1 /* 2 * (MPSAFE) 3 * 4 * Copyright (c) 1991 Regents of the University of California. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 35 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 36 */ 37 38 /* 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 /* 65 * Resident memory management module. The module manipulates 'VM pages'. 66 * A VM page is the core building block for memory management. 67 */ 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/malloc.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/vnode.h> 75 #include <sys/kernel.h> 76 77 #include <vm/vm.h> 78 #include <vm/vm_param.h> 79 #include <sys/lock.h> 80 #include <vm/vm_kern.h> 81 #include <vm/pmap.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_pageout.h> 86 #include <vm/vm_pager.h> 87 #include <vm/vm_extern.h> 88 #include <vm/swap_pager.h> 89 90 #include <machine/inttypes.h> 91 #include <machine/md_var.h> 92 93 #include <vm/vm_page2.h> 94 #include <sys/spinlock2.h> 95 96 #define VMACTION_HSIZE 256 97 #define VMACTION_HMASK (VMACTION_HSIZE - 1) 98 99 static void vm_page_queue_init(void); 100 static void vm_page_free_wakeup(void); 101 static vm_page_t vm_page_select_cache(u_short pg_color); 102 static vm_page_t _vm_page_list_find2(int basequeue, int index); 103 static void _vm_page_deactivate_locked(vm_page_t m, int athead); 104 105 /* 106 * Array of tailq lists 107 */ 108 __cachealign struct vpgqueues vm_page_queues[PQ_COUNT]; 109 110 LIST_HEAD(vm_page_action_list, vm_page_action); 111 struct vm_page_action_list action_list[VMACTION_HSIZE]; 112 static volatile int vm_pages_waiting; 113 114 115 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 116 vm_pindex_t, pindex); 117 118 static void 119 vm_page_queue_init(void) 120 { 121 int i; 122 123 for (i = 0; i < PQ_L2_SIZE; i++) 124 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count; 125 for (i = 0; i < PQ_L2_SIZE; i++) 126 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count; 127 for (i = 0; i < PQ_L2_SIZE; i++) 128 vm_page_queues[PQ_INACTIVE+i].cnt = &vmstats.v_inactive_count; 129 for (i = 0; i < PQ_L2_SIZE; i++) 130 vm_page_queues[PQ_ACTIVE+i].cnt = &vmstats.v_active_count; 131 for (i = 0; i < PQ_L2_SIZE; i++) 132 vm_page_queues[PQ_HOLD+i].cnt = &vmstats.v_active_count; 133 /* PQ_NONE has no queue */ 134 135 for (i = 0; i < PQ_COUNT; i++) { 136 TAILQ_INIT(&vm_page_queues[i].pl); 137 spin_init(&vm_page_queues[i].spin); 138 } 139 140 for (i = 0; i < VMACTION_HSIZE; i++) 141 LIST_INIT(&action_list[i]); 142 } 143 144 /* 145 * note: place in initialized data section? Is this necessary? 146 */ 147 long first_page = 0; 148 int vm_page_array_size = 0; 149 int vm_page_zero_count = 0; 150 vm_page_t vm_page_array = 0; 151 152 /* 153 * (low level boot) 154 * 155 * Sets the page size, perhaps based upon the memory size. 156 * Must be called before any use of page-size dependent functions. 157 */ 158 void 159 vm_set_page_size(void) 160 { 161 if (vmstats.v_page_size == 0) 162 vmstats.v_page_size = PAGE_SIZE; 163 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 164 panic("vm_set_page_size: page size not a power of two"); 165 } 166 167 /* 168 * (low level boot) 169 * 170 * Add a new page to the freelist for use by the system. New pages 171 * are added to both the head and tail of the associated free page 172 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 173 * requests pull 'recent' adds (higher physical addresses) first. 174 * 175 * Beware that the page zeroing daemon will also be running soon after 176 * boot, moving pages from the head to the tail of the PQ_FREE queues. 177 * 178 * Must be called in a critical section. 179 */ 180 static vm_page_t 181 vm_add_new_page(vm_paddr_t pa) 182 { 183 struct vpgqueues *vpq; 184 vm_page_t m; 185 186 m = PHYS_TO_VM_PAGE(pa); 187 m->phys_addr = pa; 188 m->flags = 0; 189 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK; 190 #ifdef SMP 191 /* 192 * Twist for cpu localization in addition to page coloring, so 193 * different cpus selecting by m->queue get different page colors. 194 */ 195 m->pc ^= ((pa >> PAGE_SHIFT) / PQ_L2_SIZE) & PQ_L2_MASK; 196 m->pc ^= ((pa >> PAGE_SHIFT) / (PQ_L2_SIZE * PQ_L2_SIZE)) & PQ_L2_MASK; 197 #endif 198 m->queue = m->pc + PQ_FREE; 199 KKASSERT(m->dirty == 0); 200 201 atomic_add_int(&vmstats.v_page_count, 1); 202 atomic_add_int(&vmstats.v_free_count, 1); 203 vpq = &vm_page_queues[m->queue]; 204 if ((vpq->flipflop & 15) == 0) { 205 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 206 m->flags |= PG_ZERO; 207 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 208 atomic_add_int(&vm_page_zero_count, 1); 209 } else { 210 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 211 } 212 ++vpq->flipflop; 213 ++vpq->lcnt; 214 215 return (m); 216 } 217 218 /* 219 * (low level boot) 220 * 221 * Initializes the resident memory module. 222 * 223 * Preallocates memory for critical VM structures and arrays prior to 224 * kernel_map becoming available. 225 * 226 * Memory is allocated from (virtual2_start, virtual2_end) if available, 227 * otherwise memory is allocated from (virtual_start, virtual_end). 228 * 229 * On x86-64 (virtual_start, virtual_end) is only 2GB and may not be 230 * large enough to hold vm_page_array & other structures for machines with 231 * large amounts of ram, so we want to use virtual2* when available. 232 */ 233 void 234 vm_page_startup(void) 235 { 236 vm_offset_t vaddr = virtual2_start ? virtual2_start : virtual_start; 237 vm_offset_t mapped; 238 vm_size_t npages; 239 vm_paddr_t page_range; 240 vm_paddr_t new_end; 241 int i; 242 vm_paddr_t pa; 243 int nblocks; 244 vm_paddr_t last_pa; 245 vm_paddr_t end; 246 vm_paddr_t biggestone, biggestsize; 247 vm_paddr_t total; 248 249 total = 0; 250 biggestsize = 0; 251 biggestone = 0; 252 nblocks = 0; 253 vaddr = round_page(vaddr); 254 255 for (i = 0; phys_avail[i + 1]; i += 2) { 256 phys_avail[i] = round_page64(phys_avail[i]); 257 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]); 258 } 259 260 for (i = 0; phys_avail[i + 1]; i += 2) { 261 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 262 263 if (size > biggestsize) { 264 biggestone = i; 265 biggestsize = size; 266 } 267 ++nblocks; 268 total += size; 269 } 270 271 end = phys_avail[biggestone+1]; 272 end = trunc_page(end); 273 274 /* 275 * Initialize the queue headers for the free queue, the active queue 276 * and the inactive queue. 277 */ 278 279 vm_page_queue_init(); 280 281 #if !defined(_KERNEL_VIRTUAL) 282 /* 283 * VKERNELs don't support minidumps and as such don't need 284 * vm_page_dump 285 * 286 * Allocate a bitmap to indicate that a random physical page 287 * needs to be included in a minidump. 288 * 289 * The amd64 port needs this to indicate which direct map pages 290 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 291 * 292 * However, i386 still needs this workspace internally within the 293 * minidump code. In theory, they are not needed on i386, but are 294 * included should the sf_buf code decide to use them. 295 */ 296 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 297 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 298 end -= vm_page_dump_size; 299 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size, 300 VM_PROT_READ | VM_PROT_WRITE); 301 bzero((void *)vm_page_dump, vm_page_dump_size); 302 #endif 303 304 /* 305 * Compute the number of pages of memory that will be available for 306 * use (taking into account the overhead of a page structure per 307 * page). 308 */ 309 first_page = phys_avail[0] / PAGE_SIZE; 310 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 311 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 312 313 /* 314 * Initialize the mem entry structures now, and put them in the free 315 * queue. 316 */ 317 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 318 mapped = pmap_map(&vaddr, new_end, end, 319 VM_PROT_READ | VM_PROT_WRITE); 320 vm_page_array = (vm_page_t)mapped; 321 322 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL) 323 /* 324 * since pmap_map on amd64 returns stuff out of a direct-map region, 325 * we have to manually add these pages to the minidump tracking so 326 * that they can be dumped, including the vm_page_array. 327 */ 328 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 329 dump_add_page(pa); 330 #endif 331 332 /* 333 * Clear all of the page structures 334 */ 335 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 336 vm_page_array_size = page_range; 337 338 /* 339 * Construct the free queue(s) in ascending order (by physical 340 * address) so that the first 16MB of physical memory is allocated 341 * last rather than first. On large-memory machines, this avoids 342 * the exhaustion of low physical memory before isa_dmainit has run. 343 */ 344 vmstats.v_page_count = 0; 345 vmstats.v_free_count = 0; 346 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 347 pa = phys_avail[i]; 348 if (i == biggestone) 349 last_pa = new_end; 350 else 351 last_pa = phys_avail[i + 1]; 352 while (pa < last_pa && npages-- > 0) { 353 vm_add_new_page(pa); 354 pa += PAGE_SIZE; 355 } 356 } 357 if (virtual2_start) 358 virtual2_start = vaddr; 359 else 360 virtual_start = vaddr; 361 } 362 363 /* 364 * Scan comparison function for Red-Black tree scans. An inclusive 365 * (start,end) is expected. Other fields are not used. 366 */ 367 int 368 rb_vm_page_scancmp(struct vm_page *p, void *data) 369 { 370 struct rb_vm_page_scan_info *info = data; 371 372 if (p->pindex < info->start_pindex) 373 return(-1); 374 if (p->pindex > info->end_pindex) 375 return(1); 376 return(0); 377 } 378 379 int 380 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 381 { 382 if (p1->pindex < p2->pindex) 383 return(-1); 384 if (p1->pindex > p2->pindex) 385 return(1); 386 return(0); 387 } 388 389 /* 390 * Each page queue has its own spin lock, which is fairly optimal for 391 * allocating and freeing pages at least. 