1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 36 */ 37 38 /* 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 /* 65 * Resident memory management module. The module manipulates 'VM pages'. 66 * A VM page is the core building block for memory management. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/vnode.h> 75 #include <sys/kernel.h> 76 #include <sys/alist.h> 77 #include <sys/sysctl.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <sys/lock.h> 82 #include <vm/vm_kern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_extern.h> 90 #include <vm/swap_pager.h> 91 92 #include <machine/inttypes.h> 93 #include <machine/md_var.h> 94 #include <machine/specialreg.h> 95 96 #include <vm/vm_page2.h> 97 #include <sys/spinlock2.h> 98 99 #define VMACTION_HSIZE 256 100 #define VMACTION_HMASK (VMACTION_HSIZE - 1) 101 102 static void vm_page_queue_init(void); 103 static void vm_page_free_wakeup(void); 104 static vm_page_t vm_page_select_cache(u_short pg_color); 105 static vm_page_t _vm_page_list_find2(int basequeue, int index); 106 static void _vm_page_deactivate_locked(vm_page_t m, int athead); 107 108 /* 109 * Array of tailq lists 110 */ 111 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT]; 112 113 LIST_HEAD(vm_page_action_list, vm_page_action); 114 struct vm_page_action_list action_list[VMACTION_HSIZE]; 115 static volatile int vm_pages_waiting; 116 117 static struct alist vm_contig_alist; 118 static struct almeta vm_contig_ameta[ALIST_RECORDS_65536]; 119 static struct spinlock vm_contig_spin = SPINLOCK_INITIALIZER(&vm_contig_spin); 120 121 static u_long vm_dma_reserved = 0; 122 TUNABLE_ULONG("vm.dma_reserved", &vm_dma_reserved); 123 SYSCTL_ULONG(_vm, OID_AUTO, dma_reserved, CTLFLAG_RD, &vm_dma_reserved, 0, 124 "Memory reserved for DMA"); 125 SYSCTL_UINT(_vm, OID_AUTO, dma_free_pages, CTLFLAG_RD, 126 &vm_contig_alist.bl_free, 0, "Memory reserved for DMA"); 127 128 static int vm_contig_verbose = 0; 129 TUNABLE_INT("vm.contig_verbose", &vm_contig_verbose); 130 131 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 132 vm_pindex_t, pindex); 133 134 static void 135 vm_page_queue_init(void) 136 { 137 int i; 138 139 for (i = 0; i < PQ_L2_SIZE; i++) 140 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count; 141 for (i = 0; i < PQ_L2_SIZE; i++) 142 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count; 143 for (i = 0; i < PQ_L2_SIZE; i++) 144 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count; 145 for (i = 0; i < PQ_L2_SIZE; i++) 146 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count; 147 for (i = 0; i < PQ_L2_SIZE; i++) 148 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count; 149 /* PQ_NONE has no queue */ 150 151 for (i = 0; i < PQ_COUNT; i++) { 152 TAILQ_INIT(&vm_page_queues[i].pl); 153 spin_init(&vm_page_queues[i].spin); 154 } 155 156 for (i = 0; i < VMACTION_HSIZE; i++) 157 LIST_INIT(&action_list[i]); 158 } 159 160 /* 161 * note: place in initialized data section? Is this necessary? 162 */ 163 long first_page = 0; 164 int vm_page_array_size = 0; 165 int vm_page_zero_count = 0; 166 vm_page_t vm_page_array = NULL; 167 vm_paddr_t vm_low_phys_reserved; 168 169 /* 170 * (low level boot) 171 * 172 * Sets the page size, perhaps based upon the memory size. 173 * Must be called before any use of page-size dependent functions. 174 */ 175 void 176 vm_set_page_size(void) 177 { 178 if (vmstats.v_page_size == 0) 179 vmstats.v_page_size = PAGE_SIZE; 180 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 181 panic("vm_set_page_size: page size not a power of two"); 182 } 183 184 /* 185 * (low level boot) 186 * 187 * Add a new page to the freelist for use by the system. New pages 188 * are added to both the head and tail of the associated free page 189 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 190 * requests pull 'recent' adds (higher physical addresses) first. 191 * 192 * Beware that the page zeroing daemon will also be running soon after 193 * boot, moving pages from the head to the tail of the PQ_FREE queues. 194 * 195 * Must be called in a critical section. 196 */ 197 static void 198 vm_add_new_page(vm_paddr_t pa) 199 { 200 struct vpgqueues *vpq; 201 vm_page_t m; 202 203 m = PHYS_TO_VM_PAGE(pa); 204 m->phys_addr = pa; 205 m->flags = 0; 206 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK; 207 m->pat_mode = PAT_WRITE_BACK; 208 /* 209 * Twist for cpu localization in addition to page coloring, so 210 * different cpus selecting by m->queue get different page colors. 211 */ 212 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK; 213 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK; 214 /* 215 * Reserve a certain number of contiguous low memory pages for 216 * contigmalloc() to use. 217 */ 218 if (pa < vm_low_phys_reserved) { 219 atomic_add_int(&vmstats.v_page_count, 1); 220 atomic_add_int(&vmstats.v_dma_pages, 1); 221 m->queue = PQ_NONE; 222 m->wire_count = 1; 223 atomic_add_int(&vmstats.v_wire_count, 1); 224 alist_free(&vm_contig_alist, pa >> PAGE_SHIFT, 1); 225 return; 226 } 227 228 /* 229 * General page 230 */ 231 m->queue = m->pc + PQ_FREE; 232 KKASSERT(m->dirty == 0); 233 234 atomic_add_int(&vmstats.v_page_count, 1); 235 atomic_add_int(&vmstats.v_free_count, 1); 236 vpq = &vm_page_queues[m->queue]; 237 if ((vpq->flipflop & 15) == 0) { 238 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 239 m->flags |= PG_ZERO; 240 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 241 atomic_add_int(&vm_page_zero_count, 1); 242 } else { 243 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 244 } 245 ++vpq->flipflop; 246 ++vpq->lcnt; 247 } 248 249 /* 250 * (low level boot) 251 * 252 * Initializes the resident memory module. 253 * 254 * Preallocates memory for critical VM structures and arrays prior to 255 * kernel_map becoming available. 256 * 257 * Memory is allocated from (virtual2_start, virtual2_end) if available, 258 * otherwise memory is allocated from (virtual_start, virtual_end). 259 * 260 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be 261 * large enough to hold vm_page_array & other structures for machines with 262 * large amounts of ram, so we want to use virtual2* when available. 263 */ 264 void 265 vm_page_startup(void) 266 { 267 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start; 268 vm_offset_t mapped; 269 vm_size_t npages; 270 vm_paddr_t page_range; 271 vm_paddr_t new_end; 272 int i; 273 vm_paddr_t pa; 274 int nblocks; 275 vm_paddr_t last_pa; 276 vm_paddr_t end; 277 vm_paddr_t biggestone, biggestsize; 278 vm_paddr_t total; 279 280 total = 0; 281 biggestsize = 0; 282 biggestone = 0; 283 nblocks = 0; 284 vaddr = round_page(vaddr); 285 286 for (i = 0; phys_avail[i + 1]; i += 2) { 287 phys_avail[i] = round_page64(phys_avail[i]); 288 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]); 289 } 290 291 for (i = 0; phys_avail[i + 1]; i += 2) { 292 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 293 294 if (size > biggestsize) { 295 biggestone = i; 296 biggestsize = size; 297 } 298 ++nblocks; 299 total += size; 300 } 301 302 end = phys_avail[biggestone+1]; 303 end = trunc_page(end); 304 305 /* 306 * Initialize the queue headers for the free queue, the active queue 307 * and the inactive queue. 308 */ 309 vm_page_queue_init(); 310 311 #if !defined(_KERNEL_VIRTUAL) 312 /* 313 * VKERNELs don't support minidumps and as such don't need 314 * vm_page_dump 315 * 316 * Allocate a bitmap to indicate that a random physical page 317 * needs to be included in a minidump. 318 * 319 * The amd64 port needs this to indicate which direct map pages 320 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 321 * 322 * However, i386 still needs this workspace internally within the 323 * minidump code. In theory, they are not needed on i386, but are 324 * included should the sf_buf code decide to use them. 325 */ 326 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 327 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 328 end -= vm_page_dump_size; 329 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size, 330 VM_PROT_READ | VM_PROT_WRITE); 331 bzero((void *)vm_page_dump, vm_page_dump_size); 332 #endif 333 /* 334 * Compute the number of pages of memory that will be available for 335 * use (taking into account the overhead of a page structure per 336 * page). 337 */ 338 first_page = phys_avail[0] / PAGE_SIZE; 339 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 340 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 341 342 #ifndef _KERNEL_VIRTUAL 343 /* 344 * (only applies to real kernels) 345 * 346 * Initialize the contiguous reserve map. We initially reserve up 347 * to 1/4 available physical memory or 65536 pages (~256MB), whichever 348 * is lower. 349 * 350 * Once device initialization is complete we return most of the 351 * reserved memory back to the normal page queues but leave some 352 * in reserve for things like usb attachments. 353 */ 354 vm_low_phys_reserved = (vm_paddr_t)65536 << PAGE_SHIFT; 355 if (vm_low_phys_reserved > total / 4) 356 vm_low_phys_reserved = total / 4; 357 if (vm_dma_reserved == 0) { 358 vm_dma_reserved = 16 * 1024 * 1024; /* 16MB */ 359 if (vm_dma_reserved > total / 16) 360 vm_dma_reserved = total / 16; 361 } 362 #endif 363 alist_init(&vm_contig_alist, 65536, vm_contig_ameta, 364 ALIST_RECORDS_65536); 365 366 /* 367 * Initialize the mem entry structures now, and put them in the free 368 * queue. 369 */ 370 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 371 mapped = pmap_map(&vaddr, new_end, end, VM_PROT_READ | VM_PROT_WRITE); 372 vm_page_array = (vm_page_t)mapped; 373 374 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL) 375 /* 376 * since pmap_map on amd64 returns stuff out of a direct-map region, 377 * we have to manually add these pages to the minidump tracking so 378 * that they can be dumped, including the vm_page_array. 379 */ 380 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 381 dump_add_page(pa); 382 #endif 383 384 /* 385 * Clear all of the page structures 386 */ 387 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 388 vm_page_array_size = page_range; 389 390 /* 391 * Construct the free queue(s) in ascending order (by physical 392 * address) so that the first 16MB of physical memory is allocated 393 * last rather than first. On large-memory machines, this avoids 394 * the exhaustion of low physical memory before isa_dmainit has run. 395 */ 396 vmstats.v_page_count = 0; 397 vmstats.v_free_count = 0; 398 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 399 pa = phys_avail[i]; 400 if (i == biggestone) 401 last_pa = new_end; 402 else 403 last_pa = phys_avail[i + 1]; 404 while (pa < last_pa && npages-- > 0) { 405 vm_add_new_page(pa); 406 pa += PAGE_SIZE; 407 } 408 } 409 if (virtual2_start) 410 virtual2_start = vaddr; 411 else 412 virtual_start = vaddr; 413 } 414 415 /* 416 * We tended to reserve a ton of memory for contigmalloc(). Now that most 417 * drivers have initialized we want to return most the remaining free 418 * reserve back to the VM page queues so they can be used for normal 419 * allocations. 