xref: /dflybsd-src/sys/vm/vm_page.c (revision a563ca70e68142ccf7f50a6f129665fd8cb66d98)
1 /*
2  * (MPSAFE)
3  *
4  * Copyright (c) 1991 Regents of the University of California.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 4. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
35  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
36  */
37 
38 /*
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  */
64 /*
65  * Resident memory management module.  The module manipulates 'VM pages'.
66  * A VM page is the core building block for memory management.
67  */
68 
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/vnode.h>
75 #include <sys/kernel.h>
76 
77 #include <vm/vm.h>
78 #include <vm/vm_param.h>
79 #include <sys/lock.h>
80 #include <vm/vm_kern.h>
81 #include <vm/pmap.h>
82 #include <vm/vm_map.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_pageout.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_extern.h>
88 #include <vm/swap_pager.h>
89 
90 #include <machine/inttypes.h>
91 #include <machine/md_var.h>
92 
93 #include <vm/vm_page2.h>
94 #include <sys/spinlock2.h>
95 
96 #define VMACTION_HSIZE	256
97 #define VMACTION_HMASK	(VMACTION_HSIZE - 1)
98 
99 static void vm_page_queue_init(void);
100 static void vm_page_free_wakeup(void);
101 static vm_page_t vm_page_select_cache(u_short pg_color);
102 static vm_page_t _vm_page_list_find2(int basequeue, int index);
103 static void _vm_page_deactivate_locked(vm_page_t m, int athead);
104 
105 /*
106  * Array of tailq lists
107  */
108 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT];
109 
110 LIST_HEAD(vm_page_action_list, vm_page_action);
111 struct vm_page_action_list	action_list[VMACTION_HSIZE];
112 static volatile int vm_pages_waiting;
113 
114 
115 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
116 	     vm_pindex_t, pindex);
117 
118 static void
119 vm_page_queue_init(void)
120 {
121 	int i;
122 
123 	for (i = 0; i < PQ_L2_SIZE; i++)
124 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
125 	for (i = 0; i < PQ_L2_SIZE; i++)
126 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
127 	for (i = 0; i < PQ_L2_SIZE; i++)
128 		vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count;
129 	for (i = 0; i < PQ_L2_SIZE; i++)
130 		vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count;
131 	for (i = 0; i < PQ_L2_SIZE; i++)
132 		vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count;
133 	/* PQ_NONE has no queue */
134 
135 	for (i = 0; i < PQ_COUNT; i++) {
136 		TAILQ_INIT(&vm_page_queues[i].pl);
137 		spin_init(&vm_page_queues[i].spin);
138 	}
139 
140 	for (i = 0; i < VMACTION_HSIZE; i++)
141 		LIST_INIT(&action_list[i]);
142 }
143 
144 /*
145  * note: place in initialized data section?  Is this necessary?
146  */
147 long first_page = 0;
148 int vm_page_array_size = 0;
149 int vm_page_zero_count = 0;
150 vm_page_t vm_page_array = 0;
151 
152 /*
153  * (low level boot)
154  *
155  * Sets the page size, perhaps based upon the memory size.
156  * Must be called before any use of page-size dependent functions.
157  */
158 void
159 vm_set_page_size(void)
160 {
161 	if (vmstats.v_page_size == 0)
162 		vmstats.v_page_size = PAGE_SIZE;
163 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
164 		panic("vm_set_page_size: page size not a power of two");
165 }
166 
167 /*
168  * (low level boot)
169  *
170  * Add a new page to the freelist for use by the system.  New pages
171  * are added to both the head and tail of the associated free page
172  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
173  * requests pull 'recent' adds (higher physical addresses) first.
174  *
175  * Beware that the page zeroing daemon will also be running soon after
176  * boot, moving pages from the head to the tail of the PQ_FREE queues.
177  *
178  * Must be called in a critical section.
179  */
180 static vm_page_t
181 vm_add_new_page(vm_paddr_t pa)
182 {
183 	struct vpgqueues *vpq;
184 	vm_page_t m;
185 
186 	m = PHYS_TO_VM_PAGE(pa);
187 	m->phys_addr = pa;
188 	m->flags = 0;
189 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
190 #ifdef SMP
191 	/*
192 	 * Twist for cpu localization in addition to page coloring, so
193 	 * different cpus selecting by m->queue get different page colors.
194 	 */
195 	m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK;
196 	m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK;
197 #endif
198 	m->queue = m->pc + PQ_FREE;
199 	KKASSERT(m->dirty == 0);
200 
201 	atomic_add_int(&vmstats.v_page_count, 1);
202 	atomic_add_int(&vmstats.v_free_count, 1);
203 	vpq = &vm_page_queues[m->queue];
204 	if ((vpq->flipflop & 15) == 0) {
205 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
206 		m->flags |= PG_ZERO;
207 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
208 		atomic_add_int(&vm_page_zero_count, 1);
209 	} else {
210 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
211 	}
212 	++vpq->flipflop;
213 	++vpq->lcnt;
214 
215 	return (m);
216 }
217 
218 /*
219  * (low level boot)
220  *
221  * Initializes the resident memory module.
222  *
223  * Preallocates memory for critical VM structures and arrays prior to
224  * kernel_map becoming available.
225  *
226  * Memory is allocated from (virtual2_start, virtual2_end) if available,
227  * otherwise memory is allocated from (virtual_start, virtual_end).
228  *
229  * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be
230  * large enough to hold vm_page_array & other structures for machines with
231  * large amounts of ram, so we want to use virtual2* when available.
232  */
233 void
234 vm_page_startup(void)
235 {
236 	vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start;
237 	vm_offset_t mapped;
238 	vm_size_t npages;
239 	vm_paddr_t page_range;
240 	vm_paddr_t new_end;
241 	int i;
242 	vm_paddr_t pa;
243 	int nblocks;
244 	vm_paddr_t last_pa;
245 	vm_paddr_t end;
246 	vm_paddr_t biggestone, biggestsize;
247 	vm_paddr_t total;
248 
249 	total = 0;
250 	biggestsize = 0;
251 	biggestone = 0;
252 	nblocks = 0;
253 	vaddr = round_page(vaddr);
254 
255 	for (i = 0; phys_avail[i + 1]; i += 2) {
256 		phys_avail[i] = round_page64(phys_avail[i]);
257 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
258 	}
259 
260 	for (i = 0; phys_avail[i + 1]; i += 2) {
261 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
262 
263 		if (size > biggestsize) {
264 			biggestone = i;
265 			biggestsize = size;
266 		}
267 		++nblocks;
268 		total += size;
269 	}
270 
271 	end = phys_avail[biggestone+1];
272 	end = trunc_page(end);
273 
274 	/*
275 	 * Initialize the queue headers for the free queue, the active queue
276 	 * and the inactive queue.
277 	 */
278 
279 	vm_page_queue_init();
280 
281 #if !defined(_KERNEL_VIRTUAL)
282 	/*
283 	 * VKERNELs don't support minidumps and as such don't need
284 	 * vm_page_dump
285 	 *
286 	 * Allocate a bitmap to indicate that a random physical page
287 	 * needs to be included in a minidump.
288 	 *
289 	 * The amd64 port needs this to indicate which direct map pages
290 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
291 	 *
292 	 * However, i386 still needs this workspace internally within the
293 	 * minidump code.  In theory, they are not needed on i386, but are
294 	 * included should the sf_buf code decide to use them.
295 	 */
296 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
297 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
298 	end -= vm_page_dump_size;
299 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
300 	    VM_PROT_READ | VM_PROT_WRITE);
301 	bzero((void *)vm_page_dump, vm_page_dump_size);
302 #endif
303 
304 	/*
305 	 * Compute the number of pages of memory that will be available for
306 	 * use (taking into account the overhead of a page structure per
307 	 * page).
308 	 */
309 	first_page = phys_avail[0] / PAGE_SIZE;
310 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
311 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
312 
313 	/*
314 	 * Initialize the mem entry structures now, and put them in the free
315 	 * queue.
316 	 */
317 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
318 	mapped = pmap_map(&vaddr, new_end, end,
319 	    VM_PROT_READ | VM_PROT_WRITE);
320 	vm_page_array = (vm_page_t)mapped;
321 
322 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
323 	/*
324 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
325 	 * we have to manually add these pages to the minidump tracking so
326 	 * that they can be dumped, including the vm_page_array.
327 	 */
328 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
329 		dump_add_page(pa);
330 #endif
331 
332 	/*
333 	 * Clear all of the page structures
334 	 */
335 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
336 	vm_page_array_size = page_range;
337 
338 	/*
339 	 * Construct the free queue(s) in ascending order (by physical
340 	 * address) so that the first 16MB of physical memory is allocated
341 	 * last rather than first.  On large-memory machines, this avoids
342 	 * the exhaustion of low physical memory before isa_dmainit has run.
343 	 */
344 	vmstats.v_page_count = 0;
345 	vmstats.v_free_count = 0;
346 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
347 		pa = phys_avail[i];
348 		if (i == biggestone)
349 			last_pa = new_end;
350 		else
351 			last_pa = phys_avail[i + 1];
352 		while (pa < last_pa && npages-- > 0) {
353 			vm_add_new_page(pa);
354 			pa += PAGE_SIZE;
355 		}
356 	}
357 	if (virtual2_start)
358 		virtual2_start = vaddr;
359 	else
360 		virtual_start = vaddr;
361 }
362 
363 /*
364  * Scan comparison function for Red-Black tree scans.  An inclusive
365  * (start,end) is expected.  Other fields are not used.
366  */
367 int
368 rb_vm_page_scancmp(struct vm_page *p, void *data)
369 {
370 	struct rb_vm_page_scan_info *info = data;
371 
372 	if (p->pindex < info->start_pindex)
373 		return(-1);
374 	if (p->pindex > info->end_pindex)
375 		return(1);
376 	return(0);
377 }
378 
379 int
380 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
381 {
382 	if (p1->pindex < p2->pindex)
383 		return(-1);
384 	if (p1->pindex > p2->pindex)
385 		return(1);
386 	return(0);
387 }
388 
389 /*
390  * Each page queue has its own spin lock, which is fairly optimal for
391  * allocating and freeing pages at least.
392  *
393  * The caller must hold the vm_page_spin_lock() before locking a vm_page's
394  * queue spinlock via this function.  Also note that m->queue cannot change
395  * unless both the page and queue are locked.
