xref: /dflybsd-src/sys/vm/vm_page.c (revision abd448c3b2d3508465e48d9cfdb163ef88fc242e)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
35  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
36  */
37 
38 /*
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 /*
65  * Resident memory management module.  The module manipulates 'VM pages'.
66  * A VM page is the core building block for memory management.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 #include <sys/alist.h>
77 #include <sys/sysctl.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/swap_pager.h>
91 
92 #include <machine/inttypes.h>
93 #include <machine/md_var.h>
94 #include <machine/specialreg.h>
95 
96 #include <vm/vm_page2.h>
97 #include <sys/spinlock2.h>
98 
99 #define VMACTION_HSIZE	256
100 #define VMACTION_HMASK	(VMACTION_HSIZE - 1)
101 
102 static void vm_page_queue_init(void);
103 static void vm_page_free_wakeup(void);
104 static vm_page_t vm_page_select_cache(u_short pg_color);
105 static vm_page_t _vm_page_list_find2(int basequeue, int index);
106 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
107 
108 /*
109  * Array of tailq lists
110  */
111 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
112 
113 LIST_HEAD(vm_page_action_list, vm_page_action);
114 struct vm_page_action_list	action_list[VMACTION_HSIZE];
115 static volatile int vm_pages_waiting;
116 
117 static struct alist vm_contig_alist;
118 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536];
119 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin);
120 
121 static u_long vm_dma_reserved = 0;
122 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved);
123 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0,
124 	    "Memory reserved for DMA");
125 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD,
126 	    &vm_contig_alist.bl_free, 0, "Memory reserved for DMA");
127 
128 static int vm_contig_verbose = 0;
129 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose);
130 
131 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
132 	     vm_pindex_t, pindex);
133 
134 static void
135 vm_page_queue_init(void)
136 {
137 	int i;
138 
139 	for (i = 0; i < PQ_L2_SIZE; i++)
140 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
141 	for (i = 0; i < PQ_L2_SIZE; i++)
142 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
143 	for (i = 0; i < PQ_L2_SIZE; i++)
144 		vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
145 	for (i = 0; i < PQ_L2_SIZE; i++)
146 		vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
147 	for (i = 0; i < PQ_L2_SIZE; i++)
148 		vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
149 	/* PQ_NONE has no queue */
150 
151 	for (i = 0; i < PQ_COUNT; i++) {
152 		TAILQ_INIT(&vm_page_queues[i].pl);
153 		spin_init(&vm_page_queues[i].spin);
154 	}
155 
156 	for (i = 0; i < VMACTION_HSIZE; i++)
157 		LIST_INIT(&action_list[i]);
158 }
159 
160 /*
161  * note: place in initialized data section?  Is this necessary?
162  */
163 long first_page = 0;
164 int vm_page_array_size = 0;
165 int vm_page_zero_count = 0;
166 vm_page_t vm_page_array = NULL;
167 vm_paddr_t vm_low_phys_reserved;
168 
169 /*
170  * (low level boot)
171  *
172  * Sets the page size, perhaps based upon the memory size.
173  * Must be called before any use of page-size dependent functions.
174  */
175 void
176 vm_set_page_size(void)
177 {
178 	if (vmstats.v_page_size == 0)
179 		vmstats.v_page_size = PAGE_SIZE;
180 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
181 		panic("vm_set_page_size: page size not a power of two");
182 }
183 
184 /*
185  * (low level boot)
186  *
187  * Add a new page to the freelist for use by the system.  New pages
188  * are added to both the head and tail of the associated free page
189  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
190  * requests pull 'recent' adds (higher physical addresses) first.
191  *
192  * Beware that the page zeroing daemon will also be running soon after
193  * boot, moving pages from the head to the tail of the PQ_FREE queues.
194  *
195  * Must be called in a critical section.
196  */
197 static void
198 vm_add_new_page(vm_paddr_t pa)
199 {
200 	struct vpgqueues *vpq;
201 	vm_page_t m;
202 
203 	m = PHYS_TO_VM_PAGE(pa);
204 	m->phys_addr = pa;
205 	m->flags = 0;
206 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
207 	m->pat_mode = PAT_WRITE_BACK;
208 	/*
209 	 * Twist for cpu localization in addition to page coloring, so
210 	 * different cpus selecting by m->queue get different page colors.
211 	 */
212 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
213 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
214 	/*
215 	 * Reserve a certain number of contiguous low memory pages for
216 	 * contigmalloc() to use.
217 	 */
218 	if (pa < vm_low_phys_reserved) {
219 		atomic_add_int(&vmstats.v_page_count, 1);
220 		atomic_add_int(&vmstats.v_dma_pages, 1);
221 		m->queue = PQ_NONE;
222 		m->wire_count = 1;
223 		atomic_add_int(&vmstats.v_wire_count, 1);
224 		alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1);
225 		return;
226 	}
227 
228 	/*
229 	 * General page
230 	 */
231 	m->queue = m->pc + PQ_FREE;
232 	KKASSERT(m->dirty == 0);
233 
234 	atomic_add_int(&vmstats.v_page_count, 1);
235 	atomic_add_int(&vmstats.v_free_count, 1);
236 	vpq = &vm_page_queues[m->queue];
237 	if ((vpq->flipflop & 15) == 0) {
238 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
239 		m->flags |= PG_ZERO;
240 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
241 		atomic_add_int(&vm_page_zero_count, 1);
242 	} else {
243 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
244 	}
245 	++vpq->flipflop;
246 	++vpq->lcnt;
247 }
248 
249 /*
250  * (low level boot)
251  *
252  * Initializes the resident memory module.
253  *
254  * Preallocates memory for critical VM structures and arrays prior to
255  * kernel_map becoming available.
256  *
257  * Memory is allocated from (virtual2_start, virtual2_end) if available,
258  * otherwise memory is allocated from (virtual_start, virtual_end).
259  *
260  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
261  * large enough to hold vm_page_array & other structures for machines with
262  * large amounts of ram, so we want to use virtual2* when available.
263  */
264 void
265 vm_page_startup(void)
266 {
267 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
268 	vm_offset_t mapped;
269 	vm_size_t npages;
270 	vm_paddr_t page_range;
271 	vm_paddr_t new_end;
272 	int i;
273 	vm_paddr_t pa;
274 	int nblocks;
275 	vm_paddr_t last_pa;
276 	vm_paddr_t end;
277 	vm_paddr_t biggestone, biggestsize;
278 	vm_paddr_t total;
279 
280 	total = 0;
281 	biggestsize = 0;
282 	biggestone = 0;
283 	nblocks = 0;
284 	vaddr = round_page(vaddr);
285 
286 	for (i = 0; phys_avail[i + 1]; i += 2) {
287 		phys_avail[i] = round_page64(phys_avail[i]);
288 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
289 	}
290 
291 	for (i = 0; phys_avail[i + 1]; i += 2) {
292 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
293 
294 		if (size > biggestsize) {
295 			biggestone = i;
296 			biggestsize = size;
297 		}
298 		++nblocks;
299 		total += size;
300 	}
301 
302 	end = phys_avail[biggestone+1];
303 	end = trunc_page(end);
304 
305 	/*
306 	 * Initialize the queue headers for the free queue, the active queue
307 	 * and the inactive queue.
308 	 */
309 	vm_page_queue_init();
310 
311 #if !defined(_KERNEL_VIRTUAL)
312 	/*
313 	 * VKERNELs don't support minidumps and as such don't need
314 	 * vm_page_dump
315 	 *
316 	 * Allocate a bitmap to indicate that a random physical page
317 	 * needs to be included in a minidump.
318 	 *
319 	 * The amd64 port needs this to indicate which direct map pages
320 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
321 	 *
322 	 * However, i386 still needs this workspace internally within the
323 	 * minidump code.  In theory, they are not needed on i386, but are
324 	 * included should the sf_buf code decide to use them.
325 	 */
326 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
327 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
328 	end -= vm_page_dump_size;
329 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
330 	    VM_PROT_READ | VM_PROT_WRITE);
331 	bzero((void *)vm_page_dump, vm_page_dump_size);
332 #endif
333 	/*
334 	 * Compute the number of pages of memory that will be available for
335 	 * use (taking into account the overhead of a page structure per
336 	 * page).
337 	 */
338 	first_page = phys_avail[0] / PAGE_SIZE;
339 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
340 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
341 
342 #ifndef _KERNEL_VIRTUAL
343 	/*
344 	 * (only applies to real kernels)
345 	 *
346 	 * Initialize the contiguous reserve map.  We initially reserve up
347 	 * to 1/4 available physical memory or 65536 pages (~256MB), whichever
348 	 * is lower.
349 	 *
350 	 * Once device initialization is complete we return most of the
351 	 * reserved memory back to the normal page queues but leave some
352 	 * in reserve for things like usb attachments.
353 	 */
354 	vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT;
355 	if (vm_low_phys_reserved > total / 4)
356 		vm_low_phys_reserved = total / 4;
357 	if (vm_dma_reserved == 0) {
358 		vm_dma_reserved = 16 * 1024 * 1024;	/* 16MB */
359 		if (vm_dma_reserved > total / 16)
360 			vm_dma_reserved = total / 16;
361 	}
362 #endif
363 	alist_init(&vm_contig_alist, 65536, vm_contig_ameta,
364 		   ALIST_RECORDS_65536);
365 
366 	/*
367 	 * Initialize the mem entry structures now, and put them in the free
368 	 * queue.
369 	 */
370 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
371 	mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE);
372 	vm_page_array = (vm_page_t)mapped;
373 
374 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
375 	/*
376 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
377 	 * we have to manually add these pages to the minidump tracking so
378 	 * that they can be dumped, including the vm_page_array.
379 	 */
380 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
381 		dump_add_page(pa);
382 #endif
383 
384 	/*
385 	 * Clear all of the page structures
386 	 */
387 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
388 	vm_page_array_size = page_range;
389 
390 	/*
391 	 * Construct the free queue(s) in ascending order (by physical
392 	 * address) so that the first 16MB of physical memory is allocated
393 	 * last rather than first.  On large-memory machines, this avoids
394 	 * the exhaustion of low physical memory before isa_dmainit has run.
395 	 */
396 	vmstats.v_page_count = 0;
397 	vmstats.v_free_count = 0;
398 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
399 		pa = phys_avail[i];
400 		if (i == biggestone)
401 			last_pa = new_end;
402 		else
403 			last_pa = phys_avail[i + 1];
404 		while (pa < last_pa && npages-- > 0) {
405 			vm_add_new_page(pa);
406 			pa += PAGE_SIZE;
407 		}
408 	}
409 	if (virtual2_start)
410 		virtual2_start = vaddr;
411 	else
412 		virtual_start = vaddr;
413 }
414 
415 /*
416  * We tended to reserve a ton of memory for contigmalloc().  Now that most
417  * drivers have initialized we want to return most the remaining free
418  * reserve back to the VM page queues so they can be used for normal
419  * allocations.
420  *
421  * We leave vm_dma_reserved bytes worth of free pages in the reserve pool.
422  */
423 static void
424 vm_page_startup_finish(void *dummy __unused)
425 {
426 	alist_blk_t blk;
427 	alist_blk_t rblk;
428 	alist_blk_t count;
429 	alist_blk_t xcount;
430 	alist_blk_t bfree;
431 	vm_page_t m;
432 
433 	spin_lock(&vm_contig_spin);
434 	for (;;) {
435 		bfree = alist_free_info(&vm_contig_alist, &blk, &count);
436 		if (bfree <= vm_dma_reserved / PAGE_SIZE)
437 			break;
438 		if (count == 0)
439 			break;
440 
441 		/*
442 		 * Figure out how much of the initial reserve we have to
443 		 * free in order to reach our target.
444 		 */
445 		bfree -= vm_dma_reserved / PAGE_SIZE;
446 		if (count > bfree) {
447 			blk += count - bfree;
448 			count = bfree;
449 		}
450 
451 		/*
452 		 * Calculate the nearest power of 2 <= count.