420 * 421 * We leave vm_dma_reserved bytes worth of free pages in the reserve pool. 422 */ 423 static void 424 vm_page_startup_finish(void *dummy __unused) 425 { 426 alist_blk_t blk; 427 alist_blk_t rblk; 428 alist_blk_t count; 429 alist_blk_t xcount; 430 alist_blk_t bfree; 431 vm_page_t m; 432 433 spin_lock(&vm_contig_spin); 434 for (;;) { 435 bfree = alist_free_info(&vm_contig_alist, &blk, &count); 436 if (bfree <= vm_dma_reserved / PAGE_SIZE) 437 break; 438 if (count == 0) 439 break; 440 441 /* 442 * Figure out how much of the initial reserve we have to 443 * free in order to reach our target. 444 */ 445 bfree -= vm_dma_reserved / PAGE_SIZE; 446 if (count > bfree) { 447 blk += count - bfree; 448 count = bfree; 449 } 450 451 /* 452 * Calculate the nearest power of 2 <= count. 453 */ 454 for (xcount = 1; xcount <= count; xcount <<= 1) 455 ; 456 xcount >>= 1; 457 blk += count - xcount; 458 count = xcount; 459 460 /* 461 * Allocate the pages from the alist, then free them to 462 * the normal VM page queues. 463 * 464 * Pages allocated from the alist are wired. We have to 465 * busy, unwire, and free them. We must also adjust 466 * vm_low_phys_reserved before freeing any pages to prevent 467 * confusion. 468 */ 469 rblk = alist_alloc(&vm_contig_alist, blk, count); 470 if (rblk != blk) { 471 kprintf("vm_page_startup_finish: Unable to return " 472 "dma space @0x%08x/%d -> 0x%08x\n", 473 blk, count, rblk); 474 break; 475 } 476 atomic_add_int(&vmstats.v_dma_pages, -count); 477 spin_unlock(&vm_contig_spin); 478 479 m = PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT); 480 vm_low_phys_reserved = VM_PAGE_TO_PHYS(m); 481 while (count) { 482 vm_page_busy_wait(m, FALSE, "cpgfr"); 483 vm_page_unwire(m, 0); 484 vm_page_free(m); 485 --count; 486 ++m; 487 } 488 spin_lock(&vm_contig_spin); 489 } 490 spin_unlock(&vm_contig_spin); 491 492 /* 493 * Print out how much DMA space drivers have already allocated and 494 * how much is left over. 495 */ 496 kprintf("DMA space used: %jdk, remaining available: %jdk\n", 497 (intmax_t)(vmstats.v_dma_pages - vm_contig_alist.bl_free) * 498 (PAGE_SIZE / 1024), 499 (intmax_t)vm_contig_alist.bl_free * (PAGE_SIZE / 1024)); 500 } 501 SYSINIT(vm_pgend, SI_SUB_PROC0_POST, SI_ORDER_ANY, 502 vm_page_startup_finish, NULL) 503 504 505 /* 506 * Scan comparison function for Red-Black tree scans. An inclusive 507 * (start,end) is expected. Other fields are not used. 508 */ 509 int 510 rb_vm_page_scancmp(struct vm_page *p, void *data) 511 { 512 struct rb_vm_page_scan_info *info = data; 513 514 if (p->pindex < info->start_pindex) 515 return(-1); 516 if (p->pindex > info->end_pindex) 517 return(1); 518 return(0); 519 } 520 521 int 522 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 523 { 524 if (p1->pindex < p2->pindex) 525 return(-1); 526 if (p1->pindex > p2->pindex) 527 return(1); 528 return(0); 529 } 530 531 void 532 vm_page_init(vm_page_t m) 533 { 534 /* do nothing for now. Called from pmap_page_init() */ 535 } 536 537 /* 538 * Each page queue has its own spin lock, which is fairly optimal for 539 * allocating and freeing pages at least. 540 * 541 * The caller must hold the vm_page_spin_lock() before locking a vm_page's 542 * queue spinlock via this function. Also note that m->queue cannot change 543 * unless both the page and queue are locked. 544 */ 545 static __inline 546 void 547 _vm_page_queue_spin_lock(vm_page_t m) 548 { 549 u_short queue; 550 551 queue = m->queue; 552 if (queue != PQ_NONE) { 553 spin_lock(&vm_page_queues[queue].spin); 554 KKASSERT(queue == m->queue); 555 } 556 } 557 558 static __inline 559 void 560 _vm_page_queue_spin_unlock(vm_page_t m) 561 { 562 u_short queue; 563 564 queue = m->queue; 565 cpu_ccfence(); 566 if (queue != PQ_NONE) 567 spin_unlock(&vm_page_queues[queue].spin); 568 } 569 570 static __inline 571 void 572 _vm_page_queues_spin_lock(u_short queue) 573 { 574 cpu_ccfence(); 575 if (queue != PQ_NONE) 576 spin_lock(&vm_page_queues[queue].spin); 577 } 578 579 580 static __inline 581 void 582 _vm_page_queues_spin_unlock(u_short queue) 583 { 584 cpu_ccfence(); 585 if (queue != PQ_NONE) 586 spin_unlock(&vm_page_queues[queue].spin); 587 } 588 589 void 590 vm_page_queue_spin_lock(vm_page_t m) 591 { 592 _vm_page_queue_spin_lock(m); 593 } 594 595 void 596 vm_page_queues_spin_lock(u_short queue) 597 { 598 _vm_page_queues_spin_lock(queue); 599 } 600 601 void 602 vm_page_queue_spin_unlock(vm_page_t m) 603 { 604 _vm_page_queue_spin_unlock(m); 605 } 606 607 void 608 vm_page_queues_spin_unlock(u_short queue) 609 { 610 _vm_page_queues_spin_unlock(queue); 611 } 612 613 /* 614 * This locks the specified vm_page and its queue in the proper order 615 * (page first, then queue). The queue may change so the caller must 616 * recheck on return. 617 */ 618 static __inline 619 void 620 _vm_page_and_queue_spin_lock(vm_page_t m) 621 { 622 vm_page_spin_lock(m); 623 _vm_page_queue_spin_lock(m); 624 } 625 626 static __inline 627 void 628 _vm_page_and_queue_spin_unlock(vm_page_t m) 629 { 630 _vm_page_queues_spin_unlock(m->queue); 631 vm_page_spin_unlock(m); 632 } 633 634 void 635 vm_page_and_queue_spin_unlock(vm_page_t m) 636 { 637 _vm_page_and_queue_spin_unlock(m); 638 } 639 640 void 641 vm_page_and_queue_spin_lock(vm_page_t m) 642 { 643 _vm_page_and_queue_spin_lock(m); 644 } 645 646 /* 647 * Helper function removes vm_page from its current queue. 648 * Returns the base queue the page used to be on. 649 * 650 * The vm_page and the queue must be spinlocked. 651 * This function will unlock the queue but leave the page spinlocked. 652 */ 653 static __inline u_short 654 _vm_page_rem_queue_spinlocked(vm_page_t m) 655 { 656 struct vpgqueues *pq; 657 u_short queue; 658 659 queue = m->queue; 660 if (queue != PQ_NONE) { 661 pq = &vm_page_queues[queue]; 662 TAILQ_REMOVE(&pq->pl, m, pageq); 663 atomic_add_int(pq->cnt, -1); 664 pq->lcnt--; 665 m->queue = PQ_NONE; 666 vm_page_queues_spin_unlock(queue); 667 if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO)) 668 atomic_subtract_int(&vm_page_zero_count, 1); 669 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE) 670 return (queue - m->pc); 671 } 672 return queue; 673 } 674 675 /* 676 * Helper function places the vm_page on the specified queue. 677 * 678 * The vm_page must be spinlocked. 679 * This function will return with both the page and the queue locked. 680 */ 681 static __inline void 682 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead) 683 { 684 struct vpgqueues *pq; 685 686 KKASSERT(m->queue == PQ_NONE); 687 688 if (queue != PQ_NONE) { 689 vm_page_queues_spin_lock(queue); 690 pq = &vm_page_queues[queue]; 691 ++pq->lcnt; 692 atomic_add_int(pq->cnt, 1); 693 m->queue = queue; 694 695 /* 696 * Put zero'd pages on the end ( where we look for zero'd pages 697 * first ) and non-zerod pages at the head. 698 */ 699 if (queue - m->pc == PQ_FREE) { 700 if (m->flags & PG_ZERO) { 701 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 702 atomic_add_int(&vm_page_zero_count, 1); 703 } else { 704 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 705 } 706 } else if (athead) { 707 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 708 } else { 709 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 710 } 711 /* leave the queue spinlocked */ 712 } 713 } 714 715 /* 716 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 717 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we 718 * did not. Only one sleep call will be made before returning. 719 * 720 * This function does NOT busy the page and on return the page is not 721 * guaranteed to be available. 722 */ 723 void 724 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 725 { 726 u_int32_t flags; 727 728 for (;;) { 729 flags = m->flags; 730 cpu_ccfence(); 731 732 if ((flags & PG_BUSY) == 0 && 733 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) { 734 break; 735 } 736 tsleep_interlock(m, 0); 737 if (atomic_cmpset_int(&m->flags, flags, 738 flags | PG_WANTED | PG_REFERENCED)) { 739 tsleep(m, PINTERLOCKED, msg, 0); 740 break; 741 } 742 } 743 } 744 745 /* 746 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we 747 * also wait for m->busy to become 0 before setting PG_BUSY. 748 */ 749 void 750 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m, 751 int also_m_busy, const char *msg 752 VM_PAGE_DEBUG_ARGS) 753 { 754 u_int32_t flags; 755 756 for (;;) { 757 flags = m->flags; 758 cpu_ccfence(); 759 if (flags & PG_BUSY) { 760 tsleep_interlock(m, 0); 761 if (atomic_cmpset_int(&m->flags, flags, 762 flags | PG_WANTED | PG_REFERENCED)) { 763 tsleep(m, PINTERLOCKED, msg, 0); 764 } 765 } else if (also_m_busy && (flags & PG_SBUSY)) { 766 tsleep_interlock(m, 0); 767 if (atomic_cmpset_int(&m->flags, flags, 768 flags | PG_WANTED | PG_REFERENCED)) { 769 tsleep(m, PINTERLOCKED, msg, 0); 770 } 771 } else { 772 if (atomic_cmpset_int(&m->flags, flags, 773 flags | PG_BUSY)) { 774 #ifdef VM_PAGE_DEBUG 775 m->busy_func = func; 776 m->busy_line = lineno; 777 #endif 778 break; 779 } 780 } 781 } 782 } 783 784 /* 785 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy 786 * is also 0. 787 * 788 * Returns non-zero on failure. 789 */ 790 int 791 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy 792 VM_PAGE_DEBUG_ARGS) 793 { 794 u_int32_t flags; 795 796 for (;;) { 797 flags = m->flags; 798 cpu_ccfence(); 799 if (flags & PG_BUSY) 800 return TRUE; 801 if (also_m_busy && (flags & PG_SBUSY)) 802 return TRUE; 803 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 804 #ifdef VM_PAGE_DEBUG 805 m->busy_func = func; 806 m->busy_line = lineno; 807 #endif 808 return FALSE; 809 } 810 } 811 } 812 813 /* 814 * Clear the PG_BUSY flag and return non-zero to indicate to the caller 815 * that a wakeup() should be performed. 816 * 817 * The vm_page must be spinlocked and will remain spinlocked on return. 818 * The related queue must NOT be spinlocked (which could deadlock us). 819 * 820 * (inline version) 821 */ 822 static __inline 823 int 824 _vm_page_wakeup(vm_page_t m) 825 { 826 u_int32_t flags; 827 828 for (;;) { 829 flags = m->flags; 830 cpu_ccfence(); 831 if (atomic_cmpset_int(&m->flags, flags, 832 flags & ~(PG_BUSY | PG_WANTED))) { 833 break; 834 } 835 } 836 return(flags & PG_WANTED); 837 } 838 839 /* 840 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This 841 * is typically the last call you make on a page before moving onto 842 * other things. 