396  */
397 static __inline
398 void
399 _vm_page_queue_spin_lock(vm_page_t m)
400 {
401 	u_short queue;
402 
403 	queue = m->queue;
404 	if (queue != PQ_NONE) {
405 		spin_lock(&vm_page_queues[queue].spin);
406 		KKASSERT(queue == m->queue);
407 	}
408 }
409 
410 static __inline
411 void
412 _vm_page_queue_spin_unlock(vm_page_t m)
413 {
414 	u_short queue;
415 
416 	queue = m->queue;
417 	cpu_ccfence();
418 	if (queue != PQ_NONE)
419 		spin_unlock(&vm_page_queues[queue].spin);
420 }
421 
422 static __inline
423 void
424 _vm_page_queues_spin_lock(u_short queue)
425 {
426 	cpu_ccfence();
427 	if (queue != PQ_NONE)
428 		spin_lock(&vm_page_queues[queue].spin);
429 }
430 
431 
432 static __inline
433 void
434 _vm_page_queues_spin_unlock(u_short queue)
435 {
436 	cpu_ccfence();
437 	if (queue != PQ_NONE)
438 		spin_unlock(&vm_page_queues[queue].spin);
439 }
440 
441 void
442 vm_page_queue_spin_lock(vm_page_t m)
443 {
444 	_vm_page_queue_spin_lock(m);
445 }
446 
447 void
448 vm_page_queues_spin_lock(u_short queue)
449 {
450 	_vm_page_queues_spin_lock(queue);
451 }
452 
453 void
454 vm_page_queue_spin_unlock(vm_page_t m)
455 {
456 	_vm_page_queue_spin_unlock(m);
457 }
458 
459 void
460 vm_page_queues_spin_unlock(u_short queue)
461 {
462 	_vm_page_queues_spin_unlock(queue);
463 }
464 
465 /*
466  * This locks the specified vm_page and its queue in the proper order
467  * (page first, then queue).  The queue may change so the caller must
468  * recheck on return.
469  */
470 static __inline
471 void
472 _vm_page_and_queue_spin_lock(vm_page_t m)
473 {
474 	vm_page_spin_lock(m);
475 	_vm_page_queue_spin_lock(m);
476 }
477 
478 static __inline
479 void
480 _vm_page_and_queue_spin_unlock(vm_page_t m)
481 {
482 	_vm_page_queues_spin_unlock(m->queue);
483 	vm_page_spin_unlock(m);
484 }
485 
486 void
487 vm_page_and_queue_spin_unlock(vm_page_t m)
488 {
489 	_vm_page_and_queue_spin_unlock(m);
490 }
491 
492 void
493 vm_page_and_queue_spin_lock(vm_page_t m)
494 {
495 	_vm_page_and_queue_spin_lock(m);
496 }
497 
498 /*
499  * Helper function removes vm_page from its current queue.
500  * Returns the base queue the page used to be on.
501  *
502  * The vm_page and the queue must be spinlocked.
503  * This function will unlock the queue but leave the page spinlocked.
504  */
505 static __inline u_short
506 _vm_page_rem_queue_spinlocked(vm_page_t m)
507 {
508 	struct vpgqueues *pq;
509 	u_short queue;
510 
511 	queue = m->queue;
512 	if (queue != PQ_NONE) {
513 		pq = &vm_page_queues[queue];
514 		TAILQ_REMOVE(&pq->pl, m, pageq);
515 		atomic_add_int(pq->cnt, -1);
516 		pq->lcnt--;
517 		m->queue = PQ_NONE;
518 		vm_page_queues_spin_unlock(queue);
519 		if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO))
520 			atomic_subtract_int(&vm_page_zero_count, 1);
521 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
522 			return (queue - m->pc);
523 	}
524 	return queue;
525 }
526 
527 /*
528  * Helper function places the vm_page on the specified queue.
529  *
530  * The vm_page must be spinlocked.
531  * This function will return with both the page and the queue locked.
532  */
533 static __inline void
534 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead)
535 {
536 	struct vpgqueues *pq;
537 
538 	KKASSERT(m->queue == PQ_NONE);
539 
540 	if (queue != PQ_NONE) {
541 		vm_page_queues_spin_lock(queue);
542 		pq = &vm_page_queues[queue];
543 		++pq->lcnt;
544 		atomic_add_int(pq->cnt, 1);
545 		m->queue = queue;
546 
547 		/*
548 		 * Put zero'd pages on the end ( where we look for zero'd pages
549 		 * first ) and non-zerod pages at the head.
550 		 */
551 		if (queue - m->pc == PQ_FREE) {
552 			if (m->flags & PG_ZERO) {
553 				TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
554 				atomic_add_int(&vm_page_zero_count, 1);
555 			} else {
556 				TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
557 			}
558 		} else if (athead) {
559 			TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
560 		} else {
561 			TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
562 		}
563 		/* leave the queue spinlocked */
564 	}
565 }
566 
567 /*
568  * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE)
569  * m->busy is zero.  Returns TRUE if it had to sleep, FALSE if we
570  * did not.  Only one sleep call will be made before returning.
571  *
572  * This function does NOT busy the page and on return the page is not
573  * guaranteed to be available.
574  */
575 void
576 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg)
577 {
578 	u_int32_t flags;
579 
580 	for (;;) {
581 		flags = m->flags;
582 		cpu_ccfence();
583 
584 		if ((flags & PG_BUSY) == 0 &&
585 		    (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) {
586 			break;
587 		}
588 		tsleep_interlock(m, 0);
589 		if (atomic_cmpset_int(&m->flags, flags,
590 				      flags | PG_WANTED | PG_REFERENCED)) {
591 			tsleep(m, PINTERLOCKED, msg, 0);
592 			break;
593 		}
594 	}
595 }
596 
597 /*
598  * Wait until PG_BUSY can be set, then set it.  If also_m_busy is TRUE we
599  * also wait for m->busy to become 0 before setting PG_BUSY.
600  */
601 void
602 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m,
603 				     int also_m_busy, const char *msg
604 				     VM_PAGE_DEBUG_ARGS)
605 {
606 	u_int32_t flags;
607 
608 	for (;;) {
609 		flags = m->flags;
610 		cpu_ccfence();
611 		if (flags & PG_BUSY) {
612 			tsleep_interlock(m, 0);
613 			if (atomic_cmpset_int(&m->flags, flags,
614 					  flags | PG_WANTED | PG_REFERENCED)) {
615 				tsleep(m, PINTERLOCKED, msg, 0);
616 			}
617 		} else if (also_m_busy && (flags & PG_SBUSY)) {
618 			tsleep_interlock(m, 0);
619 			if (atomic_cmpset_int(&m->flags, flags,
620 					  flags | PG_WANTED | PG_REFERENCED)) {
621 				tsleep(m, PINTERLOCKED, msg, 0);
622 			}
623 		} else {
624 			if (atomic_cmpset_int(&m->flags, flags,
625 					      flags | PG_BUSY)) {
626 #ifdef VM_PAGE_DEBUG
627 				m->busy_func = func;
628 				m->busy_line = lineno;
629 #endif
630 				break;
631 			}
632 		}
633 	}
634 }
635 
636 /*
637  * Attempt to set PG_BUSY.  If also_m_busy is TRUE we only succeed if m->busy
638  * is also 0.
639  *
640  * Returns non-zero on failure.
641  */
642 int
643 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy
644 				    VM_PAGE_DEBUG_ARGS)
645 {
646 	u_int32_t flags;
647 
648 	for (;;) {
649 		flags = m->flags;
650 		cpu_ccfence();
651 		if (flags & PG_BUSY)
652 			return TRUE;
653 		if (also_m_busy && (flags & PG_SBUSY))
654 			return TRUE;
655 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
656 #ifdef VM_PAGE_DEBUG
657 				m->busy_func = func;
658 				m->busy_line = lineno;
659 #endif
660 			return FALSE;
661 		}
662 	}
663 }
664 
665 /*
666  * Clear the PG_BUSY flag and return non-zero to indicate to the caller
667  * that a wakeup() should be performed.
668  *
669  * The vm_page must be spinlocked and will remain spinlocked on return.
670  * The related queue must NOT be spinlocked (which could deadlock us).
671  *
672  * (inline version)
673  */
674 static __inline
675 int
676 _vm_page_wakeup(vm_page_t m)
677 {
678 	u_int32_t flags;
679 
680 	for (;;) {
681 		flags = m->flags;
682 		cpu_ccfence();
683 		if (atomic_cmpset_int(&m->flags, flags,
684 				      flags & ~(PG_BUSY | PG_WANTED))) {
685 			break;
686 		}
687 	}
688 	return(flags & PG_WANTED);
689 }
690 
691 /*
692  * Clear the PG_BUSY flag and wakeup anyone waiting for the page.  This
693  * is typically the last call you make on a page before moving onto
694  * other things.
695  */
696 void
697 vm_page_wakeup(vm_page_t m)
698 {
699         KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!"));
700 	vm_page_spin_lock(m);
701 	if (_vm_page_wakeup(m)) {
702 		vm_page_spin_unlock(m);
703 		wakeup(m);
704 	} else {
705 		vm_page_spin_unlock(m);
706 	}
707 }
708 
709 /*
710  * Holding a page keeps it from being reused.  Other parts of the system
711  * can still disassociate the page from its current object and free it, or
712  * perform read or write I/O on it and/or otherwise manipulate the page,
713  * but if the page is held the VM system will leave the page and its data
714  * intact and not reuse the page for other purposes until the last hold
715  * reference is released.  (see vm_page_wire() if you want to prevent the
716  * page from being disassociated from its object too).
717  *
718  * The caller must still validate the contents of the page and, if necessary,
719  * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete
720  * before manipulating the page.
721  *
722  * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary
723  */
724 void
725 vm_page_hold(vm_page_t m)
726 {
727 	vm_page_spin_lock(m);
728 	atomic_add_int(&m->hold_count, 1);
729 	if (m->queue - m->pc == PQ_FREE) {
730 		_vm_page_queue_spin_lock(m);
731 		_vm_page_rem_queue_spinlocked(m);
732 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
733 		_vm_page_queue_spin_unlock(m);
734 	}
735 	vm_page_spin_unlock(m);
736 }
737 
738 /*
739  * The opposite of vm_page_hold().  A page can be freed while being held,
740  * which places it on the PQ_HOLD queue.  If we are able to busy the page
741  * after the hold count drops to zero we will move the page to the
742  * appropriate PQ_FREE queue by calling vm_page_free_toq().
743  */
744 void
745 vm_page_unhold(vm_page_t m)
746 {
747 	vm_page_spin_lock(m);
748 	atomic_add_int(&m->hold_count, -1);
749 	if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) {
750 		_vm_page_queue_spin_lock(m);
751 		_vm_page_rem_queue_spinlocked(m);
752 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
753 		_vm_page_queue_spin_unlock(m);
754 	}
755 	vm_page_spin_unlock(m);
756 }
757 
758 /*
759  * Inserts the given vm_page into the object and object list.
760  *
761  * The pagetables are not updated but will presumably fault the page
762  * in if necessary, or if a kernel page the caller will at some point
763  * enter the page into the kernel's pmap.  We are not allowed to block
764  * here so we *can't* do this anyway.
765  *
766  * This routine may not block.
767  * This routine must be called with the vm_object held.
768  * This routine must be called with a critical section held.
769  *
770  * This routine returns TRUE if the page was inserted into the object
771  * successfully, and FALSE if the page already exists in the object.
772  */
773 int
774 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
775 {
776 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
777 	if (m->object != NULL)
778 		panic("vm_page_insert: already inserted");
779 
780 	object->generation++;
781 
782 	/*
783 	 * Record the object/offset pair in this page and add the
784 	 * pv_list_count of the page to the object.