453 		 */
454 		for (xcount = 1; xcount <= count; xcount <<= 1)
455 			;
456 		xcount >>= 1;
457 		blk += count - xcount;
458 		count = xcount;
459 
460 		/*
461 		 * Allocate the pages from the alist, then free them to
462 		 * the normal VM page queues.
463 		 *
464 		 * Pages allocated from the alist are wired.  We have to
465 		 * busy, unwire, and free them.  We must also adjust
466 		 * vm_low_phys_reserved before freeing any pages to prevent
467 		 * confusion.
468 		 */
469 		rblk = alist_alloc(&vm_contig_alist, blk, count);
470 		if (rblk != blk) {
471 			kprintf("vm_page_startup_finish: Unable to return "
472 				"dma space @0x%08x/%d -> 0x%08x\n",
473 				blk, count, rblk);
474 			break;
475 		}
476 		atomic_add_int(&vmstats.v_dma_pages, -count);
477 		spin_unlock(&vm_contig_spin);
478 
479 		m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT);
480 		vm_low_phys_reserved = VM_PAGE_TO_PHYS(m);
481 		while (count) {
482 			vm_page_busy_wait(m, FALSE, "cpgfr");
483 			vm_page_unwire(m, 0);
484 			vm_page_free(m);
485 			--count;
486 			++m;
487 		}
488 		spin_lock(&vm_contig_spin);
489 	}
490 	spin_unlock(&vm_contig_spin);
491 
492 	/*
493 	 * Print out how much DMA space drivers have already allocated and
494 	 * how much is left over.
495 	 */
496 	kprintf("DMA space used: %jdk, remaining available: %jdk\n",
497 		(intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) *
498 		(PAGE_SIZE / 1024),
499 		(intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024));
500 }
501 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY,
502 	vm_page_startup_finish, NULL)
503 
504 
505 /*
506  * Scan comparison function for Red-Black tree scans.  An inclusive
507  * (start,end) is expected.  Other fields are not used.
508  */
509 int
510 rb_vm_page_scancmp(struct vm_page *p, void *data)
511 {
512 	struct rb_vm_page_scan_info *info = data;
513 
514 	if (p->pindex < info->start_pindex)
515 		return(-1);
516 	if (p->pindex > info->end_pindex)
517 		return(1);
518 	return(0);
519 }
520 
521 int
522 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
523 {
524 	if (p1->pindex < p2->pindex)
525 		return(-1);
526 	if (p1->pindex > p2->pindex)
527 		return(1);
528 	return(0);
529 }
530 
531 void
532 vm_page_init(vm_page_t m)
533 {
534 	/* do nothing for now.  Called from pmap_page_init() */
535 }
536 
537 /*
538  * Each page queue has its own spin lock, which is fairly optimal for
539  * allocating and freeing pages at least.
540  *
541  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
542  * queue spinlock via this function.  Also note that m->queue cannot change
543  * unless both the page and queue are locked.
544  */
545 static __inline
546 void
547 _vm_page_queue_spin_lock(vm_page_t m)
548 {
549 	u_short queue;
550 
551 	queue = m->queue;
552 	if (queue != PQ_NONE) {
553 		spin_lock(&vm_page_queues[queue].spin);
554 		KKASSERT(queue == m->queue);
555 	}
556 }
557 
558 static __inline
559 void
560 _vm_page_queue_spin_unlock(vm_page_t m)
561 {
562 	u_short queue;
563 
564 	queue = m->queue;
565 	cpu_ccfence();
566 	if (queue != PQ_NONE)
567 		spin_unlock(&vm_page_queues[queue].spin);
568 }
569 
570 static __inline
571 void
572 _vm_page_queues_spin_lock(u_short queue)
573 {
574 	cpu_ccfence();
575 	if (queue != PQ_NONE)
576 		spin_lock(&vm_page_queues[queue].spin);
577 }
578 
579 
580 static __inline
581 void
582 _vm_page_queues_spin_unlock(u_short queue)
583 {
584 	cpu_ccfence();
585 	if (queue != PQ_NONE)
586 		spin_unlock(&vm_page_queues[queue].spin);
587 }
588 
589 void
590 vm_page_queue_spin_lock(vm_page_t m)
591 {
592 	_vm_page_queue_spin_lock(m);
593 }
594 
595 void
596 vm_page_queues_spin_lock(u_short queue)
597 {
598 	_vm_page_queues_spin_lock(queue);
599 }
600 
601 void
602 vm_page_queue_spin_unlock(vm_page_t m)
603 {
604 	_vm_page_queue_spin_unlock(m);
605 }
606 
607 void
608 vm_page_queues_spin_unlock(u_short queue)
609 {
610 	_vm_page_queues_spin_unlock(queue);
611 }
612 
613 /*
614  * This locks the specified vm_page and its queue in the proper order
615  * (page first, then queue).  The queue may change so the caller must
616  * recheck on return.
617  */
618 static __inline
619 void
620 _vm_page_and_queue_spin_lock(vm_page_t m)
621 {
622 	vm_page_spin_lock(m);
623 	_vm_page_queue_spin_lock(m);
624 }
625 
626 static __inline
627 void
628 _vm_page_and_queue_spin_unlock(vm_page_t m)
629 {
630 	_vm_page_queues_spin_unlock(m->queue);
631 	vm_page_spin_unlock(m);
632 }
633 
634 void
635 vm_page_and_queue_spin_unlock(vm_page_t m)
636 {
637 	_vm_page_and_queue_spin_unlock(m);
638 }
639 
640 void
641 vm_page_and_queue_spin_lock(vm_page_t m)
642 {
643 	_vm_page_and_queue_spin_lock(m);
644 }
645 
646 /*
647  * Helper function removes vm_page from its current queue.
648  * Returns the base queue the page used to be on.
649  *
650  * The vm_page and the queue must be spinlocked.
651  * This function will unlock the queue but leave the page spinlocked.
652  */
653 static __inline u_short
654 _vm_page_rem_queue_spinlocked(vm_page_t m)
655 {
656 	struct vpgqueues *pq;
657 	u_short queue;
658 
659 	queue = m->queue;
660 	if (queue != PQ_NONE) {
661 		pq = &vm_page_queues[queue];
662 		TAILQ_REMOVE(&pq->pl, m, pageq);
663 		atomic_add_int(pq->cnt, -1);
664 		pq->lcnt--;
665 		m->queue = PQ_NONE;
666 		vm_page_queues_spin_unlock(queue);
667 		if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO))
668 			atomic_subtract_int(&vm_page_zero_count, 1);
669 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
670 			return (queue - m->pc);
671 	}
672 	return queue;
673 }
674 
675 /*
676  * Helper function places the vm_page on the specified queue.
677  *
678  * The vm_page must be spinlocked.
679  * This function will return with both the page and the queue locked.
680  */
681 static __inline void
682 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
683 {
684 	struct vpgqueues *pq;
685 
686 	KKASSERT(m->queue == PQ_NONE);
687 
688 	if (queue != PQ_NONE) {
689 		vm_page_queues_spin_lock(queue);
690 		pq = &vm_page_queues[queue];
691 		++pq->lcnt;
692 		atomic_add_int(pq->cnt, 1);
693 		m->queue = queue;
694 
695 		/*
696 		 * Put zero'd pages on the end ( where we look for zero'd pages
697 		 * first ) and non-zerod pages at the head.
698 		 */
699 		if (queue - m->pc == PQ_FREE) {
700 			if (m->flags & PG_ZERO) {
701 				TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
702 				atomic_add_int(&vm_page_zero_count, 1);
703 			} else {
704 				TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
705 			}
706 		} else if (athead) {
707 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
708 		} else {
709 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
710 		}
711 		/* leave the queue spinlocked */
712 	}
713 }
714 
715 /*
716  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
717  * m->busy is zero.  Returns TRUE if it had to sleep, FALSE if we
718  * did not.  Only one sleep call will be made before returning.
719  *
720  * This function does NOT busy the page and on return the page is not
721  * guaranteed to be available.
722  */
723 void
724 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
725 {
726 	u_int32_t flags;
727 
728 	for (;;) {
729 		flags = m->flags;
730 		cpu_ccfence();
731 
732 		if ((flags & PG_BUSY) == 0 &&
733 		    (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
734 			break;
735 		}
736 		tsleep_interlock(m, 0);
737 		if (atomic_cmpset_int(&m->flags, flags,
738 				      flags | PG_WANTED | PG_REFERENCED)) {
739 			tsleep(m, PINTERLOCKED, msg, 0);
740 			break;
741 		}
742 	}
743 }
744 
745 /*
746  * Wait until PG_BUSY can be set, then set it.  If also_m_busy is TRUE we
747  * also wait for m->busy to become 0 before setting PG_BUSY.
748  */
749 void
750 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
751 				     int also_m_busy, const char *msg
752 				     VM_PAGE_DEBUG_ARGS)
753 {
754 	u_int32_t flags;
755 
756 	for (;;) {
757 		flags = m->flags;
758 		cpu_ccfence();
759 		if (flags & PG_BUSY) {
760 			tsleep_interlock(m, 0);
761 			if (atomic_cmpset_int(&m->flags, flags,
762 					  flags | PG_WANTED | PG_REFERENCED)) {
763 				tsleep(m, PINTERLOCKED, msg, 0);
764 			}
765 		} else if (also_m_busy && (flags & PG_SBUSY)) {
766 			tsleep_interlock(m, 0);
767 			if (atomic_cmpset_int(&m->flags, flags,
768 					  flags | PG_WANTED | PG_REFERENCED)) {
769 				tsleep(m, PINTERLOCKED, msg, 0);
770 			}
771 		} else {
772 			if (atomic_cmpset_int(&m->flags, flags,
773 					      flags | PG_BUSY)) {
774 #ifdef VM_PAGE_DEBUG
775 				m->busy_func = func;
776 				m->busy_line = lineno;
777 #endif
778 				break;
779 			}
780 		}
781 	}
782 }
783 
784 /*
785  * Attempt to set PG_BUSY.  If also_m_busy is TRUE we only succeed if m->busy
786  * is also 0.
787  *
788  * Returns non-zero on failure.
789  */
790 int
791 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
792 				    VM_PAGE_DEBUG_ARGS)
793 {
794 	u_int32_t flags;
795 
796 	for (;;) {
797 		flags = m->flags;
798 		cpu_ccfence();
799 		if (flags & PG_BUSY)
800 			return TRUE;
801 		if (also_m_busy && (flags & PG_SBUSY))
802 			return TRUE;
803 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
804 #ifdef VM_PAGE_DEBUG
805 				m->busy_func = func;
806 				m->busy_line = lineno;
807 #endif
808 			return FALSE;
809 		}
810 	}
811 }
812 
813 /*
814  * Clear the PG_BUSY flag and return non-zero to indicate to the caller
815  * that a wakeup() should be performed.
816  *
817  * The vm_page must be spinlocked and will remain spinlocked on return.
818  * The related queue must NOT be spinlocked (which could deadlock us).
819  *
820  * (inline version)
821  */
822 static __inline
823 int
824 _vm_page_wakeup(vm_page_t m)
825 {
826 	u_int32_t flags;
827 
828 	for (;;) {
829 		flags = m->flags;
830 		cpu_ccfence();
831 		if (atomic_cmpset_int(&m->flags, flags,
832 				      flags & ~(PG_BUSY | PG_WANTED))) {
833 			break;
834 		}
835 	}
836 	return(flags & PG_WANTED);
837 }
838 
839 /*
840  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
841  * is typically the last call you make on a page before moving onto
842  * other things.
843  */
844 void
845 vm_page_wakeup(vm_page_t m)
846 {
847         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
848 	vm_page_spin_lock(m);
849 	if (_vm_page_wakeup(m)) {
850 		vm_page_spin_unlock(m);
851 		wakeup(m);
852 	} else {
853 		vm_page_spin_unlock(m);
854 	}
855 }
856 
857 /*
858  * Holding a page keeps it from being reused.  Other parts of the system
859  * can still disassociate the page from its current object and free it, or
860  * perform read or write I/O on it and/or otherwise manipulate the page,
861  * but if the page is held the VM system will leave the page and its data
862  * intact and not reuse the page for other purposes until the last hold
863  * reference is released.  (see vm_page_wire() if you want to prevent the
864  * page from being disassociated from its object too).