843 */ 844 void 845 vm_page_wakeup(vm_page_t m) 846 { 847 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 848 vm_page_spin_lock(m); 849 if (_vm_page_wakeup(m)) { 850 vm_page_spin_unlock(m); 851 wakeup(m); 852 } else { 853 vm_page_spin_unlock(m); 854 } 855 } 856 857 /* 858 * Holding a page keeps it from being reused. Other parts of the system 859 * can still disassociate the page from its current object and free it, or 860 * perform read or write I/O on it and/or otherwise manipulate the page, 861 * but if the page is held the VM system will leave the page and its data 862 * intact and not reuse the page for other purposes until the last hold 863 * reference is released. (see vm_page_wire() if you want to prevent the 864 * page from being disassociated from its object too). 865 * 866 * The caller must still validate the contents of the page and, if necessary, 867 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete 868 * before manipulating the page. 869 * 870 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary 871 */ 872 void 873 vm_page_hold(vm_page_t m) 874 { 875 vm_page_spin_lock(m); 876 atomic_add_int(&m->hold_count, 1); 877 if (m->queue - m->pc == PQ_FREE) { 878 _vm_page_queue_spin_lock(m); 879 _vm_page_rem_queue_spinlocked(m); 880 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 881 _vm_page_queue_spin_unlock(m); 882 } 883 vm_page_spin_unlock(m); 884 } 885 886 /* 887 * The opposite of vm_page_hold(). A page can be freed while being held, 888 * which places it on the PQ_HOLD queue. If we are able to busy the page 889 * after the hold count drops to zero we will move the page to the 890 * appropriate PQ_FREE queue by calling vm_page_free_toq(). 891 */ 892 void 893 vm_page_unhold(vm_page_t m) 894 { 895 vm_page_spin_lock(m); 896 atomic_add_int(&m->hold_count, -1); 897 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) { 898 _vm_page_queue_spin_lock(m); 899 _vm_page_rem_queue_spinlocked(m); 900 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 901 _vm_page_queue_spin_unlock(m); 902 } 903 vm_page_spin_unlock(m); 904 } 905 906 /* 907 * Inserts the given vm_page into the object and object list. 908 * 909 * The pagetables are not updated but will presumably fault the page 910 * in if necessary, or if a kernel page the caller will at some point 911 * enter the page into the kernel's pmap. We are not allowed to block 912 * here so we *can't* do this anyway. 913 * 914 * This routine may not block. 915 * This routine must be called with the vm_object held. 916 * This routine must be called with a critical section held. 917 * 918 * This routine returns TRUE if the page was inserted into the object 919 * successfully, and FALSE if the page already exists in the object. 920 */ 921 int 922 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 923 { 924 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(object)); 925 if (m->object != NULL) 926 panic("vm_page_insert: already inserted"); 927 928 object->generation++; 929 930 /* 931 * Record the object/offset pair in this page and add the 932 * pv_list_count of the page to the object. 933 * 934 * The vm_page spin lock is required for interactions with the pmap. 935 */ 936 vm_page_spin_lock(m); 937 m->object = object; 938 m->pindex = pindex; 939 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) { 940 m->object = NULL; 941 m->pindex = 0; 942 vm_page_spin_unlock(m); 943 return FALSE; 944 } 945 object->resident_page_count++; 946 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */ 947 vm_page_spin_unlock(m); 948 949 /* 950 * Since we are inserting a new and possibly dirty page, 951 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 952 */ 953 if ((m->valid & m->dirty) || 954 (m->flags & (PG_WRITEABLE | PG_NEED_COMMIT))) 955 vm_object_set_writeable_dirty(object); 956 957 /* 958 * Checks for a swap assignment and sets PG_SWAPPED if appropriate. 959 */ 960 swap_pager_page_inserted(m); 961 return TRUE; 962 } 963 964 /* 965 * Removes the given vm_page_t from the (object,index) table 966 * 967 * The underlying pmap entry (if any) is NOT removed here. 968 * This routine may not block. 969 * 970 * The page must be BUSY and will remain BUSY on return. 971 * No other requirements. 972 * 973 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave 974 * it busy. 975 */ 976 void 977 vm_page_remove(vm_page_t m) 978 { 979 vm_object_t object; 980 981 if (m->object == NULL) { 982 return; 983 } 984 985 if ((m->flags & PG_BUSY) == 0) 986 panic("vm_page_remove: page not busy"); 987 988 object = m->object; 989 990 vm_object_hold(object); 991 992 /* 993 * Remove the page from the object and update the object. 994 * 995 * The vm_page spin lock is required for interactions with the pmap. 996 */ 997 vm_page_spin_lock(m); 998 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 999 object->resident_page_count--; 1000 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */ 1001 m->object = NULL; 1002 vm_page_spin_unlock(m); 1003 1004 object->generation++; 1005 1006 vm_object_drop(object); 1007 } 1008 1009 /* 1010 * Locate and return the page at (object, pindex), or NULL if the 1011 * page could not be found. 1012 * 1013 * The caller must hold the vm_object token. 1014 */ 1015 vm_page_t 1016 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 1017 { 1018 vm_page_t m; 1019 1020 /* 1021 * Search the hash table for this object/offset pair 1022 */ 1023 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1024 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1025 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex)); 1026 return(m); 1027 } 1028 1029 vm_page_t 1030 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object, 1031 vm_pindex_t pindex, 1032 int also_m_busy, const char *msg 1033 VM_PAGE_DEBUG_ARGS) 1034 { 1035 u_int32_t flags; 1036 vm_page_t m; 1037 1038 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1039 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1040 while (m) { 1041 KKASSERT(m->object == object && m->pindex == pindex); 1042 flags = m->flags; 1043 cpu_ccfence(); 1044 if (flags & PG_BUSY) { 1045 tsleep_interlock(m, 0); 1046 if (atomic_cmpset_int(&m->flags, flags, 1047 flags | PG_WANTED | PG_REFERENCED)) { 1048 tsleep(m, PINTERLOCKED, msg, 0); 1049 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1050 pindex); 1051 } 1052 } else if (also_m_busy && (flags & PG_SBUSY)) { 1053 tsleep_interlock(m, 0); 1054 if (atomic_cmpset_int(&m->flags, flags, 1055 flags | PG_WANTED | PG_REFERENCED)) { 1056 tsleep(m, PINTERLOCKED, msg, 0); 1057 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 1058 pindex); 1059 } 1060 } else if (atomic_cmpset_int(&m->flags, flags, 1061 flags | PG_BUSY)) { 1062 #ifdef VM_PAGE_DEBUG 1063 m->busy_func = func; 1064 m->busy_line = lineno; 1065 #endif 1066 break; 1067 } 1068 } 1069 return m; 1070 } 1071 1072 /* 1073 * Attempt to lookup and busy a page. 1074 * 1075 * Returns NULL if the page could not be found 1076 * 1077 * Returns a vm_page and error == TRUE if the page exists but could not 1078 * be busied. 1079 * 1080 * Returns a vm_page and error == FALSE on success. 1081 */ 1082 vm_page_t 1083 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object, 1084 vm_pindex_t pindex, 1085 int also_m_busy, int *errorp 1086 VM_PAGE_DEBUG_ARGS) 1087 { 1088 u_int32_t flags; 1089 vm_page_t m; 1090 1091 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 1092 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 1093 *errorp = FALSE; 1094 while (m) { 1095 KKASSERT(m->object == object && m->pindex == pindex); 1096 flags = m->flags; 1097 cpu_ccfence(); 1098 if (flags & PG_BUSY) { 1099 *errorp = TRUE; 1100 break; 1101 } 1102 if (also_m_busy && (flags & PG_SBUSY)) { 1103 *errorp = TRUE; 1104 break; 1105 } 1106 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 1107 #ifdef VM_PAGE_DEBUG 1108 m->busy_func = func; 1109 m->busy_line = lineno; 1110 #endif 1111 break; 1112 } 1113 } 1114 return m; 1115 } 1116 1117 /* 1118 * Caller must hold the related vm_object 1119 */ 1120 vm_page_t 1121 vm_page_next(vm_page_t m) 1122 { 1123 vm_page_t next; 1124 1125 next = vm_page_rb_tree_RB_NEXT(m); 1126 if (next && next->pindex != m->pindex + 1) 1127 next = NULL; 1128 return (next); 1129 } 1130 1131 /* 1132 * vm_page_rename() 1133 * 1134 * Move the given vm_page from its current object to the specified 1135 * target object/offset. The page must be busy and will remain so 1136 * on return. 1137 * 1138 * new_object must be held. 1139 * This routine might block. XXX ? 1140 * 1141 * NOTE: Swap associated with the page must be invalidated by the move. We 1142 * have to do this for several reasons: (1) we aren't freeing the 1143 * page, (2) we are dirtying the page, (3) the VM system is probably 1144 * moving the page from object A to B, and will then later move 1145 * the backing store from A to B and we can't have a conflict. 1146 * 1147 * NOTE: We *always* dirty the page. It is necessary both for the 1148 * fact that we moved it, and because we may be invalidating 1149 * swap. If the page is on the cache, we have to deactivate it 1150 * or vm_page_dirty() will panic. Dirty pages are not allowed 1151 * on the cache. 1152 */ 1153 void 1154 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1155 { 1156 KKASSERT(m->flags & PG_BUSY); 1157 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(new_object)); 1158 if (m->object) { 1159 ASSERT_LWKT_TOKEN_HELD_EXCL(vm_object_token(m->object)); 1160 vm_page_remove(m); 1161 } 1162 if (vm_page_insert(m, new_object, new_pindex) == FALSE) { 1163 panic("vm_page_rename: target exists (%p,%"PRIu64")", 1164 new_object, new_pindex); 1165 } 1166 if (m->queue - m->pc == PQ_CACHE) 1167 vm_page_deactivate(m); 1168 vm_page_dirty(m); 1169 } 1170 1171 /* 1172 * vm_page_unqueue() without any wakeup. This routine is used when a page 1173 * is being moved between queues or otherwise is to remain BUSYied by the 1174 * caller. 1175 * 1176 * This routine may not block. 1177 */ 1178 void 1179 vm_page_unqueue_nowakeup(vm_page_t m) 1180 { 1181 vm_page_and_queue_spin_lock(m); 1182 (void)_vm_page_rem_queue_spinlocked(m); 1183 vm_page_spin_unlock(m); 1184 } 1185 1186 /* 1187 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 1188 * if necessary. 1189 * 1190 * This routine may not block. 1191 */ 1192 void 1193 vm_page_unqueue(vm_page_t m) 1194 { 1195 u_short queue; 1196 1197 vm_page_and_queue_spin_lock(m); 1198 queue = _vm_page_rem_queue_spinlocked(m); 1199 if (queue == PQ_FREE || queue == PQ_CACHE) { 1200 vm_page_spin_unlock(m); 1201 pagedaemon_wakeup(); 1202 } else { 1203 vm_page_spin_unlock(m); 1204 } 1205 } 1206 1207 /* 1208 * vm_page_list_find() 1209 * 1210 * Find a page on the specified queue with color optimization. 1211 * 1212 * The page coloring optimization attempts to locate a page that does 1213 * not overload other nearby pages in the object in the cpu's L1 or L2 1214 * caches. We need this optimization because cpu caches tend to be 1215 * physical caches, while object spaces tend to be virtual. 