785 	 *
786 	 * The vm_page spin lock is required for interactions with the pmap.
787 	 */
788 	vm_page_spin_lock(m);
789 	m->object = object;
790 	m->pindex = pindex;
791 	if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) {
792 		m->object = NULL;
793 		m->pindex = 0;
794 		vm_page_spin_unlock(m);
795 		return FALSE;
796 	}
797 	object->resident_page_count++;
798 	/* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */
799 	vm_page_spin_unlock(m);
800 
801 	/*
802 	 * Since we are inserting a new and possibly dirty page,
803 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
804 	 */
805 	if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
806 		vm_object_set_writeable_dirty(object);
807 
808 	/*
809 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
810 	 */
811 	swap_pager_page_inserted(m);
812 	return TRUE;
813 }
814 
815 /*
816  * Removes the given vm_page_t from the (object,index) table
817  *
818  * The underlying pmap entry (if any) is NOT removed here.
819  * This routine may not block.
820  *
821  * The page must be BUSY and will remain BUSY on return.
822  * No other requirements.
823  *
824  * NOTE: FreeBSD side effect was to unbusy the page on return.  We leave
825  *	 it busy.
826  */
827 void
828 vm_page_remove(vm_page_t m)
829 {
830 	vm_object_t object;
831 
832 	if (m->object == NULL) {
833 		return;
834 	}
835 
836 	if ((m->flags & PG_BUSY) == 0)
837 		panic("vm_page_remove: page not busy");
838 
839 	object = m->object;
840 
841 	vm_object_hold(object);
842 
843 	/*
844 	 * Remove the page from the object and update the object.
845 	 *
846 	 * The vm_page spin lock is required for interactions with the pmap.
847 	 */
848 	vm_page_spin_lock(m);
849 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
850 	object->resident_page_count--;
851 	/* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */
852 	m->object = NULL;
853 	vm_page_spin_unlock(m);
854 
855 	object->generation++;
856 
857 	vm_object_drop(object);
858 }
859 
860 /*
861  * Locate and return the page at (object, pindex), or NULL if the
862  * page could not be found.
863  *
864  * The caller must hold the vm_object token.
865  */
866 vm_page_t
867 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
868 {
869 	vm_page_t m;
870 
871 	/*
872 	 * Search the hash table for this object/offset pair
873 	 */
874 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
875 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
876 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
877 	return(m);
878 }
879 
880 vm_page_t
881 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object,
882 					    vm_pindex_t pindex,
883 					    int also_m_busy, const char *msg
884 					    VM_PAGE_DEBUG_ARGS)
885 {
886 	u_int32_t flags;
887 	vm_page_t m;
888 
889 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
890 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
891 	while (m) {
892 		KKASSERT(m->object == object && m->pindex == pindex);
893 		flags = m->flags;
894 		cpu_ccfence();
895 		if (flags & PG_BUSY) {
896 			tsleep_interlock(m, 0);
897 			if (atomic_cmpset_int(&m->flags, flags,
898 					  flags | PG_WANTED | PG_REFERENCED)) {
899 				tsleep(m, PINTERLOCKED, msg, 0);
900 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
901 							      pindex);
902 			}
903 		} else if (also_m_busy && (flags & PG_SBUSY)) {
904 			tsleep_interlock(m, 0);
905 			if (atomic_cmpset_int(&m->flags, flags,
906 					  flags | PG_WANTED | PG_REFERENCED)) {
907 				tsleep(m, PINTERLOCKED, msg, 0);
908 				m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq,
909 							      pindex);
910 			}
911 		} else if (atomic_cmpset_int(&m->flags, flags,
912 					     flags | PG_BUSY)) {
913 #ifdef VM_PAGE_DEBUG
914 			m->busy_func = func;
915 			m->busy_line = lineno;
916 #endif
917 			break;
918 		}
919 	}
920 	return m;
921 }
922 
923 /*
924  * Attempt to lookup and busy a page.
925  *
926  * Returns NULL if the page could not be found
927  *
928  * Returns a vm_page and error == TRUE if the page exists but could not
929  * be busied.
930  *
931  * Returns a vm_page and error == FALSE on success.
932  */
933 vm_page_t
934 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object,
935 					   vm_pindex_t pindex,
936 					   int also_m_busy, int *errorp
937 					   VM_PAGE_DEBUG_ARGS)
938 {
939 	u_int32_t flags;
940 	vm_page_t m;
941 
942 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(object));
943 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
944 	*errorp = FALSE;
945 	while (m) {
946 		KKASSERT(m->object == object && m->pindex == pindex);
947 		flags = m->flags;
948 		cpu_ccfence();
949 		if (flags & PG_BUSY) {
950 			*errorp = TRUE;
951 			break;
952 		}
953 		if (also_m_busy && (flags & PG_SBUSY)) {
954 			*errorp = TRUE;
955 			break;
956 		}
957 		if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) {
958 #ifdef VM_PAGE_DEBUG
959 			m->busy_func = func;
960 			m->busy_line = lineno;
961 #endif
962 			break;
963 		}
964 	}
965 	return m;
966 }
967 
968 /*
969  * Caller must hold the related vm_object
970  */
971 vm_page_t
972 vm_page_next(vm_page_t m)
973 {
974 	vm_page_t next;
975 
976 	next = vm_page_rb_tree_RB_NEXT(m);
977 	if (next && next->pindex != m->pindex + 1)
978 		next = NULL;
979 	return (next);
980 }
981 
982 /*
983  * vm_page_rename()
984  *
985  * Move the given vm_page from its current object to the specified
986  * target object/offset.  The page must be busy and will remain so
987  * on return.
988  *
989  * new_object must be held.
990  * This routine might block. XXX ?
991  *
992  * NOTE: Swap associated with the page must be invalidated by the move.  We
993  *       have to do this for several reasons:  (1) we aren't freeing the
994  *       page, (2) we are dirtying the page, (3) the VM system is probably
995  *       moving the page from object A to B, and will then later move
996  *       the backing store from A to B and we can't have a conflict.
997  *
998  * NOTE: We *always* dirty the page.  It is necessary both for the
999  *       fact that we moved it, and because we may be invalidating
1000  *	 swap.  If the page is on the cache, we have to deactivate it
1001  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
1002  *	 on the cache.
1003  */
1004 void
1005 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
1006 {
1007 	KKASSERT(m->flags & PG_BUSY);
1008 	ASSERT_LWKT_TOKEN_HELD(vm_object_token(new_object));
1009 	if (m->object) {
1010 		ASSERT_LWKT_TOKEN_HELD(vm_object_token(m->object));
1011 		vm_page_remove(m);
1012 	}
1013 	if (vm_page_insert(m, new_object, new_pindex) == FALSE) {
1014 		panic("vm_page_rename: target exists (%p,%"PRIu64")",
1015 		      new_object, new_pindex);
1016 	}
1017 	if (m->queue - m->pc == PQ_CACHE)
1018 		vm_page_deactivate(m);
1019 	vm_page_dirty(m);
1020 }
1021 
1022 /*
1023  * vm_page_unqueue() without any wakeup.  This routine is used when a page
1024  * is being moved between queues or otherwise is to remain BUSYied by the
1025  * caller.
1026  *
1027  * This routine may not block.
1028  */
1029 void
1030 vm_page_unqueue_nowakeup(vm_page_t m)
1031 {
1032 	vm_page_and_queue_spin_lock(m);
1033 	(void)_vm_page_rem_queue_spinlocked(m);
1034 	vm_page_spin_unlock(m);
1035 }
1036 
1037 /*
1038  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
1039  * if necessary.
1040  *
1041  * This routine may not block.
1042  */
1043 void
1044 vm_page_unqueue(vm_page_t m)
1045 {
1046 	u_short queue;
1047 
1048 	vm_page_and_queue_spin_lock(m);
1049 	queue = _vm_page_rem_queue_spinlocked(m);
1050 	if (queue == PQ_FREE || queue == PQ_CACHE) {
1051 		vm_page_spin_unlock(m);
1052 		pagedaemon_wakeup();
1053 	} else {
1054 		vm_page_spin_unlock(m);
1055 	}
1056 }
1057 
1058 /*
1059  * vm_page_list_find()
1060  *
1061  * Find a page on the specified queue with color optimization.
1062  *
1063  * The page coloring optimization attempts to locate a page that does
1064  * not overload other nearby pages in the object in the cpu's L1 or L2
1065  * caches.  We need this optimization because cpu caches tend to be
1066  * physical caches, while object spaces tend to be virtual.
1067  *
1068  * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock
1069  * and the algorithm is adjusted to localize allocations on a per-core basis.
1070  * This is done by 'twisting' the colors.
1071  *
1072  * The page is returned spinlocked and removed from its queue (it will
1073  * be on PQ_NONE), or NULL. The page is not PG_BUSY'd.  The caller
1074  * is responsible for dealing with the busy-page case (usually by
1075  * deactivating the page and looping).
1076  *
1077  * NOTE:  This routine is carefully inlined.  A non-inlined version
1078  *	  is available for outside callers but the only critical path is
1079  *	  from within this source file.
1080  *
1081  * NOTE:  This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE
1082  *	  represent stable storage, allowing us to order our locks vm_page
1083  *	  first, then queue.
1084  */
1085 static __inline
1086 vm_page_t
1087 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1088 {
1089 	vm_page_t m;
1090 
1091 	for (;;) {
1092 		if (prefer_zero)
1093 			m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
1094 		else
1095 			m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
1096 		if (m == NULL) {
1097 			m = _vm_page_list_find2(basequeue, index);
1098 			return(m);
1099 		}
1100 		vm_page_and_queue_spin_lock(m);
1101 		if (m->queue == basequeue + index) {
1102 			_vm_page_rem_queue_spinlocked(m);
1103 			/* vm_page_t spin held, no queue spin */
1104 			break;
1105 		}
1106 		vm_page_and_queue_spin_unlock(m);
1107 	}
1108 	return(m);
1109 }
1110 
1111 static vm_page_t
1112 _vm_page_list_find2(int basequeue, int index)
1113 {
1114 	int i;
1115 	vm_page_t m = NULL;
1116 	struct vpgqueues *pq;
1117 
1118 	pq = &vm_page_queues[basequeue];
1119 
1120 	/*
1121 	 * Note that for the first loop, index+i and index-i wind up at the
1122 	 * same place.  Even though this is not totally optimal, we've already
1123 	 * blown it by missing the cache case so we do not care.
1124 	 */
1125 	for (i = PQ_L2_SIZE / 2; i > 0; --i) {
1126 		for (;;) {
1127 			m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl);
1128 			if (m) {
1129 				_vm_page_and_queue_spin_lock(m);
1130 				if (m->queue ==
1131 				    basequeue + ((index + i) & PQ_L2_MASK)) {
1132 					_vm_page_rem_queue_spinlocked(m);
1133 					return(m);
1134 				}
1135 				_vm_page_and_queue_spin_unlock(m);
1136 				continue;
1137 			}
1138 			m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl);
1139 			if (m) {
1140 				_vm_page_and_queue_spin_lock(m);
1141 				if (m->queue ==
1142 				    basequeue + ((index - i) & PQ_L2_MASK)) {
1143 					_vm_page_rem_queue_spinlocked(m);
1144 					return(m);
1145 				}
1146 				_vm_page_and_queue_spin_unlock(m);
1147 				continue;
1148 			}
1149 			break;	/* next i */
1150 		}
1151 	}
1152 	return(m);
1153 }
1154 
1155 /*
1156  * Returns a vm_page candidate for allocation.  The page is not busied so
1157  * it can move around.  The caller must busy the page (and typically
1158  * deactivate it if it cannot be busied!)