392 * 393 * The caller must hold the vm_page_spin_lock() before locking a vm_page's 394 * queue spinlock via this function. Also note that m->queue cannot change 395 * unless both the page and queue are locked. 396 */ 397 static __inline 398 void 399 _vm_page_queue_spin_lock(vm_page_t m) 400 { 401 u_short queue; 402 403 queue = m->queue; 404 if (queue != PQ_NONE) { 405 spin_lock(&vm_page_queues[queue].spin); 406 KKASSERT(queue == m->queue); 407 } 408 } 409 410 static __inline 411 void 412 _vm_page_queue_spin_unlock(vm_page_t m) 413 { 414 u_short queue; 415 416 queue = m->queue; 417 cpu_ccfence(); 418 if (queue != PQ_NONE) 419 spin_unlock(&vm_page_queues[queue].spin); 420 } 421 422 static __inline 423 void 424 _vm_page_queues_spin_lock(u_short queue) 425 { 426 cpu_ccfence(); 427 if (queue != PQ_NONE) 428 spin_lock(&vm_page_queues[queue].spin); 429 } 430 431 432 static __inline 433 void 434 _vm_page_queues_spin_unlock(u_short queue) 435 { 436 cpu_ccfence(); 437 if (queue != PQ_NONE) 438 spin_unlock(&vm_page_queues[queue].spin); 439 } 440 441 void 442 vm_page_queue_spin_lock(vm_page_t m) 443 { 444 _vm_page_queue_spin_lock(m); 445 } 446 447 void 448 vm_page_queues_spin_lock(u_short queue) 449 { 450 _vm_page_queues_spin_lock(queue); 451 } 452 453 void 454 vm_page_queue_spin_unlock(vm_page_t m) 455 { 456 _vm_page_queue_spin_unlock(m); 457 } 458 459 void 460 vm_page_queues_spin_unlock(u_short queue) 461 { 462 _vm_page_queues_spin_unlock(queue); 463 } 464 465 /* 466 * This locks the specified vm_page and its queue in the proper order 467 * (page first, then queue). The queue may change so the caller must 468 * recheck on return. 469 */ 470 static __inline 471 void 472 _vm_page_and_queue_spin_lock(vm_page_t m) 473 { 474 vm_page_spin_lock(m); 475 _vm_page_queue_spin_lock(m); 476 } 477 478 static __inline 479 void 480 _vm_page_and_queue_spin_unlock(vm_page_t m) 481 { 482 _vm_page_queues_spin_unlock(m->queue); 483 vm_page_spin_unlock(m); 484 } 485 486 void 487 vm_page_and_queue_spin_unlock(vm_page_t m) 488 { 489 _vm_page_and_queue_spin_unlock(m); 490 } 491 492 void 493 vm_page_and_queue_spin_lock(vm_page_t m) 494 { 495 _vm_page_and_queue_spin_lock(m); 496 } 497 498 /* 499 * Helper function removes vm_page from its current queue. 500 * Returns the base queue the page used to be on. 501 * 502 * The vm_page and the queue must be spinlocked. 503 * This function will unlock the queue but leave the page spinlocked. 504 */ 505 static __inline u_short 506 _vm_page_rem_queue_spinlocked(vm_page_t m) 507 { 508 struct vpgqueues *pq; 509 u_short queue; 510 511 queue = m->queue; 512 if (queue != PQ_NONE) { 513 pq = &vm_page_queues[queue]; 514 TAILQ_REMOVE(&pq->pl, m, pageq); 515 atomic_add_int(pq->cnt, -1); 516 pq->lcnt--; 517 m->queue = PQ_NONE; 518 vm_page_queues_spin_unlock(queue); 519 if ((queue - m->pc) == PQ_FREE && (m->flags & PG_ZERO)) 520 atomic_subtract_int(&vm_page_zero_count, 1); 521 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE) 522 return (queue - m->pc); 523 } 524 return queue; 525 } 526 527 /* 528 * Helper function places the vm_page on the specified queue. 529 * 530 * The vm_page must be spinlocked. 531 * This function will return with both the page and the queue locked. 532 */ 533 static __inline void 534 _vm_page_add_queue_spinlocked(vm_page_t m, u_short queue, int athead) 535 { 536 struct vpgqueues *pq; 537 538 KKASSERT(m->queue == PQ_NONE); 539 540 if (queue != PQ_NONE) { 541 vm_page_queues_spin_lock(queue); 542 pq = &vm_page_queues[queue]; 543 ++pq->lcnt; 544 atomic_add_int(pq->cnt, 1); 545 m->queue = queue; 546 547 /* 548 * Put zero'd pages on the end ( where we look for zero'd pages 549 * first ) and non-zerod pages at the head. 550 */ 551 if (queue - m->pc == PQ_FREE) { 552 if (m->flags & PG_ZERO) { 553 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 554 atomic_add_int(&vm_page_zero_count, 1); 555 } else { 556 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 557 } 558 } else if (athead) { 559 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 560 } else { 561 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 562 } 563 /* leave the queue spinlocked */ 564 } 565 } 566 567 /* 568 * Wait until page is no longer PG_BUSY or (if also_m_busy is TRUE) 569 * m->busy is zero. Returns TRUE if it had to sleep, FALSE if we 570 * did not. Only one sleep call will be made before returning. 571 * 572 * This function does NOT busy the page and on return the page is not 573 * guaranteed to be available. 574 */ 575 void 576 vm_page_sleep_busy(vm_page_t m, int also_m_busy, const char *msg) 577 { 578 u_int32_t flags; 579 580 for (;;) { 581 flags = m->flags; 582 cpu_ccfence(); 583 584 if ((flags & PG_BUSY) == 0 && 585 (also_m_busy == 0 || (flags & PG_SBUSY) == 0)) { 586 break; 587 } 588 tsleep_interlock(m, 0); 589 if (atomic_cmpset_int(&m->flags, flags, 590 flags | PG_WANTED | PG_REFERENCED)) { 591 tsleep(m, PINTERLOCKED, msg, 0); 592 break; 593 } 594 } 595 } 596 597 /* 598 * Wait until PG_BUSY can be set, then set it. If also_m_busy is TRUE we 599 * also wait for m->busy to become 0 before setting PG_BUSY. 600 */ 601 void 602 VM_PAGE_DEBUG_EXT(vm_page_busy_wait)(vm_page_t m, 603 int also_m_busy, const char *msg 604 VM_PAGE_DEBUG_ARGS) 605 { 606 u_int32_t flags; 607 608 for (;;) { 609 flags = m->flags; 610 cpu_ccfence(); 611 if (flags & PG_BUSY) { 612 tsleep_interlock(m, 0); 613 if (atomic_cmpset_int(&m->flags, flags, 614 flags | PG_WANTED | PG_REFERENCED)) { 615 tsleep(m, PINTERLOCKED, msg, 0); 616 } 617 } else if (also_m_busy && (flags & PG_SBUSY)) { 618 tsleep_interlock(m, 0); 619 if (atomic_cmpset_int(&m->flags, flags, 620 flags | PG_WANTED | PG_REFERENCED)) { 621 tsleep(m, PINTERLOCKED, msg, 0); 622 } 623 } else { 624 if (atomic_cmpset_int(&m->flags, flags, 625 flags | PG_BUSY)) { 626 #ifdef VM_PAGE_DEBUG 627 m->busy_func = func; 628 m->busy_line = lineno; 629 #endif 630 break; 631 } 632 } 633 } 634 } 635 636 /* 637 * Attempt to set PG_BUSY. If also_m_busy is TRUE we only succeed if m->busy 638 * is also 0. 639 * 640 * Returns non-zero on failure. 641 */ 642 int 643 VM_PAGE_DEBUG_EXT(vm_page_busy_try)(vm_page_t m, int also_m_busy 644 VM_PAGE_DEBUG_ARGS) 645 { 646 u_int32_t flags; 647 648 for (;;) { 649 flags = m->flags; 650 cpu_ccfence(); 651 if (flags & PG_BUSY) 652 return TRUE; 653 if (also_m_busy && (flags & PG_SBUSY)) 654 return TRUE; 655 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 656 #ifdef VM_PAGE_DEBUG 657 m->busy_func = func; 658 m->busy_line = lineno; 659 #endif 660 return FALSE; 661 } 662 } 663 } 664 665 /* 666 * Clear the PG_BUSY flag and return non-zero to indicate to the caller 667 * that a wakeup() should be performed. 668 * 669 * The vm_page must be spinlocked and will remain spinlocked on return. 670 * The related queue must NOT be spinlocked (which could deadlock us). 671 * 672 * (inline version) 673 */ 674 static __inline 675 int 676 _vm_page_wakeup(vm_page_t m) 677 { 678 u_int32_t flags; 679 680 for (;;) { 681 flags = m->flags; 682 cpu_ccfence(); 683 if (atomic_cmpset_int(&m->flags, flags, 684 flags & ~(PG_BUSY | PG_WANTED))) { 685 break; 686 } 687 } 688 return(flags & PG_WANTED); 689 } 690 691 /* 692 * Clear the PG_BUSY flag and wakeup anyone waiting for the page. This 693 * is typically the last call you make on a page before moving onto 694 * other things. 695 */ 696 void 697 vm_page_wakeup(vm_page_t m) 698 { 699 KASSERT(m->flags & PG_BUSY, ("vm_page_wakeup: page not busy!!!")); 700 vm_page_spin_lock(m); 701 if (_vm_page_wakeup(m)) { 702 vm_page_spin_unlock(m); 703 wakeup(m); 704 } else { 705 vm_page_spin_unlock(m); 706 } 707 } 708 709 /* 710 * Holding a page keeps it from being reused. Other parts of the system 711 * can still disassociate the page from its current object and free it, or 712 * perform read or write I/O on it and/or otherwise manipulate the page, 713 * but if the page is held the VM system will leave the page and its data 714 * intact and not reuse the page for other purposes until the last hold 715 * reference is released. (see vm_page_wire() if you want to prevent the 716 * page from being disassociated from its object too). 717 * 718 * The caller must still validate the contents of the page and, if necessary, 719 * wait for any pending I/O (e.g. vm_page_sleep_busy() loop) to complete 720 * before manipulating the page. 721 * 722 * XXX get vm_page_spin_lock() here and move FREE->HOLD if necessary 723 */ 724 void 725 vm_page_hold(vm_page_t m) 726 { 727 vm_page_spin_lock(m); 728 atomic_add_int(&m->hold_count, 1); 729 if (m->queue - m->pc == PQ_FREE) { 730 _vm_page_queue_spin_lock(m); 731 _vm_page_rem_queue_spinlocked(m); 732 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 733 _vm_page_queue_spin_unlock(m); 734 } 735 vm_page_spin_unlock(m); 736 } 737 738 /* 739 * The opposite of vm_page_hold(). A page can be freed while being held, 740 * which places it on the PQ_HOLD queue. If we are able to busy the page 741 * after the hold count drops to zero we will move the page to the 742 * appropriate PQ_FREE queue by calling vm_page_free_toq(). 