865  *
866  * The caller must still validate the contents of the page and, if necessary,
867  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
868  * before manipulating the page.
869  *
870  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
871  */
872 void
873 vm_page_hold(vm_page_t m)
874 {
875 	vm_page_spin_lock(m);
876 	atomic_add_int(&m->hold_count, 1);
877 	if (m->queue - m->pc == PQ_FREE) {
878 		_vm_page_queue_spin_lock(m);
879 		_vm_page_rem_queue_spinlocked(m);
880 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
881 		_vm_page_queue_spin_unlock(m);
882 	}
883 	vm_page_spin_unlock(m);
884 }
885 
886 /*
887  * The opposite of vm_page_hold().  A page can be freed while being held,
888  * which places it on the PQ_HOLD queue.  If we are able to busy the page
889  * after the hold count drops to zero we will move the page to the
890  * appropriate PQ_FREE queue by calling vm_page_free_toq().
891  */
892 void
893 vm_page_unhold(vm_page_t m)
894 {
895 	vm_page_spin_lock(m);
896 	atomic_add_int(&m->hold_count, -1);
897 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
898 		_vm_page_queue_spin_lock(m);
899 		_vm_page_rem_queue_spinlocked(m);
900 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
901 		_vm_page_queue_spin_unlock(m);
902 	}
903 	vm_page_spin_unlock(m);
904 }
905 
906 /*
907  * Inserts the given vm_page into the object and object list.
908  *
909  * The pagetables are not updated but will presumably fault the page
910  * in if necessary, or if a kernel page the caller will at some point
911  * enter the page into the kernel's pmap.  We are not allowed to block
912  * here so we *can't* do this anyway.
913  *
914  * This routine may not block.
915  * This routine must be called with the vm_object held.
916  * This routine must be called with a critical section held.
917  *
918  * This routine returns TRUE if the page was inserted into the object
919  * successfully, and FALSE if the page already exists in the object.
920  */
921 int
922 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
923 {
924 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object));
925 	if (m->object != NULL)
926 		panic("vm_page_insert: already inserted");
927 
928 	object->generation++;
929 
930 	/*
931 	 * Record the object/offset pair in this page and add the
932 	 * pv_list_count of the page to the object.
933 	 *
934 	 * The vm_page spin lock is required for interactions with the pmap.
935 	 */
936 	vm_page_spin_lock(m);
937 	m->object = object;
938 	m->pindex = pindex;
939 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
940 		m->object = NULL;
941 		m->pindex = 0;
942 		vm_page_spin_unlock(m);
943 		return FALSE;
944 	}
945 	object->resident_page_count++;
946 	/* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
947 	vm_page_spin_unlock(m);
948 
949 	/*
950 	 * Since we are inserting a new and possibly dirty page,
951 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
952 	 */
953 	if ((m->valid & m->dirty) ||
954 	    (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT)))
955 		vm_object_set_writeable_dirty(object);
956 
957 	/*
958 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
959 	 */
960 	swap_pager_page_inserted(m);
961 	return TRUE;
962 }
963 
964 /*
965  * Removes the given vm_page_t from the (object,index) table
966  *
967  * The underlying pmap entry (if any) is NOT removed here.
968  * This routine may not block.
969  *
970  * The page must be BUSY and will remain BUSY on return.
971  * No other requirements.
972  *
973  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
974  *	 it busy.
975  */
976 void
977 vm_page_remove(vm_page_t m)
978 {
979 	vm_object_t object;
980 
981 	if (m->object == NULL) {
982 		return;
983 	}
984 
985 	if ((m->flags & PG_BUSY) == 0)
986 		panic("vm_page_remove: page not busy");
987 
988 	object = m->object;
989 
990 	vm_object_hold(object);
991 
992 	/*
993 	 * Remove the page from the object and update the object.
994 	 *
995 	 * The vm_page spin lock is required for interactions with the pmap.
996 	 */
997 	vm_page_spin_lock(m);
998 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
999 	object->resident_page_count--;
1000 	/* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
1001 	m->object = NULL;
1002 	vm_page_spin_unlock(m);
1003 
1004 	object->generation++;
1005 
1006 	vm_object_drop(object);
1007 }
1008 
1009 /*
1010  * Locate and return the page at (object, pindex), or NULL if the
1011  * page could not be found.
1012  *
1013  * The caller must hold the vm_object token.
1014  */
1015 vm_page_t
1016 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
1017 {
1018 	vm_page_t m;
1019 
1020 	/*
1021 	 * Search the hash table for this object/offset pair
1022 	 */
1023 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1024 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1025 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
1026 	return(m);
1027 }
1028 
1029 vm_page_t
1030 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
1031 					    vm_pindex_t pindex,
1032 					    int also_m_busy, const char *msg
1033 					    VM_PAGE_DEBUG_ARGS)
1034 {
1035 	u_int32_t flags;
1036 	vm_page_t m;
1037 
1038 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1039 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1040 	while (m) {
1041 		KKASSERT(m->object == object && m->pindex == pindex);
1042 		flags = m->flags;
1043 		cpu_ccfence();
1044 		if (flags & PG_BUSY) {
1045 			tsleep_interlock(m, 0);
1046 			if (atomic_cmpset_int(&m->flags, flags,
1047 					  flags | PG_WANTED | PG_REFERENCED)) {
1048 				tsleep(m, PINTERLOCKED, msg, 0);
1049 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1050 							      pindex);
1051 			}
1052 		} else if (also_m_busy && (flags & PG_SBUSY)) {
1053 			tsleep_interlock(m, 0);
1054 			if (atomic_cmpset_int(&m->flags, flags,
1055 					  flags | PG_WANTED | PG_REFERENCED)) {
1056 				tsleep(m, PINTERLOCKED, msg, 0);
1057 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
1058 							      pindex);
1059 			}
1060 		} else if (atomic_cmpset_int(&m->flags, flags,
1061 					     flags | PG_BUSY)) {
1062 #ifdef VM_PAGE_DEBUG
1063 			m->busy_func = func;
1064 			m->busy_line = lineno;
1065 #endif
1066 			break;
1067 		}
1068 	}
1069 	return m;
1070 }
1071 
1072 /*
1073  * Attempt to lookup and busy a page.
1074  *
1075  * Returns NULL if the page could not be found
1076  *
1077  * Returns a vm_page and error == TRUE if the page exists but could not
1078  * be busied.
1079  *
1080  * Returns a vm_page and error == FALSE on success.
1081  */
1082 vm_page_t
1083 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
1084 					   vm_pindex_t pindex,
1085 					   int also_m_busy, int *errorp
1086 					   VM_PAGE_DEBUG_ARGS)
1087 {
1088 	u_int32_t flags;
1089 	vm_page_t m;
1090 
1091 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
1092 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
1093 	*errorp = FALSE;
1094 	while (m) {
1095 		KKASSERT(m->object == object && m->pindex == pindex);
1096 		flags = m->flags;
1097 		cpu_ccfence();
1098 		if (flags & PG_BUSY) {
1099 			*errorp = TRUE;
1100 			break;
1101 		}
1102 		if (also_m_busy && (flags & PG_SBUSY)) {
1103 			*errorp = TRUE;
1104 			break;
1105 		}
1106 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
1107 #ifdef VM_PAGE_DEBUG
1108 			m->busy_func = func;
1109 			m->busy_line = lineno;
1110 #endif
1111 			break;
1112 		}
1113 	}
1114 	return m;
1115 }
1116 
1117 /*
1118  * Caller must hold the related vm_object
1119  */
1120 vm_page_t
1121 vm_page_next(vm_page_t m)
1122 {
1123 	vm_page_t next;
1124 
1125 	next = vm_page_rb_tree_RB_NEXT(m);
1126 	if (next && next->pindex != m->pindex + 1)
1127 		next = NULL;
1128 	return (next);
1129 }
1130 
1131 /*
1132  * vm_page_rename()
1133  *
1134  * Move the given vm_page from its current object to the specified
1135  * target object/offset.  The page must be busy and will remain so
1136  * on return.
1137  *
1138  * new_object must be held.
1139  * This routine might block. XXX ?
1140  *
1141  * NOTE: Swap associated with the page must be invalidated by the move.  We
1142  *       have to do this for several reasons:  (1) we aren't freeing the
1143  *       page, (2) we are dirtying the page, (3) the VM system is probably
1144  *       moving the page from object A to B, and will then later move
1145  *       the backing store from A to B and we can't have a conflict.
1146  *
1147  * NOTE: We *always* dirty the page.  It is necessary both for the
1148  *       fact that we moved it, and because we may be invalidating
1149  *	 swap.  If the page is on the cache, we have to deactivate it
1150  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1151  *	 on the cache.
1152  */
1153 void
1154 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1155 {
1156 	KKASSERT(m->flags & PG_BUSY);
1157 	ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object));
1158 	if (m->object) {
1159 		ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object));
1160 		vm_page_remove(m);
1161 	}
1162 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1163 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1164 		      new_object, new_pindex);
1165 	}
1166 	if (m->queue - m->pc == PQ_CACHE)
1167 		vm_page_deactivate(m);
1168 	vm_page_dirty(m);
1169 }
1170 
1171 /*
1172  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1173  * is being moved between queues or otherwise is to remain BUSYied by the
1174  * caller.
1175  *
1176  * This routine may not block.
1177  */
1178 void
1179 vm_page_unqueue_nowakeup(vm_page_t m)
1180 {
1181 	vm_page_and_queue_spin_lock(m);
1182 	(void)_vm_page_rem_queue_spinlocked(m);
1183 	vm_page_spin_unlock(m);
1184 }
1185 
1186 /*
1187  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1188  * if necessary.
1189  *
1190  * This routine may not block.
1191  */
1192 void
1193 vm_page_unqueue(vm_page_t m)
1194 {
1195 	u_short queue;
1196 
1197 	vm_page_and_queue_spin_lock(m);
1198 	queue = _vm_page_rem_queue_spinlocked(m);
1199 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1200 		vm_page_spin_unlock(m);
1201 		pagedaemon_wakeup();
1202 	} else {
1203 		vm_page_spin_unlock(m);
1204 	}
1205 }
1206 
1207 /*
1208  * vm_page_list_find()
1209  *
1210  * Find a page on the specified queue with color optimization.
1211  *
1212  * The page coloring optimization attempts to locate a page that does
1213  * not overload other nearby pages in the object in the cpu's L1 or L2
1214  * caches.  We need this optimization because cpu caches tend to be
1215  * physical caches, while object spaces tend to be virtual.
1216  *
1217  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1218  * and the algorithm is adjusted to localize allocations on a per-core basis.
1219  * This is done by 'twisting' the colors.
1220  *
1221  * The page is returned spinlocked and removed from its queue (it will
1222  * be on PQ_NONE), or NULL. The page is not PG_BUSY'd.  The caller
1223  * is responsible for dealing with the busy-page case (usually by
1224  * deactivating the page and looping).
1225  *
1226  * NOTE:  This routine is carefully inlined.  A non-inlined version
1227  *	  is available for outside callers but the only critical path is
1228  *	  from within this source file.
1229  *
1230  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1231  *	  represent stable storage, allowing us to order our locks vm_page
1232  *	  first, then queue.
1233  */
1234 static __inline
1235 vm_page_t
1236 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1237 {
1238 	vm_page_t m;
1239 
1240 	for (;;) {
1241 		if (prefer_zero)
1242 			m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
1243 		else
1244 			m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1245 		if (m == NULL) {
1246 			m = _vm_page_list_find2(basequeue, index);
1247 			return(m);
1248 		}
1249 		vm_page_and_queue_spin_lock(m);
1250 		if (m->queue == basequeue + index) {
1251 			_vm_page_rem_queue_spinlocked(m);
1252 			/* vm_page_t spin held, no queue spin */
1253 			break;
1254 		}
1255 		vm_page_and_queue_spin_unlock(m);
1256 	}
1257 	return(m);
1258 }
1259 
1260 static vm_page_t
1261 _vm_page_list_find2(int basequeue, int index)
1262 {
1263 	int i;
1264 	vm_page_t m = NULL;
1265 	struct vpgqueues *pq;
1266 
1267 	pq = &vm_page_queues[basequeue];
1268 
1269 	/*
1270 	 * Note that for the first loop, index+i and index-i wind up at the
1271 	 * same place.  Even though this is not totally optimal, we've already
1272 	 * blown it by missing the cache case so we do not care.