1159  *
1160  * Returns a spinlocked vm_page that has been removed from its queue.
1161  */
1162 vm_page_t
1163 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
1164 {
1165 	return(_vm_page_list_find(basequeue, index, prefer_zero));
1166 }
1167 
1168 /*
1169  * Find a page on the cache queue with color optimization, remove it
1170  * from the queue, and busy it.  The returned page will not be spinlocked.
1171  *
1172  * A candidate failure will be deactivated.  Candidates can fail due to
1173  * being busied by someone else, in which case they will be deactivated.
1174  *
1175  * This routine may not block.
1176  *
1177  */
1178 static vm_page_t
1179 vm_page_select_cache(u_short pg_color)
1180 {
1181 	vm_page_t m;
1182 
1183 	for (;;) {
1184 		m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE);
1185 		if (m == NULL)
1186 			break;
1187 		/*
1188 		 * (m) has been removed from its queue and spinlocked
1189 		 */
1190 		if (vm_page_busy_try(m, TRUE)) {
1191 			_vm_page_deactivate_locked(m, 0);
1192 			vm_page_spin_unlock(m);
1193 #ifdef INVARIANTS
1194                         kprintf("Warning: busy page %p found in cache\n", m);
1195 #endif
1196 		} else {
1197 			/*
1198 			 * We successfully busied the page
1199 			 */
1200 			if ((m->flags & PG_UNMANAGED) == 0 &&
1201 			    m->hold_count == 0 &&
1202 			    m->wire_count == 0) {
1203 				vm_page_spin_unlock(m);
1204 				pagedaemon_wakeup();
1205 				return(m);
1206 			}
1207 			_vm_page_deactivate_locked(m, 0);
1208 			if (_vm_page_wakeup(m)) {
1209 				vm_page_spin_unlock(m);
1210 				wakeup(m);
1211 			} else {
1212 				vm_page_spin_unlock(m);
1213 			}
1214 		}
1215 	}
1216 	return (m);
1217 }
1218 
1219 /*
1220  * Find a free or zero page, with specified preference.  We attempt to
1221  * inline the nominal case and fall back to _vm_page_select_free()
1222  * otherwise.  A busied page is removed from the queue and returned.
1223  *
1224  * This routine may not block.
1225  */
1226 static __inline vm_page_t
1227 vm_page_select_free(u_short pg_color, boolean_t prefer_zero)
1228 {
1229 	vm_page_t m;
1230 
1231 	for (;;) {
1232 		m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK,
1233 				       prefer_zero);
1234 		if (m == NULL)
1235 			break;
1236 		if (vm_page_busy_try(m, TRUE)) {
1237 			/*
1238 			 * Various mechanisms such as a pmap_collect can
1239 			 * result in a busy page on the free queue.  We
1240 			 * have to move the page out of the way so we can
1241 			 * retry the allocation.  If the other thread is not
1242 			 * allocating the page then m->valid will remain 0 and
1243 			 * the pageout daemon will free the page later on.
1244 			 *
1245 			 * Since we could not busy the page, however, we
1246 			 * cannot make assumptions as to whether the page
1247 			 * will be allocated by the other thread or not,
1248 			 * so all we can do is deactivate it to move it out
1249 			 * of the way.  In particular, if the other thread
1250 			 * wires the page it may wind up on the inactive
1251 			 * queue and the pageout daemon will have to deal
1252 			 * with that case too.
1253 			 */
1254 			_vm_page_deactivate_locked(m, 0);
1255 			vm_page_spin_unlock(m);
1256 #ifdef INVARIANTS
1257                         kprintf("Warning: busy page %p found in cache\n", m);
1258 #endif
1259 		} else {
1260 			/*
1261 			 * Theoretically if we are able to busy the page
1262 			 * atomic with the queue removal (using the vm_page
1263 			 * lock) nobody else should be able to mess with the
1264 			 * page before us.
1265 			 */
1266 			KKASSERT((m->flags & PG_UNMANAGED) == 0);
1267 			KKASSERT(m->hold_count == 0);
1268 			KKASSERT(m->wire_count == 0);
1269 			vm_page_spin_unlock(m);
1270 			pagedaemon_wakeup();
1271 
1272 			/* return busied and removed page */
1273 			return(m);
1274 		}
1275 	}
1276 	return(m);
1277 }
1278 
1279 /*
1280  * This implements a per-cpu cache of free, zero'd, ready-to-go pages.
1281  * The idea is to populate this cache prior to acquiring any locks so
1282  * we don't wind up potentially zeroing VM pages (under heavy loads) while
1283  * holding potentialy contending locks.
1284  *
1285  * Note that we allocate the page uninserted into anything and use a pindex
1286  * of 0, the vm_page_alloc() will effectively add gd_cpuid so these
1287  * allocations should wind up being uncontended.  However, we still want
1288  * to rove across PQ_L2_SIZE.
1289  */
1290 void
1291 vm_page_pcpu_cache(void)
1292 {
1293 #if 0
1294 	globaldata_t gd = mycpu;
1295 	vm_page_t m;
1296 
1297 	if (gd->gd_vmpg_count < GD_MINVMPG) {
1298 		crit_enter_gd(gd);
1299 		while (gd->gd_vmpg_count < GD_MAXVMPG) {
1300 			m = vm_page_alloc(NULL, ticks & ~ncpus2_mask,
1301 					  VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL |
1302 					  VM_ALLOC_NULL_OK | VM_ALLOC_ZERO);
1303 			if (gd->gd_vmpg_count < GD_MAXVMPG) {
1304 				if ((m->flags & PG_ZERO) == 0) {
1305 					pmap_zero_page(VM_PAGE_TO_PHYS(m));
1306 					vm_page_flag_set(m, PG_ZERO);
1307 				}
1308 				gd->gd_vmpg_array[gd->gd_vmpg_count++] = m;
1309 			} else {
1310 				vm_page_free(m);
1311 			}
1312 		}
1313 		crit_exit_gd(gd);
1314 	}
1315 #endif
1316 }
1317 
1318 /*
1319  * vm_page_alloc()
1320  *
1321  * Allocate and return a memory cell associated with this VM object/offset
1322  * pair.  If object is NULL an unassociated page will be allocated.
1323  *
1324  * The returned page will be busied and removed from its queues.  This
1325  * routine can block and may return NULL if a race occurs and the page
1326  * is found to already exist at the specified (object, pindex).
1327  *
1328  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
1329  *	VM_ALLOC_QUICK		like normal but cannot use cache
1330  *	VM_ALLOC_SYSTEM		greater free drain
1331  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
1332  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page only
1333  *	VM_ALLOC_FORCE_ZERO	advisory request for pre-zero'd page only
1334  *	VM_ALLOC_NULL_OK	ok to return NULL on insertion collision
1335  *				(see vm_page_grab())
1336  *	VM_ALLOC_USE_GD		ok to use per-gd cache
1337  *
1338  * The object must be held if not NULL
1339  * This routine may not block
1340  *
1341  * Additional special handling is required when called from an interrupt
1342  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
1343  * in this case.
1344  */
1345 vm_page_t
1346 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
1347 {
1348 #ifdef SMP
1349 	globaldata_t gd = mycpu;
1350 #endif
1351 	vm_page_t m;
1352 	u_short pg_color;
1353 
1354 #if 0
1355 	/*
1356 	 * Special per-cpu free VM page cache.  The pages are pre-busied
1357 	 * and pre-zerod for us.
1358 	 */
1359 	if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) {
1360 		crit_enter_gd(gd);
1361 		if (gd->gd_vmpg_count) {
1362 			m = gd->gd_vmpg_array[--gd->gd_vmpg_count];
1363 			crit_exit_gd(gd);
1364 			goto done;
1365                 }
1366 		crit_exit_gd(gd);
1367         }
1368 #endif
1369 	m = NULL;
1370 
1371 #ifdef SMP
1372 	/*
1373 	 * Cpu twist - cpu localization algorithm
1374 	 */
1375 	if (object) {
1376 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) +
1377 			   (object->pg_color & ~ncpus_fit_mask);
1378 	} else {
1379 		pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask);
1380 	}
1381 #else
1382 	/*
1383 	 * Normal page coloring algorithm
1384 	 */
1385 	if (object) {
1386 		pg_color = object->pg_color + pindex;
1387 	} else {
1388 		pg_color = pindex;
1389 	}
1390 #endif
1391 	KKASSERT(page_req &
1392 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
1393 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1394 
1395 	/*
1396 	 * Certain system threads (pageout daemon, buf_daemon's) are
1397 	 * allowed to eat deeper into the free page list.
1398 	 */
1399 	if (curthread->td_flags & TDF_SYSTHREAD)
1400 		page_req |= VM_ALLOC_SYSTEM;
1401 
1402 loop:
1403 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
1404 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
1405 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
1406 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
1407 	) {
1408 		/*
1409 		 * The free queue has sufficient free pages to take one out.
1410 		 */
1411 		if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO))
1412 			m = vm_page_select_free(pg_color, TRUE);
1413 		else
1414 			m = vm_page_select_free(pg_color, FALSE);
1415 	} else if (page_req & VM_ALLOC_NORMAL) {
1416 		/*
1417 		 * Allocatable from the cache (non-interrupt only).  On
1418 		 * success, we must free the page and try again, thus
1419 		 * ensuring that vmstats.v_*_free_min counters are replenished.
1420 		 */
1421 #ifdef INVARIANTS
1422 		if (curthread->td_preempted) {
1423 			kprintf("vm_page_alloc(): warning, attempt to allocate"
1424 				" cache page from preempting interrupt\n");
1425 			m = NULL;
1426 		} else {
1427 			m = vm_page_select_cache(pg_color);
1428 		}
1429 #else
1430 		m = vm_page_select_cache(pg_color);
1431 #endif
1432 		/*
1433 		 * On success move the page into the free queue and loop.
1434 		 */
1435 		if (m != NULL) {
1436 			KASSERT(m->dirty == 0,
1437 				("Found dirty cache page %p", m));
1438 			vm_page_protect(m, VM_PROT_NONE);
1439 			vm_page_free(m);
1440 			goto loop;
1441 		}
1442 
1443 		/*
1444 		 * On failure return NULL
1445 		 */
1446 #if defined(DIAGNOSTIC)
1447 		if (vmstats.v_cache_count > 0)
1448 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
1449 #endif
1450 		vm_pageout_deficit++;
1451 		pagedaemon_wakeup();
1452 		return (NULL);
1453 	} else {
1454 		/*
1455 		 * No pages available, wakeup the pageout daemon and give up.
