xref: /dflybsd-src/sys/vm/vm_page.c (revision 9dbf638f09a3ee45768de45e3d72f7a2b87281b9)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38  * $DragonFly: src/sys/vm/vm_page.c,v 1.10 2003/09/14 21:14:53 dillon Exp $
39  */
40 
41 /*
42  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43  * All rights reserved.
44  *
45  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46  *
47  * Permission to use, copy, modify and distribute this software and
48  * its documentation is hereby granted, provided that both the copyright
49  * notice and this permission notice appear in all copies of the
50  * software, derivative works or modified versions, and any portions
51  * thereof, and that both notices appear in supporting documentation.
52  *
53  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56  *
57  * Carnegie Mellon requests users of this software to return to
58  *
59  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
60  *  School of Computer Science
61  *  Carnegie Mellon University
62  *  Pittsburgh PA 15213-3890
63  *
64  * any improvements or extensions that they make and grant Carnegie the
65  * rights to redistribute these changes.
66  */
67 
68 /*
69  *	Resident memory management module.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/vnode.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_page2.h>
91 
92 static void	vm_page_queue_init (void);
93 static vm_page_t vm_page_select_cache (vm_object_t, vm_pindex_t);
94 
95 /*
96  *	Associated with page of user-allocatable memory is a
97  *	page structure.
98  */
99 
100 static struct vm_page **vm_page_buckets; /* Array of buckets */
101 static int vm_page_bucket_count;	/* How big is array? */
102 static int vm_page_hash_mask;		/* Mask for hash function */
103 static volatile int vm_page_bucket_generation;
104 
105 struct vpgqueues vm_page_queues[PQ_COUNT];
106 
107 static void
108 vm_page_queue_init(void) {
109 	int i;
110 
111 	for(i=0;i<PQ_L2_SIZE;i++) {
112 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
113 	}
114 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
115 
116 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
117 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
118 	for(i=0;i<PQ_L2_SIZE;i++) {
119 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
120 	}
121 	for(i=0;i<PQ_COUNT;i++) {
122 		TAILQ_INIT(&vm_page_queues[i].pl);
123 	}
124 }
125 
126 vm_page_t vm_page_array = 0;
127 int vm_page_array_size = 0;
128 long first_page = 0;
129 int vm_page_zero_count = 0;
130 
131 static __inline int vm_page_hash (vm_object_t object, vm_pindex_t pindex);
132 static void vm_page_free_wakeup (void);
133 
134 /*
135  *	vm_set_page_size:
136  *
137  *	Sets the page size, perhaps based upon the memory
138  *	size.  Must be called before any use of page-size
139  *	dependent functions.
140  */
141 void
142 vm_set_page_size(void)
143 {
144 	if (vmstats.v_page_size == 0)
145 		vmstats.v_page_size = PAGE_SIZE;
146 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
147 		panic("vm_set_page_size: page size not a power of two");
148 }
149 
150 /*
151  *	vm_add_new_page:
152  *
153  *	Add a new page to the freelist for use by the system.  New pages
154  *	are added to both the head and tail of the associated free page
155  *	queue in a bottom-up fashion, so both zero'd and non-zero'd page
156  *	requests pull 'recent' adds (higher physical addresses) first.
157  *
158  *	Must be called at splhigh().
159  */
160 vm_page_t
161 vm_add_new_page(vm_offset_t pa)
162 {
163 	vm_page_t m;
164 	struct vpgqueues *vpq;
165 
166 	++vmstats.v_page_count;
167 	++vmstats.v_free_count;
168 	m = PHYS_TO_VM_PAGE(pa);
169 	m->phys_addr = pa;
170 	m->flags = 0;
171 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
172 	m->queue = m->pc + PQ_FREE;
173 	vpq = &vm_page_queues[m->queue];
174 	if (vpq->flipflop)
175 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
176 	else
177 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
178 	vpq->flipflop = 1 - vpq->flipflop;
179 	vm_page_queues[m->queue].lcnt++;
180 	return (m);
181 }
182 
183 /*
184  *	vm_page_startup:
185  *
186  *	Initializes the resident memory module.
187  *
188  *	Allocates memory for the page cells, and
189  *	for the object/offset-to-page hash table headers.
190  *	Each page cell is initialized and placed on the free list.
191  */
192 
193 vm_offset_t
194 vm_page_startup(vm_offset_t starta, vm_offset_t enda, vm_offset_t vaddr)
195 {
196 	vm_offset_t mapped;
197 	struct vm_page **bucket;
198 	vm_size_t npages, page_range;
199 	vm_offset_t new_end;
200 	int i;
201 	vm_offset_t pa;
202 	int nblocks;
203 	vm_offset_t last_pa;
204 
205 	/* the biggest memory array is the second group of pages */
206 	vm_offset_t end;
207 	vm_offset_t biggestone, biggestsize;
208 
209 	vm_offset_t total;
210 
211 	total = 0;
212 	biggestsize = 0;
213 	biggestone = 0;
214 	nblocks = 0;
215 	vaddr = round_page(vaddr);
216 
217 	for (i = 0; phys_avail[i + 1]; i += 2) {
218 		phys_avail[i] = round_page(phys_avail[i]);
219 		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
220 	}
221 
222 	for (i = 0; phys_avail[i + 1]; i += 2) {
223 		int size = phys_avail[i + 1] - phys_avail[i];
224 
225 		if (size > biggestsize) {
226 			biggestone = i;
227 			biggestsize = size;
228 		}
229 		++nblocks;
230 		total += size;
231 	}
232 
233 	end = phys_avail[biggestone+1];
234 
235 	/*
236 	 * Initialize the queue headers for the free queue, the active queue
237 	 * and the inactive queue.
238 	 */
239 
240 	vm_page_queue_init();
241 
242 	/*
243 	 * Allocate (and initialize) the hash table buckets.
244 	 *
245 	 * The number of buckets MUST BE a power of 2, and the actual value is
246 	 * the next power of 2 greater than the number of physical pages in
247 	 * the system.
248 	 *
249 	 * We make the hash table approximately 2x the number of pages to
250 	 * reduce the chain length.  This is about the same size using the
251 	 * singly-linked list as the 1x hash table we were using before
252 	 * using TAILQ but the chain length will be smaller.
253 	 *
254 	 * Note: This computation can be tweaked if desired.
255 	 */
256 	vm_page_buckets = (struct vm_page **)vaddr;
257 	bucket = vm_page_buckets;
258 	if (vm_page_bucket_count == 0) {
259 		vm_page_bucket_count = 1;
260 		while (vm_page_bucket_count < atop(total))
261 			vm_page_bucket_count <<= 1;
262 	}
263 	vm_page_bucket_count <<= 1;
264 	vm_page_hash_mask = vm_page_bucket_count - 1;
265 
266 	/*
267 	 * Validate these addresses.
268 	 */
269 	new_end = end - vm_page_bucket_count * sizeof(struct vm_page *);
270 	new_end = trunc_page(new_end);
271 	mapped = round_page(vaddr);
272 	vaddr = pmap_map(mapped, new_end, end,
273 	    VM_PROT_READ | VM_PROT_WRITE);
274 	vaddr = round_page(vaddr);
275 	bzero((caddr_t) mapped, vaddr - mapped);
276 
277 	for (i = 0; i < vm_page_bucket_count; i++) {
278 		*bucket = NULL;
279 		bucket++;
280 	}
281 
282 	/*
283 	 * Compute the number of pages of memory that will be available for
284 	 * use (taking into account the overhead of a page structure per
285 	 * page).