1273 	 */
1274 	for (i = PQ_L2_SIZE / 2; i > 0; --i) {
1275 		for (;;) {
1276 			m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl);
1277 			if (m) {
1278 				_vm_page_and_queue_spin_lock(m);
1279 				if (m->queue ==
1280 				    basequeue + ((index + i) & PQ_L2_MASK)) {
1281 					_vm_page_rem_queue_spinlocked(m);
1282 					return(m);
1283 				}
1284 				_vm_page_and_queue_spin_unlock(m);
1285 				continue;
1286 			}
1287 			m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl);
1288 			if (m) {
1289 				_vm_page_and_queue_spin_lock(m);
1290 				if (m->queue ==
1291 				    basequeue + ((index - i) & PQ_L2_MASK)) {
1292 					_vm_page_rem_queue_spinlocked(m);
1293 					return(m);
1294 				}
1295 				_vm_page_and_queue_spin_unlock(m);
1296 				continue;
1297 			}
1298 			break;	/* next i */
1299 		}
1300 	}
1301 	return(m);
1302 }
1303 
1304 /*
1305  * Returns a vm_page candidate for allocation.  The page is not busied so
1306  * it can move around.  The caller must busy the page (and typically
1307  * deactivate it if it cannot be busied!)
1308  *
1309  * Returns a spinlocked vm_page that has been removed from its queue.
1310  */
1311 vm_page_t
1312 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1313 {
1314 	return(_vm_page_list_find(basequeue, index, prefer_zero));
1315 }
1316 
1317 /*
1318  * Find a page on the cache queue with color optimization, remove it
1319  * from the queue, and busy it.  The returned page will not be spinlocked.
1320  *
1321  * A candidate failure will be deactivated.  Candidates can fail due to
1322  * being busied by someone else, in which case they will be deactivated.
1323  *
1324  * This routine may not block.
1325  *
1326  */
1327 static vm_page_t
1328 vm_page_select_cache(u_short pg_color)
1329 {
1330 	vm_page_t m;
1331 
1332 	for (;;) {
1333 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1334 		if (m == NULL)
1335 			break;
1336 		/*
1337 		 * (m) has been removed from its queue and spinlocked
1338 		 */
1339 		if (vm_page_busy_try(m, TRUE)) {
1340 			_vm_page_deactivate_locked(m, 0);
1341 			vm_page_spin_unlock(m);
1342 		} else {
1343 			/*
1344 			 * We successfully busied the page
1345 			 */
1346 			if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 &&
1347 			    m->hold_count == 0 &&
1348 			    m->wire_count == 0 &&
1349 			    (m->dirty & m->valid) == 0) {
1350 				vm_page_spin_unlock(m);
1351 				pagedaemon_wakeup();
1352 				return(m);
1353 			}
1354 
1355 			/*
1356 			 * The page cannot be recycled, deactivate it.
1357 			 */
1358 			_vm_page_deactivate_locked(m, 0);
1359 			if (_vm_page_wakeup(m)) {
1360 				vm_page_spin_unlock(m);
1361 				wakeup(m);
1362 			} else {
1363 				vm_page_spin_unlock(m);
1364 			}
1365 		}
1366 	}
1367 	return (m);
1368 }
1369 
1370 /*
1371  * Find a free or zero page, with specified preference.  We attempt to
1372  * inline the nominal case and fall back to _vm_page_select_free()
1373  * otherwise.  A busied page is removed from the queue and returned.
1374  *
1375  * This routine may not block.
1376  */
1377 static __inline vm_page_t
1378 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1379 {
1380 	vm_page_t m;
1381 
1382 	for (;;) {
1383 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1384 				       prefer_zero);
1385 		if (m == NULL)
1386 			break;
1387 		if (vm_page_busy_try(m, TRUE)) {
1388 			/*
1389 			 * Various mechanisms such as a pmap_collect can
1390 			 * result in a busy page on the free queue.  We
1391 			 * have to move the page out of the way so we can
1392 			 * retry the allocation.  If the other thread is not
1393 			 * allocating the page then m->valid will remain 0 and
1394 			 * the pageout daemon will free the page later on.
1395 			 *
1396 			 * Since we could not busy the page, however, we
1397 			 * cannot make assumptions as to whether the page
1398 			 * will be allocated by the other thread or not,
1399 			 * so all we can do is deactivate it to move it out
1400 			 * of the way.  In particular, if the other thread
1401 			 * wires the page it may wind up on the inactive
1402 			 * queue and the pageout daemon will have to deal
1403 			 * with that case too.
1404 			 */
1405 			_vm_page_deactivate_locked(m, 0);
1406 			vm_page_spin_unlock(m);
1407 		} else {
1408 			/*
1409 			 * Theoretically if we are able to busy the page
1410 			 * atomic with the queue removal (using the vm_page
1411 			 * lock) nobody else should be able to mess with the
1412 			 * page before us.
1413 			 */
1414 			KKASSERT((m->flags & (PG_UNMANAGED |
1415 					      PG_NEED_COMMIT)) == 0);
1416 			KKASSERT(m->hold_count == 0);
1417 			KKASSERT(m->wire_count == 0);
1418 			vm_page_spin_unlock(m);
1419 			pagedaemon_wakeup();
1420 
1421 			/* return busied and removed page */
1422 			return(m);
1423 		}
1424 	}
1425 	return(m);
1426 }
1427 
1428 /*
1429  * This implements a per-cpu cache of free, zero'd, ready-to-go pages.
1430  * The idea is to populate this cache prior to acquiring any locks so
1431  * we don't wind up potentially zeroing VM pages (under heavy loads) while
1432  * holding potentialy contending locks.
1433  *
1434  * Note that we allocate the page uninserted into anything and use a pindex
1435  * of 0, the vm_page_alloc() will effectively add gd_cpuid so these
1436  * allocations should wind up being uncontended.  However, we still want
1437  * to rove across PQ_L2_SIZE.
1438  */
1439 void
1440 vm_page_pcpu_cache(void)
1441 {
1442 #if 0
1443 	globaldata_t gd = mycpu;
1444 	vm_page_t m;
1445 
1446 	if (gd->gd_vmpg_count < GD_MINVMPG) {
1447 		crit_enter_gd(gd);
1448 		while (gd->gd_vmpg_count < GD_MAXVMPG) {
1449 			m = vm_page_alloc(NULL, ticks & ~ncpus2_mask,
1450 					  VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1451 					  VM_ALLOC_NULL_OK | VM_ALLOC_ZERO);
1452 			if (gd->gd_vmpg_count < GD_MAXVMPG) {
1453 				if ((m->flags & PG_ZERO) == 0) {
1454 					pmap_zero_page(VM_PAGE_TO_PHYS(m));
1455 					vm_page_flag_set(m, PG_ZERO);
1456 				}
1457 				gd->gd_vmpg_array[gd->gd_vmpg_count++] = m;
1458 			} else {
1459 				vm_page_free(m);
1460 			}
1461 		}
1462 		crit_exit_gd(gd);
1463 	}
1464 #endif
1465 }
1466 
1467 /*
1468  * vm_page_alloc()
1469  *
1470  * Allocate and return a memory cell associated with this VM object/offset
1471  * pair.  If object is NULL an unassociated page will be allocated.
1472  *
1473  * The returned page will be busied and removed from its queues.  This
1474  * routine can block and may return NULL if a race occurs and the page
1475  * is found to already exist at the specified (object, pindex).
1476  *
1477  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1478  *	VM_ALLOC_QUICK		like normal but cannot use cache
1479  *	VM_ALLOC_SYSTEM		greater free drain
1480  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1481  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1482  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1483  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1484  *				(see vm_page_grab())
1485  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1486  *
1487  * The object must be held if not NULL
1488  * This routine may not block
1489  *
1490  * Additional special handling is required when called from an interrupt
1491  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1492  * in this case.
1493  */
1494 vm_page_t
1495 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1496 {
1497 	globaldata_t gd = mycpu;
1498 	vm_object_t obj;
1499 	vm_page_t m;
1500 	u_short pg_color;
1501 
1502 #if 0
1503 	/*
1504 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1505 	 * and pre-zerod for us.
1506 	 */
1507 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1508 		crit_enter_gd(gd);
1509 		if (gd->gd_vmpg_count) {
1510 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1511 			crit_exit_gd(gd);
1512 			goto done;
1513                 }
1514 		crit_exit_gd(gd);
1515         }
1516 #endif
1517 	m = NULL;
1518 
1519 	/*
1520 	 * Cpu twist - cpu localization algorithm
1521 	 */
1522 	if (object) {
1523 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) +
1524 			   (object->pg_color & ~ncpus_fit_mask);
1525 	} else {
1526 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask);
1527 	}
1528 	KKASSERT(page_req &
1529 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1530 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1531 
1532 	/*
1533 	 * Certain system threads (pageout daemon, buf_daemon's) are
1534 	 * allowed to eat deeper into the free page list.
1535 	 */
1536 	if (curthread->td_flags & TDF_SYSTHREAD)
1537 		page_req |= VM_ALLOC_SYSTEM;
1538 
1539 loop:
1540 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
1541 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1542 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1543 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
1544 	) {
1545 		/*
1546 		 * The free queue has sufficient free pages to take one out.
1547 		 */
1548 		if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1549 			m = vm_page_select_free(pg_color, TRUE);
1550 		else
1551 			m = vm_page_select_free(pg_color, FALSE);
1552 	} else if (page_req & VM_ALLOC_NORMAL) {
1553 		/*
1554 		 * Allocatable from the cache (non-interrupt only).  On
1555 		 * success, we must free the page and try again, thus
1556 		 * ensuring that vmstats.v_*_free_min counters are replenished.
1557 		 */
1558 #ifdef INVARIANTS
1559 		if (curthread->td_preempted) {
1560 			kprintf("vm_page_alloc(): warning, attempt to allocate"
1561 				" cache page from preempting interrupt\n");
1562 			m = NULL;
1563 		} else {
1564 			m = vm_page_select_cache(pg_color);
1565 		}
1566 #else
1567 		m = vm_page_select_cache(pg_color);
1568 #endif
1569 		/*
1570 		 * On success move the page into the free queue and loop.
1571 		 *
1572 		 * Only do this if we can safely acquire the vm_object lock,
1573 		 * because this is effectively a random page and the caller
1574 		 * might be holding the lock shared, we don't want to
1575 		 * deadlock.
1576 		 */
1577 		if (m != NULL) {
1578 			KASSERT(m->dirty == 0,
1579 				("Found dirty cache page %p", m));
1580 			if ((obj = m->object) != NULL) {
1581 				if (vm_object_hold_try(obj)) {
1582 					vm_page_protect(m, VM_PROT_NONE);
1583 					vm_page_free(m);
1584 					/* m->object NULL here */
1585 					vm_object_drop(obj);
1586 				} else {
1587 					vm_page_deactivate(m);
1588 					vm_page_wakeup(m);
1589 				}
1590 			} else {
1591 				vm_page_protect(m, VM_PROT_NONE);
1592 				vm_page_free(m);
1593 			}
1594 			goto loop;
1595 		}
1596 
1597 		/*
1598 		 * On failure return NULL
1599 		 */
1600 #if defined(DIAGNOSTIC)
1601 		if (vmstats.v_cache_count > 0)
1602 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1603 #endif
1604 		vm_pageout_deficit++;
1605 		pagedaemon_wakeup();
1606 		return (NULL);
1607 	} else {
1608 		/*
1609 		 * No pages available, wakeup the pageout daemon and give up.
1610 		 */
1611 		vm_pageout_deficit++;
1612 		pagedaemon_wakeup();
1613 		return (NULL);
1614 	}
1615 
1616 	/*
1617 	 * v_free_count can race so loop if we don't find the expected
1618 	 * page.