1456 		 */
1457 		vm_pageout_deficit++;
1458 		pagedaemon_wakeup();
1459 		return (NULL);
1460 	}
1461 
1462 	/*
1463 	 * v_free_count can race so loop if we don't find the expected
1464 	 * page.
1465 	 */
1466 	if (m == NULL)
1467 		goto loop;
1468 
1469 	/*
1470 	 * Good page found.  The page has already been busied for us and
1471 	 * removed from its queues.
1472 	 */
1473 	KASSERT(m->dirty == 0,
1474 		("vm_page_alloc: free/cache page %p was dirty", m));
1475 	KKASSERT(m->queue == PQ_NONE);
1476 
1477 #if 0
1478 done:
1479 #endif
1480 	/*
1481 	 * Initialize the structure, inheriting some flags but clearing
1482 	 * all the rest.  The page has already been busied for us.
1483 	 */
1484 	vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY));
1485 	KKASSERT(m->wire_count == 0);
1486 	KKASSERT(m->busy == 0);
1487 	m->act_count = 0;
1488 	m->valid = 0;
1489 
1490 	/*
1491 	 * Caller must be holding the object lock (asserted by
1492 	 * vm_page_insert()).
1493 	 *
1494 	 * NOTE: Inserting a page here does not insert it into any pmaps
1495 	 *	 (which could cause us to block allocating memory).
1496 	 *
1497 	 * NOTE: If no object an unassociated page is allocated, m->pindex
1498 	 *	 can be used by the caller for any purpose.
1499 	 */
1500 	if (object) {
1501 		if (vm_page_insert(m, object, pindex) == FALSE) {
1502 			kprintf("PAGE RACE (%p:%d,%"PRIu64")\n",
1503 				object, object->type, pindex);
1504 			vm_page_free(m);
1505 			m = NULL;
1506 			if ((page_req & VM_ALLOC_NULL_OK) == 0)
1507 				panic("PAGE RACE");
1508 		}
1509 	} else {
1510 		m->pindex = pindex;
1511 	}
1512 
1513 	/*
1514 	 * Don't wakeup too often - wakeup the pageout daemon when
1515 	 * we would be nearly out of memory.
1516 	 */
1517 	pagedaemon_wakeup();
1518 
1519 	/*
1520 	 * A PG_BUSY page is returned.
1521 	 */
1522 	return (m);
1523 }
1524 
1525 /*
1526  * Wait for sufficient free memory for nominal heavy memory use kernel
1527  * operations.
1528  */
1529 void
1530 vm_wait_nominal(void)
1531 {
1532 	while (vm_page_count_min(0))
1533 		vm_wait(0);
1534 }
1535 
1536 /*
1537  * Test if vm_wait_nominal() would block.
1538  */
1539 int
1540 vm_test_nominal(void)
1541 {
1542 	if (vm_page_count_min(0))
1543 		return(1);
1544 	return(0);
1545 }
1546 
1547 /*
1548  * Block until free pages are available for allocation, called in various
1549  * places before memory allocations.
1550  *
1551  * The caller may loop if vm_page_count_min() == FALSE so we cannot be
1552  * more generous then that.
1553  */
1554 void
1555 vm_wait(int timo)
1556 {
1557 	/*
1558 	 * never wait forever
1559 	 */
1560 	if (timo == 0)
1561 		timo = hz;
1562 	lwkt_gettoken(&vm_token);
1563 
1564 	if (curthread == pagethread) {
1565 		/*
1566 		 * The pageout daemon itself needs pages, this is bad.
1567 		 */
1568 		if (vm_page_count_min(0)) {
1569 			vm_pageout_pages_needed = 1;
1570 			tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
1571 		}
1572 	} else {
1573 		/*
1574 		 * Wakeup the pageout daemon if necessary and wait.
1575 		 */
1576 		if (vm_page_count_target()) {
1577 			if (vm_pages_needed == 0) {
1578 				vm_pages_needed = 1;
1579 				wakeup(&vm_pages_needed);
1580 			}
1581 			++vm_pages_waiting;	/* SMP race ok */
1582 			tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
1583 		}
1584 	}
1585 	lwkt_reltoken(&vm_token);
1586 }
1587 
1588 /*
1589  * Block until free pages are available for allocation
1590  *
1591  * Called only from vm_fault so that processes page faulting can be
1592  * easily tracked.
1593  */
1594 void
1595 vm_waitpfault(void)
1596 {
1597 	/*
1598 	 * Wakeup the pageout daemon if necessary and wait.
1599 	 */
1600 	if (vm_page_count_target()) {
1601 		lwkt_gettoken(&vm_token);
1602 		if (vm_page_count_target()) {
1603 			if (vm_pages_needed == 0) {
1604 				vm_pages_needed = 1;
1605 				wakeup(&vm_pages_needed);
1606 			}
1607 			++vm_pages_waiting;	/* SMP race ok */
1608 			tsleep(&vmstats.v_free_count, 0, "pfault", hz);
1609 		}
1610 		lwkt_reltoken(&vm_token);
1611 	}
1612 }
1613 
1614 /*
1615  * Put the specified page on the active list (if appropriate).  Ensure
1616  * that act_count is at least ACT_INIT but do not otherwise mess with it.
1617  *
1618  * The caller should be holding the page busied ? XXX
1619  * This routine may not block.
1620  */
1621 void
1622 vm_page_activate(vm_page_t m)
1623 {
1624 	u_short oqueue;
1625 
1626 	vm_page_spin_lock(m);
1627 	if (m->queue - m->pc != PQ_ACTIVE) {
1628 		_vm_page_queue_spin_lock(m);
1629 		oqueue = _vm_page_rem_queue_spinlocked(m);
1630 		/* page is left spinlocked, queue is unlocked */
1631 
1632 		if (oqueue == PQ_CACHE)
1633 			mycpu->gd_cnt.v_reactivated++;
1634 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1635 			if (m->act_count < ACT_INIT)
1636 				m->act_count = ACT_INIT;
1637 			_vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0);
1638 		}
1639 		_vm_page_and_queue_spin_unlock(m);
1640 		if (oqueue == PQ_CACHE || oqueue == PQ_FREE)
1641 			pagedaemon_wakeup();
1642 	} else {
1643 		if (m->act_count < ACT_INIT)
1644 			m->act_count = ACT_INIT;
1645 		vm_page_spin_unlock(m);
1646 	}
1647 }
1648 
1649 /*
1650  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
1651  * routine is called when a page has been added to the cache or free
1652  * queues.
1653  *
1654  * This routine may not block.
1655  */
1656 static __inline void
1657 vm_page_free_wakeup(void)
1658 {
1659 	/*
1660 	 * If the pageout daemon itself needs pages, then tell it that
1661 	 * there are some free.
1662 	 */
1663 	if (vm_pageout_pages_needed &&
1664 	    vmstats.v_cache_count + vmstats.v_free_count >=
1665 	    vmstats.v_pageout_free_min
1666 	) {
1667 		wakeup(&vm_pageout_pages_needed);
1668 		vm_pageout_pages_needed = 0;
1669 	}
1670 
1671 	/*
1672 	 * Wakeup processes that are waiting on memory.
1673 	 *
1674 	 * NOTE: vm_paging_target() is the pageout daemon's target, while
1675 	 *	 vm_page_count_target() is somewhere inbetween.  We want
1676 	 *	 to wake processes up prior to the pageout daemon reaching
1677 	 *	 its target to provide some hysteresis.
1678 	 */
1679 	if (vm_pages_waiting) {
1680 		if (!vm_page_count_target()) {
1681 			/*
1682 			 * Plenty of pages are free, wakeup everyone.
1683 			 */
1684 			vm_pages_waiting = 0;
1685 			wakeup(&vmstats.v_free_count);
1686 			++mycpu->gd_cnt.v_ppwakeups;
1687 		} else if (!vm_page_count_min(0)) {
1688 			/*
1689 			 * Some pages are free, wakeup someone.
1690 			 */
1691 			int wcount = vm_pages_waiting;
1692 			if (wcount > 0)
1693 				--wcount;
1694 			vm_pages_waiting = wcount;
1695 			wakeup_one(&vmstats.v_free_count);
1696 			++mycpu->gd_cnt.v_ppwakeups;
1697 		}
1698 	}
1699 }
1700 
1701 /*
1702  * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates
1703  * it from its VM object.
1704  *
1705  * The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
1706  * return (the page will have been freed).
1707  */
1708 void
1709 vm_page_free_toq(vm_page_t m)
1710 {
1711 	mycpu->gd_cnt.v_tfree++;
1712 	KKASSERT((m->flags & PG_MAPPED) == 0);
1713 	KKASSERT(m->flags & PG_BUSY);
1714 
1715 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1716 		kprintf(
1717 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1718 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1719 		    m->hold_count);
1720 		if ((m->queue - m->pc) == PQ_FREE)
1721 			panic("vm_page_free: freeing free page");
1722 		else
1723 			panic("vm_page_free: freeing busy page");
1724 	}
1725 
1726 	/*
1727 	 * Remove from object, spinlock the page and its queues and
1728 	 * remove from any queue.  No queue spinlock will be held
1729 	 * after this section (because the page was removed from any
1730 	 * queue).
1731 	 */
1732 	vm_page_remove(m);
1733 	vm_page_and_queue_spin_lock(m);
1734 	_vm_page_rem_queue_spinlocked(m);
1735 
1736 	/*
1737 	 * No further management of fictitious pages occurs beyond object
1738 	 * and queue removal.
1739 	 */
1740 	if ((m->flags & PG_FICTITIOUS) != 0) {
1741 		vm_page_spin_unlock(m);
1742 		vm_page_wakeup(m);
1743 		return;
1744 	}
1745 
1746 	m->valid = 0;
1747 	vm_page_undirty(m);
1748 
1749 	if (m->wire_count != 0) {
1750 		if (m->wire_count > 1) {
1751 		    panic(
1752 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1753 			m->wire_count, (long)m->pindex);
1754 		}
1755 		panic("vm_page_free: freeing wired page");
1756 	}
1757 
1758 	/*
1759 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1760 	 */
1761 	if (m->flags & PG_UNMANAGED) {
1762 		vm_page_flag_clear(m, PG_UNMANAGED);
1763 	}
1764 
1765 	if (m->hold_count != 0) {
1766 		vm_page_flag_clear(m, PG_ZERO);
1767 		_vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0);
1768 	} else {
1769 		_vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0);
1770 	}
1771 
1772 	/*
1773 	 * This sequence allows us to clear PG_BUSY while still holding
1774 	 * its spin lock, which reduces contention vs allocators.  We
1775 	 * must not leave the queue locked or _vm_page_wakeup() may
1776 	 * deadlock.
1777 	 */
1778 	_vm_page_queue_spin_unlock(m);
1779 	if (_vm_page_wakeup(m)) {
1780 		vm_page_spin_unlock(m);
1781 		wakeup(m);
1782 	} else {
1783 		vm_page_spin_unlock(m);
1784 	}
1785 	vm_page_free_wakeup();
1786 }
1787 
1788 /*
1789  * vm_page_free_fromq_fast()
1790  *
1791  * Remove a non-zero page from one of the free queues; the page is removed for
1792  * zeroing, so do not issue a wakeup.