286 	 */
287 
288 	first_page = phys_avail[0] / PAGE_SIZE;
289 
290 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
291 	npages = (total - (page_range * sizeof(struct vm_page)) -
292 	    (end - new_end)) / PAGE_SIZE;
293 
294 	end = new_end;
295 	/*
296 	 * Initialize the mem entry structures now, and put them in the free
297 	 * queue.
298 	 */
299 	vm_page_array = (vm_page_t) vaddr;
300 	mapped = vaddr;
301 
302 	/*
303 	 * Validate these addresses.
304 	 */
305 
306 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
307 	mapped = pmap_map(mapped, new_end, end,
308 	    VM_PROT_READ | VM_PROT_WRITE);
309 
310 	/*
311 	 * Clear all of the page structures
312 	 */
313 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
314 	vm_page_array_size = page_range;
315 
316 	/*
317 	 * Construct the free queue(s) in ascending order (by physical
318 	 * address) so that the first 16MB of physical memory is allocated
319 	 * last rather than first.  On large-memory machines, this avoids
320 	 * the exhaustion of low physical memory before isa_dmainit has run.
321 	 */
322 	vmstats.v_page_count = 0;
323 	vmstats.v_free_count = 0;
324 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
325 		pa = phys_avail[i];
326 		if (i == biggestone)
327 			last_pa = new_end;
328 		else
329 			last_pa = phys_avail[i + 1];
330 		while (pa < last_pa && npages-- > 0) {
331 			vm_add_new_page(pa);
332 			pa += PAGE_SIZE;
333 		}
334 	}
335 	return (mapped);
336 }
337 
338 /*
339  *	vm_page_hash:
340  *
341  *	Distributes the object/offset key pair among hash buckets.
342  *
343  *	NOTE:  This macro depends on vm_page_bucket_count being a power of 2.
344  *	This routine may not block.
345  *
346  *	We try to randomize the hash based on the object to spread the pages
347  *	out in the hash table without it costing us too much.
348  */
349 static __inline int
350 vm_page_hash(vm_object_t object, vm_pindex_t pindex)
351 {
352 	int i = ((uintptr_t)object + pindex) ^ object->hash_rand;
353 
354 	return(i & vm_page_hash_mask);
355 }
356 
357 void
358 vm_page_unhold(vm_page_t mem)
359 {
360 	--mem->hold_count;
361 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
362 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD)
363 		vm_page_free_toq(mem);
364 }
365 
366 /*
367  *	vm_page_insert:		[ internal use only ]
368  *
369  *	Inserts the given mem entry into the object and object list.
370  *
371  *	The pagetables are not updated but will presumably fault the page
372  *	in if necessary, or if a kernel page the caller will at some point
373  *	enter the page into the kernel's pmap.  We are not allowed to block
374  *	here so we *can't* do this anyway.
375  *
376  *	The object and page must be locked, and must be splhigh.
377  *	This routine may not block.
378  */
379 
380 void
381 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
382 {
383 	struct vm_page **bucket;
384 
385 	if (m->object != NULL)
386 		panic("vm_page_insert: already inserted");
387 
388 	/*
389 	 * Record the object/offset pair in this page
390 	 */
391 
392 	m->object = object;
393 	m->pindex = pindex;
394 
395 	/*
396 	 * Insert it into the object_object/offset hash table
397 	 */
398 
399 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
400 	m->hnext = *bucket;
401 	*bucket = m;
402 	vm_page_bucket_generation++;
403 
404 	/*
405 	 * Now link into the object's list of backed pages.
406 	 */
407 
408 	TAILQ_INSERT_TAIL(&object->memq, m, listq);
409 	object->generation++;
410 
411 	/*
412 	 * show that the object has one more resident page.
413 	 */
414 
415 	object->resident_page_count++;
416 
417 	/*
418 	 * Since we are inserting a new and possibly dirty page,
419 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
420 	 */
421 	if (m->flags & PG_WRITEABLE)
422 		vm_object_set_writeable_dirty(object);
423 }
424 
425 /*
426  *	vm_page_remove:
427  *				NOTE: used by device pager as well -wfj
428  *
429  *	Removes the given mem entry from the object/offset-page
430  *	table and the object page list, but do not invalidate/terminate
431  *	the backing store.
432  *
433  *	The object and page must be locked, and at splhigh.
434  *	The underlying pmap entry (if any) is NOT removed here.
435  *	This routine may not block.
436  */
437 
438 void
439 vm_page_remove(vm_page_t m)
440 {
441 	vm_object_t object;
442 
443 	if (m->object == NULL)
444 		return;
445 
446 	if ((m->flags & PG_BUSY) == 0) {
447 		panic("vm_page_remove: page not busy");
448 	}
449 
450 	/*
451 	 * Basically destroy the page.
452 	 */
453 
454 	vm_page_wakeup(m);
455 
456 	object = m->object;
457 
458 	/*
459 	 * Remove from the object_object/offset hash table.  The object
460 	 * must be on the hash queue, we will panic if it isn't
461 	 *
462 	 * Note: we must NULL-out m->hnext to prevent loops in detached
463 	 * buffers with vm_page_lookup().
464 	 */
465 
466 	{
467 		struct vm_page **bucket;
468 
469 		bucket = &vm_page_buckets[vm_page_hash(m->object, m->pindex)];
470 		while (*bucket != m) {
471 			if (*bucket == NULL)
472 				panic("vm_page_remove(): page not found in hash");
473 			bucket = &(*bucket)->hnext;
474 		}
475 		*bucket = m->hnext;
476 		m->hnext = NULL;
477 		vm_page_bucket_generation++;
478 	}
479 
480 	/*
481 	 * Now remove from the object's list of backed pages.
482 	 */
483 
484 	TAILQ_REMOVE(&object->memq, m, listq);
485 
486 	/*
487 	 * And show that the object has one fewer resident page.
488 	 */
489 
490 	object->resident_page_count--;
491 	object->generation++;
492 
493 	m->object = NULL;
494 }
495 
496 /*
497  *	vm_page_lookup:
498  *
499  *	Returns the page associated with the object/offset
500  *	pair specified; if none is found, NULL is returned.
501  *
502  *	NOTE: the code below does not lock.  It will operate properly if
503  *	an interrupt makes a change, but the generation algorithm will not
504  *	operate properly in an SMP environment where both cpu's are able to run
505  *	kernel code simultaneously.
506  *
507  *	The object must be locked.  No side effects.
508  *	This routine may not block.
509  *	This is a critical path routine
510  */
511 
512 vm_page_t
513 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
514 {
515 	vm_page_t m;
516 	struct vm_page **bucket;
517 	int generation;
518 
519 	/*
520 	 * Search the hash table for this object/offset pair
521 	 */
522 
523 retry:
524 	generation = vm_page_bucket_generation;
525 	bucket = &vm_page_buckets[vm_page_hash(object, pindex)];
526 	for (m = *bucket; m != NULL; m = m->hnext) {
527 		if ((m->object == object) && (m->pindex == pindex)) {
528 			if (vm_page_bucket_generation != generation)
529 				goto retry;
530 			return (m);
531 		}
532 	}
533 	if (vm_page_bucket_generation != generation)
534 		goto retry;
535 	return (NULL);
536 }
537 
538 /*
539  *	vm_page_rename:
540  *
541  *	Move the given memory entry from its
542  *	current object to the specified target object/offset.