1619 	 */
1620 	if (m == NULL)
1621 		goto loop;
1622 
1623 	/*
1624 	 * Good page found.  The page has already been busied for us and
1625 	 * removed from its queues.
1626 	 */
1627 	KASSERT(m->dirty == 0,
1628 		("vm_page_alloc: free/cache page %p was dirty", m));
1629 	KKASSERT(m->queue == PQ_NONE);
1630 
1631 #if 0
1632 done:
1633 #endif
1634 	/*
1635 	 * Initialize the structure, inheriting some flags but clearing
1636 	 * all the rest.  The page has already been busied for us.
1637 	 */
1638 	vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY));
1639 	KKASSERT(m->wire_count == 0);
1640 	KKASSERT(m->busy == 0);
1641 	m->act_count = 0;
1642 	m->valid = 0;
1643 
1644 	/*
1645 	 * Caller must be holding the object lock (asserted by
1646 	 * vm_page_insert()).
1647 	 *
1648 	 * NOTE: Inserting a page here does not insert it into any pmaps
1649 	 *	 (which could cause us to block allocating memory).
1650 	 *
1651 	 * NOTE: If no object an unassociated page is allocated, m->pindex
1652 	 *	 can be used by the caller for any purpose.
1653 	 */
1654 	if (object) {
1655 		if (vm_page_insert(m, object, pindex) == FALSE) {
1656 			vm_page_free(m);
1657 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
1658 				panic("PAGE RACE %p[%ld]/%p",
1659 				      object, (long)pindex, m);
1660 			m = NULL;
1661 		}
1662 	} else {
1663 		m->pindex = pindex;
1664 	}
1665 
1666 	/*
1667 	 * Don't wakeup too often - wakeup the pageout daemon when
1668 	 * we would be nearly out of memory.
1669 	 */
1670 	pagedaemon_wakeup();
1671 
1672 	/*
1673 	 * A PG_BUSY page is returned.
1674 	 */
1675 	return (m);
1676 }
1677 
1678 /*
1679  * Attempt to allocate contiguous physical memory with the specified
1680  * requirements.
1681  */
1682 vm_page_t
1683 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high,
1684 		     unsigned long alignment, unsigned long boundary,
1685 		     unsigned long size)
1686 {
1687 	alist_blk_t blk;
1688 
1689 	alignment >>= PAGE_SHIFT;
1690 	if (alignment == 0)
1691 		alignment = 1;
1692 	boundary >>= PAGE_SHIFT;
1693 	if (boundary == 0)
1694 		boundary = 1;
1695 	size = (size + PAGE_MASK) >> PAGE_SHIFT;
1696 
1697 	spin_lock(&vm_contig_spin);
1698 	blk = alist_alloc(&vm_contig_alist, 0, size);
1699 	if (blk == ALIST_BLOCK_NONE) {
1700 		spin_unlock(&vm_contig_spin);
1701 		if (bootverbose) {
1702 			kprintf("vm_page_alloc_contig: %ldk nospace\n",
1703 				(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1704 		}
1705 		return(NULL);
1706 	}
1707 	if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) {
1708 		alist_free(&vm_contig_alist, blk, size);
1709 		spin_unlock(&vm_contig_spin);
1710 		if (bootverbose) {
1711 			kprintf("vm_page_alloc_contig: %ldk high "
1712 				"%016jx failed\n",
1713 				(size + PAGE_MASK) * (PAGE_SIZE / 1024),
1714 				(intmax_t)high);
1715 		}
1716 		return(NULL);
1717 	}
1718 	spin_unlock(&vm_contig_spin);
1719 	if (vm_contig_verbose) {
1720 		kprintf("vm_page_alloc_contig: %016jx/%ldk\n",
1721 			(intmax_t)(vm_paddr_t)blk << PAGE_SHIFT,
1722 			(size + PAGE_MASK) * (PAGE_SIZE / 1024));
1723 	}
1724 	return (PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT));
1725 }
1726 
1727 /*
1728  * Free contiguously allocated pages.  The pages will be wired but not busy.
1729  * When freeing to the alist we leave them wired and not busy.
1730  */
1731 void
1732 vm_page_free_contig(vm_page_t m, unsigned long size)
1733 {
1734 	vm_paddr_t pa = VM_PAGE_TO_PHYS(m);
1735 	vm_pindex_t start = pa >> PAGE_SHIFT;
1736 	vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT;
1737 
1738 	if (vm_contig_verbose) {
1739 		kprintf("vm_page_free_contig:  %016jx/%ldk\n",
1740 			(intmax_t)pa, size / 1024);
1741 	}
1742 	if (pa < vm_low_phys_reserved) {
1743 		KKASSERT(pa + size <= vm_low_phys_reserved);
1744 		spin_lock(&vm_contig_spin);
1745 		alist_free(&vm_contig_alist, start, pages);
1746 		spin_unlock(&vm_contig_spin);
1747 	} else {
1748 		while (pages) {
1749 			vm_page_busy_wait(m, FALSE, "cpgfr");
1750 			vm_page_unwire(m, 0);
1751 			vm_page_free(m);
1752 			--pages;
1753 			++m;
1754 		}
1755 
1756 	}
1757 }
1758 
1759 
1760 /*
1761  * Wait for sufficient free memory for nominal heavy memory use kernel
1762  * operations.
1763  *
1764  * WARNING!  Be sure never to call this in any vm_pageout code path, which
1765  *	     will trivially deadlock the system.
1766  */
1767 void
1768 vm_wait_nominal(void)
1769 {
1770 	while (vm_page_count_min(0))
1771 		vm_wait(0);
1772 }
1773 
1774 /*
1775  * Test if vm_wait_nominal() would block.
1776  */
1777 int
1778 vm_test_nominal(void)
1779 {
1780 	if (vm_page_count_min(0))
1781 		return(1);
1782 	return(0);
1783 }
1784 
1785 /*
1786  * Block until free pages are available for allocation, called in various
1787  * places before memory allocations.
1788  *
1789  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1790  * more generous then that.
1791  */
1792 void
1793 vm_wait(int timo)
1794 {
1795 	/*
1796 	 * never wait forever
1797 	 */
1798 	if (timo == 0)
1799 		timo = hz;
1800 	lwkt_gettoken(&vm_token);
1801 
1802 	if (curthread == pagethread) {
1803 		/*
1804 		 * The pageout daemon itself needs pages, this is bad.
1805 		 */
1806 		if (vm_page_count_min(0)) {
1807 			vm_pageout_pages_needed = 1;
1808 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1809 		}
1810 	} else {
1811 		/*
1812 		 * Wakeup the pageout daemon if necessary and wait.
1813 		 *
1814 		 * Do not wait indefinitely for the target to be reached,
1815 		 * as load might prevent it from being reached any time soon.
1816 		 * But wait a little to try to slow down page allocations
1817 		 * and to give more important threads (the pagedaemon)
1818 		 * allocation priority.
1819 		 */
1820 		if (vm_page_count_target()) {
1821 			if (vm_pages_needed == 0) {
1822 				vm_pages_needed = 1;
1823 				wakeup(&vm_pages_needed);
1824 			}
1825 			++vm_pages_waiting;	/* SMP race ok */
1826 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
1827 		}
1828 	}
1829 	lwkt_reltoken(&vm_token);
1830 }
1831 
1832 /*
1833  * Block until free pages are available for allocation
1834  *
1835  * Called only from vm_fault so that processes page faulting can be
1836  * easily tracked.
1837  */
1838 void
1839 vm_wait_pfault(void)
1840 {
1841 	/*
1842 	 * Wakeup the pageout daemon if necessary and wait.
1843 	 *
1844 	 * Do not wait indefinitely for the target to be reached,
1845 	 * as load might prevent it from being reached any time soon.
1846 	 * But wait a little to try to slow down page allocations
1847 	 * and to give more important threads (the pagedaemon)
1848 	 * allocation priority.
1849 	 */
1850 	if (vm_page_count_min(0)) {
1851 		lwkt_gettoken(&vm_token);
1852 		while (vm_page_count_severe()) {
1853 			if (vm_page_count_target()) {
1854 				if (vm_pages_needed == 0) {
1855 					vm_pages_needed = 1;
1856 					wakeup(&vm_pages_needed);
1857 				}
1858 				++vm_pages_waiting;	/* SMP race ok */
1859 				tsleep(&vmstats.v_free_count, 0, "pfault", hz);
1860 			}
1861 		}
1862 		lwkt_reltoken(&vm_token);
1863 	}
1864 }
1865 
1866 /*
1867  * Put the specified page on the active list (if appropriate).  Ensure
1868  * that act_count is at least ACT_INIT but do not otherwise mess with it.
1869  *
1870  * The caller should be holding the page busied ? XXX
1871  * This routine may not block.
1872  */
1873 void
1874 vm_page_activate(vm_page_t m)
1875 {
1876 	u_short oqueue;
1877 
1878 	vm_page_spin_lock(m);
1879 	if (m->queue - m->pc != PQ_ACTIVE) {
1880 		_vm_page_queue_spin_lock(m);
1881 		oqueue = _vm_page_rem_queue_spinlocked(m);
1882 		/* page is left spinlocked, queue is unlocked */
1883 
1884 		if (oqueue == PQ_CACHE)
1885 			mycpu->gd_cnt.v_reactivated++;
1886 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1887 			if (m->act_count < ACT_INIT)
1888 				m->act_count = ACT_INIT;
1889 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
1890 		}
1891 		_vm_page_and_queue_spin_unlock(m);
1892 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
1893 			pagedaemon_wakeup();
1894 	} else {
1895 		if (m->act_count < ACT_INIT)
1896 			m->act_count = ACT_INIT;
1897 		vm_page_spin_unlock(m);
1898 	}
1899 }
1900 
1901 /*
1902  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
1903  * routine is called when a page has been added to the cache or free
1904  * queues.
1905  *
1906  * This routine may not block.
1907  */
1908 static __inline void
1909 vm_page_free_wakeup(void)
1910 {
1911 	/*
1912 	 * If the pageout daemon itself needs pages, then tell it that
1913 	 * there are some free.
1914 	 */
1915 	if (vm_pageout_pages_needed &&
1916 	    vmstats.v_cache_count + vmstats.v_free_count >=
1917 	    vmstats.v_pageout_free_min
1918 	) {
1919 		vm_pageout_pages_needed = 0;
1920 		wakeup(&vm_pageout_pages_needed);
1921 	}
1922 
1923 	/*
1924 	 * Wakeup processes that are waiting on memory.
1925 	 *
1926 	 * Generally speaking we want to wakeup stuck processes as soon as
1927 	 * possible.  !vm_page_count_min(0) is the absolute minimum point
1928 	 * where we can do this.  Wait a bit longer to reduce degenerate
1929 	 * re-blocking (vm_page_free_hysteresis).  The target check is just
1930 	 * to make sure the min-check w/hysteresis does not exceed the
1931 	 * normal target.
1932 	 */
1933 	if (vm_pages_waiting) {
1934 		if (!vm_page_count_min(vm_page_free_hysteresis) ||
1935 		    !vm_page_count_target()) {
1936 			vm_pages_waiting = 0;
1937 			wakeup(&vmstats.v_free_count);
1938 			++mycpu->gd_cnt.v_ppwakeups;
1939 		}
1940 #if 0
1941 		if (!vm_page_count_target()) {
1942 			/*
1943 			 * Plenty of pages are free, wakeup everyone.
1944 			 */
1945 			vm_pages_waiting = 0;
1946 			wakeup(&vmstats.v_free_count);
1947 			++mycpu->gd_cnt.v_ppwakeups;
1948 		} else if (!vm_page_count_min(0)) {
1949 			/*
1950 			 * Some pages are free, wakeup someone.
1951 			 */
1952 			int wcount = vm_pages_waiting;
1953 			if (wcount > 0)
1954 				--wcount;
1955 			vm_pages_waiting = wcount;
1956 			wakeup_one(&vmstats.v_free_count);
1957 			++mycpu->gd_cnt.v_ppwakeups;
1958 		}
1959 #endif
1960 	}
1961 }
1962 
1963 /*
1964  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
1965  * it from its VM object.