743 */ 744 void 745 vm_page_unhold(vm_page_t m) 746 { 747 vm_page_spin_lock(m); 748 atomic_add_int(&m->hold_count, -1); 749 if (m->hold_count == 0 && m->queue - m->pc == PQ_HOLD) { 750 _vm_page_queue_spin_lock(m); 751 _vm_page_rem_queue_spinlocked(m); 752 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 753 _vm_page_queue_spin_unlock(m); 754 } 755 vm_page_spin_unlock(m); 756 } 757 758 /* 759 * Inserts the given vm_page into the object and object list. 760 * 761 * The pagetables are not updated but will presumably fault the page 762 * in if necessary, or if a kernel page the caller will at some point 763 * enter the page into the kernel's pmap. We are not allowed to block 764 * here so we *can't* do this anyway. 765 * 766 * This routine may not block. 767 * This routine must be called with the vm_object held. 768 * This routine must be called with a critical section held. 769 * 770 * This routine returns TRUE if the page was inserted into the object 771 * successfully, and FALSE if the page already exists in the object. 772 */ 773 int 774 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 775 { 776 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 777 if (m->object != NULL) 778 panic("vm_page_insert: already inserted"); 779 780 object->generation++; 781 782 /* 783 * Record the object/offset pair in this page and add the 784 * pv_list_count of the page to the object. 785 * 786 * The vm_page spin lock is required for interactions with the pmap. 787 */ 788 vm_page_spin_lock(m); 789 m->object = object; 790 m->pindex = pindex; 791 if (vm_page_rb_tree_RB_INSERT(&object->rb_memq, m)) { 792 m->object = NULL; 793 m->pindex = 0; 794 vm_page_spin_unlock(m); 795 return FALSE; 796 } 797 object->resident_page_count++; 798 /* atomic_add_int(&object->agg_pv_list_count, m->md.pv_list_count); */ 799 vm_page_spin_unlock(m); 800 801 /* 802 * Since we are inserting a new and possibly dirty page, 803 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 804 */ 805 if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE)) 806 vm_object_set_writeable_dirty(object); 807 808 /* 809 * Checks for a swap assignment and sets PG_SWAPPED if appropriate. 810 */ 811 swap_pager_page_inserted(m); 812 return TRUE; 813 } 814 815 /* 816 * Removes the given vm_page_t from the (object,index) table 817 * 818 * The underlying pmap entry (if any) is NOT removed here. 819 * This routine may not block. 820 * 821 * The page must be BUSY and will remain BUSY on return. 822 * No other requirements. 823 * 824 * NOTE: FreeBSD side effect was to unbusy the page on return. We leave 825 * it busy. 826 */ 827 void 828 vm_page_remove(vm_page_t m) 829 { 830 vm_object_t object; 831 832 if (m->object == NULL) { 833 return; 834 } 835 836 if ((m->flags & PG_BUSY) == 0) 837 panic("vm_page_remove: page not busy"); 838 839 object = m->object; 840 841 vm_object_hold(object); 842 843 /* 844 * Remove the page from the object and update the object. 845 * 846 * The vm_page spin lock is required for interactions with the pmap. 847 */ 848 vm_page_spin_lock(m); 849 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 850 object->resident_page_count--; 851 /* atomic_add_int(&object->agg_pv_list_count, -m->md.pv_list_count); */ 852 m->object = NULL; 853 vm_page_spin_unlock(m); 854 855 object->generation++; 856 857 vm_object_drop(object); 858 } 859 860 /* 861 * Locate and return the page at (object, pindex), or NULL if the 862 * page could not be found. 863 * 864 * The caller must hold the vm_object token. 865 */ 866 vm_page_t 867 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 868 { 869 vm_page_t m; 870 871 /* 872 * Search the hash table for this object/offset pair 873 */ 874 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 875 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 876 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex)); 877 return(m); 878 } 879 880 vm_page_t 881 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_wait)(struct vm_object *object, 882 vm_pindex_t pindex, 883 int also_m_busy, const char *msg 884 VM_PAGE_DEBUG_ARGS) 885 { 886 u_int32_t flags; 887 vm_page_t m; 888 889 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 890 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 891 while (m) { 892 KKASSERT(m->object == object && m->pindex == pindex); 893 flags = m->flags; 894 cpu_ccfence(); 895 if (flags & PG_BUSY) { 896 tsleep_interlock(m, 0); 897 if (atomic_cmpset_int(&m->flags, flags, 898 flags | PG_WANTED | PG_REFERENCED)) { 899 tsleep(m, PINTERLOCKED, msg, 0); 900 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 901 pindex); 902 } 903 } else if (also_m_busy && (flags & PG_SBUSY)) { 904 tsleep_interlock(m, 0); 905 if (atomic_cmpset_int(&m->flags, flags, 906 flags | PG_WANTED | PG_REFERENCED)) { 907 tsleep(m, PINTERLOCKED, msg, 0); 908 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, 909 pindex); 910 } 911 } else if (atomic_cmpset_int(&m->flags, flags, 912 flags | PG_BUSY)) { 913 #ifdef VM_PAGE_DEBUG 914 m->busy_func = func; 915 m->busy_line = lineno; 916 #endif 917 break; 918 } 919 } 920 return m; 921 } 922 923 /* 924 * Attempt to lookup and busy a page. 925 * 926 * Returns NULL if the page could not be found 927 * 928 * Returns a vm_page and error == TRUE if the page exists but could not 929 * be busied. 930 * 931 * Returns a vm_page and error == FALSE on success. 932 */ 933 vm_page_t 934 VM_PAGE_DEBUG_EXT(vm_page_lookup_busy_try)(struct vm_object *object, 935 vm_pindex_t pindex, 936 int also_m_busy, int *errorp 937 VM_PAGE_DEBUG_ARGS) 938 { 939 u_int32_t flags; 940 vm_page_t m; 941 942 ASSERT_LWKT_TOKEN_HELD(vm_object_token(object)); 943 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 944 *errorp = FALSE; 945 while (m) { 946 KKASSERT(m->object == object && m->pindex == pindex); 947 flags = m->flags; 948 cpu_ccfence(); 949 if (flags & PG_BUSY) { 950 *errorp = TRUE; 951 break; 952 } 953 if (also_m_busy && (flags & PG_SBUSY)) { 954 *errorp = TRUE; 955 break; 956 } 957 if (atomic_cmpset_int(&m->flags, flags, flags | PG_BUSY)) { 958 #ifdef VM_PAGE_DEBUG 959 m->busy_func = func; 960 m->busy_line = lineno; 961 #endif 962 break; 963 } 964 } 965 return m; 966 } 967 968 /* 969 * Caller must hold the related vm_object 970 */ 971 vm_page_t 972 vm_page_next(vm_page_t m) 973 { 974 vm_page_t next; 975 976 next = vm_page_rb_tree_RB_NEXT(m); 977 if (next && next->pindex != m->pindex + 1) 978 next = NULL; 979 return (next); 980 } 981 982 /* 983 * vm_page_rename() 984 * 985 * Move the given vm_page from its current object to the specified 986 * target object/offset. The page must be busy and will remain so 987 * on return. 988 * 989 * new_object must be held. 990 * This routine might block. XXX ? 991 * 992 * NOTE: Swap associated with the page must be invalidated by the move. We 993 * have to do this for several reasons: (1) we aren't freeing the 994 * page, (2) we are dirtying the page, (3) the VM system is probably 995 * moving the page from object A to B, and will then later move 996 * the backing store from A to B and we can't have a conflict. 997 * 998 * NOTE: We *always* dirty the page. It is necessary both for the 999 * fact that we moved it, and because we may be invalidating 1000 * swap. If the page is on the cache, we have to deactivate it 1001 * or vm_page_dirty() will panic. Dirty pages are not allowed 1002 * on the cache. 1003 */ 1004 void 1005 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 1006 { 1007 KKASSERT(m->flags & PG_BUSY); 1008 ASSERT_LWKT_TOKEN_HELD(vm_object_token(new_object)); 1009 if (m->object) { 1010 ASSERT_LWKT_TOKEN_HELD(vm_object_token(m->object)); 1011 vm_page_remove(m); 1012 } 1013 if (vm_page_insert(m, new_object, new_pindex) == FALSE) { 1014 panic("vm_page_rename: target exists (%p,%"PRIu64")", 1015 new_object, new_pindex); 1016 } 1017 if (m->queue - m->pc == PQ_CACHE) 1018 vm_page_deactivate(m); 1019 vm_page_dirty(m); 1020 } 1021 1022 /* 1023 * vm_page_unqueue() without any wakeup. This routine is used when a page 1024 * is being moved between queues or otherwise is to remain BUSYied by the 1025 * caller. 1026 * 1027 * This routine may not block. 1028 */ 1029 void 1030 vm_page_unqueue_nowakeup(vm_page_t m) 1031 { 1032 vm_page_and_queue_spin_lock(m); 1033 (void)_vm_page_rem_queue_spinlocked(m); 1034 vm_page_spin_unlock(m); 1035 } 1036 1037 /* 1038 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 1039 * if necessary. 1040 * 1041 * This routine may not block. 1042 */ 1043 void 1044 vm_page_unqueue(vm_page_t m) 1045 { 1046 u_short queue; 1047 1048 vm_page_and_queue_spin_lock(m); 1049 queue = _vm_page_rem_queue_spinlocked(m); 1050 if (queue == PQ_FREE || queue == PQ_CACHE) { 1051 vm_page_spin_unlock(m); 1052 pagedaemon_wakeup(); 1053 } else { 1054 vm_page_spin_unlock(m); 1055 } 1056 } 1057 1058 /* 1059 * vm_page_list_find() 1060 * 1061 * Find a page on the specified queue with color optimization. 1062 * 1063 * The page coloring optimization attempts to locate a page that does 1064 * not overload other nearby pages in the object in the cpu's L1 or L2 1065 * caches. We need this optimization because cpu caches tend to be 1066 * physical caches, while object spaces tend to be virtual. 1067 * 1068 * On MP systems each PQ_FREE and PQ_CACHE color queue has its own spinlock 1069 * and the algorithm is adjusted to localize allocations on a per-core basis. 1070 * This is done by 'twisting' the colors. 1071 * 1072 * The page is returned spinlocked and removed from its queue (it will 1073 * be on PQ_NONE), or NULL. The page is not PG_BUSY'd. The caller 1074 * is responsible for dealing with the busy-page case (usually by 1075 * deactivating the page and looping). 1076 * 1077 * NOTE: This routine is carefully inlined. A non-inlined version 1078 * is available for outside callers but the only critical path is 1079 * from within this source file. 1080 * 1081 * NOTE: This routine assumes that the vm_pages found in PQ_CACHE and PQ_FREE 1082 * represent stable storage, allowing us to order our locks vm_page 1083 * first, then queue. 