543  *
544  *	The object must be locked.
545  *	This routine may not block.
546  *
547  *	Note: this routine will raise itself to splvm(), the caller need not.
548  *
549  *	Note: swap associated with the page must be invalidated by the move.  We
550  *	      have to do this for several reasons:  (1) we aren't freeing the
551  *	      page, (2) we are dirtying the page, (3) the VM system is probably
552  *	      moving the page from object A to B, and will then later move
553  *	      the backing store from A to B and we can't have a conflict.
554  *
555  *	Note: we *always* dirty the page.  It is necessary both for the
556  *	      fact that we moved it, and because we may be invalidating
557  *	      swap.  If the page is on the cache, we have to deactivate it
558  *	      or vm_page_dirty() will panic.  Dirty pages are not allowed
559  *	      on the cache.
560  */
561 
562 void
563 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
564 {
565 	int s;
566 
567 	s = splvm();
568 	vm_page_remove(m);
569 	vm_page_insert(m, new_object, new_pindex);
570 	if (m->queue - m->pc == PQ_CACHE)
571 		vm_page_deactivate(m);
572 	vm_page_dirty(m);
573 	splx(s);
574 }
575 
576 /*
577  * vm_page_unqueue_nowakeup:
578  *
579  * 	vm_page_unqueue() without any wakeup
580  *
581  *	This routine must be called at splhigh().
582  *	This routine may not block.
583  */
584 
585 void
586 vm_page_unqueue_nowakeup(vm_page_t m)
587 {
588 	int queue = m->queue;
589 	struct vpgqueues *pq;
590 	if (queue != PQ_NONE) {
591 		pq = &vm_page_queues[queue];
592 		m->queue = PQ_NONE;
593 		TAILQ_REMOVE(&pq->pl, m, pageq);
594 		(*pq->cnt)--;
595 		pq->lcnt--;
596 	}
597 }
598 
599 /*
600  * vm_page_unqueue:
601  *
602  *	Remove a page from its queue.
603  *
604  *	This routine must be called at splhigh().
605  *	This routine may not block.
606  */
607 
608 void
609 vm_page_unqueue(vm_page_t m)
610 {
611 	int queue = m->queue;
612 	struct vpgqueues *pq;
613 	if (queue != PQ_NONE) {
614 		m->queue = PQ_NONE;
615 		pq = &vm_page_queues[queue];
616 		TAILQ_REMOVE(&pq->pl, m, pageq);
617 		(*pq->cnt)--;
618 		pq->lcnt--;
619 		if ((queue - m->pc) == PQ_CACHE) {
620 			if (vm_paging_needed())
621 				pagedaemon_wakeup();
622 		}
623 	}
624 }
625 
626 #if PQ_L2_SIZE > 1
627 
628 /*
629  *	vm_page_list_find:
630  *
631  *	Find a page on the specified queue with color optimization.
632  *
633  *	The page coloring optimization attempts to locate a page
634  *	that does not overload other nearby pages in the object in
635  *	the cpu's L1 or L2 caches.  We need this optimization because
636  *	cpu caches tend to be physical caches, while object spaces tend
637  *	to be virtual.
638  *
639  *	This routine must be called at splvm().
640  *	This routine may not block.
641  *
642  *	This routine may only be called from the vm_page_list_find() macro
643  *	in vm_page.h
644  */
645 vm_page_t
646 _vm_page_list_find(int basequeue, int index)
647 {
648 	int i;
649 	vm_page_t m = NULL;
650 	struct vpgqueues *pq;
651 
652 	pq = &vm_page_queues[basequeue];
653 
654 	/*
655 	 * Note that for the first loop, index+i and index-i wind up at the
656 	 * same place.  Even though this is not totally optimal, we've already
657 	 * blown it by missing the cache case so we do not care.
658 	 */
659 
660 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
661 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
662 			break;
663 
664 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
665 			break;
666 	}
667 	return(m);
668 }
669 
670 #endif
671 
672 /*
673  *	vm_page_select_cache:
674  *
675  *	Find a page on the cache queue with color optimization.  As pages
676  *	might be found, but not applicable, they are deactivated.  This
677  *	keeps us from using potentially busy cached pages.
678  *
679  *	This routine must be called at splvm().
680  *	This routine may not block.
681  */
682 vm_page_t
683 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
684 {
685 	vm_page_t m;
686 
687 	while (TRUE) {
688 		m = vm_page_list_find(
689 		    PQ_CACHE,
690 		    (pindex + object->pg_color) & PQ_L2_MASK,
691 		    FALSE
692 		);
693 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
694 			       m->hold_count || m->wire_count)) {
695 			vm_page_deactivate(m);
696 			continue;
697 		}
698 		return m;
699 	}
700 }
701 
702 /*
703  *	vm_page_select_free:
704  *
705  *	Find a free or zero page, with specified preference.  We attempt to
706  *	inline the nominal case and fall back to _vm_page_select_free()
707  *	otherwise.
708  *
709  *	This routine must be called at splvm().
710  *	This routine may not block.
711  */
712 
713 static __inline vm_page_t
714 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
715 {
716 	vm_page_t m;
717 
718 	m = vm_page_list_find(
719 		PQ_FREE,
720 		(pindex + object->pg_color) & PQ_L2_MASK,
721 		prefer_zero
722 	);
723 	return(m);
724 }
725 
726 /*
727  *	vm_page_alloc:
728  *
729  *	Allocate and return a memory cell associated
730  *	with this VM object/offset pair.
731  *
732  *	page_req classes:
733  *	VM_ALLOC_NORMAL		normal process request
734  *	VM_ALLOC_SYSTEM		system *really* needs a page
735  *	VM_ALLOC_INTERRUPT	interrupt time request
736  *	VM_ALLOC_ZERO		zero page
737  *
738  *	Object must be locked.
739  *	This routine may not block.
740  *
741  *	Additional special handling is required when called from an
742  *	interrupt (VM_ALLOC_INTERRUPT).  We are not allowed to mess with
743  *	the page cache in this case.
744  */
745 
746 vm_page_t
747 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
748 {
749 	vm_page_t m = NULL;
750 	int s;
751 
752 	KASSERT(!vm_page_lookup(object, pindex),
753 		("vm_page_alloc: page already allocated"));
754 
755 	/*
756 	 * The pager is allowed to eat deeper into the free page list.
757 	 */
758 
759 	if ((curthread == pagethread) && (page_req != VM_ALLOC_INTERRUPT)) {
760 		page_req = VM_ALLOC_SYSTEM;
761 	};
762 
763 	s = splvm();
764 
765 loop:
766 	if (vmstats.v_free_count > vmstats.v_free_reserved) {
767 		/*
768 		 * Allocate from the free queue if there are plenty of pages
769 		 * in it.
770 		 */
771 		if (page_req == VM_ALLOC_ZERO)
772 			m = vm_page_select_free(object, pindex, TRUE);
773 		else
774 			m = vm_page_select_free(object, pindex, FALSE);
775 	} else if (
776 	    (page_req == VM_ALLOC_SYSTEM &&
777 	     vmstats.v_cache_count == 0 &&
778 	     vmstats.v_free_count > vmstats.v_interrupt_free_min) ||
779 	    (page_req == VM_ALLOC_INTERRUPT && vmstats.v_free_count > 0)
780 	) {
781 		/*
782 		 * Interrupt or system, dig deeper into the free list.
