BSIZE) || 2878 (m->valid & (1 << i)) 2879 ) { 2880 if (i > b) { 2881 pmap_zero_page_area( 2882 VM_PAGE_TO_PHYS(m), 2883 b << DEV_BSHIFT, 2884 (i - b) << DEV_BSHIFT 2885 ); 2886 } 2887 b = i + 1; 2888 } 2889 } 2890 2891 /* 2892 * setvalid is TRUE when we can safely set the zero'd areas 2893 * as being valid. We can do this if there are no cache consistency 2894 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2895 */ 2896 if (setvalid) 2897 m->valid = VM_PAGE_BITS_ALL; 2898 } 2899 2900 /* 2901 * Is a (partial) page valid? Note that the case where size == 0 2902 * will return FALSE in the degenerate case where the page is entirely 2903 * invalid, and TRUE otherwise. 2904 * 2905 * Does not block. 2906 * No other requirements. 2907 */ 2908 int 2909 vm_page_is_valid(vm_page_t m, int base, int size) 2910 { 2911 int bits = vm_page_bits(base, size); 2912 2913 if (m->valid && ((m->valid & bits) == bits)) 2914 return 1; 2915 else 2916 return 0; 2917 } 2918 2919 /* 2920 * update dirty bits from pmap/mmu. May not block. 2921 * 2922 * Caller must hold the page busy 2923 */ 2924 void 2925 vm_page_test_dirty(vm_page_t m) 2926 { 2927 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 2928 vm_page_dirty(m); 2929 } 2930 } 2931 2932 /* 2933 * Register an action, associating it with its vm_page 2934 */ 2935 void 2936 vm_page_register_action(vm_page_action_t action, vm_page_event_t event) 2937 { 2938 struct vm_page_action_list *list; 2939 int hv; 2940 2941 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2942 list = &action_list[hv]; 2943 2944 lwkt_gettoken(&vm_token); 2945 vm_page_flag_set(action->m, PG_ACTIONLIST); 2946 action->event = event; 2947 LIST_INSERT_HEAD(list, action, entry); 2948 lwkt_reltoken(&vm_token); 2949 } 2950 2951 /* 2952 * Unregister an action, disassociating it from its related vm_page 2953 */ 2954 void 2955 vm_page_unregister_action(vm_page_action_t action) 2956 { 2957 struct vm_page_action_list *list; 2958 int hv; 2959 2960 lwkt_gettoken(&vm_token); 2961 if (action->event != VMEVENT_NONE) { 2962 action->event = VMEVENT_NONE; 2963 LIST_REMOVE(action, entry); 2964 2965 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2966 list = &action_list[hv]; 2967 if (LIST_EMPTY(list)) 2968 vm_page_flag_clear(action->m, PG_ACTIONLIST); 2969 } 2970 lwkt_reltoken(&vm_token); 2971 } 2972 2973 /* 2974 * Issue an event on a VM page. Corresponding action structures are 2975 * removed from the page's list and called. 2976 * 2977 * If the vm_page has no more pending action events we clear its 2978 * PG_ACTIONLIST flag. 2979 */ 2980 void 2981 vm_page_event_internal(vm_page_t m, vm_page_event_t event) 2982 { 2983 struct vm_page_action_list *list; 2984 struct vm_page_action *scan; 2985 struct vm_page_action *next; 2986 int hv; 2987 int all; 2988 2989 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK; 2990 list = &action_list[hv]; 2991 all = 1; 2992 2993 lwkt_gettoken(&vm_token); 2994 LIST_FOREACH_MUTABLE(scan, list, entry, next) { 2995 if (scan->m == m) { 2996 if (scan->event == event) { 2997 scan->event = VMEVENT_NONE; 2998 LIST_REMOVE(scan, entry); 2999 scan->func(m, scan); 3000 /* XXX */ 3001 } else { 3002 all = 0; 3003 } 3004 } 3005 } 3006 if (all) 3007 vm_page_flag_clear(m, PG_ACTIONLIST); 3008 lwkt_reltoken(&vm_token); 3009 } 3010 3011 #include "opt_ddb.h" 3012 #ifdef DDB 3013 #include <sys/kernel.h> 3014 3015 #include <ddb/ddb.h> 3016 3017 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3018 { 3019 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count); 3020 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count); 3021 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count); 3022 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count); 3023 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count); 3024 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved); 3025 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min); 3026 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target); 3027 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min); 3028 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target); 3029 } 3030 3031 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3032 { 3033 int i; 3034 db_printf("PQ_FREE:"); 3035 for(i=0;i<PQ_L2_SIZE;i++) { 3036 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 3037 } 3038 db_printf("\n"); 3039 3040 db_printf("PQ_CACHE:"); 3041 for(i=0;i<PQ_L2_SIZE;i++) { 3042 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 3043 } 3044 db_printf("\n"); 3045 3046 db_printf("PQ_ACTIVE:"); 3047 for(i=0;i<PQ_L2_SIZE;i++) { 3048 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt); 3049 } 3050 db_printf("\n"); 3051 3052 db_printf("PQ_INACTIVE:"); 3053 for(i=0;i<PQ_L2_SIZE;i++) { 3054 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt); 3055 } 3056 db_printf("\n"); 3057 } 3058 #endif /* DDB */ 3059