1793  */
1794 vm_page_t
1795 vm_page_free_fromq_fast(void)
1796 {
1797 	static int qi;
1798 	vm_page_t m;
1799 	int i;
1800 
1801 	for (i = 0; i < PQ_L2_SIZE; ++i) {
1802 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
1803 		/* page is returned spinlocked and removed from its queue */
1804 		if (m) {
1805 			if (vm_page_busy_try(m, TRUE)) {
1806 				/*
1807 				 * We were unable to busy the page, deactivate
1808 				 * it and loop.
1809 				 */
1810 				_vm_page_deactivate_locked(m, 0);
1811 				vm_page_spin_unlock(m);
1812 			} else if (m->flags & PG_ZERO) {
1813 				/*
1814 				 * The page is PG_ZERO, requeue it and loop
1815 				 */
1816 				_vm_page_add_queue_spinlocked(m,
1817 							      PQ_FREE + m->pc,
1818 							      0);
1819 				vm_page_queue_spin_unlock(m);
1820 				if (_vm_page_wakeup(m)) {
1821 					vm_page_spin_unlock(m);
1822 					wakeup(m);
1823 				} else {
1824 					vm_page_spin_unlock(m);
1825 				}
1826 			} else {
1827 				/*
1828 				 * The page is not PG_ZERO'd so return it.
1829 				 */
1830 				vm_page_spin_unlock(m);
1831 				KKASSERT((m->flags & PG_UNMANAGED) == 0);
1832 				KKASSERT(m->hold_count == 0);
1833 				KKASSERT(m->wire_count == 0);
1834 				break;
1835 			}
1836 			m = NULL;
1837 		}
1838 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
1839 	}
1840 	return (m);
1841 }
1842 
1843 /*
1844  * vm_page_unmanage()
1845  *
1846  * Prevent PV management from being done on the page.  The page is
1847  * removed from the paging queues as if it were wired, and as a
1848  * consequence of no longer being managed the pageout daemon will not
1849  * touch it (since there is no way to locate the pte mappings for the
1850  * page).  madvise() calls that mess with the pmap will also no longer
1851  * operate on the page.
1852  *
1853  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1854  * will clear the flag.
1855  *
1856  * This routine is used by OBJT_PHYS objects - objects using unswappable
1857  * physical memory as backing store rather then swap-backed memory and
1858  * will eventually be extended to support 4MB unmanaged physical
1859  * mappings.
1860  *
1861  * Caller must be holding the page busy.
1862  */
1863 void
1864 vm_page_unmanage(vm_page_t m)
1865 {
1866 	KKASSERT(m->flags & PG_BUSY);
1867 	if ((m->flags & PG_UNMANAGED) == 0) {
1868 		if (m->wire_count == 0)
1869 			vm_page_unqueue(m);
1870 	}
1871 	vm_page_flag_set(m, PG_UNMANAGED);
1872 }
1873 
1874 /*
1875  * Mark this page as wired down by yet another map, removing it from
1876  * paging queues as necessary.
1877  *
1878  * Caller must be holding the page busy.
1879  */
1880 void
1881 vm_page_wire(vm_page_t m)
1882 {
1883 	/*
1884 	 * Only bump the wire statistics if the page is not already wired,
1885 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1886 	 * it is already off the queues).  Don't do anything with fictitious
1887 	 * pages because they are always wired.
1888 	 */
1889 	KKASSERT(m->flags & PG_BUSY);
1890 	if ((m->flags & PG_FICTITIOUS) == 0) {
1891 		if (atomic_fetchadd_int(&m->wire_count, 1) == 0) {
1892 			if ((m->flags & PG_UNMANAGED) == 0)
1893 				vm_page_unqueue(m);
1894 			atomic_add_int(&vmstats.v_wire_count, 1);
1895 		}
1896 		KASSERT(m->wire_count != 0,
1897 			("vm_page_wire: wire_count overflow m=%p", m));
1898 	}
1899 }
1900 
1901 /*
1902  * Release one wiring of this page, potentially enabling it to be paged again.
1903  *
1904  * Many pages placed on the inactive queue should actually go
1905  * into the cache, but it is difficult to figure out which.  What
1906  * we do instead, if the inactive target is well met, is to put
1907  * clean pages at the head of the inactive queue instead of the tail.
1908  * This will cause them to be moved to the cache more quickly and
1909  * if not actively re-referenced, freed more quickly.  If we just
1910  * stick these pages at the end of the inactive queue, heavy filesystem
1911  * meta-data accesses can cause an unnecessary paging load on memory bound
1912  * processes.  This optimization causes one-time-use metadata to be
1913  * reused more quickly.
1914  *
1915  * BUT, if we are in a low-memory situation we have no choice but to
1916  * put clean pages on the cache queue.
1917  *
1918  * A number of routines use vm_page_unwire() to guarantee that the page
1919  * will go into either the inactive or active queues, and will NEVER
1920  * be placed in the cache - for example, just after dirtying a page.
1921  * dirty pages in the cache are not allowed.
1922  *
1923  * The page queues must be locked.
1924  * This routine may not block.
1925  */
1926 void
1927 vm_page_unwire(vm_page_t m, int activate)
1928 {
1929 	KKASSERT(m->flags & PG_BUSY);
1930 	if (m->flags & PG_FICTITIOUS) {
1931 		/* do nothing */
1932 	} else if (m->wire_count <= 0) {
1933 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1934 	} else {
1935 		if (atomic_fetchadd_int(&m->wire_count, -1) == 1) {
1936 			atomic_add_int(&vmstats.v_wire_count, -1);
1937 			if (m->flags & PG_UNMANAGED) {
1938 				;
1939 			} else if (activate) {
1940 				vm_page_spin_lock(m);
1941 				_vm_page_add_queue_spinlocked(m,
1942 							PQ_ACTIVE + m->pc, 0);
1943 				_vm_page_and_queue_spin_unlock(m);
1944 			} else {
1945 				vm_page_spin_lock(m);
1946 				vm_page_flag_clear(m, PG_WINATCFLS);
1947 				_vm_page_add_queue_spinlocked(m,
1948 							PQ_INACTIVE + m->pc, 0);
1949 				++vm_swapcache_inactive_heuristic;
1950 				_vm_page_and_queue_spin_unlock(m);
1951 			}
1952 		}
1953 	}
1954 }
1955 
1956 /*
1957  * Move the specified page to the inactive queue.  If the page has
1958  * any associated swap, the swap is deallocated.
1959  *
1960  * Normally athead is 0 resulting in LRU operation.  athead is set
1961  * to 1 if we want this page to be 'as if it were placed in the cache',
1962  * except without unmapping it from the process address space.
1963  *
1964  * vm_page's spinlock must be held on entry and will remain held on return.
1965  * This routine may not block.
1966  */
1967 static void
1968 _vm_page_deactivate_locked(vm_page_t m, int athead)
1969 {
1970 	u_short oqueue;
1971 
1972 	/*
1973 	 * Ignore if already inactive.
1974 	 */
1975 	if (m->queue - m->pc == PQ_INACTIVE)
1976 		return;
1977 	_vm_page_queue_spin_lock(m);
1978 	oqueue = _vm_page_rem_queue_spinlocked(m);
1979 
1980 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1981 		if (oqueue == PQ_CACHE)
1982 			mycpu->gd_cnt.v_reactivated++;
1983 		vm_page_flag_clear(m, PG_WINATCFLS);
1984 		_vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead);
1985 		if (athead == 0)
1986 			++vm_swapcache_inactive_heuristic;
1987 	}
1988 	_vm_page_queue_spin_unlock(m);
1989 	/* leaves vm_page spinlocked */
1990 }
1991 
1992 /*
1993  * Attempt to deactivate a page.
1994  *
1995  * No requirements.
1996  */
1997 void
1998 vm_page_deactivate(vm_page_t m)
1999 {
2000 	vm_page_spin_lock(m);
2001 	_vm_page_deactivate_locked(m, 0);
2002 	vm_page_spin_unlock(m);
2003 }
2004 
2005 void
2006 vm_page_deactivate_locked(vm_page_t m)
2007 {
2008 	_vm_page_deactivate_locked(m, 0);
2009 }
2010 
2011 /*
2012  * Attempt to move a page to PQ_CACHE.
2013  *
2014  * Returns 0 on failure, 1 on success
2015  *
2016  * The page should NOT be busied by the caller.  This function will validate
2017  * whether the page can be safely moved to the cache.
2018  */
2019 int
2020 vm_page_try_to_cache(vm_page_t m)
2021 {
2022 	vm_page_spin_lock(m);
2023 	if (vm_page_busy_try(m, TRUE)) {
2024 		vm_page_spin_unlock(m);
2025 		return(0);
2026 	}
2027 	if (m->dirty || m->hold_count || m->wire_count ||
2028 	    (m->flags & PG_UNMANAGED)) {
2029 		if (_vm_page_wakeup(m)) {
2030 			vm_page_spin_unlock(m);
2031 			wakeup(m);
2032 		} else {
2033 			vm_page_spin_unlock(m);
2034 		}
2035 		return(0);
2036 	}
2037 	vm_page_spin_unlock(m);
2038 
2039 	/*
2040 	 * Page busied by us and no longer spinlocked.  Dirty pages cannot
2041 	 * be moved to the cache.
2042 	 */
2043 	vm_page_test_dirty(m);
2044 	if (m->dirty) {
2045 		vm_page_wakeup(m);
2046 		return(0);
2047 	}
2048 	vm_page_cache(m);
2049 	return(1);
2050 }
2051 
2052 /*
2053  * Attempt to free the page.  If we cannot free it, we do nothing.
2054  * 1 is returned on success, 0 on failure.
2055  *
2056  * No requirements.
2057  */
2058 int
2059 vm_page_try_to_free(vm_page_t m)
2060 {
2061 	vm_page_spin_lock(m);
2062 	if (vm_page_busy_try(m, TRUE)) {
2063 		vm_page_spin_unlock(m);
2064 		return(0);
2065 	}
2066 	if (m->dirty || m->hold_count || m->wire_count ||
2067 	    (m->flags & PG_UNMANAGED)) {
2068 		if (_vm_page_wakeup(m)) {
2069 			vm_page_spin_unlock(m);
2070 			wakeup(m);
2071 		} else {
2072 			vm_page_spin_unlock(m);
2073 		}
2074 		return(0);
2075 	}
2076 	vm_page_spin_unlock(m);
2077 
2078 	/*
2079 	 * Page busied by us and no longer spinlocked.  Dirty pages will
2080 	 * not be freed by this function.    We have to re-test the
2081 	 * dirty bit after cleaning out the pmaps.