783 		 */
784 		m = vm_page_select_free(object, pindex, FALSE);
785 	} else if (page_req != VM_ALLOC_INTERRUPT) {
786 		/*
787 		 * Allocatable from cache (non-interrupt only).  On success,
788 		 * we must free the page and try again, thus ensuring that
789 		 * vmstats.v_*_free_min counters are replenished.
790 		 */
791 		m = vm_page_select_cache(object, pindex);
792 		if (m == NULL) {
793 			splx(s);
794 #if defined(DIAGNOSTIC)
795 			if (vmstats.v_cache_count > 0)
796 				printf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
797 #endif
798 			vm_pageout_deficit++;
799 			pagedaemon_wakeup();
800 			return (NULL);
801 		}
802 		KASSERT(m->dirty == 0, ("Found dirty cache page %p", m));
803 		vm_page_busy(m);
804 		vm_page_protect(m, VM_PROT_NONE);
805 		vm_page_free(m);
806 		goto loop;
807 	} else {
808 		/*
809 		 * Not allocatable from cache from interrupt, give up.
810 		 */
811 		splx(s);
812 		vm_pageout_deficit++;
813 		pagedaemon_wakeup();
814 		return (NULL);
815 	}
816 
817 	/*
818 	 *  At this point we had better have found a good page.
819 	 */
820 
821 	KASSERT(
822 	    m != NULL,
823 	    ("vm_page_alloc(): missing page on free queue\n")
824 	);
825 
826 	/*
827 	 * Remove from free queue
828 	 */
829 
830 	vm_page_unqueue_nowakeup(m);
831 
832 	/*
833 	 * Initialize structure.  Only the PG_ZERO flag is inherited.
834 	 */
835 
836 	if (m->flags & PG_ZERO) {
837 		vm_page_zero_count--;
838 		m->flags = PG_ZERO | PG_BUSY;
839 	} else {
840 		m->flags = PG_BUSY;
841 	}
842 	m->wire_count = 0;
843 	m->hold_count = 0;
844 	m->act_count = 0;
845 	m->busy = 0;
846 	m->valid = 0;
847 	KASSERT(m->dirty == 0, ("vm_page_alloc: free/cache page %p was dirty", m));
848 
849 	/*
850 	 * vm_page_insert() is safe prior to the splx().  Note also that
851 	 * inserting a page here does not insert it into the pmap (which
852 	 * could cause us to block allocating memory).  We cannot block
853 	 * anywhere.
854 	 */
855 
856 	vm_page_insert(m, object, pindex);
857 
858 	/*
859 	 * Don't wakeup too often - wakeup the pageout daemon when
860 	 * we would be nearly out of memory.
861 	 */
862 	if (vm_paging_needed())
863 		pagedaemon_wakeup();
864 
865 	splx(s);
866 
867 	return (m);
868 }
869 
870 /*
871  *	vm_wait:	(also see VM_WAIT macro)
872  *
873  *	Block until free pages are available for allocation
874  *	- Called in various places before memory allocations.
875  */
876 
877 void
878 vm_wait(void)
879 {
880 	int s;
881 
882 	s = splvm();
883 	if (curthread == pagethread) {
884 		vm_pageout_pages_needed = 1;
885 		tsleep(&vm_pageout_pages_needed, 0, "VMWait", 0);
886 	} else {
887 		if (!vm_pages_needed) {
888 			vm_pages_needed = 1;
889 			wakeup(&vm_pages_needed);
890 		}
891 		tsleep(&vmstats.v_free_count, 0, "vmwait", 0);
892 	}
893 	splx(s);
894 }
895 
896 /*
897  *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
898  *
899  *	Block until free pages are available for allocation
900  *	- Called only in vm_fault so that processes page faulting
901  *	  can be easily tracked.
902  *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
903  *	  processes will be able to grab memory first.  Do not change
904  *	  this balance without careful testing first.
905  */
906 
907 void
908 vm_waitpfault(void)
909 {
910 	int s;
911 
912 	s = splvm();
913 	if (!vm_pages_needed) {
914 		vm_pages_needed = 1;
915 		wakeup(&vm_pages_needed);
916 	}
917 	tsleep(&vmstats.v_free_count, 0, "pfault", 0);
918 	splx(s);
919 }
920 
921 /*
922  *	vm_page_activate:
923  *
924  *	Put the specified page on the active list (if appropriate).
925  *	Ensure that act_count is at least ACT_INIT but do not otherwise
926  *	mess with it.
927  *
928  *	The page queues must be locked.
929  *	This routine may not block.
930  */
931 void
932 vm_page_activate(vm_page_t m)
933 {
934 	int s;
935 
936 	s = splvm();
937 	if (m->queue != PQ_ACTIVE) {
938 		if ((m->queue - m->pc) == PQ_CACHE)
939 			mycpu->gd_cnt.v_reactivated++;
940 
941 		vm_page_unqueue(m);
942 
943 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
944 			m->queue = PQ_ACTIVE;
945 			vm_page_queues[PQ_ACTIVE].lcnt++;
946 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
947 			if (m->act_count < ACT_INIT)
948 				m->act_count = ACT_INIT;
949 			vmstats.v_active_count++;
950 		}
951 	} else {
952 		if (m->act_count < ACT_INIT)
953 			m->act_count = ACT_INIT;
954 	}
955 
956 	splx(s);
957 }
958 
959 /*
960  *	vm_page_free_wakeup:
961  *
962  *	Helper routine for vm_page_free_toq() and vm_page_cache().  This
963  *	routine is called when a page has been added to the cache or free
964  *	queues.
965  *
966  *	This routine may not block.
967  *	This routine must be called at splvm()
968  */
969 static __inline void
970 vm_page_free_wakeup(void)
971 {
972 	/*
973 	 * if pageout daemon needs pages, then tell it that there are
974 	 * some free.
975 	 */
976 	if (vm_pageout_pages_needed &&
977 	    vmstats.v_cache_count + vmstats.v_free_count >= vmstats.v_pageout_free_min) {
978 		wakeup(&vm_pageout_pages_needed);
979 		vm_pageout_pages_needed = 0;
980 	}
981 	/*
982 	 * wakeup processes that are waiting on memory if we hit a
983 	 * high water mark. And wakeup scheduler process if we have
984 	 * lots of memory. this process will swapin processes.
985 	 */
986 	if (vm_pages_needed && !vm_page_count_min()) {
987 		vm_pages_needed = 0;
988 		wakeup(&vmstats.v_free_count);
989 	}
990 }
991 
992 /*
993  *	vm_page_free_toq:
994  *
995  *	Returns the given page to the PQ_FREE list,
996  *	disassociating it with any VM object.
997  *
998  *	Object and page must be locked prior to entry.
999  *	This routine may not block.