1216 * 1217 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock 1218 * and the algorithm is adjusted to localize allocations on a per-core basis. 1219 * This is done by 'twisting' the colors. 1220 * 1221 * The page is returned spinlocked and removed from its queue (it will 1222 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller 1223 * is responsible for dealing with the busy-page case (usually by 1224 * deactivating the page and looping). 1225 * 1226 * NOTE: This routine is carefully inlined. A non-inlined version 1227 * is available for outside callers but the only critical path is 1228 * from within this source file. 1229 * 1230 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE 1231 * represent stable storage, allowing us to order our locks vm_page 1232 * first, then queue. 1233 */ 1234 static __inline 1235 vm_page_t 1236 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1237 { 1238 vm_page_t m; 1239 1240 for (;;) { 1241 if (prefer_zero) 1242 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist); 1243 else 1244 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl); 1245 if (m == NULL) { 1246 m = _vm_page_list_find2(basequeue, index); 1247 return(m); 1248 } 1249 vm_page_and_queue_spin_lock(m); 1250 if (m->queue == basequeue + index) { 1251 _vm_page_rem_queue_spinlocked(m); 1252 /* vm_page_t spin held, no queue spin */ 1253 break; 1254 } 1255 vm_page_and_queue_spin_unlock(m); 1256 } 1257 return(m); 1258 } 1259 1260 static vm_page_t 1261 _vm_page_list_find2(int basequeue, int index) 1262 { 1263 int i; 1264 vm_page_t m = NULL; 1265 struct vpgqueues *pq; 1266 1267 pq = &vm_page_queues[basequeue]; 1268 1269 /* 1270 * Note that for the first loop, index+i and index-i wind up at the 1271 * same place. Even though this is not totally optimal, we've already 1272 * blown it by missing the cache case so we do not care. 1273 */ 1274 for (i = PQ_L2_SIZE / 2; i > 0; --i) { 1275 for (;;) { 1276 m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl); 1277 if (m) { 1278 _vm_page_and_queue_spin_lock(m); 1279 if (m->queue == 1280 basequeue + ((index + i) & PQ_L2_MASK)) { 1281 _vm_page_rem_queue_spinlocked(m); 1282 return(m); 1283 } 1284 _vm_page_and_queue_spin_unlock(m); 1285 continue; 1286 } 1287 m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl); 1288 if (m) { 1289 _vm_page_and_queue_spin_lock(m); 1290 if (m->queue == 1291 basequeue + ((index - i) & PQ_L2_MASK)) { 1292 _vm_page_rem_queue_spinlocked(m); 1293 return(m); 1294 } 1295 _vm_page_and_queue_spin_unlock(m); 1296 continue; 1297 } 1298 break; /* next i */ 1299 } 1300 } 1301 return(m); 1302 } 1303 1304 /* 1305 * Returns a vm_page candidate for allocation. The page is not busied so 1306 * it can move around. The caller must busy the page (and typically 1307 * deactivate it if it cannot be busied!) 1308 * 1309 * Returns a spinlocked vm_page that has been removed from its queue. 1310 */ 1311 vm_page_t 1312 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1313 { 1314 return(_vm_page_list_find(basequeue, index, prefer_zero)); 1315 } 1316 1317 /* 1318 * Find a page on the cache queue with color optimization, remove it 1319 * from the queue, and busy it. The returned page will not be spinlocked. 1320 * 1321 * A candidate failure will be deactivated. Candidates can fail due to 1322 * being busied by someone else, in which case they will be deactivated. 1323 * 1324 * This routine may not block. 1325 * 1326 */ 1327 static vm_page_t 1328 vm_page_select_cache(u_short pg_color) 1329 { 1330 vm_page_t m; 1331 1332 for (;;) { 1333 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE); 1334 if (m == NULL) 1335 break; 1336 /* 1337 * (m) has been removed from its queue and spinlocked 1338 */ 1339 if (vm_page_busy_try(m, TRUE)) { 1340 _vm_page_deactivate_locked(m, 0); 1341 vm_page_spin_unlock(m); 1342 } else { 1343 /* 1344 * We successfully busied the page 1345 */ 1346 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) == 0 && 1347 m->hold_count == 0 && 1348 m->wire_count == 0 && 1349 (m->dirty & m->valid) == 0) { 1350 vm_page_spin_unlock(m); 1351 pagedaemon_wakeup(); 1352 return(m); 1353 } 1354 1355 /* 1356 * The page cannot be recycled, deactivate it. 1357 */ 1358 _vm_page_deactivate_locked(m, 0); 1359 if (_vm_page_wakeup(m)) { 1360 vm_page_spin_unlock(m); 1361 wakeup(m); 1362 } else { 1363 vm_page_spin_unlock(m); 1364 } 1365 } 1366 } 1367 return (m); 1368 } 1369 1370 /* 1371 * Find a free or zero page, with specified preference. We attempt to 1372 * inline the nominal case and fall back to _vm_page_select_free() 1373 * otherwise. A busied page is removed from the queue and returned. 1374 * 1375 * This routine may not block. 1376 */ 1377 static __inline vm_page_t 1378 vm_page_select_free(u_short pg_color, boolean_t prefer_zero) 1379 { 1380 vm_page_t m; 1381 1382 for (;;) { 1383 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK, 1384 prefer_zero); 1385 if (m == NULL) 1386 break; 1387 if (vm_page_busy_try(m, TRUE)) { 1388 /* 1389 * Various mechanisms such as a pmap_collect can 1390 * result in a busy page on the free queue. We 1391 * have to move the page out of the way so we can 1392 * retry the allocation. If the other thread is not 1393 * allocating the page then m->valid will remain 0 and 1394 * the pageout daemon will free the page later on. 1395 * 1396 * Since we could not busy the page, however, we 1397 * cannot make assumptions as to whether the page 1398 * will be allocated by the other thread or not, 1399 * so all we can do is deactivate it to move it out 1400 * of the way. In particular, if the other thread 1401 * wires the page it may wind up on the inactive 1402 * queue and the pageout daemon will have to deal 1403 * with that case too. 1404 */ 1405 _vm_page_deactivate_locked(m, 0); 1406 vm_page_spin_unlock(m); 1407 } else { 1408 /* 1409 * Theoretically if we are able to busy the page 1410 * atomic with the queue removal (using the vm_page 1411 * lock) nobody else should be able to mess with the 1412 * page before us. 1413 */ 1414 KKASSERT((m->flags & (PG_UNMANAGED | 1415 PG_NEED_COMMIT)) == 0); 1416 KKASSERT(m->hold_count == 0); 1417 KKASSERT(m->wire_count == 0); 1418 vm_page_spin_unlock(m); 1419 pagedaemon_wakeup(); 1420 1421 /* return busied and removed page */ 1422 return(m); 1423 } 1424 } 1425 return(m); 1426 } 1427 1428 /* 1429 * This implements a per-cpu cache of free, zero'd, ready-to-go pages. 1430 * The idea is to populate this cache prior to acquiring any locks so 1431 * we don't wind up potentially zeroing VM pages (under heavy loads) while 1432 * holding potentialy contending locks. 1433 * 1434 * Note that we allocate the page uninserted into anything and use a pindex 1435 * of 0, the vm_page_alloc() will effectively add gd_cpuid so these 1436 * allocations should wind up being uncontended. However, we still want 1437 * to rove across PQ_L2_SIZE. 1438 */ 1439 void 1440 vm_page_pcpu_cache(void) 1441 { 1442 #if 0 1443 globaldata_t gd = mycpu; 1444 vm_page_t m; 1445 1446 if (gd->gd_vmpg_count < GD_MINVMPG) { 1447 crit_enter_gd(gd); 1448 while (gd->gd_vmpg_count < GD_MAXVMPG) { 1449 m = vm_page_alloc(NULL, ticks & ~ncpus2_mask, 1450 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL | 1451 VM_ALLOC_NULL_OK | VM_ALLOC_ZERO); 1452 if (gd->gd_vmpg_count < GD_MAXVMPG) { 1453 if ((m->flags & PG_ZERO) == 0) { 1454 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 1455 vm_page_flag_set(m, PG_ZERO); 1456 } 1457 gd->gd_vmpg_array[gd->gd_vmpg_count++] = m; 1458 } else { 1459 vm_page_free(m); 1460 } 1461 } 1462 crit_exit_gd(gd); 1463 } 1464 #endif 1465 } 1466 1467 /* 1468 * vm_page_alloc() 1469 * 1470 * Allocate and return a memory cell associated with this VM object/offset 1471 * pair. If object is NULL an unassociated page will be allocated. 1472 * 1473 * The returned page will be busied and removed from its queues. This 1474 * routine can block and may return NULL if a race occurs and the page 1475 * is found to already exist at the specified (object, pindex). 1476 * 1477 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 1478 * VM_ALLOC_QUICK like normal but cannot use cache 1479 * VM_ALLOC_SYSTEM greater free drain 1480 * VM_ALLOC_INTERRUPT allow free list to be completely drained 1481 * VM_ALLOC_ZERO advisory request for pre-zero'd page only 1482 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only 1483 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision 1484 * (see vm_page_grab()) 1485 * VM_ALLOC_USE_GD ok to use per-gd cache 1486 * 1487 * The object must be held if not NULL 1488 * This routine may not block 1489 * 1490 * Additional special handling is required when called from an interrupt 1491 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 1492 * in this case. 1493 */ 1494 vm_page_t 1495 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 1496 { 1497 globaldata_t gd = mycpu; 1498 vm_object_t obj; 1499 vm_page_t m; 1500 u_short pg_color; 1501 1502 #if 0 1503 /* 1504 * Special per-cpu free VM page cache. The pages are pre-busied 1505 * and pre-zerod for us. 1506 */ 1507 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) { 1508 crit_enter_gd(gd); 1509 if (gd->gd_vmpg_count) { 1510 m = gd->gd_vmpg_array[--gd->gd_vmpg_count]; 1511 crit_exit_gd(gd); 1512 goto done; 1513 } 1514 crit_exit_gd(gd); 1515 } 1516 #endif 1517 m = NULL; 1518 1519 /* 1520 * Cpu twist - cpu localization algorithm 1521 */ 1522 if (object) { 1523 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) + 1524 (object->pg_color & ~ncpus_fit_mask); 1525 } else { 1526 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask); 1527 } 1528 KKASSERT(page_req & 1529 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK| 1530 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 1531 1532 /* 1533 * Certain system threads (pageout daemon, buf_daemon's) are 1534 * allowed to eat deeper into the free page list. 1535 */ 1536 if (curthread->td_flags & TDF_SYSTHREAD) 1537 page_req |= VM_ALLOC_SYSTEM; 1538 1539 loop: 1540 if (vmstats.v_free_count > vmstats.v_free_reserved || 1541 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) || 1542 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 && 1543 vmstats.v_free_count > vmstats.v_interrupt_free_min) 1544 ) { 1545 /* 1546 * The free queue has sufficient free pages to take one out. 1547 */ 1548 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) 1549 m = vm_page_select_free(pg_color, TRUE); 1550 else 1551 m = vm_page_select_free(pg_color, FALSE); 1552 } else if (page_req & VM_ALLOC_NORMAL) { 1553 /* 1554 * Allocatable from the cache (non-interrupt only). On 1555 * success, we must free the page and try again, thus 1556 * ensuring that vmstats.v_*_free_min counters are replenished. 