1084 */ 1085 static __inline 1086 vm_page_t 1087 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1088 { 1089 vm_page_t m; 1090 1091 for (;;) { 1092 if (prefer_zero) 1093 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist); 1094 else 1095 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl); 1096 if (m == NULL) { 1097 m = _vm_page_list_find2(basequeue, index); 1098 return(m); 1099 } 1100 vm_page_and_queue_spin_lock(m); 1101 if (m->queue == basequeue + index) { 1102 _vm_page_rem_queue_spinlocked(m); 1103 /* vm_page_t spin held, no queue spin */ 1104 break; 1105 } 1106 vm_page_and_queue_spin_unlock(m); 1107 } 1108 return(m); 1109 } 1110 1111 static vm_page_t 1112 _vm_page_list_find2(int basequeue, int index) 1113 { 1114 int i; 1115 vm_page_t m = NULL; 1116 struct vpgqueues *pq; 1117 1118 pq = &vm_page_queues[basequeue]; 1119 1120 /* 1121 * Note that for the first loop, index+i and index-i wind up at the 1122 * same place. Even though this is not totally optimal, we've already 1123 * blown it by missing the cache case so we do not care. 1124 */ 1125 for (i = PQ_L2_SIZE / 2; i > 0; --i) { 1126 for (;;) { 1127 m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl); 1128 if (m) { 1129 _vm_page_and_queue_spin_lock(m); 1130 if (m->queue == 1131 basequeue + ((index + i) & PQ_L2_MASK)) { 1132 _vm_page_rem_queue_spinlocked(m); 1133 return(m); 1134 } 1135 _vm_page_and_queue_spin_unlock(m); 1136 continue; 1137 } 1138 m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl); 1139 if (m) { 1140 _vm_page_and_queue_spin_lock(m); 1141 if (m->queue == 1142 basequeue + ((index - i) & PQ_L2_MASK)) { 1143 _vm_page_rem_queue_spinlocked(m); 1144 return(m); 1145 } 1146 _vm_page_and_queue_spin_unlock(m); 1147 continue; 1148 } 1149 break; /* next i */ 1150 } 1151 } 1152 return(m); 1153 } 1154 1155 /* 1156 * Returns a vm_page candidate for allocation. The page is not busied so 1157 * it can move around. The caller must busy the page (and typically 1158 * deactivate it if it cannot be busied!) 1159 * 1160 * Returns a spinlocked vm_page that has been removed from its queue. 1161 */ 1162 vm_page_t 1163 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 1164 { 1165 return(_vm_page_list_find(basequeue, index, prefer_zero)); 1166 } 1167 1168 /* 1169 * Find a page on the cache queue with color optimization, remove it 1170 * from the queue, and busy it. The returned page will not be spinlocked. 1171 * 1172 * A candidate failure will be deactivated. Candidates can fail due to 1173 * being busied by someone else, in which case they will be deactivated. 1174 * 1175 * This routine may not block. 1176 * 1177 */ 1178 static vm_page_t 1179 vm_page_select_cache(u_short pg_color) 1180 { 1181 vm_page_t m; 1182 1183 for (;;) { 1184 m = _vm_page_list_find(PQ_CACHE, pg_color & PQ_L2_MASK, FALSE); 1185 if (m == NULL) 1186 break; 1187 /* 1188 * (m) has been removed from its queue and spinlocked 1189 */ 1190 if (vm_page_busy_try(m, TRUE)) { 1191 _vm_page_deactivate_locked(m, 0); 1192 vm_page_spin_unlock(m); 1193 #ifdef INVARIANTS 1194 kprintf("Warning: busy page %p found in cache\n", m); 1195 #endif 1196 } else { 1197 /* 1198 * We successfully busied the page 1199 */ 1200 if ((m->flags & PG_UNMANAGED) == 0 && 1201 m->hold_count == 0 && 1202 m->wire_count == 0) { 1203 vm_page_spin_unlock(m); 1204 pagedaemon_wakeup(); 1205 return(m); 1206 } 1207 _vm_page_deactivate_locked(m, 0); 1208 if (_vm_page_wakeup(m)) { 1209 vm_page_spin_unlock(m); 1210 wakeup(m); 1211 } else { 1212 vm_page_spin_unlock(m); 1213 } 1214 } 1215 } 1216 return (m); 1217 } 1218 1219 /* 1220 * Find a free or zero page, with specified preference. We attempt to 1221 * inline the nominal case and fall back to _vm_page_select_free() 1222 * otherwise. A busied page is removed from the queue and returned. 1223 * 1224 * This routine may not block. 1225 */ 1226 static __inline vm_page_t 1227 vm_page_select_free(u_short pg_color, boolean_t prefer_zero) 1228 { 1229 vm_page_t m; 1230 1231 for (;;) { 1232 m = _vm_page_list_find(PQ_FREE, pg_color & PQ_L2_MASK, 1233 prefer_zero); 1234 if (m == NULL) 1235 break; 1236 if (vm_page_busy_try(m, TRUE)) { 1237 /* 1238 * Various mechanisms such as a pmap_collect can 1239 * result in a busy page on the free queue. We 1240 * have to move the page out of the way so we can 1241 * retry the allocation. If the other thread is not 1242 * allocating the page then m->valid will remain 0 and 1243 * the pageout daemon will free the page later on. 1244 * 1245 * Since we could not busy the page, however, we 1246 * cannot make assumptions as to whether the page 1247 * will be allocated by the other thread or not, 1248 * so all we can do is deactivate it to move it out 1249 * of the way. In particular, if the other thread 1250 * wires the page it may wind up on the inactive 1251 * queue and the pageout daemon will have to deal 1252 * with that case too. 1253 */ 1254 _vm_page_deactivate_locked(m, 0); 1255 vm_page_spin_unlock(m); 1256 #ifdef INVARIANTS 1257 kprintf("Warning: busy page %p found in cache\n", m); 1258 #endif 1259 } else { 1260 /* 1261 * Theoretically if we are able to busy the page 1262 * atomic with the queue removal (using the vm_page 1263 * lock) nobody else should be able to mess with the 1264 * page before us. 1265 */ 1266 KKASSERT((m->flags & PG_UNMANAGED) == 0); 1267 KKASSERT(m->hold_count == 0); 1268 KKASSERT(m->wire_count == 0); 1269 vm_page_spin_unlock(m); 1270 pagedaemon_wakeup(); 1271 1272 /* return busied and removed page */ 1273 return(m); 1274 } 1275 } 1276 return(m); 1277 } 1278 1279 /* 1280 * This implements a per-cpu cache of free, zero'd, ready-to-go pages. 1281 * The idea is to populate this cache prior to acquiring any locks so 1282 * we don't wind up potentially zeroing VM pages (under heavy loads) while 1283 * holding potentialy contending locks. 1284 * 1285 * Note that we allocate the page uninserted into anything and use a pindex 1286 * of 0, the vm_page_alloc() will effectively add gd_cpuid so these 1287 * allocations should wind up being uncontended. However, we still want 1288 * to rove across PQ_L2_SIZE. 1289 */ 1290 void 1291 vm_page_pcpu_cache(void) 1292 { 1293 #if 0 1294 globaldata_t gd = mycpu; 1295 vm_page_t m; 1296 1297 if (gd->gd_vmpg_count < GD_MINVMPG) { 1298 crit_enter_gd(gd); 1299 while (gd->gd_vmpg_count < GD_MAXVMPG) { 1300 m = vm_page_alloc(NULL, ticks & ~ncpus2_mask, 1301 VM_ALLOC_NULL_OK | VM_ALLOC_NORMAL | 1302 VM_ALLOC_NULL_OK | VM_ALLOC_ZERO); 1303 if (gd->gd_vmpg_count < GD_MAXVMPG) { 1304 if ((m->flags & PG_ZERO) == 0) { 1305 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 1306 vm_page_flag_set(m, PG_ZERO); 1307 } 1308 gd->gd_vmpg_array[gd->gd_vmpg_count++] = m; 1309 } else { 1310 vm_page_free(m); 1311 } 1312 } 1313 crit_exit_gd(gd); 1314 } 1315 #endif 1316 } 1317 1318 /* 1319 * vm_page_alloc() 1320 * 1321 * Allocate and return a memory cell associated with this VM object/offset 1322 * pair. If object is NULL an unassociated page will be allocated. 1323 * 1324 * The returned page will be busied and removed from its queues. This 1325 * routine can block and may return NULL if a race occurs and the page 1326 * is found to already exist at the specified (object, pindex). 1327 * 1328 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 1329 * VM_ALLOC_QUICK like normal but cannot use cache 1330 * VM_ALLOC_SYSTEM greater free drain 1331 * VM_ALLOC_INTERRUPT allow free list to be completely drained 1332 * VM_ALLOC_ZERO advisory request for pre-zero'd page only 1333 * VM_ALLOC_FORCE_ZERO advisory request for pre-zero'd page only 1334 * VM_ALLOC_NULL_OK ok to return NULL on insertion collision 1335 * (see vm_page_grab()) 1336 * VM_ALLOC_USE_GD ok to use per-gd cache 1337 * 1338 * The object must be held if not NULL 1339 * This routine may not block 1340 * 1341 * Additional special handling is required when called from an interrupt 1342 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 1343 * in this case. 1344 */ 1345 vm_page_t 1346 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 1347 { 1348 #ifdef SMP 1349 globaldata_t gd = mycpu; 1350 #endif 1351 vm_page_t m; 1352 u_short pg_color; 1353 1354 #if 0 1355 /* 1356 * Special per-cpu free VM page cache. The pages are pre-busied 1357 * and pre-zerod for us. 1358 */ 1359 if (gd->gd_vmpg_count && (page_req & VM_ALLOC_USE_GD)) { 1360 crit_enter_gd(gd); 1361 if (gd->gd_vmpg_count) { 1362 m = gd->gd_vmpg_array[--gd->gd_vmpg_count]; 1363 crit_exit_gd(gd); 1364 goto done; 1365 } 1366 crit_exit_gd(gd); 1367 } 1368 #endif 1369 m = NULL; 1370 1371 #ifdef SMP 1372 /* 1373 * Cpu twist - cpu localization algorithm 1374 */ 1375 if (object) { 1376 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask) + 1377 (object->pg_color & ~ncpus_fit_mask); 1378 } else { 1379 pg_color = gd->gd_cpuid + (pindex & ~ncpus_fit_mask); 1380 } 1381 #else 1382 /* 1383 * Normal page coloring algorithm 1384 */ 1385 if (object) { 1386 pg_color = object->pg_color + pindex; 1387 } else { 1388 pg_color = pindex; 1389 } 1390 #endif 1391 KKASSERT(page_req & 1392 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK| 1393 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 1394 1395 /* 1396 * Certain system threads (pageout daemon, buf_daemon's) are 1397 * allowed to eat deeper into the free page list. 1398 */ 1399 if (curthread->td_flags & TDF_SYSTHREAD) 1400 page_req |= VM_ALLOC_SYSTEM; 1401 1402 loop: 1403 if (vmstats.v_free_count > vmstats.v_free_reserved || 1404 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) || 1405 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 && 1406 vmstats.v_free_count > vmstats.v_interrupt_free_min) 1407 ) { 1408 /* 1409 * The free queue has sufficient free pages to take one out. 1410 */ 1411 if (page_req & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) 1412 m = vm_page_select_free(pg_color, TRUE); 1413 else 1414 m = vm_page_select_free(pg_color, FALSE); 1415 } else if (page_req & VM_ALLOC_NORMAL) { 1416 /* 1417 * Allocatable from the cache (non-interrupt only). On 1418 * success, we must free the page and try again, thus 1419 * ensuring that vmstats.v_*_free_min counters are replenished. 