1966  *
1967  * The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
1968  * return (the page will have been freed).
1969  */
1970 void
1971 vm_page_free_toq(vm_page_t m)
1972 {
1973 	mycpu->gd_cnt.v_tfree++;
1974 	KKASSERT((m->flags & PG_MAPPED) == 0);
1975 	KKASSERT(m->flags & PG_BUSY);
1976 
1977 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1978 		kprintf("vm_page_free: pindex(%lu), busy(%d), "
1979 			"PG_BUSY(%d), hold(%d)\n",
1980 			(u_long)m->pindex, m->busy,
1981 			((m->flags & PG_BUSY) ? 1 : 0), m->hold_count);
1982 		if ((m->queue - m->pc) == PQ_FREE)
1983 			panic("vm_page_free: freeing free page");
1984 		else
1985 			panic("vm_page_free: freeing busy page");
1986 	}
1987 
1988 	/*
1989 	 * Remove from object, spinlock the page and its queues and
1990 	 * remove from any queue.  No queue spinlock will be held
1991 	 * after this section (because the page was removed from any
1992 	 * queue).
1993 	 */
1994 	vm_page_remove(m);
1995 	vm_page_and_queue_spin_lock(m);
1996 	_vm_page_rem_queue_spinlocked(m);
1997 
1998 	/*
1999 	 * No further management of fictitious pages occurs beyond object
2000 	 * and queue removal.
2001 	 */
2002 	if ((m->flags & PG_FICTITIOUS) != 0) {
2003 		vm_page_spin_unlock(m);
2004 		vm_page_wakeup(m);
2005 		return;
2006 	}
2007 
2008 	m->valid = 0;
2009 	vm_page_undirty(m);
2010 
2011 	if (m->wire_count != 0) {
2012 		if (m->wire_count > 1) {
2013 		    panic(
2014 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
2015 			m->wire_count, (long)m->pindex);
2016 		}
2017 		panic("vm_page_free: freeing wired page");
2018 	}
2019 
2020 	/*
2021 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
2022 	 * Clear the NEED_COMMIT flag
2023 	 */
2024 	if (m->flags & PG_UNMANAGED)
2025 		vm_page_flag_clear(m, PG_UNMANAGED);
2026 	if (m->flags & PG_NEED_COMMIT)
2027 		vm_page_flag_clear(m, PG_NEED_COMMIT);
2028 
2029 	if (m->hold_count != 0) {
2030 		vm_page_flag_clear(m, PG_ZERO);
2031 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
2032 	} else {
2033 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
2034 	}
2035 
2036 	/*
2037 	 * This sequence allows us to clear PG_BUSY while still holding
2038 	 * its spin lock, which reduces contention vs allocators.  We
2039 	 * must not leave the queue locked or _vm_page_wakeup() may
2040 	 * deadlock.
2041 	 */
2042 	_vm_page_queue_spin_unlock(m);
2043 	if (_vm_page_wakeup(m)) {
2044 		vm_page_spin_unlock(m);
2045 		wakeup(m);
2046 	} else {
2047 		vm_page_spin_unlock(m);
2048 	}
2049 	vm_page_free_wakeup();
2050 }
2051 
2052 /*
2053  * vm_page_free_fromq_fast()
2054  *
2055  * Remove a non-zero page from one of the free queues; the page is removed for
2056  * zeroing, so do not issue a wakeup.
2057  */
2058 vm_page_t
2059 vm_page_free_fromq_fast(void)
2060 {
2061 	static int qi;
2062 	vm_page_t m;
2063 	int i;
2064 
2065 	for (i = 0; i < PQ_L2_SIZE; ++i) {
2066 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
2067 		/* page is returned spinlocked and removed from its queue */
2068 		if (m) {
2069 			if (vm_page_busy_try(m, TRUE)) {
2070 				/*
2071 				 * We were unable to busy the page, deactivate
2072 				 * it and loop.
2073 				 */
2074 				_vm_page_deactivate_locked(m, 0);
2075 				vm_page_spin_unlock(m);
2076 			} else if (m->flags & PG_ZERO) {
2077 				/*
2078 				 * The page is PG_ZERO, requeue it and loop
2079 				 */
2080 				_vm_page_add_queue_spinlocked(m,
2081 							      PQ_FREE + m->pc,
2082 							      0);
2083 				vm_page_queue_spin_unlock(m);
2084 				if (_vm_page_wakeup(m)) {
2085 					vm_page_spin_unlock(m);
2086 					wakeup(m);
2087 				} else {
2088 					vm_page_spin_unlock(m);
2089 				}
2090 			} else {
2091 				/*
2092 				 * The page is not PG_ZERO'd so return it.
2093 				 */
2094 				vm_page_spin_unlock(m);
2095 				KKASSERT((m->flags & (PG_UNMANAGED |
2096 						      PG_NEED_COMMIT)) == 0);
2097 				KKASSERT(m->hold_count == 0);
2098 				KKASSERT(m->wire_count == 0);
2099 				break;
2100 			}
2101 			m = NULL;
2102 		}
2103 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
2104 	}
2105 	return (m);
2106 }
2107 
2108 /*
2109  * vm_page_unmanage()
2110  *
2111  * Prevent PV management from being done on the page.  The page is
2112  * removed from the paging queues as if it were wired, and as a
2113  * consequence of no longer being managed the pageout daemon will not
2114  * touch it (since there is no way to locate the pte mappings for the
2115  * page).  madvise() calls that mess with the pmap will also no longer
2116  * operate on the page.
2117  *
2118  * Beyond that the page is still reasonably 'normal'.  Freeing the page
2119  * will clear the flag.
2120  *
2121  * This routine is used by OBJT_PHYS objects - objects using unswappable
2122  * physical memory as backing store rather then swap-backed memory and
2123  * will eventually be extended to support 4MB unmanaged physical
2124  * mappings.
2125  *
2126  * Caller must be holding the page busy.
2127  */
2128 void
2129 vm_page_unmanage(vm_page_t m)
2130 {
2131 	KKASSERT(m->flags & PG_BUSY);
2132 	if ((m->flags & PG_UNMANAGED) == 0) {
2133 		if (m->wire_count == 0)
2134 			vm_page_unqueue(m);
2135 	}
2136 	vm_page_flag_set(m, PG_UNMANAGED);
2137 }
2138 
2139 /*
2140  * Mark this page as wired down by yet another map, removing it from
2141  * paging queues as necessary.
2142  *
2143  * Caller must be holding the page busy.
2144  */
2145 void
2146 vm_page_wire(vm_page_t m)
2147 {
2148 	/*
2149 	 * Only bump the wire statistics if the page is not already wired,
2150 	 * and only unqueue the page if it is on some queue (if it is unmanaged
2151 	 * it is already off the queues).  Don't do anything with fictitious
2152 	 * pages because they are always wired.
2153 	 */
2154 	KKASSERT(m->flags & PG_BUSY);
2155 	if ((m->flags & PG_FICTITIOUS) == 0) {
2156 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
2157 			if ((m->flags & PG_UNMANAGED) == 0)
2158 				vm_page_unqueue(m);
2159 			atomic_add_int(&vmstats.v_wire_count, 1);
2160 		}
2161 		KASSERT(m->wire_count != 0,
2162 			("vm_page_wire: wire_count overflow m=%p", m));
2163 	}
2164 }
2165 
2166 /*
2167  * Release one wiring of this page, potentially enabling it to be paged again.
2168  *
2169  * Many pages placed on the inactive queue should actually go
2170  * into the cache, but it is difficult to figure out which.  What
2171  * we do instead, if the inactive target is well met, is to put
2172  * clean pages at the head of the inactive queue instead of the tail.
2173  * This will cause them to be moved to the cache more quickly and
2174  * if not actively re-referenced, freed more quickly.  If we just
2175  * stick these pages at the end of the inactive queue, heavy filesystem
2176  * meta-data accesses can cause an unnecessary paging load on memory bound
2177  * processes.  This optimization causes one-time-use metadata to be
2178  * reused more quickly.
2179  *
2180  * Pages marked PG_NEED_COMMIT are always activated and never placed on
2181  * the inactive queue.  This helps the pageout daemon determine memory
2182  * pressure and act on out-of-memory situations more quickly.
2183  *
2184  * BUT, if we are in a low-memory situation we have no choice but to
2185  * put clean pages on the cache queue.
2186  *
2187  * A number of routines use vm_page_unwire() to guarantee that the page
2188  * will go into either the inactive or active queues, and will NEVER
2189  * be placed in the cache - for example, just after dirtying a page.
2190  * dirty pages in the cache are not allowed.
2191  *
2192  * The page queues must be locked.
2193  * This routine may not block.
2194  */
2195 void
2196 vm_page_unwire(vm_page_t m, int activate)
2197 {
2198 	KKASSERT(m->flags & PG_BUSY);
2199 	if (m->flags & PG_FICTITIOUS) {
2200 		/* do nothing */
2201 	} else if (m->wire_count <= 0) {
2202 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
2203 	} else {
2204 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
2205 			atomic_add_int(&vmstats.v_wire_count, -1);
2206 			if (m->flags & PG_UNMANAGED) {
2207 				;
2208 			} else if (activate || (m->flags & PG_NEED_COMMIT)) {
2209 				vm_page_spin_lock(m);
2210 				_vm_page_add_queue_spinlocked(m,
2211 							PQ_ACTIVE + m->pc, 0);
2212 				_vm_page_and_queue_spin_unlock(m);
2213 			} else {
2214 				vm_page_spin_lock(m);
2215 				vm_page_flag_clear(m, PG_WINATCFLS);
2216 				_vm_page_add_queue_spinlocked(m,
2217 							PQ_INACTIVE + m->pc, 0);
2218 				++vm_swapcache_inactive_heuristic;
2219 				_vm_page_and_queue_spin_unlock(m);
2220 			}
2221 		}
2222 	}
2223 }
2224 
2225 /*
2226  * Move the specified page to the inactive queue.  If the page has
2227  * any associated swap, the swap is deallocated.
2228  *
2229  * Normally athead is 0 resulting in LRU operation.  athead is set
2230  * to 1 if we want this page to be 'as if it were placed in the cache',
2231  * except without unmapping it from the process address space.
2232  *
2233  * vm_page's spinlock must be held on entry and will remain held on return.
2234  * This routine may not block.
2235  */
2236 static void
2237 _vm_page_deactivate_locked(vm_page_t m, int athead)
2238 {
2239 	u_short oqueue;
2240 
2241 	/*
2242 	 * Ignore if already inactive.
2243 	 */
2244 	if (m->queue - m->pc == PQ_INACTIVE)
2245 		return;
2246 	_vm_page_queue_spin_lock(m);
2247 	oqueue = _vm_page_rem_queue_spinlocked(m);
2248 
2249 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
2250 		if (oqueue == PQ_CACHE)
2251 			mycpu->gd_cnt.v_reactivated++;
2252 		vm_page_flag_clear(m, PG_WINATCFLS);
2253 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
2254 		if (athead == 0)
2255 			++vm_swapcache_inactive_heuristic;
2256 	}
2257 	_vm_page_queue_spin_unlock(m);
2258 	/* leaves vm_page spinlocked */
2259 }
2260 
2261 /*
2262  * Attempt to deactivate a page.
2263  *
2264  * No requirements.
2265  */
2266 void
2267 vm_page_deactivate(vm_page_t m)
2268 {
2269 	vm_page_spin_lock(m);
2270 	_vm_page_deactivate_locked(m, 0);
2271 	vm_page_spin_unlock(m);
2272 }
2273 
2274 void
2275 vm_page_deactivate_locked(vm_page_t m)
2276 {
2277 	_vm_page_deactivate_locked(m, 0);
2278 }
2279 
2280 /*
2281  * Attempt to move a page to PQ_CACHE.
2282  *
2283  * Returns 0 on failure, 1 on success
2284  *
2285  * The page should NOT be busied by the caller.  This function will validate
2286  * whether the page can be safely moved to the cache.