1557 */ 1558 #ifdef INVARIANTS 1559 if (curthread->td_preempted) { 1560 kprintf("vm_page_alloc(): warning, attempt to allocate" 1561 " cache page from preempting interrupt\n"); 1562 m = NULL; 1563 } else { 1564 m = vm_page_select_cache(pg_color); 1565 } 1566 #else 1567 m = vm_page_select_cache(pg_color); 1568 #endif 1569 /* 1570 * On success move the page into the free queue and loop. 1571 * 1572 * Only do this if we can safely acquire the vm_object lock, 1573 * because this is effectively a random page and the caller 1574 * might be holding the lock shared, we don't want to 1575 * deadlock. 1576 */ 1577 if (m != NULL) { 1578 KASSERT(m->dirty == 0, 1579 ("Found dirty cache page %p", m)); 1580 if ((obj = m->object) != NULL) { 1581 if (vm_object_hold_try(obj)) { 1582 vm_page_protect(m, VM_PROT_NONE); 1583 vm_page_free(m); 1584 /* m->object NULL here */ 1585 vm_object_drop(obj); 1586 } else { 1587 vm_page_deactivate(m); 1588 vm_page_wakeup(m); 1589 } 1590 } else { 1591 vm_page_protect(m, VM_PROT_NONE); 1592 vm_page_free(m); 1593 } 1594 goto loop; 1595 } 1596 1597 /* 1598 * On failure return NULL 1599 */ 1600 #if defined(DIAGNOSTIC) 1601 if (vmstats.v_cache_count > 0) 1602 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count); 1603 #endif 1604 vm_pageout_deficit++; 1605 pagedaemon_wakeup(); 1606 return (NULL); 1607 } else { 1608 /* 1609 * No pages available, wakeup the pageout daemon and give up. 1610 */ 1611 vm_pageout_deficit++; 1612 pagedaemon_wakeup(); 1613 return (NULL); 1614 } 1615 1616 /* 1617 * v_free_count can race so loop if we don't find the expected 1618 * page. 1619 */ 1620 if (m == NULL) 1621 goto loop; 1622 1623 /* 1624 * Good page found. The page has already been busied for us and 1625 * removed from its queues. 1626 */ 1627 KASSERT(m->dirty == 0, 1628 ("vm_page_alloc: free/cache page %p was dirty", m)); 1629 KKASSERT(m->queue == PQ_NONE); 1630 1631 #if 0 1632 done: 1633 #endif 1634 /* 1635 * Initialize the structure, inheriting some flags but clearing 1636 * all the rest. The page has already been busied for us. 1637 */ 1638 vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY)); 1639 KKASSERT(m->wire_count == 0); 1640 KKASSERT(m->busy == 0); 1641 m->act_count = 0; 1642 m->valid = 0; 1643 1644 /* 1645 * Caller must be holding the object lock (asserted by 1646 * vm_page_insert()). 1647 * 1648 * NOTE: Inserting a page here does not insert it into any pmaps 1649 * (which could cause us to block allocating memory). 1650 * 1651 * NOTE: If no object an unassociated page is allocated, m->pindex 1652 * can be used by the caller for any purpose. 1653 */ 1654 if (object) { 1655 if (vm_page_insert(m, object, pindex) == FALSE) { 1656 vm_page_free(m); 1657 if ((page_req & VM_ALLOC_NULL_OK) == 0) 1658 panic("PAGE RACE %p[%ld]/%p", 1659 object, (long)pindex, m); 1660 m = NULL; 1661 } 1662 } else { 1663 m->pindex = pindex; 1664 } 1665 1666 /* 1667 * Don't wakeup too often - wakeup the pageout daemon when 1668 * we would be nearly out of memory. 1669 */ 1670 pagedaemon_wakeup(); 1671 1672 /* 1673 * A PG_BUSY page is returned. 1674 */ 1675 return (m); 1676 } 1677 1678 /* 1679 * Attempt to allocate contiguous physical memory with the specified 1680 * requirements. 1681 */ 1682 vm_page_t 1683 vm_page_alloc_contig(vm_paddr_t low, vm_paddr_t high, 1684 unsigned long alignment, unsigned long boundary, 1685 unsigned long size) 1686 { 1687 alist_blk_t blk; 1688 1689 alignment >>= PAGE_SHIFT; 1690 if (alignment == 0) 1691 alignment = 1; 1692 boundary >>= PAGE_SHIFT; 1693 if (boundary == 0) 1694 boundary = 1; 1695 size = (size + PAGE_MASK) >> PAGE_SHIFT; 1696 1697 spin_lock(&vm_contig_spin); 1698 blk = alist_alloc(&vm_contig_alist, 0, size); 1699 if (blk == ALIST_BLOCK_NONE) { 1700 spin_unlock(&vm_contig_spin); 1701 if (bootverbose) { 1702 kprintf("vm_page_alloc_contig: %ldk nospace\n", 1703 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1704 } 1705 return(NULL); 1706 } 1707 if (high && ((vm_paddr_t)(blk + size) << PAGE_SHIFT) > high) { 1708 alist_free(&vm_contig_alist, blk, size); 1709 spin_unlock(&vm_contig_spin); 1710 if (bootverbose) { 1711 kprintf("vm_page_alloc_contig: %ldk high " 1712 "%016jx failed\n", 1713 (size + PAGE_MASK) * (PAGE_SIZE / 1024), 1714 (intmax_t)high); 1715 } 1716 return(NULL); 1717 } 1718 spin_unlock(&vm_contig_spin); 1719 if (vm_contig_verbose) { 1720 kprintf("vm_page_alloc_contig: %016jx/%ldk\n", 1721 (intmax_t)(vm_paddr_t)blk << PAGE_SHIFT, 1722 (size + PAGE_MASK) * (PAGE_SIZE / 1024)); 1723 } 1724 return (PHYS_TO_VM_PAGE((vm_paddr_t)blk << PAGE_SHIFT)); 1725 } 1726 1727 /* 1728 * Free contiguously allocated pages. The pages will be wired but not busy. 1729 * When freeing to the alist we leave them wired and not busy. 1730 */ 1731 void 1732 vm_page_free_contig(vm_page_t m, unsigned long size) 1733 { 1734 vm_paddr_t pa = VM_PAGE_TO_PHYS(m); 1735 vm_pindex_t start = pa >> PAGE_SHIFT; 1736 vm_pindex_t pages = (size + PAGE_MASK) >> PAGE_SHIFT; 1737 1738 if (vm_contig_verbose) { 1739 kprintf("vm_page_free_contig: %016jx/%ldk\n", 1740 (intmax_t)pa, size / 1024); 1741 } 1742 if (pa < vm_low_phys_reserved) { 1743 KKASSERT(pa + size <= vm_low_phys_reserved); 1744 spin_lock(&vm_contig_spin); 1745 alist_free(&vm_contig_alist, start, pages); 1746 spin_unlock(&vm_contig_spin); 1747 } else { 1748 while (pages) { 1749 vm_page_busy_wait(m, FALSE, "cpgfr"); 1750 vm_page_unwire(m, 0); 1751 vm_page_free(m); 1752 --pages; 1753 ++m; 1754 } 1755 1756 } 1757 } 1758 1759 1760 /* 1761 * Wait for sufficient free memory for nominal heavy memory use kernel 1762 * operations. 1763 * 1764 * WARNING! Be sure never to call this in any vm_pageout code path, which 1765 * will trivially deadlock the system. 1766 */ 1767 void 1768 vm_wait_nominal(void) 1769 { 1770 while (vm_page_count_min(0)) 1771 vm_wait(0); 1772 } 1773 1774 /* 1775 * Test if vm_wait_nominal() would block. 1776 */ 1777 int 1778 vm_test_nominal(void) 1779 { 1780 if (vm_page_count_min(0)) 1781 return(1); 1782 return(0); 1783 } 1784 1785 /* 1786 * Block until free pages are available for allocation, called in various 1787 * places before memory allocations. 1788 * 1789 * The caller may loop if vm_page_count_min() == FALSE so we cannot be 1790 * more generous then that. 1791 */ 1792 void 1793 vm_wait(int timo) 1794 { 1795 /* 1796 * never wait forever 1797 */ 1798 if (timo == 0) 1799 timo = hz; 1800 lwkt_gettoken(&vm_token); 1801 1802 if (curthread == pagethread) { 1803 /* 1804 * The pageout daemon itself needs pages, this is bad. 1805 */ 1806 if (vm_page_count_min(0)) { 1807 vm_pageout_pages_needed = 1; 1808 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 1809 } 1810 } else { 1811 /* 1812 * Wakeup the pageout daemon if necessary and wait. 1813 * 1814 * Do not wait indefinitely for the target to be reached, 1815 * as load might prevent it from being reached any time soon. 1816 * But wait a little to try to slow down page allocations 1817 * and to give more important threads (the pagedaemon) 1818 * allocation priority. 1819 */ 1820 if (vm_page_count_target()) { 1821 if (vm_pages_needed == 0) { 1822 vm_pages_needed = 1; 1823 wakeup(&vm_pages_needed); 1824 } 1825 ++vm_pages_waiting; /* SMP race ok */ 1826 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 1827 } 1828 } 1829 lwkt_reltoken(&vm_token); 1830 } 1831 1832 /* 1833 * Block until free pages are available for allocation 1834 * 1835 * Called only from vm_fault so that processes page faulting can be 1836 * easily tracked. 1837 */ 1838 void 1839 vm_wait_pfault(void) 1840 { 1841 /* 1842 * Wakeup the pageout daemon if necessary and wait. 1843 * 1844 * Do not wait indefinitely for the target to be reached, 1845 * as load might prevent it from being reached any time soon. 1846 * But wait a little to try to slow down page allocations 1847 * and to give more important threads (the pagedaemon) 1848 * allocation priority. 1849 */ 1850 if (vm_page_count_min(0)) { 1851 lwkt_gettoken(&vm_token); 1852 while (vm_page_count_severe()) { 1853 if (vm_page_count_target()) { 1854 if (vm_pages_needed == 0) { 1855 vm_pages_needed = 1; 1856 wakeup(&vm_pages_needed); 1857 } 1858 ++vm_pages_waiting; /* SMP race ok */ 1859 tsleep(&vmstats.v_free_count, 0, "pfault", hz); 1860 } 1861 } 1862 lwkt_reltoken(&vm_token); 1863 } 1864 } 1865 1866 /* 1867 * Put the specified page on the active list (if appropriate). Ensure 1868 * that act_count is at least ACT_INIT but do not otherwise mess with it. 1869 * 1870 * The caller should be holding the page busied ? XXX 1871 * This routine may not block. 1872 */ 1873 void 1874 vm_page_activate(vm_page_t m) 1875 { 1876 u_short oqueue; 1877 1878 vm_page_spin_lock(m); 1879 if (m->queue - m->pc != PQ_ACTIVE) { 1880 _vm_page_queue_spin_lock(m); 1881 oqueue = _vm_page_rem_queue_spinlocked(m); 1882 /* page is left spinlocked, queue is unlocked */ 1883 1884 if (oqueue == PQ_CACHE) 1885 mycpu->gd_cnt.v_reactivated++; 1886 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1887 if (m->act_count < ACT_INIT) 1888 m->act_count = ACT_INIT; 1889 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0); 1890 } 1891 _vm_page_and_queue_spin_unlock(m); 1892 if (oqueue == PQ_CACHE || oqueue == PQ_FREE) 1893 pagedaemon_wakeup(); 1894 } else { 1895 if (m->act_count < ACT_INIT) 1896 m->act_count = ACT_INIT; 1897 vm_page_spin_unlock(m); 1898 } 1899 } 1900 1901 /* 1902 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1903 * routine is called when a page has been added to the cache or free 1904 * queues. 1905 * 1906 * This routine may not block. 1907 */ 1908 static __inline void 1909 vm_page_free_wakeup(void) 1910 { 1911 /* 1912 * If the pageout daemon itself needs pages, then tell it that 1913 * there are some free. 1914 */ 1915 if (vm_pageout_pages_needed && 1916 vmstats.v_cache_count + vmstats.v_free_count >= 1917 vmstats.v_pageout_free_min 1918 ) { 1919 vm_pageout_pages_needed = 0; 1920 wakeup(&vm_pageout_pages_needed); 1921 } 1922 1923 /* 1924 * Wakeup processes that are waiting on memory. 1925 * 1926 * Generally speaking we want to wakeup stuck processes as soon as 1927 * possible. !vm_page_count_min(0) is the absolute minimum point 1928 * where we can do this. Wait a bit longer to reduce degenerate 1929 * re-blocking (vm_page_free_hysteresis). The target check is just 1930 * to make sure the min-check w/hysteresis does not exceed the 1931 * normal target. 1932 */ 1933 if (vm_pages_waiting) { 1934 if (!vm_page_count_min(vm_page_free_hysteresis) || 1935 !vm_page_count_target()) { 1936 vm_pages_waiting = 0; 1937 wakeup(&vmstats.v_free_count); 1938 ++mycpu->gd_cnt.v_ppwakeups; 1939 } 1940 #if 0 1941 if (!vm_page_count_target()) { 1942 /* 1943 * Plenty of pages are free, wakeup everyone. 