1000  */
1001 
1002 void
1003 vm_page_free_toq(vm_page_t m)
1004 {
1005 	int s;
1006 	struct vpgqueues *pq;
1007 	vm_object_t object = m->object;
1008 
1009 	s = splvm();
1010 
1011 	mycpu->gd_cnt.v_tfree++;
1012 
1013 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
1014 		printf(
1015 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
1016 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
1017 		    m->hold_count);
1018 		if ((m->queue - m->pc) == PQ_FREE)
1019 			panic("vm_page_free: freeing free page");
1020 		else
1021 			panic("vm_page_free: freeing busy page");
1022 	}
1023 
1024 	/*
1025 	 * unqueue, then remove page.  Note that we cannot destroy
1026 	 * the page here because we do not want to call the pager's
1027 	 * callback routine until after we've put the page on the
1028 	 * appropriate free queue.
1029 	 */
1030 
1031 	vm_page_unqueue_nowakeup(m);
1032 	vm_page_remove(m);
1033 
1034 	/*
1035 	 * If fictitious remove object association and
1036 	 * return, otherwise delay object association removal.
1037 	 */
1038 
1039 	if ((m->flags & PG_FICTITIOUS) != 0) {
1040 		splx(s);
1041 		return;
1042 	}
1043 
1044 	m->valid = 0;
1045 	vm_page_undirty(m);
1046 
1047 	if (m->wire_count != 0) {
1048 		if (m->wire_count > 1) {
1049 			panic("vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1050 				m->wire_count, (long)m->pindex);
1051 		}
1052 		panic("vm_page_free: freeing wired page\n");
1053 	}
1054 
1055 	/*
1056 	 * If we've exhausted the object's resident pages we want to free
1057 	 * it up.
1058 	 */
1059 
1060 	if (object &&
1061 	    (object->type == OBJT_VNODE) &&
1062 	    ((object->flags & OBJ_DEAD) == 0)
1063 	) {
1064 		struct vnode *vp = (struct vnode *)object->handle;
1065 
1066 		if (vp && VSHOULDFREE(vp))
1067 			vfree(vp);
1068 	}
1069 
1070 	/*
1071 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1072 	 */
1073 
1074 	if (m->flags & PG_UNMANAGED) {
1075 	    m->flags &= ~PG_UNMANAGED;
1076 	} else {
1077 #ifdef __alpha__
1078 	    pmap_page_is_free(m);
1079 #endif
1080 	}
1081 
1082 	if (m->hold_count != 0) {
1083 		m->flags &= ~PG_ZERO;
1084 		m->queue = PQ_HOLD;
1085 	} else
1086 		m->queue = PQ_FREE + m->pc;
1087 	pq = &vm_page_queues[m->queue];
1088 	pq->lcnt++;
1089 	++(*pq->cnt);
1090 
1091 	/*
1092 	 * Put zero'd pages on the end ( where we look for zero'd pages
1093 	 * first ) and non-zerod pages at the head.
1094 	 */
1095 
1096 	if (m->flags & PG_ZERO) {
1097 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1098 		++vm_page_zero_count;
1099 	} else {
1100 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1101 	}
1102 
1103 	vm_page_free_wakeup();
1104 
1105 	splx(s);
1106 }
1107 
1108 /*
1109  *	vm_page_unmanage:
1110  *
1111  * 	Prevent PV management from being done on the page.  The page is
1112  *	removed from the paging queues as if it were wired, and as a
1113  *	consequence of no longer being managed the pageout daemon will not
1114  *	touch it (since there is no way to locate the pte mappings for the
1115  *	page).  madvise() calls that mess with the pmap will also no longer
1116  *	operate on the page.
1117  *
1118  *	Beyond that the page is still reasonably 'normal'.  Freeing the page
1119  *	will clear the flag.
1120  *
1121  *	This routine is used by OBJT_PHYS objects - objects using unswappable
1122  *	physical memory as backing store rather then swap-backed memory and
1123  *	will eventually be extended to support 4MB unmanaged physical
1124  *	mappings.
1125  */
1126 
1127 void
1128 vm_page_unmanage(vm_page_t m)
1129 {
1130 	int s;
1131 
1132 	s = splvm();
1133 	if ((m->flags & PG_UNMANAGED) == 0) {
1134 		if (m->wire_count == 0)
1135 			vm_page_unqueue(m);
1136 	}
1137 	vm_page_flag_set(m, PG_UNMANAGED);
1138 	splx(s);
1139 }
1140 
1141 /*
1142  *	vm_page_wire:
1143  *
1144  *	Mark this page as wired down by yet
1145  *	another map, removing it from paging queues
1146  *	as necessary.
1147  *
1148  *	The page queues must be locked.
1149  *	This routine may not block.
1150  */
1151 void
1152 vm_page_wire(vm_page_t m)
1153 {
1154 	int s;
1155 
1156 	/*
1157 	 * Only bump the wire statistics if the page is not already wired,
1158 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1159 	 * it is already off the queues).
1160 	 */
1161 	s = splvm();
1162 	if (m->wire_count == 0) {
1163 		if ((m->flags & PG_UNMANAGED) == 0)
1164 			vm_page_unqueue(m);
1165 		vmstats.v_wire_count++;
1166 	}
1167 	m->wire_count++;
1168 	KASSERT(m->wire_count != 0,
1169 	    ("vm_page_wire: wire_count overflow m=%p", m));
1170 
1171 	splx(s);
1172 	vm_page_flag_set(m, PG_MAPPED);
1173 }
1174 
1175 /*
1176  *	vm_page_unwire:
1177  *
1178  *	Release one wiring of this page, potentially
1179  *	enabling it to be paged again.
1180  *
1181  *	Many pages placed on the inactive queue should actually go
1182  *	into the cache, but it is difficult to figure out which.  What
1183  *	we do instead, if the inactive target is well met, is to put
1184  *	clean pages at the head of the inactive queue instead of the tail.
1185  *	This will cause them to be moved to the cache more quickly and
1186  *	if not actively re-referenced, freed more quickly.  If we just
1187  *	stick these pages at the end of the inactive queue, heavy filesystem
1188  *	meta-data accesses can cause an unnecessary paging load on memory bound
1189  *	processes.  This optimization causes one-time-use metadata to be
1190  *	reused more quickly.
1191  *
1192  *	BUT, if we are in a low-memory situation we have no choice but to
1193  *	put clean pages on the cache queue.
1194  *
1195  *	A number of routines use vm_page_unwire() to guarantee that the page
1196  *	will go into either the inactive or active queues, and will NEVER
1197  *	be placed in the cache - for example, just after dirtying a page.
1198  *	dirty pages in the cache are not allowed.
1199  *
1200  *	The page queues must be locked.
1201  *	This routine may not block.
1202  */
1203 void
1204 vm_page_unwire(vm_page_t m, int activate)
1205 {
1206 	int s;
1207 
1208 	s = splvm();
1209 
1210 	if (m->wire_count > 0) {
1211 		m->wire_count--;
1212 		if (m->wire_count == 0) {
1213 			vmstats.v_wire_count--;
1214 			if (m->flags & PG_UNMANAGED) {
1215 				;
1216 			} else if (activate) {
1217 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1218 				m->queue = PQ_ACTIVE;
1219 				vm_page_queues[PQ_ACTIVE].lcnt++;
1220 				vmstats.v_active_count++;
1221 			} else {
1222 				vm_page_flag_clear(m, PG_WINATCFLS);
1223 				TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1224 				m->queue = PQ_INACTIVE;
1225 				vm_page_queues[PQ_INACTIVE].lcnt++;
1226 				vmstats.v_inactive_count++;
1227 			}
1228 		}
1229 	} else {
1230 		panic("vm_page_unwire: invalid wire count: %d\n", m->wire_count);
1231 	}
1232 	splx(s);
1233 }
1234 
1235 
1236 /*
1237  * Move the specified page to the inactive queue.  If the page has
1238  * any associated swap, the swap is deallocated.