1420 */ 1421 #ifdef INVARIANTS 1422 if (curthread->td_preempted) { 1423 kprintf("vm_page_alloc(): warning, attempt to allocate" 1424 " cache page from preempting interrupt\n"); 1425 m = NULL; 1426 } else { 1427 m = vm_page_select_cache(pg_color); 1428 } 1429 #else 1430 m = vm_page_select_cache(pg_color); 1431 #endif 1432 /* 1433 * On success move the page into the free queue and loop. 1434 */ 1435 if (m != NULL) { 1436 KASSERT(m->dirty == 0, 1437 ("Found dirty cache page %p", m)); 1438 vm_page_protect(m, VM_PROT_NONE); 1439 vm_page_free(m); 1440 goto loop; 1441 } 1442 1443 /* 1444 * On failure return NULL 1445 */ 1446 #if defined(DIAGNOSTIC) 1447 if (vmstats.v_cache_count > 0) 1448 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count); 1449 #endif 1450 vm_pageout_deficit++; 1451 pagedaemon_wakeup(); 1452 return (NULL); 1453 } else { 1454 /* 1455 * No pages available, wakeup the pageout daemon and give up. 1456 */ 1457 vm_pageout_deficit++; 1458 pagedaemon_wakeup(); 1459 return (NULL); 1460 } 1461 1462 /* 1463 * v_free_count can race so loop if we don't find the expected 1464 * page. 1465 */ 1466 if (m == NULL) 1467 goto loop; 1468 1469 /* 1470 * Good page found. The page has already been busied for us and 1471 * removed from its queues. 1472 */ 1473 KASSERT(m->dirty == 0, 1474 ("vm_page_alloc: free/cache page %p was dirty", m)); 1475 KKASSERT(m->queue == PQ_NONE); 1476 1477 #if 0 1478 done: 1479 #endif 1480 /* 1481 * Initialize the structure, inheriting some flags but clearing 1482 * all the rest. The page has already been busied for us. 1483 */ 1484 vm_page_flag_clear(m, ~(PG_ZERO | PG_BUSY | PG_SBUSY)); 1485 KKASSERT(m->wire_count == 0); 1486 KKASSERT(m->busy == 0); 1487 m->act_count = 0; 1488 m->valid = 0; 1489 1490 /* 1491 * Caller must be holding the object lock (asserted by 1492 * vm_page_insert()). 1493 * 1494 * NOTE: Inserting a page here does not insert it into any pmaps 1495 * (which could cause us to block allocating memory). 1496 * 1497 * NOTE: If no object an unassociated page is allocated, m->pindex 1498 * can be used by the caller for any purpose. 1499 */ 1500 if (object) { 1501 if (vm_page_insert(m, object, pindex) == FALSE) { 1502 kprintf("PAGE RACE (%p:%d,%"PRIu64")\n", 1503 object, object->type, pindex); 1504 vm_page_free(m); 1505 m = NULL; 1506 if ((page_req & VM_ALLOC_NULL_OK) == 0) 1507 panic("PAGE RACE"); 1508 } 1509 } else { 1510 m->pindex = pindex; 1511 } 1512 1513 /* 1514 * Don't wakeup too often - wakeup the pageout daemon when 1515 * we would be nearly out of memory. 1516 */ 1517 pagedaemon_wakeup(); 1518 1519 /* 1520 * A PG_BUSY page is returned. 1521 */ 1522 return (m); 1523 } 1524 1525 /* 1526 * Wait for sufficient free memory for nominal heavy memory use kernel 1527 * operations. 1528 */ 1529 void 1530 vm_wait_nominal(void) 1531 { 1532 while (vm_page_count_min(0)) 1533 vm_wait(0); 1534 } 1535 1536 /* 1537 * Test if vm_wait_nominal() would block. 1538 */ 1539 int 1540 vm_test_nominal(void) 1541 { 1542 if (vm_page_count_min(0)) 1543 return(1); 1544 return(0); 1545 } 1546 1547 /* 1548 * Block until free pages are available for allocation, called in various 1549 * places before memory allocations. 1550 * 1551 * The caller may loop if vm_page_count_min() == FALSE so we cannot be 1552 * more generous then that. 1553 */ 1554 void 1555 vm_wait(int timo) 1556 { 1557 /* 1558 * never wait forever 1559 */ 1560 if (timo == 0) 1561 timo = hz; 1562 lwkt_gettoken(&vm_token); 1563 1564 if (curthread == pagethread) { 1565 /* 1566 * The pageout daemon itself needs pages, this is bad. 1567 */ 1568 if (vm_page_count_min(0)) { 1569 vm_pageout_pages_needed = 1; 1570 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 1571 } 1572 } else { 1573 /* 1574 * Wakeup the pageout daemon if necessary and wait. 1575 */ 1576 if (vm_page_count_target()) { 1577 if (vm_pages_needed == 0) { 1578 vm_pages_needed = 1; 1579 wakeup(&vm_pages_needed); 1580 } 1581 ++vm_pages_waiting; /* SMP race ok */ 1582 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 1583 } 1584 } 1585 lwkt_reltoken(&vm_token); 1586 } 1587 1588 /* 1589 * Block until free pages are available for allocation 1590 * 1591 * Called only from vm_fault so that processes page faulting can be 1592 * easily tracked. 1593 */ 1594 void 1595 vm_waitpfault(void) 1596 { 1597 /* 1598 * Wakeup the pageout daemon if necessary and wait. 1599 */ 1600 if (vm_page_count_target()) { 1601 lwkt_gettoken(&vm_token); 1602 if (vm_page_count_target()) { 1603 if (vm_pages_needed == 0) { 1604 vm_pages_needed = 1; 1605 wakeup(&vm_pages_needed); 1606 } 1607 ++vm_pages_waiting; /* SMP race ok */ 1608 tsleep(&vmstats.v_free_count, 0, "pfault", hz); 1609 } 1610 lwkt_reltoken(&vm_token); 1611 } 1612 } 1613 1614 /* 1615 * Put the specified page on the active list (if appropriate). Ensure 1616 * that act_count is at least ACT_INIT but do not otherwise mess with it. 1617 * 1618 * The caller should be holding the page busied ? XXX 1619 * This routine may not block. 1620 */ 1621 void 1622 vm_page_activate(vm_page_t m) 1623 { 1624 u_short oqueue; 1625 1626 vm_page_spin_lock(m); 1627 if (m->queue - m->pc != PQ_ACTIVE) { 1628 _vm_page_queue_spin_lock(m); 1629 oqueue = _vm_page_rem_queue_spinlocked(m); 1630 /* page is left spinlocked, queue is unlocked */ 1631 1632 if (oqueue == PQ_CACHE) 1633 mycpu->gd_cnt.v_reactivated++; 1634 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1635 if (m->act_count < ACT_INIT) 1636 m->act_count = ACT_INIT; 1637 _vm_page_add_queue_spinlocked(m, PQ_ACTIVE + m->pc, 0); 1638 } 1639 _vm_page_and_queue_spin_unlock(m); 1640 if (oqueue == PQ_CACHE || oqueue == PQ_FREE) 1641 pagedaemon_wakeup(); 1642 } else { 1643 if (m->act_count < ACT_INIT) 1644 m->act_count = ACT_INIT; 1645 vm_page_spin_unlock(m); 1646 } 1647 } 1648 1649 /* 1650 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 1651 * routine is called when a page has been added to the cache or free 1652 * queues. 1653 * 1654 * This routine may not block. 1655 */ 1656 static __inline void 1657 vm_page_free_wakeup(void) 1658 { 1659 /* 1660 * If the pageout daemon itself needs pages, then tell it that 1661 * there are some free. 1662 */ 1663 if (vm_pageout_pages_needed && 1664 vmstats.v_cache_count + vmstats.v_free_count >= 1665 vmstats.v_pageout_free_min 1666 ) { 1667 wakeup(&vm_pageout_pages_needed); 1668 vm_pageout_pages_needed = 0; 1669 } 1670 1671 /* 1672 * Wakeup processes that are waiting on memory. 1673 * 1674 * NOTE: vm_paging_target() is the pageout daemon's target, while 1675 * vm_page_count_target() is somewhere inbetween. We want 1676 * to wake processes up prior to the pageout daemon reaching 1677 * its target to provide some hysteresis. 1678 */ 1679 if (vm_pages_waiting) { 1680 if (!vm_page_count_target()) { 1681 /* 1682 * Plenty of pages are free, wakeup everyone. 1683 */ 1684 vm_pages_waiting = 0; 1685 wakeup(&vmstats.v_free_count); 1686 ++mycpu->gd_cnt.v_ppwakeups; 1687 } else if (!vm_page_count_min(0)) { 1688 /* 1689 * Some pages are free, wakeup someone. 1690 */ 1691 int wcount = vm_pages_waiting; 1692 if (wcount > 0) 1693 --wcount; 1694 vm_pages_waiting = wcount; 1695 wakeup_one(&vmstats.v_free_count); 1696 ++mycpu->gd_cnt.v_ppwakeups; 1697 } 1698 } 1699 } 1700 1701 /* 1702 * Returns the given page to the PQ_FREE or PQ_HOLD list and disassociates 1703 * it from its VM object. 1704 * 1705 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on 1706 * return (the page will have been freed). 1707 */ 1708 void 1709 vm_page_free_toq(vm_page_t m) 1710 { 1711 mycpu->gd_cnt.v_tfree++; 1712 KKASSERT((m->flags & PG_MAPPED) == 0); 1713 KKASSERT(m->flags & PG_BUSY); 1714 1715 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 1716 kprintf( 1717 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 1718 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 1719 m->hold_count); 1720 if ((m->queue - m->pc) == PQ_FREE) 1721 panic("vm_page_free: freeing free page"); 1722 else 1723 panic("vm_page_free: freeing busy page"); 1724 } 1725 1726 /* 1727 * Remove from object, spinlock the page and its queues and 1728 * remove from any queue. No queue spinlock will be held 1729 * after this section (because the page was removed from any 1730 * queue). 1731 */ 1732 vm_page_remove(m); 1733 vm_page_and_queue_spin_lock(m); 1734 _vm_page_rem_queue_spinlocked(m); 1735 1736 /* 1737 * No further management of fictitious pages occurs beyond object 1738 * and queue removal. 1739 */ 1740 if ((m->flags & PG_FICTITIOUS) != 0) { 1741 vm_page_spin_unlock(m); 1742 vm_page_wakeup(m); 1743 return; 1744 } 1745 1746 m->valid = 0; 1747 vm_page_undirty(m); 1748 1749 if (m->wire_count != 0) { 1750 if (m->wire_count > 1) { 1751 panic( 1752 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1753 m->wire_count, (long)m->pindex); 1754 } 1755 panic("vm_page_free: freeing wired page"); 1756 } 1757 1758 /* 1759 * Clear the UNMANAGED flag when freeing an unmanaged page. 1760 */ 1761 if (m->flags & PG_UNMANAGED) { 1762 vm_page_flag_clear(m, PG_UNMANAGED); 1763 } 1764 1765 if (m->hold_count != 0) { 1766 vm_page_flag_clear(m, PG_ZERO); 1767 _vm_page_add_queue_spinlocked(m, PQ_HOLD + m->pc, 0); 1768 } else { 1769 _vm_page_add_queue_spinlocked(m, PQ_FREE + m->pc, 0); 1770 } 1771 1772 /* 1773 * This sequence allows us to clear PG_BUSY while still holding 1774 * its spin lock, which reduces contention vs allocators. We 1775 * must not leave the queue locked or _vm_page_wakeup() may 1776 * deadlock. 