1944 */ 1945 vm_pages_waiting = 0; 1946 wakeup(&vmstats.v_free_count); 1947 ++mycpu->gd_cnt.v_ppwakeups; 1948 } else if (!vm_page_count_min(0)) { 1949 /* 1950 * Some pages are free, wakeup someone. 1951 */ 1952 int wcount = vm_pages_waiting; 1953 if (wcount > 0) 1954 --wcount; 1955 vm_pages_waiting = wcount; 1956 wakeup_one(&vmstats.v_free_count); 1957 ++mycpu->gd_cnt.v_ppwakeups; 1958 } 1959 #endif 1960 } 1961 } 1962 1963 /* 1964 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates 1965 * it from its VM object. 1966 * 1967 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on 1968 * return (the page will have been freed). 1969 */ 1970 void 1971 vm_page_free_toq(vm_page_t m) 1972 { 1973 mycpu->gd_cnt.v_tfree++; 1974 KKASSERT((m->flags & PG_MAPPED) == 0); 1975 KKASSERT(m->flags & PG_BUSY); 1976 1977 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1978 kprintf("vm_page_free: pindex(%lu), busy(%d), " 1979 "PG_BUSY(%d), hold(%d)\n", 1980 (u_long)m->pindex, m->busy, 1981 ((m->flags & PG_BUSY) ? 1 : 0), m->hold_count); 1982 if ((m->queue - m->pc) == PQ_FREE) 1983 panic("vm_page_free: freeing free page"); 1984 else 1985 panic("vm_page_free: freeing busy page"); 1986 } 1987 1988 /* 1989 * Remove from object, spinlock the page and its queues and 1990 * remove from any queue. No queue spinlock will be held 1991 * after this section (because the page was removed from any 1992 * queue). 1993 */ 1994 vm_page_remove(m); 1995 vm_page_and_queue_spin_lock(m); 1996 _vm_page_rem_queue_spinlocked(m); 1997 1998 /* 1999 * No further management of fictitious pages occurs beyond object 2000 * and queue removal. 2001 */ 2002 if ((m->flags & PG_FICTITIOUS) != 0) { 2003 vm_page_spin_unlock(m); 2004 vm_page_wakeup(m); 2005 return; 2006 } 2007 2008 m->valid = 0; 2009 vm_page_undirty(m); 2010 2011 if (m->wire_count != 0) { 2012 if (m->wire_count > 1) { 2013 panic( 2014 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 2015 m->wire_count, (long)m->pindex); 2016 } 2017 panic("vm_page_free: freeing wired page"); 2018 } 2019 2020 /* 2021 * Clear the UNMANAGED flag when freeing an unmanaged page. 2022 * Clear the NEED_COMMIT flag 2023 */ 2024 if (m->flags & PG_UNMANAGED) 2025 vm_page_flag_clear(m, PG_UNMANAGED); 2026 if (m->flags & PG_NEED_COMMIT) 2027 vm_page_flag_clear(m, PG_NEED_COMMIT); 2028 2029 if (m->hold_count != 0) { 2030 vm_page_flag_clear(m, PG_ZERO); 2031 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 2032 } else { 2033 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 2034 } 2035 2036 /* 2037 * This sequence allows us to clear PG_BUSY while still holding 2038 * its spin lock, which reduces contention vs allocators. We 2039 * must not leave the queue locked or _vm_page_wakeup() may 2040 * deadlock. 2041 */ 2042 _vm_page_queue_spin_unlock(m); 2043 if (_vm_page_wakeup(m)) { 2044 vm_page_spin_unlock(m); 2045 wakeup(m); 2046 } else { 2047 vm_page_spin_unlock(m); 2048 } 2049 vm_page_free_wakeup(); 2050 } 2051 2052 /* 2053 * vm_page_free_fromq_fast() 2054 * 2055 * Remove a non-zero page from one of the free queues; the page is removed for 2056 * zeroing, so do not issue a wakeup. 2057 */ 2058 vm_page_t 2059 vm_page_free_fromq_fast(void) 2060 { 2061 static int qi; 2062 vm_page_t m; 2063 int i; 2064 2065 for (i = 0; i < PQ_L2_SIZE; ++i) { 2066 m = vm_page_list_find(PQ_FREE, qi, FALSE); 2067 /* page is returned spinlocked and removed from its queue */ 2068 if (m) { 2069 if (vm_page_busy_try(m, TRUE)) { 2070 /* 2071 * We were unable to busy the page, deactivate 2072 * it and loop. 2073 */ 2074 _vm_page_deactivate_locked(m, 0); 2075 vm_page_spin_unlock(m); 2076 } else if (m->flags & PG_ZERO) { 2077 /* 2078 * The page is PG_ZERO, requeue it and loop 2079 */ 2080 _vm_page_add_queue_spinlocked(m, 2081 PQ_FREE + m->pc, 2082 0); 2083 vm_page_queue_spin_unlock(m); 2084 if (_vm_page_wakeup(m)) { 2085 vm_page_spin_unlock(m); 2086 wakeup(m); 2087 } else { 2088 vm_page_spin_unlock(m); 2089 } 2090 } else { 2091 /* 2092 * The page is not PG_ZERO'd so return it. 2093 */ 2094 vm_page_spin_unlock(m); 2095 KKASSERT((m->flags & (PG_UNMANAGED | 2096 PG_NEED_COMMIT)) == 0); 2097 KKASSERT(m->hold_count == 0); 2098 KKASSERT(m->wire_count == 0); 2099 break; 2100 } 2101 m = NULL; 2102 } 2103 qi = (qi + PQ_PRIME2) & PQ_L2_MASK; 2104 } 2105 return (m); 2106 } 2107 2108 /* 2109 * vm_page_unmanage() 2110 * 2111 * Prevent PV management from being done on the page. The page is 2112 * removed from the paging queues as if it were wired, and as a 2113 * consequence of no longer being managed the pageout daemon will not 2114 * touch it (since there is no way to locate the pte mappings for the 2115 * page). madvise() calls that mess with the pmap will also no longer 2116 * operate on the page. 2117 * 2118 * Beyond that the page is still reasonably 'normal'. Freeing the page 2119 * will clear the flag. 2120 * 2121 * This routine is used by OBJT_PHYS objects - objects using unswappable 2122 * physical memory as backing store rather then swap-backed memory and 2123 * will eventually be extended to support 4MB unmanaged physical 2124 * mappings. 2125 * 2126 * Caller must be holding the page busy. 2127 */ 2128 void 2129 vm_page_unmanage(vm_page_t m) 2130 { 2131 KKASSERT(m->flags & PG_BUSY); 2132 if ((m->flags & PG_UNMANAGED) == 0) { 2133 if (m->wire_count == 0) 2134 vm_page_unqueue(m); 2135 } 2136 vm_page_flag_set(m, PG_UNMANAGED); 2137 } 2138 2139 /* 2140 * Mark this page as wired down by yet another map, removing it from 2141 * paging queues as necessary. 2142 * 2143 * Caller must be holding the page busy. 2144 */ 2145 void 2146 vm_page_wire(vm_page_t m) 2147 { 2148 /* 2149 * Only bump the wire statistics if the page is not already wired, 2150 * and only unqueue the page if it is on some queue (if it is unmanaged 2151 * it is already off the queues). Don't do anything with fictitious 2152 * pages because they are always wired. 2153 */ 2154 KKASSERT(m->flags & PG_BUSY); 2155 if ((m->flags & PG_FICTITIOUS) == 0) { 2156 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) { 2157 if ((m->flags & PG_UNMANAGED) == 0) 2158 vm_page_unqueue(m); 2159 atomic_add_int(&vmstats.v_wire_count, 1); 2160 } 2161 KASSERT(m->wire_count != 0, 2162 ("vm_page_wire: wire_count overflow m=%p", m)); 2163 } 2164 } 2165 2166 /* 2167 * Release one wiring of this page, potentially enabling it to be paged again. 2168 * 2169 * Many pages placed on the inactive queue should actually go 2170 * into the cache, but it is difficult to figure out which. What 2171 * we do instead, if the inactive target is well met, is to put 2172 * clean pages at the head of the inactive queue instead of the tail. 2173 * This will cause them to be moved to the cache more quickly and 2174 * if not actively re-referenced, freed more quickly. If we just 2175 * stick these pages at the end of the inactive queue, heavy filesystem 2176 * meta-data accesses can cause an unnecessary paging load on memory bound 2177 * processes. This optimization causes one-time-use metadata to be 2178 * reused more quickly. 2179 * 2180 * Pages marked PG_NEED_COMMIT are always activated and never placed on 2181 * the inactive queue. This helps the pageout daemon determine memory 2182 * pressure and act on out-of-memory situations more quickly. 2183 * 2184 * BUT, if we are in a low-memory situation we have no choice but to 2185 * put clean pages on the cache queue. 2186 * 2187 * A number of routines use vm_page_unwire() to guarantee that the page 2188 * will go into either the inactive or active queues, and will NEVER 2189 * be placed in the cache - for example, just after dirtying a page. 2190 * dirty pages in the cache are not allowed. 2191 * 2192 * The page queues must be locked. 2193 * This routine may not block. 2194 */ 2195 void 2196 vm_page_unwire(vm_page_t m, int activate) 2197 { 2198 KKASSERT(m->flags & PG_BUSY); 2199 if (m->flags & PG_FICTITIOUS) { 2200 /* do nothing */ 2201 } else if (m->wire_count <= 0) { 2202 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 2203 } else { 2204 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) { 2205 atomic_add_int(&vmstats.v_wire_count, -1); 2206 if (m->flags & PG_UNMANAGED) { 2207 ; 2208 } else if (activate || (m->flags & PG_NEED_COMMIT)) { 2209 vm_page_spin_lock(m); 2210 _vm_page_add_queue_spinlocked(m, 2211 PQ_ACTIVE + m->pc, 0); 2212 _vm_page_and_queue_spin_unlock(m); 2213 } else { 2214 vm_page_spin_lock(m); 2215 vm_page_flag_clear(m, PG_WINATCFLS); 2216 _vm_page_add_queue_spinlocked(m, 2217 PQ_INACTIVE + m->pc, 0); 2218 ++vm_swapcache_inactive_heuristic; 2219 _vm_page_and_queue_spin_unlock(m); 2220 } 2221 } 2222 } 2223 } 2224 2225 /* 2226 * Move the specified page to the inactive queue. If the page has 2227 * any associated swap, the swap is deallocated. 2228 * 2229 * Normally athead is 0 resulting in LRU operation. athead is set 2230 * to 1 if we want this page to be 'as if it were placed in the cache', 2231 * except without unmapping it from the process address space. 2232 * 2233 * vm_page's spinlock must be held on entry and will remain held on return. 2234 * This routine may not block. 2235 */ 2236 static void 2237 _vm_page_deactivate_locked(vm_page_t m, int athead) 2238 { 2239 u_short oqueue; 2240 2241 /* 2242 * Ignore if already inactive. 2243 */ 2244 if (m->queue - m->pc == PQ_INACTIVE) 2245 return; 2246 _vm_page_queue_spin_lock(m); 2247 oqueue = _vm_page_rem_queue_spinlocked(m); 2248 2249 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 2250 if (oqueue == PQ_CACHE) 2251 mycpu->gd_cnt.v_reactivated++; 2252 vm_page_flag_clear(m, PG_WINATCFLS); 2253 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead); 2254 if (athead == 0) 2255 ++vm_swapcache_inactive_heuristic; 2256 } 2257 _vm_page_queue_spin_unlock(m); 2258 /* leaves vm_page spinlocked */ 2259 } 2260 2261 /* 2262 * Attempt to deactivate a page. 2263 * 2264 * No requirements. 2265 */ 2266 void 2267 vm_page_deactivate(vm_page_t m) 2268 { 2269 vm_page_spin_lock(m); 2270 _vm_page_deactivate_locked(m, 0); 2271 vm_page_spin_unlock(m); 2272 } 2273 2274 void 2275 vm_page_deactivate_locked(vm_page_t m) 2276 { 2277 _vm_page_deactivate_locked(m, 0); 2278 } 2279 2280 /* 2281 * Attempt to move a page to PQ_CACHE. 2282 * 2283 * Returns 0 on failure, 1 on success 2284 * 2285 * The page should NOT be busied by the caller. This function will validate 2286 * whether the page can be safely moved to the cache. 2287 */ 2288 int 2289 vm_page_try_to_cache(vm_page_t m) 2290 { 2291 vm_page_spin_lock(m); 2292 if (vm_page_busy_try(m, TRUE)) { 2293 vm_page_spin_unlock(m); 2294 return(0); 2295 } 2296 if (m->dirty || m->hold_count || m->wire_count || 2297 (m->flags & (PG_UNMANAGED | PG_NEED_COMMIT))) { 2298 if (_vm_page_wakeup(m)) { 2299 vm_page_spin_unlock(m); 2300 wakeup(m); 2301 } else { 2302 vm_page_spin_unlock(m); 2303 } 2304 return(0); 2305 } 2306 vm_page_spin_unlock(m); 2307 2308 /* 2309 * Page busied by us and no longer spinlocked. Dirty pages cannot 2310 * be moved to the cache. 