2082 	 */
2083 	vm_page_test_dirty(m);
2084 	if (m->dirty) {
2085 		vm_page_wakeup(m);
2086 		return(0);
2087 	}
2088 	vm_page_protect(m, VM_PROT_NONE);
2089 	if (m->dirty) {
2090 		vm_page_wakeup(m);
2091 		return(0);
2092 	}
2093 	vm_page_free(m);
2094 	return(1);
2095 }
2096 
2097 /*
2098  * vm_page_cache
2099  *
2100  * Put the specified page onto the page cache queue (if appropriate).
2101  *
2102  * The page must be busy, and this routine will release the busy and
2103  * possibly even free the page.
2104  */
2105 void
2106 vm_page_cache(vm_page_t m)
2107 {
2108 	if ((m->flags & PG_UNMANAGED) || m->busy ||
2109 	    m->wire_count || m->hold_count) {
2110 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
2111 		vm_page_wakeup(m);
2112 		return;
2113 	}
2114 
2115 	/*
2116 	 * Already in the cache (and thus not mapped)
2117 	 */
2118 	if ((m->queue - m->pc) == PQ_CACHE) {
2119 		KKASSERT((m->flags & PG_MAPPED) == 0);
2120 		vm_page_wakeup(m);
2121 		return;
2122 	}
2123 
2124 	/*
2125 	 * Caller is required to test m->dirty, but note that the act of
2126 	 * removing the page from its maps can cause it to become dirty
2127 	 * on an SMP system due to another cpu running in usermode.
2128 	 */
2129 	if (m->dirty) {
2130 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
2131 			(long)m->pindex);
2132 	}
2133 
2134 	/*
2135 	 * Remove all pmaps and indicate that the page is not
2136 	 * writeable or mapped.  Our vm_page_protect() call may
2137 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
2138 	 * everything.
2139 	 */
2140 	vm_page_protect(m, VM_PROT_NONE);
2141 	if ((m->flags & (PG_UNMANAGED|PG_MAPPED)) || m->busy ||
2142 			m->wire_count || m->hold_count) {
2143 		vm_page_wakeup(m);
2144 	} else if (m->dirty) {
2145 		vm_page_deactivate(m);
2146 		vm_page_wakeup(m);
2147 	} else {
2148 		_vm_page_and_queue_spin_lock(m);
2149 		_vm_page_rem_queue_spinlocked(m);
2150 		_vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0);
2151 		_vm_page_queue_spin_unlock(m);
2152 		if (_vm_page_wakeup(m)) {
2153 			vm_page_spin_unlock(m);
2154 			wakeup(m);
2155 		} else {
2156 			vm_page_spin_unlock(m);
2157 		}
2158 		vm_page_free_wakeup();
2159 	}
2160 }
2161 
2162 /*
2163  * vm_page_dontneed()
2164  *
2165  * Cache, deactivate, or do nothing as appropriate.  This routine
2166  * is typically used by madvise() MADV_DONTNEED.
2167  *
2168  * Generally speaking we want to move the page into the cache so
2169  * it gets reused quickly.  However, this can result in a silly syndrome
2170  * due to the page recycling too quickly.  Small objects will not be
2171  * fully cached.  On the otherhand, if we move the page to the inactive
2172  * queue we wind up with a problem whereby very large objects
2173  * unnecessarily blow away our inactive and cache queues.
2174  *
2175  * The solution is to move the pages based on a fixed weighting.  We
2176  * either leave them alone, deactivate them, or move them to the cache,
2177  * where moving them to the cache has the highest weighting.
2178  * By forcing some pages into other queues we eventually force the
2179  * system to balance the queues, potentially recovering other unrelated
2180  * space from active.  The idea is to not force this to happen too
2181  * often.
2182  *
2183  * The page must be busied.
2184  */
2185 void
2186 vm_page_dontneed(vm_page_t m)
2187 {
2188 	static int dnweight;
2189 	int dnw;
2190 	int head;
2191 
2192 	dnw = ++dnweight;
2193 
2194 	/*
2195 	 * occassionally leave the page alone
2196 	 */
2197 	if ((dnw & 0x01F0) == 0 ||
2198 	    m->queue - m->pc == PQ_INACTIVE ||
2199 	    m->queue - m->pc == PQ_CACHE
2200 	) {
2201 		if (m->act_count >= ACT_INIT)
2202 			--m->act_count;
2203 		return;
2204 	}
2205 
2206 	/*
2207 	 * If vm_page_dontneed() is inactivating a page, it must clear
2208 	 * the referenced flag; otherwise the pagedaemon will see references
2209 	 * on the page in the inactive queue and reactivate it. Until the
2210 	 * page can move to the cache queue, madvise's job is not done.
2211 	 */
2212 	vm_page_flag_clear(m, PG_REFERENCED);
2213 	pmap_clear_reference(m);
2214 
2215 	if (m->dirty == 0)
2216 		vm_page_test_dirty(m);
2217 
2218 	if (m->dirty || (dnw & 0x0070) == 0) {
2219 		/*
2220 		 * Deactivate the page 3 times out of 32.
2221 		 */
2222 		head = 0;
2223 	} else {
2224 		/*
2225 		 * Cache the page 28 times out of every 32.  Note that
2226 		 * the page is deactivated instead of cached, but placed
2227 		 * at the head of the queue instead of the tail.
2228 		 */
2229 		head = 1;
2230 	}
2231 	vm_page_spin_lock(m);
2232 	_vm_page_deactivate_locked(m, head);
2233 	vm_page_spin_unlock(m);
2234 }
2235 
2236 /*
2237  * These routines manipulate the 'soft busy' count for a page.  A soft busy
2238  * is almost like PG_BUSY except that it allows certain compatible operations
2239  * to occur on the page while it is busy.  For example, a page undergoing a
2240  * write can still be mapped read-only.
2241  *
2242  * Because vm_pages can overlap buffers m->busy can be > 1.  m->busy is only
2243  * adjusted while the vm_page is PG_BUSY so the flash will occur when the
2244  * busy bit is cleared.
2245  */
2246 void
2247 vm_page_io_start(vm_page_t m)
2248 {
2249         KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!"));
2250         atomic_add_char(&m->busy, 1);
2251 	vm_page_flag_set(m, PG_SBUSY);
2252 }
2253 
2254 void
2255 vm_page_io_finish(vm_page_t m)
2256 {
2257         KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!"));
2258         atomic_subtract_char(&m->busy, 1);
2259 	if (m->busy == 0)
2260 		vm_page_flag_clear(m, PG_SBUSY);
2261 }
2262 
2263 /*
2264  * Grab a page, blocking if it is busy and allocating a page if necessary.
2265  * A busy page is returned or NULL.  The page may or may not be valid and
2266  * might not be on a queue (the caller is responsible for the disposition of
2267  * the page).
2268  *
2269  * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the
2270  * page will be zero'd and marked valid.
2271  *
2272  * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked
2273  * valid even if it already exists.
2274  *
2275  * If VM_ALLOC_RETRY is specified this routine will never return NULL.  Also
2276  * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified.
2277  * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified.
2278  *
2279  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
2280  * always returned if we had blocked.
2281  *
2282  * This routine may not be called from an interrupt.
2283  *
2284  * PG_ZERO is *ALWAYS* cleared by this routine.
2285  *
2286  * No other requirements.
2287  */
2288 vm_page_t
2289 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
2290 {
2291 	vm_page_t m;
2292 	int error;
2293 
2294 	KKASSERT(allocflags &
2295 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
2296 	vm_object_hold(object);
2297 	for (;;) {
2298 		m = vm_page_lookup_busy_try(object, pindex, TRUE, &error);
2299 		if (error) {
2300 			vm_page_sleep_busy(m, TRUE, "pgrbwt");
2301 			if ((allocflags & VM_ALLOC_RETRY) == 0) {
2302 				m = NULL;
2303 				break;
2304 			}
2305 			/* retry */
2306 		} else if (m == NULL) {
2307 			if (allocflags & VM_ALLOC_RETRY)
2308 				allocflags |= VM_ALLOC_NULL_OK;
2309 			m = vm_page_alloc(object, pindex,
2310 					  allocflags & ~VM_ALLOC_RETRY);
2311 			if (m)
2312 				break;
2313 			vm_wait(0);
2314 			if ((allocflags & VM_ALLOC_RETRY) == 0)
2315 				goto failed;
2316 		} else {
2317 			/* m found */
2318 			break;
2319 		}
2320 	}
2321 
2322 	/*
2323 	 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid.
2324 	 *
2325 	 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set
2326 	 * valid even if already valid.
2327 	 */
2328 	if (m->valid == 0) {
2329 		if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) {
2330 			if ((m->flags & PG_ZERO) == 0)
2331 				pmap_zero_page(VM_PAGE_TO_PHYS(m));
2332 			m->valid = VM_PAGE_BITS_ALL;
2333 		}
2334 	} else if (allocflags & VM_ALLOC_FORCE_ZERO) {
2335 		pmap_zero_page(VM_PAGE_TO_PHYS(m));
2336 		m->valid = VM_PAGE_BITS_ALL;
2337 	}
2338 	vm_page_flag_clear(m, PG_ZERO);
2339 failed:
2340 	vm_object_drop(object);
2341 	return(m);
2342 }
2343 
2344 /*
2345  * Mapping function for valid bits or for dirty bits in
2346  * a page.  May not block.
2347  *
2348  * Inputs are required to range within a page.
2349  *
2350  * No requirements.
2351  * Non blocking.
2352  */
2353 int
2354 vm_page_bits(int base, int size)
2355 {
2356 	int first_bit;
2357 	int last_bit;
2358 
2359 	KASSERT(
2360 	    base + size <= PAGE_SIZE,
2361 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
2362 	);
2363 
2364 	if (size == 0)		/* handle degenerate case */
2365 		return(0);
2366 
2367 	first_bit = base >> DEV_BSHIFT;
2368 	last_bit = (base + size - 1) >> DEV_BSHIFT;
2369 
2370 	return ((2 << last_bit) - (1 << first_bit));
2371 }
2372 
2373 /*
2374  * Sets portions of a page valid and clean.  The arguments are expected
2375  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
2376  * of any partial chunks touched by the range.  The invalid portion of
2377  * such chunks will be zero'd.
2378  *
2379  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
2380  *	 align base to DEV_BSIZE so as not to mark clean a partially
2381  *	 truncated device block.  Otherwise the dirty page status might be
2382  *	 lost.
2383  *
2384  * This routine may not block.
2385  *
2386  * (base + size) must be less then or equal to PAGE_SIZE.
2387  */
2388 static void
2389 _vm_page_zero_valid(vm_page_t m, int base, int size)
2390 {
2391 	int frag;
2392 	int endoff;
2393 
2394 	if (size == 0)	/* handle degenerate case */
2395 		return;
2396 
2397 	/*
2398 	 * If the base is not DEV_BSIZE aligned and the valid
2399 	 * bit is clear, we have to zero out a portion of the
2400 	 * first block.
2401 	 */
2402 
2403 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
2404 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
2405 	) {
2406 		pmap_zero_page_area(
2407 		    VM_PAGE_TO_PHYS(m),
2408 		    frag,
2409 		    base - frag
2410 		);
2411 	}
2412 
2413 	/*
2414 	 * If the ending offset is not DEV_BSIZE aligned and the
2415 	 * valid bit is clear, we have to zero out a portion of
2416 	 * the last block.