1777 */ 1778 _vm_page_queue_spin_unlock(m); 1779 if (_vm_page_wakeup(m)) { 1780 vm_page_spin_unlock(m); 1781 wakeup(m); 1782 } else { 1783 vm_page_spin_unlock(m); 1784 } 1785 vm_page_free_wakeup(); 1786 } 1787 1788 /* 1789 * vm_page_free_fromq_fast() 1790 * 1791 * Remove a non-zero page from one of the free queues; the page is removed for 1792 * zeroing, so do not issue a wakeup. 1793 */ 1794 vm_page_t 1795 vm_page_free_fromq_fast(void) 1796 { 1797 static int qi; 1798 vm_page_t m; 1799 int i; 1800 1801 for (i = 0; i < PQ_L2_SIZE; ++i) { 1802 m = vm_page_list_find(PQ_FREE, qi, FALSE); 1803 /* page is returned spinlocked and removed from its queue */ 1804 if (m) { 1805 if (vm_page_busy_try(m, TRUE)) { 1806 /* 1807 * We were unable to busy the page, deactivate 1808 * it and loop. 1809 */ 1810 _vm_page_deactivate_locked(m, 0); 1811 vm_page_spin_unlock(m); 1812 } else if (m->flags & PG_ZERO) { 1813 /* 1814 * The page is PG_ZERO, requeue it and loop 1815 */ 1816 _vm_page_add_queue_spinlocked(m, 1817 PQ_FREE + m->pc, 1818 0); 1819 vm_page_queue_spin_unlock(m); 1820 if (_vm_page_wakeup(m)) { 1821 vm_page_spin_unlock(m); 1822 wakeup(m); 1823 } else { 1824 vm_page_spin_unlock(m); 1825 } 1826 } else { 1827 /* 1828 * The page is not PG_ZERO'd so return it. 1829 */ 1830 vm_page_spin_unlock(m); 1831 KKASSERT((m->flags & PG_UNMANAGED) == 0); 1832 KKASSERT(m->hold_count == 0); 1833 KKASSERT(m->wire_count == 0); 1834 break; 1835 } 1836 m = NULL; 1837 } 1838 qi = (qi + PQ_PRIME2) & PQ_L2_MASK; 1839 } 1840 return (m); 1841 } 1842 1843 /* 1844 * vm_page_unmanage() 1845 * 1846 * Prevent PV management from being done on the page. The page is 1847 * removed from the paging queues as if it were wired, and as a 1848 * consequence of no longer being managed the pageout daemon will not 1849 * touch it (since there is no way to locate the pte mappings for the 1850 * page). madvise() calls that mess with the pmap will also no longer 1851 * operate on the page. 1852 * 1853 * Beyond that the page is still reasonably 'normal'. Freeing the page 1854 * will clear the flag. 1855 * 1856 * This routine is used by OBJT_PHYS objects - objects using unswappable 1857 * physical memory as backing store rather then swap-backed memory and 1858 * will eventually be extended to support 4MB unmanaged physical 1859 * mappings. 1860 * 1861 * Caller must be holding the page busy. 1862 */ 1863 void 1864 vm_page_unmanage(vm_page_t m) 1865 { 1866 KKASSERT(m->flags & PG_BUSY); 1867 if ((m->flags & PG_UNMANAGED) == 0) { 1868 if (m->wire_count == 0) 1869 vm_page_unqueue(m); 1870 } 1871 vm_page_flag_set(m, PG_UNMANAGED); 1872 } 1873 1874 /* 1875 * Mark this page as wired down by yet another map, removing it from 1876 * paging queues as necessary. 1877 * 1878 * Caller must be holding the page busy. 1879 */ 1880 void 1881 vm_page_wire(vm_page_t m) 1882 { 1883 /* 1884 * Only bump the wire statistics if the page is not already wired, 1885 * and only unqueue the page if it is on some queue (if it is unmanaged 1886 * it is already off the queues). Don't do anything with fictitious 1887 * pages because they are always wired. 1888 */ 1889 KKASSERT(m->flags & PG_BUSY); 1890 if ((m->flags & PG_FICTITIOUS) == 0) { 1891 if (atomic_fetchadd_int(&m->wire_count, 1) == 0) { 1892 if ((m->flags & PG_UNMANAGED) == 0) 1893 vm_page_unqueue(m); 1894 atomic_add_int(&vmstats.v_wire_count, 1); 1895 } 1896 KASSERT(m->wire_count != 0, 1897 ("vm_page_wire: wire_count overflow m=%p", m)); 1898 } 1899 } 1900 1901 /* 1902 * Release one wiring of this page, potentially enabling it to be paged again. 1903 * 1904 * Many pages placed on the inactive queue should actually go 1905 * into the cache, but it is difficult to figure out which. What 1906 * we do instead, if the inactive target is well met, is to put 1907 * clean pages at the head of the inactive queue instead of the tail. 1908 * This will cause them to be moved to the cache more quickly and 1909 * if not actively re-referenced, freed more quickly. If we just 1910 * stick these pages at the end of the inactive queue, heavy filesystem 1911 * meta-data accesses can cause an unnecessary paging load on memory bound 1912 * processes. This optimization causes one-time-use metadata to be 1913 * reused more quickly. 1914 * 1915 * BUT, if we are in a low-memory situation we have no choice but to 1916 * put clean pages on the cache queue. 1917 * 1918 * A number of routines use vm_page_unwire() to guarantee that the page 1919 * will go into either the inactive or active queues, and will NEVER 1920 * be placed in the cache - for example, just after dirtying a page. 1921 * dirty pages in the cache are not allowed. 1922 * 1923 * The page queues must be locked. 1924 * This routine may not block. 1925 */ 1926 void 1927 vm_page_unwire(vm_page_t m, int activate) 1928 { 1929 KKASSERT(m->flags & PG_BUSY); 1930 if (m->flags & PG_FICTITIOUS) { 1931 /* do nothing */ 1932 } else if (m->wire_count <= 0) { 1933 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1934 } else { 1935 if (atomic_fetchadd_int(&m->wire_count, -1) == 1) { 1936 atomic_add_int(&vmstats.v_wire_count, -1); 1937 if (m->flags & PG_UNMANAGED) { 1938 ; 1939 } else if (activate) { 1940 vm_page_spin_lock(m); 1941 _vm_page_add_queue_spinlocked(m, 1942 PQ_ACTIVE + m->pc, 0); 1943 _vm_page_and_queue_spin_unlock(m); 1944 } else { 1945 vm_page_spin_lock(m); 1946 vm_page_flag_clear(m, PG_WINATCFLS); 1947 _vm_page_add_queue_spinlocked(m, 1948 PQ_INACTIVE + m->pc, 0); 1949 ++vm_swapcache_inactive_heuristic; 1950 _vm_page_and_queue_spin_unlock(m); 1951 } 1952 } 1953 } 1954 } 1955 1956 /* 1957 * Move the specified page to the inactive queue. If the page has 1958 * any associated swap, the swap is deallocated. 1959 * 1960 * Normally athead is 0 resulting in LRU operation. athead is set 1961 * to 1 if we want this page to be 'as if it were placed in the cache', 1962 * except without unmapping it from the process address space. 1963 * 1964 * vm_page's spinlock must be held on entry and will remain held on return. 1965 * This routine may not block. 1966 */ 1967 static void 1968 _vm_page_deactivate_locked(vm_page_t m, int athead) 1969 { 1970 u_short oqueue; 1971 1972 /* 1973 * Ignore if already inactive. 1974 */ 1975 if (m->queue - m->pc == PQ_INACTIVE) 1976 return; 1977 _vm_page_queue_spin_lock(m); 1978 oqueue = _vm_page_rem_queue_spinlocked(m); 1979 1980 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1981 if (oqueue == PQ_CACHE) 1982 mycpu->gd_cnt.v_reactivated++; 1983 vm_page_flag_clear(m, PG_WINATCFLS); 1984 _vm_page_add_queue_spinlocked(m, PQ_INACTIVE + m->pc, athead); 1985 if (athead == 0) 1986 ++vm_swapcache_inactive_heuristic; 1987 } 1988 _vm_page_queue_spin_unlock(m); 1989 /* leaves vm_page spinlocked */ 1990 } 1991 1992 /* 1993 * Attempt to deactivate a page. 1994 * 1995 * No requirements. 1996 */ 1997 void 1998 vm_page_deactivate(vm_page_t m) 1999 { 2000 vm_page_spin_lock(m); 2001 _vm_page_deactivate_locked(m, 0); 2002 vm_page_spin_unlock(m); 2003 } 2004 2005 void 2006 vm_page_deactivate_locked(vm_page_t m) 2007 { 2008 _vm_page_deactivate_locked(m, 0); 2009 } 2010 2011 /* 2012 * Attempt to move a page to PQ_CACHE. 2013 * 2014 * Returns 0 on failure, 1 on success 2015 * 2016 * The page should NOT be busied by the caller. This function will validate 2017 * whether the page can be safely moved to the cache. 2018 */ 2019 int 2020 vm_page_try_to_cache(vm_page_t m) 2021 { 2022 vm_page_spin_lock(m); 2023 if (vm_page_busy_try(m, TRUE)) { 2024 vm_page_spin_unlock(m); 2025 return(0); 2026 } 2027 if (m->dirty || m->hold_count || m->wire_count || 2028 (m->flags & PG_UNMANAGED)) { 2029 if (_vm_page_wakeup(m)) { 2030 vm_page_spin_unlock(m); 2031 wakeup(m); 2032 } else { 2033 vm_page_spin_unlock(m); 2034 } 2035 return(0); 2036 } 2037 vm_page_spin_unlock(m); 2038 2039 /* 2040 * Page busied by us and no longer spinlocked. Dirty pages cannot 2041 * be moved to the cache. 2042 */ 2043 vm_page_test_dirty(m); 2044 if (m->dirty) { 2045 vm_page_wakeup(m); 2046 return(0); 2047 } 2048 vm_page_cache(m); 2049 return(1); 2050 } 2051 2052 /* 2053 * Attempt to free the page. If we cannot free it, we do nothing. 2054 * 1 is returned on success, 0 on failure. 2055 * 2056 * No requirements. 2057 */ 2058 int 2059 vm_page_try_to_free(vm_page_t m) 2060 { 2061 vm_page_spin_lock(m); 2062 if (vm_page_busy_try(m, TRUE)) { 2063 vm_page_spin_unlock(m); 2064 return(0); 2065 } 2066 if (m->dirty || m->hold_count || m->wire_count || 2067 (m->flags & PG_UNMANAGED)) { 2068 if (_vm_page_wakeup(m)) { 2069 vm_page_spin_unlock(m); 2070 wakeup(m); 2071 } else { 2072 vm_page_spin_unlock(m); 2073 } 2074 return(0); 2075 } 2076 vm_page_spin_unlock(m); 2077 2078 /* 2079 * Page busied by us and no longer spinlocked. Dirty pages will 2080 * not be freed by this function. We have to re-test the 2081 * dirty bit after cleaning out the pmaps. 2082 */ 2083 vm_page_test_dirty(m); 2084 if (m->dirty) { 2085 vm_page_wakeup(m); 2086 return(0); 2087 } 2088 vm_page_protect(m, VM_PROT_NONE); 2089 if (m->dirty) { 2090 vm_page_wakeup(m); 2091 return(0); 2092 } 2093 vm_page_free(m); 2094 return(1); 2095 } 2096 2097 /* 2098 * vm_page_cache 2099 * 2100 * Put the specified page onto the page cache queue (if appropriate). 