2311 */ 2312 vm_page_test_dirty(m); 2313 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2314 vm_page_wakeup(m); 2315 return(0); 2316 } 2317 vm_page_cache(m); 2318 return(1); 2319 } 2320 2321 /* 2322 * Attempt to free the page. If we cannot free it, we do nothing. 2323 * 1 is returned on success, 0 on failure. 2324 * 2325 * No requirements. 2326 */ 2327 int 2328 vm_page_try_to_free(vm_page_t m) 2329 { 2330 vm_page_spin_lock(m); 2331 if (vm_page_busy_try(m, TRUE)) { 2332 vm_page_spin_unlock(m); 2333 return(0); 2334 } 2335 2336 /* 2337 * The page can be in any state, including already being on the free 2338 * queue. Check to see if it really can be freed. 2339 */ 2340 if (m->dirty || /* can't free if it is dirty */ 2341 m->hold_count || /* or held (XXX may be wrong) */ 2342 m->wire_count || /* or wired */ 2343 (m->flags & (PG_UNMANAGED | /* or unmanaged */ 2344 PG_NEED_COMMIT)) || /* or needs a commit */ 2345 m->queue - m->pc == PQ_FREE || /* already on PQ_FREE */ 2346 m->queue - m->pc == PQ_HOLD) { /* already on PQ_HOLD */ 2347 if (_vm_page_wakeup(m)) { 2348 vm_page_spin_unlock(m); 2349 wakeup(m); 2350 } else { 2351 vm_page_spin_unlock(m); 2352 } 2353 return(0); 2354 } 2355 vm_page_spin_unlock(m); 2356 2357 /* 2358 * We can probably free the page. 2359 * 2360 * Page busied by us and no longer spinlocked. Dirty pages will 2361 * not be freed by this function. We have to re-test the 2362 * dirty bit after cleaning out the pmaps. 2363 */ 2364 vm_page_test_dirty(m); 2365 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2366 vm_page_wakeup(m); 2367 return(0); 2368 } 2369 vm_page_protect(m, VM_PROT_NONE); 2370 if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2371 vm_page_wakeup(m); 2372 return(0); 2373 } 2374 vm_page_free(m); 2375 return(1); 2376 } 2377 2378 /* 2379 * vm_page_cache 2380 * 2381 * Put the specified page onto the page cache queue (if appropriate). 2382 * 2383 * The page must be busy, and this routine will release the busy and 2384 * possibly even free the page. 2385 */ 2386 void 2387 vm_page_cache(vm_page_t m) 2388 { 2389 if ((m->flags & (PG_UNMANAGED | PG_NEED_COMMIT)) || 2390 m->busy || m->wire_count || m->hold_count) { 2391 kprintf("vm_page_cache: attempting to cache busy/held page\n"); 2392 vm_page_wakeup(m); 2393 return; 2394 } 2395 2396 /* 2397 * Already in the cache (and thus not mapped) 2398 */ 2399 if ((m->queue - m->pc) == PQ_CACHE) { 2400 KKASSERT((m->flags & PG_MAPPED) == 0); 2401 vm_page_wakeup(m); 2402 return; 2403 } 2404 2405 /* 2406 * Caller is required to test m->dirty, but note that the act of 2407 * removing the page from its maps can cause it to become dirty 2408 * on an SMP system due to another cpu running in usermode. 2409 */ 2410 if (m->dirty) { 2411 panic("vm_page_cache: caching a dirty page, pindex: %ld", 2412 (long)m->pindex); 2413 } 2414 2415 /* 2416 * Remove all pmaps and indicate that the page is not 2417 * writeable or mapped. Our vm_page_protect() call may 2418 * have blocked (especially w/ VM_PROT_NONE), so recheck 2419 * everything. 2420 */ 2421 vm_page_protect(m, VM_PROT_NONE); 2422 if ((m->flags & (PG_UNMANAGED | PG_MAPPED)) || 2423 m->busy || m->wire_count || m->hold_count) { 2424 vm_page_wakeup(m); 2425 } else if (m->dirty || (m->flags & PG_NEED_COMMIT)) { 2426 vm_page_deactivate(m); 2427 vm_page_wakeup(m); 2428 } else { 2429 _vm_page_and_queue_spin_lock(m); 2430 _vm_page_rem_queue_spinlocked(m); 2431 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0); 2432 _vm_page_queue_spin_unlock(m); 2433 if (_vm_page_wakeup(m)) { 2434 vm_page_spin_unlock(m); 2435 wakeup(m); 2436 } else { 2437 vm_page_spin_unlock(m); 2438 } 2439 vm_page_free_wakeup(); 2440 } 2441 } 2442 2443 /* 2444 * vm_page_dontneed() 2445 * 2446 * Cache, deactivate, or do nothing as appropriate. This routine 2447 * is typically used by madvise() MADV_DONTNEED. 2448 * 2449 * Generally speaking we want to move the page into the cache so 2450 * it gets reused quickly. However, this can result in a silly syndrome 2451 * due to the page recycling too quickly. Small objects will not be 2452 * fully cached. On the otherhand, if we move the page to the inactive 2453 * queue we wind up with a problem whereby very large objects 2454 * unnecessarily blow away our inactive and cache queues. 2455 * 2456 * The solution is to move the pages based on a fixed weighting. We 2457 * either leave them alone, deactivate them, or move them to the cache, 2458 * where moving them to the cache has the highest weighting. 2459 * By forcing some pages into other queues we eventually force the 2460 * system to balance the queues, potentially recovering other unrelated 2461 * space from active. The idea is to not force this to happen too 2462 * often. 2463 * 2464 * The page must be busied. 2465 */ 2466 void 2467 vm_page_dontneed(vm_page_t m) 2468 { 2469 static int dnweight; 2470 int dnw; 2471 int head; 2472 2473 dnw = ++dnweight; 2474 2475 /* 2476 * occassionally leave the page alone 2477 */ 2478 if ((dnw & 0x01F0) == 0 || 2479 m->queue - m->pc == PQ_INACTIVE || 2480 m->queue - m->pc == PQ_CACHE 2481 ) { 2482 if (m->act_count >= ACT_INIT) 2483 --m->act_count; 2484 return; 2485 } 2486 2487 /* 2488 * If vm_page_dontneed() is inactivating a page, it must clear 2489 * the referenced flag; otherwise the pagedaemon will see references 2490 * on the page in the inactive queue and reactivate it. Until the 2491 * page can move to the cache queue, madvise's job is not done. 2492 */ 2493 vm_page_flag_clear(m, PG_REFERENCED); 2494 pmap_clear_reference(m); 2495 2496 if (m->dirty == 0) 2497 vm_page_test_dirty(m); 2498 2499 if (m->dirty || (dnw & 0x0070) == 0) { 2500 /* 2501 * Deactivate the page 3 times out of 32. 2502 */ 2503 head = 0; 2504 } else { 2505 /* 2506 * Cache the page 28 times out of every 32. Note that 2507 * the page is deactivated instead of cached, but placed 2508 * at the head of the queue instead of the tail. 2509 */ 2510 head = 1; 2511 } 2512 vm_page_spin_lock(m); 2513 _vm_page_deactivate_locked(m, head); 2514 vm_page_spin_unlock(m); 2515 } 2516 2517 /* 2518 * These routines manipulate the 'soft busy' count for a page. A soft busy 2519 * is almost like PG_BUSY except that it allows certain compatible operations 2520 * to occur on the page while it is busy. For example, a page undergoing a 2521 * write can still be mapped read-only. 2522 * 2523 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only 2524 * adjusted while the vm_page is PG_BUSY so the flash will occur when the 2525 * busy bit is cleared. 2526 */ 2527 void 2528 vm_page_io_start(vm_page_t m) 2529 { 2530 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!")); 2531 atomic_add_char(&m->busy, 1); 2532 vm_page_flag_set(m, PG_SBUSY); 2533 } 2534 2535 void 2536 vm_page_io_finish(vm_page_t m) 2537 { 2538 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!")); 2539 atomic_subtract_char(&m->busy, 1); 2540 if (m->busy == 0) 2541 vm_page_flag_clear(m, PG_SBUSY); 2542 } 2543 2544 /* 2545 * Indicate that a clean VM page requires a filesystem commit and cannot 2546 * be reused. Used by tmpfs. 2547 */ 2548 void 2549 vm_page_need_commit(vm_page_t m) 2550 { 2551 vm_page_flag_set(m, PG_NEED_COMMIT); 2552 vm_object_set_writeable_dirty(m->object); 2553 } 2554 2555 void 2556 vm_page_clear_commit(vm_page_t m) 2557 { 2558 vm_page_flag_clear(m, PG_NEED_COMMIT); 2559 } 2560 2561 /* 2562 * Grab a page, blocking if it is busy and allocating a page if necessary. 2563 * A busy page is returned or NULL. The page may or may not be valid and 2564 * might not be on a queue (the caller is responsible for the disposition of 2565 * the page). 2566 * 2567 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the 2568 * page will be zero'd and marked valid. 2569 * 2570 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked 2571 * valid even if it already exists. 2572 * 2573 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also 2574 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified. 2575 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified. 2576 * 2577 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 2578 * always returned if we had blocked. 2579 * 2580 * This routine may not be called from an interrupt. 2581 * 2582 * PG_ZERO is *ALWAYS* cleared by this routine. 2583 * 2584 * No other requirements. 2585 */ 2586 vm_page_t 2587 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2588 { 2589 vm_page_t m; 2590 int error; 2591 2592 KKASSERT(allocflags & 2593 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 2594 vm_object_hold(object); 2595 for (;;) { 2596 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 2597 if (error) { 2598 vm_page_sleep_busy(m, TRUE, "pgrbwt"); 2599 if ((allocflags & VM_ALLOC_RETRY) == 0) { 2600 m = NULL; 2601 break; 2602 } 2603 /* retry */ 2604 } else if (m == NULL) { 2605 if (allocflags & VM_ALLOC_RETRY) 2606 allocflags |= VM_ALLOC_NULL_OK; 2607 m = vm_page_alloc(object, pindex, 2608 allocflags & ~VM_ALLOC_RETRY); 2609 if (m) 2610 break; 2611 vm_wait(0); 2612 if ((allocflags & VM_ALLOC_RETRY) == 0) 2613 goto failed; 2614 } else { 2615 /* m found */ 2616 break; 2617 } 2618 } 2619 2620 /* 2621 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid. 2622 * 2623 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set 2624 * valid even if already valid. 2625 */ 2626 if (m->valid == 0) { 2627 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) { 2628 if ((m->flags & PG_ZERO) == 0) 2629 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2630 m->valid = VM_PAGE_BITS_ALL; 2631 } 2632 } else if (allocflags & VM_ALLOC_FORCE_ZERO) { 2633 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2634 m->valid = VM_PAGE_BITS_ALL; 2635 } 2636 vm_page_flag_clear(m, PG_ZERO); 2637 failed: 2638 vm_object_drop(object); 2639 return(m); 2640 } 2641 2642 /* 2643 * Mapping function for valid bits or for dirty bits in 2644 * a page. May not block. 2645 * 2646 * Inputs are required to range within a page. 2647 * 2648 * No requirements. 2649 * Non blocking. 2650 */ 2651 int 2652 vm_page_bits(int base, int size) 2653 { 2654 int first_bit; 2655 int last_bit; 2656 2657 KASSERT( 2658 base + size <= PAGE_SIZE, 2659 ("vm_page_bits: illegal base/size %d/%d", base, size) 2660 ); 2661 2662 if (size == 0) /* handle degenerate case */ 2663 return(0); 2664 2665 first_bit = base >> DEV_BSHIFT; 2666 last_bit = (base + size - 1) >> DEV_BSHIFT; 2667 2668 return ((2 << last_bit) - (1 << first_bit)); 2669 } 2670 2671 /* 2672 * Sets portions of a page valid and clean. The arguments are expected 2673 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2674 * of any partial chunks touched by the range. The invalid portion of 2675 * such chunks will be zero'd. 2676 * 2677 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically 2678 * align base to DEV_BSIZE so as not to mark clean a partially 2679 * truncated device block. Otherwise the dirty page status might be 2680 * lost. 2681 * 2682 * This routine may not block. 