1239  *
1240  * Normally athead is 0 resulting in LRU operation.  athead is set
1241  * to 1 if we want this page to be 'as if it were placed in the cache',
1242  * except without unmapping it from the process address space.
1243  *
1244  * This routine may not block.
1245  */
1246 static __inline void
1247 _vm_page_deactivate(vm_page_t m, int athead)
1248 {
1249 	int s;
1250 
1251 	/*
1252 	 * Ignore if already inactive.
1253 	 */
1254 	if (m->queue == PQ_INACTIVE)
1255 		return;
1256 
1257 	s = splvm();
1258 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1259 		if ((m->queue - m->pc) == PQ_CACHE)
1260 			mycpu->gd_cnt.v_reactivated++;
1261 		vm_page_flag_clear(m, PG_WINATCFLS);
1262 		vm_page_unqueue(m);
1263 		if (athead)
1264 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1265 		else
1266 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1267 		m->queue = PQ_INACTIVE;
1268 		vm_page_queues[PQ_INACTIVE].lcnt++;
1269 		vmstats.v_inactive_count++;
1270 	}
1271 	splx(s);
1272 }
1273 
1274 void
1275 vm_page_deactivate(vm_page_t m)
1276 {
1277     _vm_page_deactivate(m, 0);
1278 }
1279 
1280 /*
1281  * vm_page_try_to_cache:
1282  *
1283  * Returns 0 on failure, 1 on success
1284  */
1285 int
1286 vm_page_try_to_cache(vm_page_t m)
1287 {
1288 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1289 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1290 		return(0);
1291 	}
1292 	vm_page_test_dirty(m);
1293 	if (m->dirty)
1294 		return(0);
1295 	vm_page_cache(m);
1296 	return(1);
1297 }
1298 
1299 /*
1300  * vm_page_try_to_free()
1301  *
1302  *	Attempt to free the page.  If we cannot free it, we do nothing.
1303  *	1 is returned on success, 0 on failure.
1304  */
1305 
1306 int
1307 vm_page_try_to_free(vm_page_t m)
1308 {
1309 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1310 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1311 		return(0);
1312 	}
1313 	vm_page_test_dirty(m);
1314 	if (m->dirty)
1315 		return(0);
1316 	vm_page_busy(m);
1317 	vm_page_protect(m, VM_PROT_NONE);
1318 	vm_page_free(m);
1319 	return(1);
1320 }
1321 
1322 
1323 /*
1324  * vm_page_cache
1325  *
1326  * Put the specified page onto the page cache queue (if appropriate).
1327  *
1328  * This routine may not block.
1329  */
1330 void
1331 vm_page_cache(vm_page_t m)
1332 {
1333 	int s;
1334 
1335 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || m->wire_count) {
1336 		printf("vm_page_cache: attempting to cache busy page\n");
1337 		return;
1338 	}
1339 	if ((m->queue - m->pc) == PQ_CACHE)
1340 		return;
1341 
1342 	/*
1343 	 * Remove all pmaps and indicate that the page is not
1344 	 * writeable or mapped.
1345 	 */
1346 
1347 	vm_page_protect(m, VM_PROT_NONE);
1348 	if (m->dirty != 0) {
1349 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1350 			(long)m->pindex);
1351 	}
1352 	s = splvm();
1353 	vm_page_unqueue_nowakeup(m);
1354 	m->queue = PQ_CACHE + m->pc;
1355 	vm_page_queues[m->queue].lcnt++;
1356 	TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1357 	vmstats.v_cache_count++;
1358 	vm_page_free_wakeup();
1359 	splx(s);
1360 }
1361 
1362 /*
1363  * vm_page_dontneed
1364  *
1365  *	Cache, deactivate, or do nothing as appropriate.  This routine
1366  *	is typically used by madvise() MADV_DONTNEED.
1367  *
1368  *	Generally speaking we want to move the page into the cache so
1369  *	it gets reused quickly.  However, this can result in a silly syndrome
1370  *	due to the page recycling too quickly.  Small objects will not be
1371  *	fully cached.  On the otherhand, if we move the page to the inactive
1372  *	queue we wind up with a problem whereby very large objects
1373  *	unnecessarily blow away our inactive and cache queues.
1374  *
1375  *	The solution is to move the pages based on a fixed weighting.  We
1376  *	either leave them alone, deactivate them, or move them to the cache,
1377  *	where moving them to the cache has the highest weighting.
1378  *	By forcing some pages into other queues we eventually force the
1379  *	system to balance the queues, potentially recovering other unrelated
1380  *	space from active.  The idea is to not force this to happen too
1381  *	often.
1382  */
1383 
1384 void
1385 vm_page_dontneed(vm_page_t m)
1386 {
1387 	static int dnweight;
1388 	int dnw;
1389 	int head;
1390 
1391 	dnw = ++dnweight;
1392 
1393 	/*
1394 	 * occassionally leave the page alone
1395 	 */
1396 
1397 	if ((dnw & 0x01F0) == 0 ||
1398 	    m->queue == PQ_INACTIVE ||
1399 	    m->queue - m->pc == PQ_CACHE
1400 	) {
1401 		if (m->act_count >= ACT_INIT)
1402 			--m->act_count;
1403 		return;
1404 	}
1405 
1406 	if (m->dirty == 0)
1407 		vm_page_test_dirty(m);
1408 
1409 	if (m->dirty || (dnw & 0x0070) == 0) {
1410 		/*
1411 		 * Deactivate the page 3 times out of 32.
1412 		 */
1413 		head = 0;
1414 	} else {
1415 		/*
1416 		 * Cache the page 28 times out of every 32.  Note that
1417 		 * the page is deactivated instead of cached, but placed
1418 		 * at the head of the queue instead of the tail.
1419 		 */
1420 		head = 1;
1421 	}
1422 	_vm_page_deactivate(m, head);
1423 }
1424 
1425 /*
1426  * Grab a page, waiting until we are waken up due to the page
1427  * changing state.  We keep on waiting, if the page continues
1428  * to be in the object.  If the page doesn't exist, allocate it.
1429  *
1430  * This routine may block.
1431  */
1432 vm_page_t
1433 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1434 {
1435 
1436 	vm_page_t m;
1437 	int s, generation;
1438 
1439 retrylookup:
1440 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1441 		if (m->busy || (m->flags & PG_BUSY)) {
1442 			generation = object->generation;
1443 
1444 			s = splvm();
1445 			while ((object->generation == generation) &&
1446 					(m->busy || (m->flags & PG_BUSY))) {
1447 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1448 				tsleep(m, 0, "pgrbwt", 0);
1449 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1450 					splx(s);
1451 					return NULL;
1452 				}
1453 			}
1454 			splx(s);
1455 			goto retrylookup;
1456 		} else {
1457 			vm_page_busy(m);
1458 			return m;
1459 		}
1460 	}
1461 
1462 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1463 	if (m == NULL) {
1464 		VM_WAIT;
1465 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1466 			return NULL;
1467 		goto retrylookup;
1468 	}
1469 
1470 	return m;
1471 }
1472 
1473 /*
1474  * Mapping function for valid bits or for dirty bits in
1475  * a page.  May not block.