2101 * 2102 * The page must be busy, and this routine will release the busy and 2103 * possibly even free the page. 2104 */ 2105 void 2106 vm_page_cache(vm_page_t m) 2107 { 2108 if ((m->flags & PG_UNMANAGED) || m->busy || 2109 m->wire_count || m->hold_count) { 2110 kprintf("vm_page_cache: attempting to cache busy/held page\n"); 2111 vm_page_wakeup(m); 2112 return; 2113 } 2114 2115 /* 2116 * Already in the cache (and thus not mapped) 2117 */ 2118 if ((m->queue - m->pc) == PQ_CACHE) { 2119 KKASSERT((m->flags & PG_MAPPED) == 0); 2120 vm_page_wakeup(m); 2121 return; 2122 } 2123 2124 /* 2125 * Caller is required to test m->dirty, but note that the act of 2126 * removing the page from its maps can cause it to become dirty 2127 * on an SMP system due to another cpu running in usermode. 2128 */ 2129 if (m->dirty) { 2130 panic("vm_page_cache: caching a dirty page, pindex: %ld", 2131 (long)m->pindex); 2132 } 2133 2134 /* 2135 * Remove all pmaps and indicate that the page is not 2136 * writeable or mapped. Our vm_page_protect() call may 2137 * have blocked (especially w/ VM_PROT_NONE), so recheck 2138 * everything. 2139 */ 2140 vm_page_protect(m, VM_PROT_NONE); 2141 if ((m->flags & (PG_UNMANAGED|PG_MAPPED)) || m->busy || 2142 m->wire_count || m->hold_count) { 2143 vm_page_wakeup(m); 2144 } else if (m->dirty) { 2145 vm_page_deactivate(m); 2146 vm_page_wakeup(m); 2147 } else { 2148 _vm_page_and_queue_spin_lock(m); 2149 _vm_page_rem_queue_spinlocked(m); 2150 _vm_page_add_queue_spinlocked(m, PQ_CACHE + m->pc, 0); 2151 _vm_page_queue_spin_unlock(m); 2152 if (_vm_page_wakeup(m)) { 2153 vm_page_spin_unlock(m); 2154 wakeup(m); 2155 } else { 2156 vm_page_spin_unlock(m); 2157 } 2158 vm_page_free_wakeup(); 2159 } 2160 } 2161 2162 /* 2163 * vm_page_dontneed() 2164 * 2165 * Cache, deactivate, or do nothing as appropriate. This routine 2166 * is typically used by madvise() MADV_DONTNEED. 2167 * 2168 * Generally speaking we want to move the page into the cache so 2169 * it gets reused quickly. However, this can result in a silly syndrome 2170 * due to the page recycling too quickly. Small objects will not be 2171 * fully cached. On the otherhand, if we move the page to the inactive 2172 * queue we wind up with a problem whereby very large objects 2173 * unnecessarily blow away our inactive and cache queues. 2174 * 2175 * The solution is to move the pages based on a fixed weighting. We 2176 * either leave them alone, deactivate them, or move them to the cache, 2177 * where moving them to the cache has the highest weighting. 2178 * By forcing some pages into other queues we eventually force the 2179 * system to balance the queues, potentially recovering other unrelated 2180 * space from active. The idea is to not force this to happen too 2181 * often. 2182 * 2183 * The page must be busied. 2184 */ 2185 void 2186 vm_page_dontneed(vm_page_t m) 2187 { 2188 static int dnweight; 2189 int dnw; 2190 int head; 2191 2192 dnw = ++dnweight; 2193 2194 /* 2195 * occassionally leave the page alone 2196 */ 2197 if ((dnw & 0x01F0) == 0 || 2198 m->queue - m->pc == PQ_INACTIVE || 2199 m->queue - m->pc == PQ_CACHE 2200 ) { 2201 if (m->act_count >= ACT_INIT) 2202 --m->act_count; 2203 return; 2204 } 2205 2206 /* 2207 * If vm_page_dontneed() is inactivating a page, it must clear 2208 * the referenced flag; otherwise the pagedaemon will see references 2209 * on the page in the inactive queue and reactivate it. Until the 2210 * page can move to the cache queue, madvise's job is not done. 2211 */ 2212 vm_page_flag_clear(m, PG_REFERENCED); 2213 pmap_clear_reference(m); 2214 2215 if (m->dirty == 0) 2216 vm_page_test_dirty(m); 2217 2218 if (m->dirty || (dnw & 0x0070) == 0) { 2219 /* 2220 * Deactivate the page 3 times out of 32. 2221 */ 2222 head = 0; 2223 } else { 2224 /* 2225 * Cache the page 28 times out of every 32. Note that 2226 * the page is deactivated instead of cached, but placed 2227 * at the head of the queue instead of the tail. 2228 */ 2229 head = 1; 2230 } 2231 vm_page_spin_lock(m); 2232 _vm_page_deactivate_locked(m, head); 2233 vm_page_spin_unlock(m); 2234 } 2235 2236 /* 2237 * These routines manipulate the 'soft busy' count for a page. A soft busy 2238 * is almost like PG_BUSY except that it allows certain compatible operations 2239 * to occur on the page while it is busy. For example, a page undergoing a 2240 * write can still be mapped read-only. 2241 * 2242 * Because vm_pages can overlap buffers m->busy can be > 1. m->busy is only 2243 * adjusted while the vm_page is PG_BUSY so the flash will occur when the 2244 * busy bit is cleared. 2245 */ 2246 void 2247 vm_page_io_start(vm_page_t m) 2248 { 2249 KASSERT(m->flags & PG_BUSY, ("vm_page_io_start: page not busy!!!")); 2250 atomic_add_char(&m->busy, 1); 2251 vm_page_flag_set(m, PG_SBUSY); 2252 } 2253 2254 void 2255 vm_page_io_finish(vm_page_t m) 2256 { 2257 KASSERT(m->flags & PG_BUSY, ("vm_page_io_finish: page not busy!!!")); 2258 atomic_subtract_char(&m->busy, 1); 2259 if (m->busy == 0) 2260 vm_page_flag_clear(m, PG_SBUSY); 2261 } 2262 2263 /* 2264 * Grab a page, blocking if it is busy and allocating a page if necessary. 2265 * A busy page is returned or NULL. The page may or may not be valid and 2266 * might not be on a queue (the caller is responsible for the disposition of 2267 * the page). 2268 * 2269 * If VM_ALLOC_ZERO is specified and the grab must allocate a new page, the 2270 * page will be zero'd and marked valid. 2271 * 2272 * If VM_ALLOC_FORCE_ZERO is specified the page will be zero'd and marked 2273 * valid even if it already exists. 2274 * 2275 * If VM_ALLOC_RETRY is specified this routine will never return NULL. Also 2276 * note that VM_ALLOC_NORMAL must be specified if VM_ALLOC_RETRY is specified. 2277 * VM_ALLOC_NULL_OK is implied when VM_ALLOC_RETRY is specified. 2278 * 2279 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 2280 * always returned if we had blocked. 2281 * 2282 * This routine may not be called from an interrupt. 2283 * 2284 * PG_ZERO is *ALWAYS* cleared by this routine. 2285 * 2286 * No other requirements. 2287 */ 2288 vm_page_t 2289 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 2290 { 2291 vm_page_t m; 2292 int error; 2293 2294 KKASSERT(allocflags & 2295 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 2296 vm_object_hold(object); 2297 for (;;) { 2298 m = vm_page_lookup_busy_try(object, pindex, TRUE, &error); 2299 if (error) { 2300 vm_page_sleep_busy(m, TRUE, "pgrbwt"); 2301 if ((allocflags & VM_ALLOC_RETRY) == 0) { 2302 m = NULL; 2303 break; 2304 } 2305 /* retry */ 2306 } else if (m == NULL) { 2307 if (allocflags & VM_ALLOC_RETRY) 2308 allocflags |= VM_ALLOC_NULL_OK; 2309 m = vm_page_alloc(object, pindex, 2310 allocflags & ~VM_ALLOC_RETRY); 2311 if (m) 2312 break; 2313 vm_wait(0); 2314 if ((allocflags & VM_ALLOC_RETRY) == 0) 2315 goto failed; 2316 } else { 2317 /* m found */ 2318 break; 2319 } 2320 } 2321 2322 /* 2323 * If VM_ALLOC_ZERO an invalid page will be zero'd and set valid. 2324 * 2325 * If VM_ALLOC_FORCE_ZERO the page is unconditionally zero'd and set 2326 * valid even if already valid. 2327 */ 2328 if (m->valid == 0) { 2329 if (allocflags & (VM_ALLOC_ZERO | VM_ALLOC_FORCE_ZERO)) { 2330 if ((m->flags & PG_ZERO) == 0) 2331 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2332 m->valid = VM_PAGE_BITS_ALL; 2333 } 2334 } else if (allocflags & VM_ALLOC_FORCE_ZERO) { 2335 pmap_zero_page(VM_PAGE_TO_PHYS(m)); 2336 m->valid = VM_PAGE_BITS_ALL; 2337 } 2338 vm_page_flag_clear(m, PG_ZERO); 2339 failed: 2340 vm_object_drop(object); 2341 return(m); 2342 } 2343 2344 /* 2345 * Mapping function for valid bits or for dirty bits in 2346 * a page. May not block. 2347 * 2348 * Inputs are required to range within a page. 2349 * 2350 * No requirements. 2351 * Non blocking. 2352 */ 2353 int 2354 vm_page_bits(int base, int size) 2355 { 2356 int first_bit; 2357 int last_bit; 2358 2359 KASSERT( 2360 base + size <= PAGE_SIZE, 2361 ("vm_page_bits: illegal base/size %d/%d", base, size) 2362 ); 2363 2364 if (size == 0) /* handle degenerate case */ 2365 return(0); 2366 2367 first_bit = base >> DEV_BSHIFT; 2368 last_bit = (base + size - 1) >> DEV_BSHIFT; 2369 2370 return ((2 << last_bit) - (1 << first_bit)); 2371 } 2372 2373 /* 2374 * Sets portions of a page valid and clean. The arguments are expected 2375 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 2376 * of any partial chunks touched by the range. The invalid portion of 2377 * such chunks will be zero'd. 2378 * 2379 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically 2380 * align base to DEV_BSIZE so as not to mark clean a partially 2381 * truncated device block. Otherwise the dirty page status might be 2382 * lost. 2383 * 2384 * This routine may not block. 2385 * 2386 * (base + size) must be less then or equal to PAGE_SIZE. 2387 */ 2388 static void 2389 _vm_page_zero_valid(vm_page_t m, int base, int size) 2390 { 2391 int frag; 2392 int endoff; 2393 2394 if (size == 0) /* handle degenerate case */ 2395 return; 2396 2397 /* 2398 * If the base is not DEV_BSIZE aligned and the valid 2399 * bit is clear, we have to zero out a portion of the 2400 * first block. 2401 */ 2402 2403 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 2404 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 2405 ) { 2406 pmap_zero_page_area( 2407 VM_PAGE_TO_PHYS(m), 2408 frag, 2409 base - frag 2410 ); 2411 } 2412 2413 /* 2414 * If the ending offset is not DEV_BSIZE aligned and the 2415 * valid bit is clear, we have to zero out a portion of 2416 * the last block. 