2683 * 2684 * (base + size) must be less then or equal to PAGE_SIZE. 2685 */ 2686 static void 2687 _vm_page_zero_valid(vm_page_t m, int base, int size) 2688 { 2689 int frag; 2690 int endoff; 2691 2692 if (size == 0) /* handle degenerate case */ 2693 return; 2694 2695 /* 2696 * If the base is not DEV_BSIZE aligned and the valid 2697 * bit is clear, we have to zero out a portion of the 2698 * first block. 2699 */ 2700 2701 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2702 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 2703 ) { 2704 pmap_zero_page_area( 2705 VM_PAGE_TO_PHYS(m), 2706 frag, 2707 base - frag 2708 ); 2709 } 2710 2711 /* 2712 * If the ending offset is not DEV_BSIZE aligned and the 2713 * valid bit is clear, we have to zero out a portion of 2714 * the last block. 2715 */ 2716 2717 endoff = base + size; 2718 2719 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2720 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 2721 ) { 2722 pmap_zero_page_area( 2723 VM_PAGE_TO_PHYS(m), 2724 endoff, 2725 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 2726 ); 2727 } 2728 } 2729 2730 /* 2731 * Set valid, clear dirty bits. If validating the entire 2732 * page we can safely clear the pmap modify bit. We also 2733 * use this opportunity to clear the PG_NOSYNC flag. If a process 2734 * takes a write fault on a MAP_NOSYNC memory area the flag will 2735 * be set again. 2736 * 2737 * We set valid bits inclusive of any overlap, but we can only 2738 * clear dirty bits for DEV_BSIZE chunks that are fully within 2739 * the range. 2740 * 2741 * Page must be busied? 2742 * No other requirements. 2743 */ 2744 void 2745 vm_page_set_valid(vm_page_t m, int base, int size) 2746 { 2747 _vm_page_zero_valid(m, base, size); 2748 m->valid |= vm_page_bits(base, size); 2749 } 2750 2751 2752 /* 2753 * Set valid bits and clear dirty bits. 2754 * 2755 * NOTE: This function does not clear the pmap modified bit. 2756 * Also note that e.g. NFS may use a byte-granular base 2757 * and size. 2758 * 2759 * WARNING: Page must be busied? But vfs_clean_one_page() will call 2760 * this without necessarily busying the page (via bdwrite()). 2761 * So for now vm_token must also be held. 2762 * 2763 * No other requirements. 2764 */ 2765 void 2766 vm_page_set_validclean(vm_page_t m, int base, int size) 2767 { 2768 int pagebits; 2769 2770 _vm_page_zero_valid(m, base, size); 2771 pagebits = vm_page_bits(base, size); 2772 m->valid |= pagebits; 2773 m->dirty &= ~pagebits; 2774 if (base == 0 && size == PAGE_SIZE) { 2775 /*pmap_clear_modify(m);*/ 2776 vm_page_flag_clear(m, PG_NOSYNC); 2777 } 2778 } 2779 2780 /* 2781 * Set valid & dirty. Used by buwrite() 2782 * 2783 * WARNING: Page must be busied? But vfs_dirty_one_page() will 2784 * call this function in buwrite() so for now vm_token must 2785 * be held. 2786 * 2787 * No other requirements. 2788 */ 2789 void 2790 vm_page_set_validdirty(vm_page_t m, int base, int size) 2791 { 2792 int pagebits; 2793 2794 pagebits = vm_page_bits(base, size); 2795 m->valid |= pagebits; 2796 m->dirty |= pagebits; 2797 if (m->object) 2798 vm_object_set_writeable_dirty(m->object); 2799 } 2800 2801 /* 2802 * Clear dirty bits. 2803 * 2804 * NOTE: This function does not clear the pmap modified bit. 2805 * Also note that e.g. NFS may use a byte-granular base 2806 * and size. 2807 * 2808 * Page must be busied? 2809 * No other requirements. 2810 */ 2811 void 2812 vm_page_clear_dirty(vm_page_t m, int base, int size) 2813 { 2814 m->dirty &= ~vm_page_bits(base, size); 2815 if (base == 0 && size == PAGE_SIZE) { 2816 /*pmap_clear_modify(m);*/ 2817 vm_page_flag_clear(m, PG_NOSYNC); 2818 } 2819 } 2820 2821 /* 2822 * Make the page all-dirty. 2823 * 2824 * Also make sure the related object and vnode reflect the fact that the 2825 * object may now contain a dirty page. 2826 * 2827 * Page must be busied? 2828 * No other requirements. 2829 */ 2830 void 2831 vm_page_dirty(vm_page_t m) 2832 { 2833 #ifdef INVARIANTS 2834 int pqtype = m->queue - m->pc; 2835 #endif 2836 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 2837 ("vm_page_dirty: page in free/cache queue!")); 2838 if (m->dirty != VM_PAGE_BITS_ALL) { 2839 m->dirty = VM_PAGE_BITS_ALL; 2840 if (m->object) 2841 vm_object_set_writeable_dirty(m->object); 2842 } 2843 } 2844 2845 /* 2846 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2847 * valid and dirty bits for the effected areas are cleared. 2848 * 2849 * Page must be busied? 2850 * Does not block. 2851 * No other requirements. 2852 */ 2853 void 2854 vm_page_set_invalid(vm_page_t m, int base, int size) 2855 { 2856 int bits; 2857 2858 bits = vm_page_bits(base, size); 2859 m->valid &= ~bits; 2860 m->dirty &= ~bits; 2861 m->object->generation++; 2862 } 2863 2864 /* 2865 * The kernel assumes that the invalid portions of a page contain 2866 * garbage, but such pages can be mapped into memory by user code. 2867 * When this occurs, we must zero out the non-valid portions of the 2868 * page so user code sees what it expects. 2869 * 2870 * Pages are most often semi-valid when the end of a file is mapped 2871 * into memory and the file's size is not page aligned. 2872 * 2873 * Page must be busied? 2874 * No other requirements. 2875 */ 2876 void 2877 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2878 { 2879 int b; 2880 int i; 2881 2882 /* 2883 * Scan the valid bits looking for invalid sections that 2884 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2885 * valid bit may be set ) have already been zerod by 2886 * vm_page_set_validclean(). 2887 */ 2888 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2889 if (i == (PAGE_SIZE / DEV_BSIZE) || 2890 (m->valid & (1 << i)) 2891 ) { 2892 if (i > b) { 2893 pmap_zero_page_area( 2894 VM_PAGE_TO_PHYS(m), 2895 b << DEV_BSHIFT, 2896 (i - b) << DEV_BSHIFT 2897 ); 2898 } 2899 b = i + 1; 2900 } 2901 } 2902 2903 /* 2904 * setvalid is TRUE when we can safely set the zero'd areas 2905 * as being valid. We can do this if there are no cache consistency 2906 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2907 */ 2908 if (setvalid) 2909 m->valid = VM_PAGE_BITS_ALL; 2910 } 2911 2912 /* 2913 * Is a (partial) page valid? Note that the case where size == 0 2914 * will return FALSE in the degenerate case where the page is entirely 2915 * invalid, and TRUE otherwise. 2916 * 2917 * Does not block. 2918 * No other requirements. 2919 */ 2920 int 2921 vm_page_is_valid(vm_page_t m, int base, int size) 2922 { 2923 int bits = vm_page_bits(base, size); 2924 2925 if (m->valid && ((m->valid & bits) == bits)) 2926 return 1; 2927 else 2928 return 0; 2929 } 2930 2931 /* 2932 * update dirty bits from pmap/mmu. May not block. 2933 * 2934 * Caller must hold the page busy 2935 */ 2936 void 2937 vm_page_test_dirty(vm_page_t m) 2938 { 2939 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 2940 vm_page_dirty(m); 2941 } 2942 } 2943 2944 /* 2945 * Register an action, associating it with its vm_page 2946 */ 2947 void 2948 vm_page_register_action(vm_page_action_t action, vm_page_event_t event) 2949 { 2950 struct vm_page_action_list *list; 2951 int hv; 2952 2953 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2954 list = &action_list[hv]; 2955 2956 lwkt_gettoken(&vm_token); 2957 vm_page_flag_set(action->m, PG_ACTIONLIST); 2958 action->event = event; 2959 LIST_INSERT_HEAD(list, action, entry); 2960 lwkt_reltoken(&vm_token); 2961 } 2962 2963 /* 2964 * Unregister an action, disassociating it from its related vm_page 2965 */ 2966 void 2967 vm_page_unregister_action(vm_page_action_t action) 2968 { 2969 struct vm_page_action_list *list; 2970 int hv; 2971 2972 lwkt_gettoken(&vm_token); 2973 if (action->event != VMEVENT_NONE) { 2974 action->event = VMEVENT_NONE; 2975 LIST_REMOVE(action, entry); 2976 2977 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2978 list = &action_list[hv]; 2979 if (LIST_EMPTY(list)) 2980 vm_page_flag_clear(action->m, PG_ACTIONLIST); 2981 } 2982 lwkt_reltoken(&vm_token); 2983 } 2984 2985 /* 2986 * Issue an event on a VM page. Corresponding action structures are 2987 * removed from the page's list and called. 2988 * 2989 * If the vm_page has no more pending action events we clear its 2990 * PG_ACTIONLIST flag. 2991 */ 2992 void 2993 vm_page_event_internal(vm_page_t m, vm_page_event_t event) 2994 { 2995 struct vm_page_action_list *list; 2996 struct vm_page_action *scan; 2997 struct vm_page_action *next; 2998 int hv; 2999 int all; 3000 3001 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK; 3002 list = &action_list[hv]; 3003 all = 1; 3004 3005 lwkt_gettoken(&vm_token); 3006 LIST_FOREACH_MUTABLE(scan, list, entry, next) { 3007 if (scan->m == m) { 3008 if (scan->event == event) { 3009 scan->event = VMEVENT_NONE; 3010 LIST_REMOVE(scan, entry); 3011 scan->func(m, scan); 3012 /* XXX */ 3013 } else { 3014 all = 0; 3015 } 3016 } 3017 } 3018 if (all) 3019 vm_page_flag_clear(m, PG_ACTIONLIST); 3020 lwkt_reltoken(&vm_token); 3021 } 3022 3023 #include "opt_ddb.h" 3024 #ifdef DDB 3025 #include <sys/kernel.h> 3026 3027 #include <ddb/ddb.h> 3028 3029 DB_SHOW_COMMAND(page, vm_page_print_page_info) 3030 { 3031 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count); 3032 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count); 3033 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count); 3034 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count); 3035 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count); 3036 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved); 3037 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min); 3038 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target); 3039 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min); 3040 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target); 3041 } 3042 3043 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 3044 { 3045 int i; 3046 db_printf("PQ_FREE:"); 3047 for(i=0;i<PQ_L2_SIZE;i++) { 3048 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 3049 } 3050 db_printf("\n"); 3051 3052 db_printf("PQ_CACHE:"); 3053 for(i=0;i<PQ_L2_SIZE;i++) { 3054 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 3055 } 3056 db_printf("\n"); 3057 3058 db_printf("PQ_ACTIVE:"); 3059 for(i=0;i<PQ_L2_SIZE;i++) { 3060 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt); 3061 } 3062 db_printf("\n"); 3063 3064 db_printf("PQ_INACTIVE:"); 3065 for(i=0;i<PQ_L2_SIZE;i++) { 3066 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt); 3067 } 3068 db_printf("\n"); 3069 } 3070 #endif /* DDB */ 3071