1476  *
1477  * Inputs are required to range within a page.
1478  */
1479 
1480 __inline int
1481 vm_page_bits(int base, int size)
1482 {
1483 	int first_bit;
1484 	int last_bit;
1485 
1486 	KASSERT(
1487 	    base + size <= PAGE_SIZE,
1488 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1489 	);
1490 
1491 	if (size == 0)		/* handle degenerate case */
1492 		return(0);
1493 
1494 	first_bit = base >> DEV_BSHIFT;
1495 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1496 
1497 	return ((2 << last_bit) - (1 << first_bit));
1498 }
1499 
1500 /*
1501  *	vm_page_set_validclean:
1502  *
1503  *	Sets portions of a page valid and clean.  The arguments are expected
1504  *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1505  *	of any partial chunks touched by the range.  The invalid portion of
1506  *	such chunks will be zero'd.
1507  *
1508  *	This routine may not block.
1509  *
1510  *	(base + size) must be less then or equal to PAGE_SIZE.
1511  */
1512 void
1513 vm_page_set_validclean(vm_page_t m, int base, int size)
1514 {
1515 	int pagebits;
1516 	int frag;
1517 	int endoff;
1518 
1519 	if (size == 0)	/* handle degenerate case */
1520 		return;
1521 
1522 	/*
1523 	 * If the base is not DEV_BSIZE aligned and the valid
1524 	 * bit is clear, we have to zero out a portion of the
1525 	 * first block.
1526 	 */
1527 
1528 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1529 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1530 	) {
1531 		pmap_zero_page_area(
1532 		    VM_PAGE_TO_PHYS(m),
1533 		    frag,
1534 		    base - frag
1535 		);
1536 	}
1537 
1538 	/*
1539 	 * If the ending offset is not DEV_BSIZE aligned and the
1540 	 * valid bit is clear, we have to zero out a portion of
1541 	 * the last block.
1542 	 */
1543 
1544 	endoff = base + size;
1545 
1546 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1547 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1548 	) {
1549 		pmap_zero_page_area(
1550 		    VM_PAGE_TO_PHYS(m),
1551 		    endoff,
1552 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1553 		);
1554 	}
1555 
1556 	/*
1557 	 * Set valid, clear dirty bits.  If validating the entire
1558 	 * page we can safely clear the pmap modify bit.  We also
1559 	 * use this opportunity to clear the PG_NOSYNC flag.  If a process
1560 	 * takes a write fault on a MAP_NOSYNC memory area the flag will
1561 	 * be set again.
1562 	 *
1563 	 * We set valid bits inclusive of any overlap, but we can only
1564 	 * clear dirty bits for DEV_BSIZE chunks that are fully within
1565 	 * the range.
1566 	 */
1567 
1568 	pagebits = vm_page_bits(base, size);
1569 	m->valid |= pagebits;
1570 #if 0	/* NOT YET */
1571 	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
1572 		frag = DEV_BSIZE - frag;
1573 		base += frag;
1574 		size -= frag;
1575 		if (size < 0)
1576 		    size = 0;
1577 	}
1578 	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
1579 #endif
1580 	m->dirty &= ~pagebits;
1581 	if (base == 0 && size == PAGE_SIZE) {
1582 		pmap_clear_modify(m);
1583 		vm_page_flag_clear(m, PG_NOSYNC);
1584 	}
1585 }
1586 
1587 #if 0
1588 
1589 void
1590 vm_page_set_dirty(vm_page_t m, int base, int size)
1591 {
1592 	m->dirty |= vm_page_bits(base, size);
1593 }
1594 
1595 #endif
1596 
1597 void
1598 vm_page_clear_dirty(vm_page_t m, int base, int size)
1599 {
1600 	m->dirty &= ~vm_page_bits(base, size);
1601 }
1602 
1603 /*
1604  *	vm_page_set_invalid:
1605  *
1606  *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
1607  *	valid and dirty bits for the effected areas are cleared.
1608  *
1609  *	May not block.
1610  */
1611 void
1612 vm_page_set_invalid(vm_page_t m, int base, int size)
1613 {
1614 	int bits;
1615 
1616 	bits = vm_page_bits(base, size);
1617 	m->valid &= ~bits;
1618 	m->dirty &= ~bits;
1619 	m->object->generation++;
1620 }
1621 
1622 /*
1623  * vm_page_zero_invalid()
1624  *
1625  *	The kernel assumes that the invalid portions of a page contain
1626  *	garbage, but such pages can be mapped into memory by user code.
1627  *	When this occurs, we must zero out the non-valid portions of the
1628  *	page so user code sees what it expects.
1629  *
1630  *	Pages are most often semi-valid when the end of a file is mapped
1631  *	into memory and the file's size is not page aligned.
1632  */
1633 
1634 void
1635 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1636 {
1637 	int b;
1638 	int i;
1639 
1640 	/*
1641 	 * Scan the valid bits looking for invalid sections that
1642 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1643 	 * valid bit may be set ) have already been zerod by
1644 	 * vm_page_set_validclean().
1645 	 */
1646 
1647 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1648 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1649 		    (m->valid & (1 << i))
1650 		) {
1651 			if (i > b) {
1652 				pmap_zero_page_area(
1653 				    VM_PAGE_TO_PHYS(m),
1654 				    b << DEV_BSHIFT,
1655 				    (i - b) << DEV_BSHIFT
1656 				);
1657 			}
1658 			b = i + 1;
1659 		}
1660 	}
1661 
1662 	/*
1663 	 * setvalid is TRUE when we can safely set the zero'd areas
1664 	 * as being valid.  We can do this if there are no cache consistency
1665 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1666 	 */
1667 
1668 	if (setvalid)
1669 		m->valid = VM_PAGE_BITS_ALL;
1670 }
1671 
1672 /*
1673  *	vm_page_is_valid:
1674  *
1675  *	Is (partial) page valid?  Note that the case where size == 0
1676  *	will return FALSE in the degenerate case where the page is
1677  *	entirely invalid, and TRUE otherwise.
1678  *
1679  *	May not block.
1680  */
1681 
1682 int
1683 vm_page_is_valid(vm_page_t m, int base, int size)
1684 {
1685 	int bits = vm_page_bits(base, size);
1686 
1687 	if (m->valid && ((m->valid & bits) == bits))
1688 		return 1;
1689 	else
1690 		return 0;
1691 }
1692 
1693 /*
1694  * update dirty bits from pmap/mmu.  May not block.
1695  */
1696 
1697 void
1698 vm_page_test_dirty(vm_page_t m)
1699 {
1700 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1701 		vm_page_dirty(m);
1702 	}
1703 }
1704 
1705 /*
1706  * This interface is for merging with malloc() someday.
1707  * Even if we never implement compaction so that contiguous allocation
1708  * works after initialization time, malloc()'s data structures are good
1709  * for statistics and for allocations of less than a page.