2287  */
2288 int
2289 vm_page_try_to_cache(vm_page_t m)
2290 {
2291 	vm_page_spin_lock(m);
2292 	if (vm_page_busy_try(m, TRUE)) {
2293 		vm_page_spin_unlock(m);
2294 		return(0);
2295 	}
2296 	if (m->dirty || m->hold_count || m->wire_count ||
2297 	    (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) {
2298 		if (_vm_page_wakeup(m)) {
2299 			vm_page_spin_unlock(m);
2300 			wakeup(m);
2301 		} else {
2302 			vm_page_spin_unlock(m);
2303 		}
2304 		return(0);
2305 	}
2306 	vm_page_spin_unlock(m);
2307 
2308 	/*
2309 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2310 	 * be moved to the cache.
2311 	 */
2312 	vm_page_test_dirty(m);
2313 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2314 		vm_page_wakeup(m);
2315 		return(0);
2316 	}
2317 	vm_page_cache(m);
2318 	return(1);
2319 }
2320 
2321 /*
2322  * Attempt to free the page.  If we cannot free it, we do nothing.
2323  * 1 is returned on success, 0 on failure.
2324  *
2325  * No requirements.
2326  */
2327 int
2328 vm_page_try_to_free(vm_page_t m)
2329 {
2330 	vm_page_spin_lock(m);
2331 	if (vm_page_busy_try(m, TRUE)) {
2332 		vm_page_spin_unlock(m);
2333 		return(0);
2334 	}
2335 
2336 	/*
2337 	 * The page can be in any state, including already being on the free
2338 	 * queue.  Check to see if it really can be freed.
2339 	 */
2340 	if (m->dirty ||				/* can't free if it is dirty */
2341 	    m->hold_count ||			/* or held (XXX may be wrong) */
2342 	    m->wire_count ||			/* or wired */
2343 	    (m->flags & (PG_UNMANAGED |		/* or unmanaged */
2344 			 PG_NEED_COMMIT)) ||	/* or needs a commit */
2345 	    m->queue - m->pc == PQ_FREE ||	/* already on PQ_FREE */
2346 	    m->queue - m->pc == PQ_HOLD) {	/* already on PQ_HOLD */
2347 		if (_vm_page_wakeup(m)) {
2348 			vm_page_spin_unlock(m);
2349 			wakeup(m);
2350 		} else {
2351 			vm_page_spin_unlock(m);
2352 		}
2353 		return(0);
2354 	}
2355 	vm_page_spin_unlock(m);
2356 
2357 	/*
2358 	 * We can probably free the page.
2359 	 *
2360 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2361 	 * not be freed by this function.    We have to re-test the
2362 	 * dirty bit after cleaning out the pmaps.
2363 	 */
2364 	vm_page_test_dirty(m);
2365 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2366 		vm_page_wakeup(m);
2367 		return(0);
2368 	}
2369 	vm_page_protect(m, VM_PROT_NONE);
2370 	if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2371 		vm_page_wakeup(m);
2372 		return(0);
2373 	}
2374 	vm_page_free(m);
2375 	return(1);
2376 }
2377 
2378 /*
2379  * vm_page_cache
2380  *
2381  * Put the specified page onto the page cache queue (if appropriate).
2382  *
2383  * The page must be busy, and this routine will release the busy and
2384  * possibly even free the page.
2385  */
2386 void
2387 vm_page_cache(vm_page_t m)
2388 {
2389 	if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) ||
2390 	    m->busy || m->wire_count || m->hold_count) {
2391 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
2392 		vm_page_wakeup(m);
2393 		return;
2394 	}
2395 
2396 	/*
2397 	 * Already in the cache (and thus not mapped)
2398 	 */
2399 	if ((m->queue - m->pc) == PQ_CACHE) {
2400 		KKASSERT((m->flags & PG_MAPPED) == 0);
2401 		vm_page_wakeup(m);
2402 		return;
2403 	}
2404 
2405 	/*
2406 	 * Caller is required to test m->dirty, but note that the act of
2407 	 * removing the page from its maps can cause it to become dirty
2408 	 * on an SMP system due to another cpu running in usermode.
2409 	 */
2410 	if (m->dirty) {
2411 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2412 			(long)m->pindex);
2413 	}
2414 
2415 	/*
2416 	 * Remove all pmaps and indicate that the page is not
2417 	 * writeable or mapped.  Our vm_page_protect() call may
2418 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2419 	 * everything.
2420 	 */
2421 	vm_page_protect(m, VM_PROT_NONE);
2422 	if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) ||
2423 	    m->busy || m->wire_count || m->hold_count) {
2424 		vm_page_wakeup(m);
2425 	} else if (m->dirty || (m->flags & PG_NEED_COMMIT)) {
2426 		vm_page_deactivate(m);
2427 		vm_page_wakeup(m);
2428 	} else {
2429 		_vm_page_and_queue_spin_lock(m);
2430 		_vm_page_rem_queue_spinlocked(m);
2431 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2432 		_vm_page_queue_spin_unlock(m);
2433 		if (_vm_page_wakeup(m)) {
2434 			vm_page_spin_unlock(m);
2435 			wakeup(m);
2436 		} else {
2437 			vm_page_spin_unlock(m);
2438 		}
2439 		vm_page_free_wakeup();
2440 	}
2441 }
2442 
2443 /*
2444  * vm_page_dontneed()
2445  *
2446  * Cache, deactivate, or do nothing as appropriate.  This routine
2447  * is typically used by madvise() MADV_DONTNEED.
2448  *
2449  * Generally speaking we want to move the page into the cache so
2450  * it gets reused quickly.  However, this can result in a silly syndrome
2451  * due to the page recycling too quickly.  Small objects will not be
2452  * fully cached.  On the otherhand, if we move the page to the inactive
2453  * queue we wind up with a problem whereby very large objects
2454  * unnecessarily blow away our inactive and cache queues.
2455  *
2456  * The solution is to move the pages based on a fixed weighting.  We
2457  * either leave them alone, deactivate them, or move them to the cache,
2458  * where moving them to the cache has the highest weighting.
2459  * By forcing some pages into other queues we eventually force the
2460  * system to balance the queues, potentially recovering other unrelated
2461  * space from active.  The idea is to not force this to happen too
2462  * often.
2463  *
2464  * The page must be busied.
2465  */
2466 void
2467 vm_page_dontneed(vm_page_t m)
2468 {
2469 	static int dnweight;
2470 	int dnw;
2471 	int head;
2472 
2473 	dnw = ++dnweight;
2474 
2475 	/*
2476 	 * occassionally leave the page alone
2477 	 */
2478 	if ((dnw & 0x01F0) == 0 ||
2479 	    m->queue - m->pc == PQ_INACTIVE ||
2480 	    m->queue - m->pc == PQ_CACHE
2481 	) {
2482 		if (m->act_count >= ACT_INIT)
2483 			--m->act_count;
2484 		return;
2485 	}
2486 
2487 	/*
2488 	 * If vm_page_dontneed() is inactivating a page, it must clear
2489 	 * the referenced flag; otherwise the pagedaemon will see references
2490 	 * on the page in the inactive queue and reactivate it. Until the
2491 	 * page can move to the cache queue, madvise's job is not done.
2492 	 */
2493 	vm_page_flag_clear(m, PG_REFERENCED);
2494 	pmap_clear_reference(m);
2495 
2496 	if (m->dirty == 0)
2497 		vm_page_test_dirty(m);
2498 
2499 	if (m->dirty || (dnw & 0x0070) == 0) {
2500 		/*
2501 		 * Deactivate the page 3 times out of 32.
2502 		 */
2503 		head = 0;
2504 	} else {
2505 		/*
2506 		 * Cache the page 28 times out of every 32.  Note that
2507 		 * the page is deactivated instead of cached, but placed
2508 		 * at the head of the queue instead of the tail.
2509 		 */
2510 		head = 1;
2511 	}
2512 	vm_page_spin_lock(m);
2513 	_vm_page_deactivate_locked(m, head);
2514 	vm_page_spin_unlock(m);
2515 }
2516 
2517 /*
2518  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2519  * is almost like PG_BUSY except that it allows certain compatible operations
2520  * to occur on the page while it is busy.  For example, a page undergoing a
2521  * write can still be mapped read-only.
2522  *
2523  * Because vm_pages can overlap buffers m->busy can be > 1.  m->busy is only
2524  * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2525  * busy bit is cleared.
2526  */
2527 void
2528 vm_page_io_start(vm_page_t m)
2529 {
2530         KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2531         atomic_add_char(&m->busy, 1);
2532 	vm_page_flag_set(m, PG_SBUSY);
2533 }
2534 
2535 void
2536 vm_page_io_finish(vm_page_t m)
2537 {
2538         KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2539         atomic_subtract_char(&m->busy, 1);
2540 	if (m->busy == 0)
2541 		vm_page_flag_clear(m, PG_SBUSY);
2542 }
2543 
2544 /*
2545  * Indicate that a clean VM page requires a filesystem commit and cannot
2546  * be reused.  Used by tmpfs.
2547  */
2548 void
2549 vm_page_need_commit(vm_page_t m)
2550 {
2551 	vm_page_flag_set(m, PG_NEED_COMMIT);
2552 	vm_object_set_writeable_dirty(m->object);
2553 }
2554 
2555 void
2556 vm_page_clear_commit(vm_page_t m)
2557 {
2558 	vm_page_flag_clear(m, PG_NEED_COMMIT);
2559 }
2560 
2561 /*
2562  * Grab a page, blocking if it is busy and allocating a page if necessary.
2563  * A busy page is returned or NULL.  The page may or may not be valid and
2564  * might not be on a queue (the caller is responsible for the disposition of
2565  * the page).
2566  *
2567  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2568  * page will be zero'd and marked valid.
2569  *
2570  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2571  * valid even if it already exists.
2572  *
2573  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
2574  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2575  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2576  *
2577  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2578  * always returned if we had blocked.
2579  *
2580  * This routine may not be called from an interrupt.
2581  *
2582  * PG_ZERO is *ALWAYS* cleared by this routine.
2583  *
2584  * No other requirements.
2585  */
2586 vm_page_t
2587 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2588 {
2589 	vm_page_t m;
2590 	int error;
2591 
2592 	KKASSERT(allocflags &
2593 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2594 	vm_object_hold(object);
2595 	for (;;) {
2596 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2597 		if (error) {
2598 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
2599 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
2600 				m = NULL;
2601 				break;
2602 			}
2603 			/* retry */
2604 		} else if (m == NULL) {
2605 			if (allocflags & VM_ALLOC_RETRY)
2606 				allocflags |= VM_ALLOC_NULL_OK;
2607 			m = vm_page_alloc(object, pindex,
2608 					  allocflags & ~VM_ALLOC_RETRY);
2609 			if (m)
2610 				break;
2611 			vm_wait(0);
2612 			if ((allocflags & VM_ALLOC_RETRY) == 0)
2613 				goto failed;
2614 		} else {
2615 			/* m found */
2616 			break;
2617 		}
2618 	}
2619 
2620 	/*
2621 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2622 	 *
2623 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2624 	 * valid even if already valid.
2625 	 */
2626 	if (m->valid == 0) {
2627 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2628 			if ((m->flags & PG_ZERO) == 0)
2629 				pmap_zero_page(VM_PAGE_TO_PHYS(m));
2630 			m->valid = VM_PAGE_BITS_ALL;
2631 		}
2632 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2633 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
2634 		m->valid = VM_PAGE_BITS_ALL;
2635 	}
2636 	vm_page_flag_clear(m, PG_ZERO);
2637 failed:
2638 	vm_object_drop(object);
2639 	return(m);
2640 }
2641 
2642 /*
2643  * Mapping function for valid bits or for dirty bits in
2644  * a page.  May not block.
2645  *
2646  * Inputs are required to range within a page.
2647  *
2648  * No requirements.
2649  * Non blocking.