2417 */ 2418 2419 endoff = base + size; 2420 2421 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 2422 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 2423 ) { 2424 pmap_zero_page_area( 2425 VM_PAGE_TO_PHYS(m), 2426 endoff, 2427 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 2428 ); 2429 } 2430 } 2431 2432 /* 2433 * Set valid, clear dirty bits. If validating the entire 2434 * page we can safely clear the pmap modify bit. We also 2435 * use this opportunity to clear the PG_NOSYNC flag. If a process 2436 * takes a write fault on a MAP_NOSYNC memory area the flag will 2437 * be set again. 2438 * 2439 * We set valid bits inclusive of any overlap, but we can only 2440 * clear dirty bits for DEV_BSIZE chunks that are fully within 2441 * the range. 2442 * 2443 * Page must be busied? 2444 * No other requirements. 2445 */ 2446 void 2447 vm_page_set_valid(vm_page_t m, int base, int size) 2448 { 2449 _vm_page_zero_valid(m, base, size); 2450 m->valid |= vm_page_bits(base, size); 2451 } 2452 2453 2454 /* 2455 * Set valid bits and clear dirty bits. 2456 * 2457 * NOTE: This function does not clear the pmap modified bit. 2458 * Also note that e.g. NFS may use a byte-granular base 2459 * and size. 2460 * 2461 * WARNING: Page must be busied? But vfs_clean_one_page() will call 2462 * this without necessarily busying the page (via bdwrite()). 2463 * So for now vm_token must also be held. 2464 * 2465 * No other requirements. 2466 */ 2467 void 2468 vm_page_set_validclean(vm_page_t m, int base, int size) 2469 { 2470 int pagebits; 2471 2472 _vm_page_zero_valid(m, base, size); 2473 pagebits = vm_page_bits(base, size); 2474 m->valid |= pagebits; 2475 m->dirty &= ~pagebits; 2476 if (base == 0 && size == PAGE_SIZE) { 2477 /*pmap_clear_modify(m);*/ 2478 vm_page_flag_clear(m, PG_NOSYNC); 2479 } 2480 } 2481 2482 /* 2483 * Set valid & dirty. Used by buwrite() 2484 * 2485 * WARNING: Page must be busied? But vfs_dirty_one_page() will 2486 * call this function in buwrite() so for now vm_token must 2487 * be held. 2488 * 2489 * No other requirements. 2490 */ 2491 void 2492 vm_page_set_validdirty(vm_page_t m, int base, int size) 2493 { 2494 int pagebits; 2495 2496 pagebits = vm_page_bits(base, size); 2497 m->valid |= pagebits; 2498 m->dirty |= pagebits; 2499 if (m->object) 2500 vm_object_set_writeable_dirty(m->object); 2501 } 2502 2503 /* 2504 * Clear dirty bits. 2505 * 2506 * NOTE: This function does not clear the pmap modified bit. 2507 * Also note that e.g. NFS may use a byte-granular base 2508 * and size. 2509 * 2510 * Page must be busied? 2511 * No other requirements. 2512 */ 2513 void 2514 vm_page_clear_dirty(vm_page_t m, int base, int size) 2515 { 2516 m->dirty &= ~vm_page_bits(base, size); 2517 if (base == 0 && size == PAGE_SIZE) { 2518 /*pmap_clear_modify(m);*/ 2519 vm_page_flag_clear(m, PG_NOSYNC); 2520 } 2521 } 2522 2523 /* 2524 * Make the page all-dirty. 2525 * 2526 * Also make sure the related object and vnode reflect the fact that the 2527 * object may now contain a dirty page. 2528 * 2529 * Page must be busied? 2530 * No other requirements. 2531 */ 2532 void 2533 vm_page_dirty(vm_page_t m) 2534 { 2535 #ifdef INVARIANTS 2536 int pqtype = m->queue - m->pc; 2537 #endif 2538 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 2539 ("vm_page_dirty: page in free/cache queue!")); 2540 if (m->dirty != VM_PAGE_BITS_ALL) { 2541 m->dirty = VM_PAGE_BITS_ALL; 2542 if (m->object) 2543 vm_object_set_writeable_dirty(m->object); 2544 } 2545 } 2546 2547 /* 2548 * Invalidates DEV_BSIZE'd chunks within a page. Both the 2549 * valid and dirty bits for the effected areas are cleared. 2550 * 2551 * Page must be busied? 2552 * Does not block. 2553 * No other requirements. 2554 */ 2555 void 2556 vm_page_set_invalid(vm_page_t m, int base, int size) 2557 { 2558 int bits; 2559 2560 bits = vm_page_bits(base, size); 2561 m->valid &= ~bits; 2562 m->dirty &= ~bits; 2563 m->object->generation++; 2564 } 2565 2566 /* 2567 * The kernel assumes that the invalid portions of a page contain 2568 * garbage, but such pages can be mapped into memory by user code. 2569 * When this occurs, we must zero out the non-valid portions of the 2570 * page so user code sees what it expects. 2571 * 2572 * Pages are most often semi-valid when the end of a file is mapped 2573 * into memory and the file's size is not page aligned. 2574 * 2575 * Page must be busied? 2576 * No other requirements. 2577 */ 2578 void 2579 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 2580 { 2581 int b; 2582 int i; 2583 2584 /* 2585 * Scan the valid bits looking for invalid sections that 2586 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 2587 * valid bit may be set ) have already been zerod by 2588 * vm_page_set_validclean(). 2589 */ 2590 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 2591 if (i == (PAGE_SIZE / DEV_BSIZE) || 2592 (m->valid & (1 << i)) 2593 ) { 2594 if (i > b) { 2595 pmap_zero_page_area( 2596 VM_PAGE_TO_PHYS(m), 2597 b << DEV_BSHIFT, 2598 (i - b) << DEV_BSHIFT 2599 ); 2600 } 2601 b = i + 1; 2602 } 2603 } 2604 2605 /* 2606 * setvalid is TRUE when we can safely set the zero'd areas 2607 * as being valid. We can do this if there are no cache consistency 2608 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 2609 */ 2610 if (setvalid) 2611 m->valid = VM_PAGE_BITS_ALL; 2612 } 2613 2614 /* 2615 * Is a (partial) page valid? Note that the case where size == 0 2616 * will return FALSE in the degenerate case where the page is entirely 2617 * invalid, and TRUE otherwise. 2618 * 2619 * Does not block. 2620 * No other requirements. 2621 */ 2622 int 2623 vm_page_is_valid(vm_page_t m, int base, int size) 2624 { 2625 int bits = vm_page_bits(base, size); 2626 2627 if (m->valid && ((m->valid & bits) == bits)) 2628 return 1; 2629 else 2630 return 0; 2631 } 2632 2633 /* 2634 * update dirty bits from pmap/mmu. May not block. 2635 * 2636 * Caller must hold the page busy 2637 */ 2638 void 2639 vm_page_test_dirty(vm_page_t m) 2640 { 2641 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 2642 vm_page_dirty(m); 2643 } 2644 } 2645 2646 /* 2647 * Register an action, associating it with its vm_page 2648 */ 2649 void 2650 vm_page_register_action(vm_page_action_t action, vm_page_event_t event) 2651 { 2652 struct vm_page_action_list *list; 2653 int hv; 2654 2655 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2656 list = &action_list[hv]; 2657 2658 lwkt_gettoken(&vm_token); 2659 vm_page_flag_set(action->m, PG_ACTIONLIST); 2660 action->event = event; 2661 LIST_INSERT_HEAD(list, action, entry); 2662 lwkt_reltoken(&vm_token); 2663 } 2664 2665 /* 2666 * Unregister an action, disassociating it from its related vm_page 2667 */ 2668 void 2669 vm_page_unregister_action(vm_page_action_t action) 2670 { 2671 struct vm_page_action_list *list; 2672 int hv; 2673 2674 lwkt_gettoken(&vm_token); 2675 if (action->event != VMEVENT_NONE) { 2676 action->event = VMEVENT_NONE; 2677 LIST_REMOVE(action, entry); 2678 2679 hv = (int)((intptr_t)action->m >> 8) & VMACTION_HMASK; 2680 list = &action_list[hv]; 2681 if (LIST_EMPTY(list)) 2682 vm_page_flag_clear(action->m, PG_ACTIONLIST); 2683 } 2684 lwkt_reltoken(&vm_token); 2685 } 2686 2687 /* 2688 * Issue an event on a VM page. Corresponding action structures are 2689 * removed from the page's list and called. 2690 * 2691 * If the vm_page has no more pending action events we clear its 2692 * PG_ACTIONLIST flag. 2693 */ 2694 void 2695 vm_page_event_internal(vm_page_t m, vm_page_event_t event) 2696 { 2697 struct vm_page_action_list *list; 2698 struct vm_page_action *scan; 2699 struct vm_page_action *next; 2700 int hv; 2701 int all; 2702 2703 hv = (int)((intptr_t)m >> 8) & VMACTION_HMASK; 2704 list = &action_list[hv]; 2705 all = 1; 2706 2707 lwkt_gettoken(&vm_token); 2708 LIST_FOREACH_MUTABLE(scan, list, entry, next) { 2709 if (scan->m == m) { 2710 if (scan->event == event) { 2711 scan->event = VMEVENT_NONE; 2712 LIST_REMOVE(scan, entry); 2713 scan->func(m, scan); 2714 /* XXX */ 2715 } else { 2716 all = 0; 2717 } 2718 } 2719 } 2720 if (all) 2721 vm_page_flag_clear(m, PG_ACTIONLIST); 2722 lwkt_reltoken(&vm_token); 2723 } 2724 2725 #include "opt_ddb.h" 2726 #ifdef DDB 2727 #include <sys/kernel.h> 2728 2729 #include <ddb/ddb.h> 2730 2731 DB_SHOW_COMMAND(page, vm_page_print_page_info) 2732 { 2733 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count); 2734 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count); 2735 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count); 2736 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count); 2737 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count); 2738 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved); 2739 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min); 2740 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target); 2741 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min); 2742 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target); 2743 } 2744 2745 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 2746 { 2747 int i; 2748 db_printf("PQ_FREE:"); 2749 for(i=0;i<PQ_L2_SIZE;i++) { 2750 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 2751 } 2752 db_printf("\n"); 2753 2754 db_printf("PQ_CACHE:"); 2755 for(i=0;i<PQ_L2_SIZE;i++) { 2756 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 2757 } 2758 db_printf("\n"); 2759 2760 db_printf("PQ_ACTIVE:"); 2761 for(i=0;i<PQ_L2_SIZE;i++) { 2762 db_printf(" %d", vm_page_queues[PQ_ACTIVE + i].lcnt); 2763 } 2764 db_printf("\n"); 2765 2766 db_printf("PQ_INACTIVE:"); 2767 for(i=0;i<PQ_L2_SIZE;i++) { 2768 db_printf(" %d", vm_page_queues[PQ_INACTIVE + i].lcnt); 2769 } 2770 db_printf("\n"); 2771 } 2772 #endif /* DDB */ 2773