2417 	 */
2418 
2419 	endoff = base + size;
2420 
2421 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
2422 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
2423 	) {
2424 		pmap_zero_page_area(
2425 		    VM_PAGE_TO_PHYS(m),
2426 		    endoff,
2427 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
2428 		);
2429 	}
2430 }
2431 
2432 /*
2433  * Set valid, clear dirty bits.  If validating the entire
2434  * page we can safely clear the pmap modify bit.  We also
2435  * use this opportunity to clear the PG_NOSYNC flag.  If a process
2436  * takes a write fault on a MAP_NOSYNC memory area the flag will
2437  * be set again.
2438  *
2439  * We set valid bits inclusive of any overlap, but we can only
2440  * clear dirty bits for DEV_BSIZE chunks that are fully within
2441  * the range.
2442  *
2443  * Page must be busied?
2444  * No other requirements.
2445  */
2446 void
2447 vm_page_set_valid(vm_page_t m, int base, int size)
2448 {
2449 	_vm_page_zero_valid(m, base, size);
2450 	m->valid |= vm_page_bits(base, size);
2451 }
2452 
2453 
2454 /*
2455  * Set valid bits and clear dirty bits.
2456  *
2457  * NOTE: This function does not clear the pmap modified bit.
2458  *	 Also note that e.g. NFS may use a byte-granular base
2459  *	 and size.
2460  *
2461  * WARNING: Page must be busied?  But vfs_clean_one_page() will call
2462  *	    this without necessarily busying the page (via bdwrite()).
2463  *	    So for now vm_token must also be held.
2464  *
2465  * No other requirements.
2466  */
2467 void
2468 vm_page_set_validclean(vm_page_t m, int base, int size)
2469 {
2470 	int pagebits;
2471 
2472 	_vm_page_zero_valid(m, base, size);
2473 	pagebits = vm_page_bits(base, size);
2474 	m->valid |= pagebits;
2475 	m->dirty &= ~pagebits;
2476 	if (base == 0 && size == PAGE_SIZE) {
2477 		/*pmap_clear_modify(m);*/
2478 		vm_page_flag_clear(m, PG_NOSYNC);
2479 	}
2480 }
2481 
2482 /*
2483  * Set valid & dirty.  Used by buwrite()
2484  *
2485  * WARNING: Page must be busied?  But vfs_dirty_one_page() will
2486  *	    call this function in buwrite() so for now vm_token must
2487  * 	    be held.
2488  *
2489  * No other requirements.
2490  */
2491 void
2492 vm_page_set_validdirty(vm_page_t m, int base, int size)
2493 {
2494 	int pagebits;
2495 
2496 	pagebits = vm_page_bits(base, size);
2497 	m->valid |= pagebits;
2498 	m->dirty |= pagebits;
2499 	if (m->object)
2500 		vm_object_set_writeable_dirty(m->object);
2501 }
2502 
2503 /*
2504  * Clear dirty bits.
2505  *
2506  * NOTE: This function does not clear the pmap modified bit.
2507  *	 Also note that e.g. NFS may use a byte-granular base
2508  *	 and size.
2509  *
2510  * Page must be busied?
2511  * No other requirements.
2512  */
2513 void
2514 vm_page_clear_dirty(vm_page_t m, int base, int size)
2515 {
2516 	m->dirty &= ~vm_page_bits(base, size);
2517 	if (base == 0 && size == PAGE_SIZE) {
2518 		/*pmap_clear_modify(m);*/
2519 		vm_page_flag_clear(m, PG_NOSYNC);
2520 	}
2521 }
2522 
2523 /*
2524  * Make the page all-dirty.
2525  *
2526  * Also make sure the related object and vnode reflect the fact that the
2527  * object may now contain a dirty page.
2528  *
2529  * Page must be busied?
2530  * No other requirements.
2531  */
2532 void
2533 vm_page_dirty(vm_page_t m)
2534 {
2535 #ifdef INVARIANTS
2536         int pqtype = m->queue - m->pc;
2537 #endif
2538         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
2539                 ("vm_page_dirty: page in free/cache queue!"));
2540 	if (m->dirty != VM_PAGE_BITS_ALL) {
2541 		m->dirty = VM_PAGE_BITS_ALL;
2542 		if (m->object)
2543 			vm_object_set_writeable_dirty(m->object);
2544 	}
2545 }
2546 
2547 /*
2548  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
2549  * valid and dirty bits for the effected areas are cleared.
2550  *
2551  * Page must be busied?
2552  * Does not block.
2553  * No other requirements.
2554  */
2555 void
2556 vm_page_set_invalid(vm_page_t m, int base, int size)
2557 {
2558 	int bits;
2559 
2560 	bits = vm_page_bits(base, size);
2561 	m->valid &= ~bits;
2562 	m->dirty &= ~bits;
2563 	m->object->generation++;
2564 }
2565 
2566 /*
2567  * The kernel assumes that the invalid portions of a page contain
2568  * garbage, but such pages can be mapped into memory by user code.
2569  * When this occurs, we must zero out the non-valid portions of the
2570  * page so user code sees what it expects.
2571  *
2572  * Pages are most often semi-valid when the end of a file is mapped
2573  * into memory and the file's size is not page aligned.
2574  *
2575  * Page must be busied?
2576  * No other requirements.
2577  */
2578 void
2579 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
2580 {
2581 	int b;
2582 	int i;
2583 
2584 	/*
2585 	 * Scan the valid bits looking for invalid sections that
2586 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
2587 	 * valid bit may be set ) have already been zerod by
2588 	 * vm_page_set_validclean().
2589 	 */
2590 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
2591 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
2592 		    (m->valid & (1 << i))
2593 		) {
2594 			if (i > b) {
2595 				pmap_zero_page_area(
2596 				    VM_PAGE_TO_PHYS(m),
2597 				    b << DEV_BSHIFT,
2598 				    (i - b) << DEV_BSHIFT
2599 				);
2600 			}
2601 			b = i + 1;
2602 		}
2603 	}
2604 
2605 	/*
2606 	 * setvalid is TRUE when we can safely set the zero'd areas
2607 	 * as being valid.  We can do this if there are no cache consistency
2608 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
2609 	 */
2610 	if (setvalid)
2611 		m->valid = VM_PAGE_BITS_ALL;
2612 }
2613 
2614 /*
2615  * Is a (partial) page valid?  Note that the case where size == 0
2616  * will return FALSE in the degenerate case where the page is entirely
2617  * invalid, and TRUE otherwise.
2618  *
2619  * Does not block.
2620  * No other requirements.
2621  */
2622 int
2623 vm_page_is_valid(vm_page_t m, int base, int size)
2624 {
2625 	int bits = vm_page_bits(base, size);
2626 
2627 	if (m->valid && ((m->valid & bits) == bits))
2628 		return 1;
2629 	else
2630 		return 0;
2631 }
2632 
2633 /*
2634  * update dirty bits from pmap/mmu.  May not block.
2635  *
2636  * Caller must hold the page busy
2637  */
2638 void
2639 vm_page_test_dirty(vm_page_t m)
2640 {
2641 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
2642 		vm_page_dirty(m);
2643 	}
2644 }
2645 
2646 /*
2647  * Register an action, associating it with its vm_page
2648  */
2649 void
2650 vm_page_register_action(vm_page_action_t action, vm_page_event_t event)
2651 {
2652 	struct vm_page_action_list *list;
2653 	int hv;
2654 
2655 	hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2656 	list = &action_list[hv];
2657 
2658 	lwkt_gettoken(&vm_token);
2659 	vm_page_flag_set(action->m, PG_ACTIONLIST);
2660 	action->event = event;
2661 	LIST_INSERT_HEAD(list, action, entry);
2662 	lwkt_reltoken(&vm_token);
2663 }
2664 
2665 /*
2666  * Unregister an action, disassociating it from its related vm_page
2667  */
2668 void
2669 vm_page_unregister_action(vm_page_action_t action)
2670 {
2671 	struct vm_page_action_list *list;
2672 	int hv;
2673 
2674 	lwkt_gettoken(&vm_token);
2675 	if (action->event != VMEVENT_NONE) {
2676 		action->event = VMEVENT_NONE;
2677 		LIST_REMOVE(action, entry);
2678 
2679 		hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK;
2680 		list = &action_list[hv];
2681 		if (LIST_EMPTY(list))
2682 			vm_page_flag_clear(action->m, PG_ACTIONLIST);
2683 	}
2684 	lwkt_reltoken(&vm_token);
2685 }
2686 
2687 /*
2688  * Issue an event on a VM page.  Corresponding action structures are
2689  * removed from the page's list and called.
2690  *
2691  * If the vm_page has no more pending action events we clear its
2692  * PG_ACTIONLIST flag.
2693  */
2694 void
2695 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
2696 {
2697 	struct vm_page_action_list *list;
2698 	struct vm_page_action *scan;
2699 	struct vm_page_action *next;
2700 	int hv;
2701 	int all;
2702 
2703 	hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK;
2704 	list = &action_list[hv];
2705 	all = 1;
2706 
2707 	lwkt_gettoken(&vm_token);
2708 	LIST_FOREACH_MUTABLE(scan, list, entry, next) {
2709 		if (scan->m == m) {
2710 			if (scan->event == event) {
2711 				scan->event = VMEVENT_NONE;
2712 				LIST_REMOVE(scan, entry);
2713 				scan->func(m, scan);
2714 				/* XXX */
2715 			} else {
2716 				all = 0;
2717 			}
2718 		}
2719 	}
2720 	if (all)
2721 		vm_page_flag_clear(m, PG_ACTIONLIST);
2722 	lwkt_reltoken(&vm_token);
2723 }
2724 
2725 #include "opt_ddb.h"
2726 #ifdef DDB
2727 #include <sys/kernel.h>
2728 
2729 #include <ddb/ddb.h>
2730 
2731 DB_SHOW_COMMAND(page, vm_page_print_page_info)
2732 {
2733 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
2734 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
2735 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
2736 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
2737 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
2738 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
2739 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
2740 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
2741 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
2742 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
2743 }
2744 
2745 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
2746 {
2747 	int i;
2748 	db_printf("PQ_FREE:");
2749 	for(i=0;i<PQ_L2_SIZE;i++) {
2750 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
2751 	}
2752 	db_printf("\n");
2753 
2754 	db_printf("PQ_CACHE:");
2755 	for(i=0;i<PQ_L2_SIZE;i++) {
2756 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
2757 	}
2758 	db_printf("\n");
2759 
2760 	db_printf("PQ_ACTIVE:");
2761 	for(i=0;i<PQ_L2_SIZE;i++) {
2762 		db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt);
2763 	}
2764 	db_printf("\n");
2765 
2766 	db_printf("PQ_INACTIVE:");
2767 	for(i=0;i<PQ_L2_SIZE;i++) {
2768 		db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt);
2769 	}
2770 	db_printf("\n");
2771 }
2772 #endif /* DDB */
2773