2650  */
2651 int
2652 vm_page_bits(int base, int size)
2653 {
2654 	int first_bit;
2655 	int last_bit;
2656 
2657 	KASSERT(
2658 	    base + size <= PAGE_SIZE,
2659 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2660 	);
2661 
2662 	if (size == 0)		/* handle degenerate case */
2663 		return(0);
2664 
2665 	first_bit = base >> DEV_BSHIFT;
2666 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2667 
2668 	return ((2 << last_bit) - (1 << first_bit));
2669 }
2670 
2671 /*
2672  * Sets portions of a page valid and clean.  The arguments are expected
2673  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2674  * of any partial chunks touched by the range.  The invalid portion of
2675  * such chunks will be zero'd.
2676  *
2677  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2678  *	 align base to DEV_BSIZE so as not to mark clean a partially
2679  *	 truncated device block.  Otherwise the dirty page status might be
2680  *	 lost.
2681  *
2682  * This routine may not block.
2683  *
2684  * (base + size) must be less then or equal to PAGE_SIZE.
2685  */
2686 static void
2687 _vm_page_zero_valid(vm_page_t m, int base, int size)
2688 {
2689 	int frag;
2690 	int endoff;
2691 
2692 	if (size == 0)	/* handle degenerate case */
2693 		return;
2694 
2695 	/*
2696 	 * If the base is not DEV_BSIZE aligned and the valid
2697 	 * bit is clear, we have to zero out a portion of the
2698 	 * first block.
2699 	 */
2700 
2701 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2702 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2703 	) {
2704 		pmap_zero_page_area(
2705 		    VM_PAGE_TO_PHYS(m),
2706 		    frag,
2707 		    base - frag
2708 		);
2709 	}
2710 
2711 	/*
2712 	 * If the ending offset is not DEV_BSIZE aligned and the
2713 	 * valid bit is clear, we have to zero out a portion of
2714 	 * the last block.
2715 	 */
2716 
2717 	endoff = base + size;
2718 
2719 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2720 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2721 	) {
2722 		pmap_zero_page_area(
2723 		    VM_PAGE_TO_PHYS(m),
2724 		    endoff,
2725 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2726 		);
2727 	}
2728 }
2729 
2730 /*
2731  * Set valid, clear dirty bits.  If validating the entire
2732  * page we can safely clear the pmap modify bit.  We also
2733  * use this opportunity to clear the PG_NOSYNC flag.  If a process
2734  * takes a write fault on a MAP_NOSYNC memory area the flag will
2735  * be set again.
2736  *
2737  * We set valid bits inclusive of any overlap, but we can only
2738  * clear dirty bits for DEV_BSIZE chunks that are fully within
2739  * the range.
2740  *
2741  * Page must be busied?
2742  * No other requirements.
2743  */
2744 void
2745 vm_page_set_valid(vm_page_t m, int base, int size)
2746 {
2747 	_vm_page_zero_valid(m, base, size);
2748 	m->valid |= vm_page_bits(base, size);
2749 }
2750 
2751 
2752 /*
2753  * Set valid bits and clear dirty bits.
2754  *
2755  * NOTE: This function does not clear the pmap modified bit.
2756  *	 Also note that e.g. NFS may use a byte-granular base
2757  *	 and size.
2758  *
2759  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
2760  *	    this without necessarily busying the page (via bdwrite()).
2761  *	    So for now vm_token must also be held.
2762  *
2763  * No other requirements.
2764  */
2765 void
2766 vm_page_set_validclean(vm_page_t m, int base, int size)
2767 {
2768 	int pagebits;
2769 
2770 	_vm_page_zero_valid(m, base, size);
2771 	pagebits = vm_page_bits(base, size);
2772 	m->valid |= pagebits;
2773 	m->dirty &= ~pagebits;
2774 	if (base == 0 && size == PAGE_SIZE) {
2775 		/*pmap_clear_modify(m);*/
2776 		vm_page_flag_clear(m, PG_NOSYNC);
2777 	}
2778 }
2779 
2780 /*
2781  * Set valid & dirty.  Used by buwrite()
2782  *
2783  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
2784  *	    call this function in buwrite() so for now vm_token must
2785  *	    be held.
2786  *
2787  * No other requirements.
2788  */
2789 void
2790 vm_page_set_validdirty(vm_page_t m, int base, int size)
2791 {
2792 	int pagebits;
2793 
2794 	pagebits = vm_page_bits(base, size);
2795 	m->valid |= pagebits;
2796 	m->dirty |= pagebits;
2797 	if (m->object)
2798 	       vm_object_set_writeable_dirty(m->object);
2799 }
2800 
2801 /*
2802  * Clear dirty bits.
2803  *
2804  * NOTE: This function does not clear the pmap modified bit.
2805  *	 Also note that e.g. NFS may use a byte-granular base
2806  *	 and size.
2807  *
2808  * Page must be busied?
2809  * No other requirements.
2810  */
2811 void
2812 vm_page_clear_dirty(vm_page_t m, int base, int size)
2813 {
2814 	m->dirty &= ~vm_page_bits(base, size);
2815 	if (base == 0 && size == PAGE_SIZE) {
2816 		/*pmap_clear_modify(m);*/
2817 		vm_page_flag_clear(m, PG_NOSYNC);
2818 	}
2819 }
2820 
2821 /*
2822  * Make the page all-dirty.
2823  *
2824  * Also make sure the related object and vnode reflect the fact that the
2825  * object may now contain a dirty page.
2826  *
2827  * Page must be busied?
2828  * No other requirements.
2829  */
2830 void
2831 vm_page_dirty(vm_page_t m)
2832 {
2833 #ifdef INVARIANTS
2834         int pqtype = m->queue - m->pc;
2835 #endif
2836         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
2837                 ("vm_page_dirty: page in free/cache queue!"));
2838 	if (m->dirty != VM_PAGE_BITS_ALL) {
2839 		m->dirty = VM_PAGE_BITS_ALL;
2840 		if (m->object)
2841 			vm_object_set_writeable_dirty(m->object);
2842 	}
2843 }
2844 
2845 /*
2846  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
2847  * valid and dirty bits for the effected areas are cleared.
2848  *
2849  * Page must be busied?
2850  * Does not block.
2851  * No other requirements.
2852  */
2853 void
2854 vm_page_set_invalid(vm_page_t m, int base, int size)
2855 {
2856 	int bits;
2857 
2858 	bits = vm_page_bits(base, size);
2859 	m->valid &= ~bits;
2860 	m->dirty &= ~bits;
2861 	m->object->generation++;
2862 }
2863 
2864 /*
2865  * The kernel assumes that the invalid portions of a page contain
2866  * garbage, but such pages can be mapped into memory by user code.
2867  * When this occurs, we must zero out the non-valid portions of the
2868  * page so user code sees what it expects.
2869  *
2870  * Pages are most often semi-valid when the end of a file is mapped
2871  * into memory and the file's size is not page aligned.
2872  *
2873  * Page must be busied?
2874  * No other requirements.
2875  */
2876 void
2877 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2878 {
2879 	int b;
2880 	int i;
2881 
2882 	/*
2883 	 * Scan the valid bits looking for invalid sections that
2884 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2885 	 * valid bit may be set ) have already been zerod by
2886 	 * vm_page_set_validclean().
2887 	 */
2888 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2889 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2890 		    (m->valid & (1 << i))
2891 		) {
2892 			if (i > b) {
2893 				pmap_zero_page_area(
2894 				    VM_PAGE_TO_PHYS(m),
2895 				    b << DEV_BSHIFT,
2896 				    (i - b) << DEV_BSHIFT
2897 				);
2898 			}
2899 			b = i + 1;
2900 		}
2901 	}
2902 
2903 	/*
2904 	 * setvalid is TRUE when we can safely set the zero'd areas
2905 	 * as being valid.  We can do this if there are no cache consistency
2906 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2907 	 */
2908 	if (setvalid)
2909 		m->valid = VM_PAGE_BITS_ALL;
2910 }
2911 
2912 /*
2913  * Is a (partial) page valid?  Note that the case where size == 0
2914  * will return FALSE in the degenerate case where the page is entirely
2915  * invalid, and TRUE otherwise.
2916  *
2917  * Does not block.
2918  * No other requirements.
2919  */
2920 int
2921 vm_page_is_valid(vm_page_t m, int base, int size)
2922 {
2923 	int bits = vm_page_bits(base, size);
2924 
2925 	if (m->valid && ((m->valid & bits) == bits))
2926 		return 1;
2927 	else
2928 		return 0;
2929 }
2930 
2931 /*
2932  * update dirty bits from pmap/mmu.  May not block.
2933  *
2934  * Caller must hold the page busy
2935  */
2936 void
2937 vm_page_test_dirty(vm_page_t m)
2938 {
2939 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2940 		vm_page_dirty(m);
2941 	}
2942 }
2943 
2944 /*
2945  * Register an action, associating it with its vm_page
2946  */
2947 void
2948 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
2949 {
2950 	struct vm_page_action_list *list;
2951 	int hv;
2952 
2953 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2954 	list = &action_list[hv];
2955 
2956 	lwkt_gettoken(&vm_token);
2957 	vm_page_flag_set(action->m, PG_ACTIONLIST);
2958 	action->event = event;
2959 	LIST_INSERT_HEAD(list, action, entry);
2960 	lwkt_reltoken(&vm_token);
2961 }
2962 
2963 /*
2964  * Unregister an action, disassociating it from its related vm_page
2965  */
2966 void
2967 vm_page_unregister_action(vm_page_action_t action)
2968 {
2969 	struct vm_page_action_list *list;
2970 	int hv;
2971 
2972 	lwkt_gettoken(&vm_token);
2973 	if (action->event != VMEVENT_NONE) {
2974 		action->event = VMEVENT_NONE;
2975 		LIST_REMOVE(action, entry);
2976 
2977 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2978 		list = &action_list[hv];
2979 		if (LIST_EMPTY(list))
2980 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
2981 	}
2982 	lwkt_reltoken(&vm_token);
2983 }
2984 
2985 /*
2986  * Issue an event on a VM page.  Corresponding action structures are
2987  * removed from the page's list and called.
2988  *
2989  * If the vm_page has no more pending action events we clear its
2990  * PG_ACTIONLIST flag.
2991  */
2992 void
2993 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
2994 {
2995 	struct vm_page_action_list *list;
2996 	struct vm_page_action *scan;
2997 	struct vm_page_action *next;
2998 	int hv;
2999 	int all;
3000 
3001 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
3002 	list = &action_list[hv];
3003 	all = 1;
3004 
3005 	lwkt_gettoken(&vm_token);
3006 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
3007 		if (scan->m == m) {
3008 			if (scan->event == event) {
3009 				scan->event = VMEVENT_NONE;
3010 				LIST_REMOVE(scan, entry);
3011 				scan->func(m, scan);
3012 				/* XXX */
3013 			} else {
3014 				all = 0;
3015 			}
3016 		}
3017 	}
3018 	if (all)
3019 		vm_page_flag_clear(m, PG_ACTIONLIST);
3020 	lwkt_reltoken(&vm_token);
3021 }
3022 
3023 #include "opt_ddb.h"
3024 #ifdef DDB
3025 #include <sys/kernel.h>
3026 
3027 #include <ddb/ddb.h>
3028 
3029 DB_SHOW_COMMAND(page, vm_page_print_page_info)
3030 {
3031 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
3032 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
3033 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
3034 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
3035 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
3036 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
3037 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
3038 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
3039 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
3040 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
3041 }
3042 
3043 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
3044 {
3045 	int i;
3046 	db_printf("PQ_FREE:");
3047 	for(i=0;i<PQ_L2_SIZE;i++) {
3048 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
3049 	}
3050 	db_printf("\n");
3051 
3052 	db_printf("PQ_CACHE:");
3053 	for(i=0;i<PQ_L2_SIZE;i++) {
3054 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
3055 	}
3056 	db_printf("\n");
3057 
3058 	db_printf("PQ_ACTIVE:");
3059 	for(i=0;i<PQ_L2_SIZE;i++) {
3060 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
3061 	}
3062 	db_printf("\n");
3063 
3064 	db_printf("PQ_INACTIVE:");
3065 	for(i=0;i<PQ_L2_SIZE;i++) {
3066 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
3067 	}
3068 	db_printf("\n");
3069 }
3070 #endif /* DDB */
3071