1710  */
1711 void *
1712 contigmalloc1(
1713 	unsigned long size,	/* should be size_t here and for malloc() */
1714 	struct malloc_type *type,
1715 	int flags,
1716 	unsigned long low,
1717 	unsigned long high,
1718 	unsigned long alignment,
1719 	unsigned long boundary,
1720 	vm_map_t map)
1721 {
1722 	int i, s, start;
1723 	vm_offset_t addr, phys, tmp_addr;
1724 	int pass;
1725 	vm_page_t pga = vm_page_array;
1726 	int count;
1727 
1728 	size = round_page(size);
1729 	if (size == 0)
1730 		panic("contigmalloc1: size must not be 0");
1731 	if ((alignment & (alignment - 1)) != 0)
1732 		panic("contigmalloc1: alignment must be a power of 2");
1733 	if ((boundary & (boundary - 1)) != 0)
1734 		panic("contigmalloc1: boundary must be a power of 2");
1735 
1736 	start = 0;
1737 	for (pass = 0; pass <= 1; pass++) {
1738 		s = splvm();
1739 again:
1740 		/*
1741 		 * Find first page in array that is free, within range, aligned, and
1742 		 * such that the boundary won't be crossed.
1743 		 */
1744 		for (i = start; i < vmstats.v_page_count; i++) {
1745 			int pqtype;
1746 			phys = VM_PAGE_TO_PHYS(&pga[i]);
1747 			pqtype = pga[i].queue - pga[i].pc;
1748 			if (((pqtype == PQ_FREE) || (pqtype == PQ_CACHE)) &&
1749 			    (phys >= low) && (phys < high) &&
1750 			    ((phys & (alignment - 1)) == 0) &&
1751 			    (((phys ^ (phys + size - 1)) & ~(boundary - 1)) == 0))
1752 				break;
1753 		}
1754 
1755 		/*
1756 		 * If the above failed or we will exceed the upper bound, fail.
1757 		 */
1758 		if ((i == vmstats.v_page_count) ||
1759 			((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
1760 			vm_page_t m, next;
1761 
1762 again1:
1763 			for (m = TAILQ_FIRST(&vm_page_queues[PQ_INACTIVE].pl);
1764 				m != NULL;
1765 				m = next) {
1766 
1767 				KASSERT(m->queue == PQ_INACTIVE,
1768 					("contigmalloc1: page %p is not PQ_INACTIVE", m));
1769 
1770 				next = TAILQ_NEXT(m, pageq);
1771 				if (vm_page_sleep_busy(m, TRUE, "vpctw0"))
1772 					goto again1;
1773 				vm_page_test_dirty(m);
1774 				if (m->dirty) {
1775 					if (m->object->type == OBJT_VNODE) {
1776 						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
1777 						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1778 						VOP_UNLOCK(m->object->handle, 0, curthread);
1779 						goto again1;
1780 					} else if (m->object->type == OBJT_SWAP ||
1781 								m->object->type == OBJT_DEFAULT) {
1782 						vm_pageout_flush(&m, 1, 0);
1783 						goto again1;
1784 					}
1785 				}
1786 				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1787 					vm_page_cache(m);
1788 			}
1789 
1790 			for (m = TAILQ_FIRST(&vm_page_queues[PQ_ACTIVE].pl);
1791 				m != NULL;
1792 				m = next) {
1793 
1794 				KASSERT(m->queue == PQ_ACTIVE,
1795 					("contigmalloc1: page %p is not PQ_ACTIVE", m));
1796 
1797 				next = TAILQ_NEXT(m, pageq);
1798 				if (vm_page_sleep_busy(m, TRUE, "vpctw1"))
1799 					goto again1;
1800 				vm_page_test_dirty(m);
1801 				if (m->dirty) {
1802 					if (m->object->type == OBJT_VNODE) {
1803 						vn_lock(m->object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
1804 						vm_object_page_clean(m->object, 0, 0, OBJPC_SYNC);
1805 						VOP_UNLOCK(m->object->handle, 0, curthread);
1806 						goto again1;
1807 					} else if (m->object->type == OBJT_SWAP ||
1808 								m->object->type == OBJT_DEFAULT) {
1809 						vm_pageout_flush(&m, 1, 0);
1810 						goto again1;
1811 					}
1812 				}
1813 				if ((m->dirty == 0) && (m->busy == 0) && (m->hold_count == 0))
1814 					vm_page_cache(m);
1815 			}
1816 
1817 			splx(s);
1818 			continue;
1819 		}
1820 		start = i;
1821 
1822 		/*
1823 		 * Check successive pages for contiguous and free.
1824 		 */
1825 		for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
1826 			int pqtype;
1827 			pqtype = pga[i].queue - pga[i].pc;
1828 			if ((VM_PAGE_TO_PHYS(&pga[i]) !=
1829 			    (VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
1830 			    ((pqtype != PQ_FREE) && (pqtype != PQ_CACHE))) {
1831 				start++;
1832 				goto again;
1833 			}
1834 		}
1835 
1836 		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1837 			int pqtype;
1838 			vm_page_t m = &pga[i];
1839 
1840 			pqtype = m->queue - m->pc;
1841 			if (pqtype == PQ_CACHE) {
1842 				vm_page_busy(m);
1843 				vm_page_free(m);
1844 			}
1845 			vm_page_unqueue_nowakeup(m);
1846 			m->valid = VM_PAGE_BITS_ALL;
1847 			if (m->flags & PG_ZERO)
1848 				vm_page_zero_count--;
1849 			m->flags = 0;
1850 			KASSERT(m->dirty == 0, ("contigmalloc1: page %p was dirty", m));
1851 			m->wire_count = 0;
1852 			m->busy = 0;
1853 			m->object = NULL;
1854 		}
1855 
1856 		/*
1857 		 * We've found a contiguous chunk that meets are requirements.
1858 		 * Allocate kernel VM, unfree and assign the physical pages to it and
1859 		 * return kernel VM pointer.
1860 		 */
1861 		vm_map_lock(map);
1862 		count = vm_map_entry_reserve(MAP_RESERVE_COUNT);
1863 		if (vm_map_findspace(map, vm_map_min(map), size, 1, &addr) !=
1864 		    KERN_SUCCESS) {
1865 			/*
1866 			 * XXX We almost never run out of kernel virtual
1867 			 * space, so we don't make the allocated memory
1868 			 * above available.
1869 			 */
1870 			vm_map_unlock(map);
1871 			vm_map_entry_release(count);
1872 			splx(s);
1873 			return (NULL);
1874 		}
1875 		vm_object_reference(kernel_object);
1876 		vm_map_insert(map, &count,
1877 		    kernel_object, addr - VM_MIN_KERNEL_ADDRESS,
1878 		    addr, addr + size, VM_PROT_ALL, VM_PROT_ALL, 0);
1879 		vm_map_unlock(map);
1880 		vm_map_entry_release(count);
1881 
1882 		tmp_addr = addr;
1883 		for (i = start; i < (start + size / PAGE_SIZE); i++) {
1884 			vm_page_t m = &pga[i];
1885 			vm_page_insert(m, kernel_object,
1886 				OFF_TO_IDX(tmp_addr - VM_MIN_KERNEL_ADDRESS));
1887 			tmp_addr += PAGE_SIZE;
1888 		}
1889 		vm_map_pageable(map, addr, addr + size, FALSE);
1890 
1891 		splx(s);
1892 		return ((void *)addr);
1893 	}
1894 	return NULL;
1895 }
1896 
1897 void *
1898 contigmalloc(
1899 	unsigned long size,	/* should be size_t here and for malloc() */
1900 	struct malloc_type *type,
1901 	int flags,
1902 	unsigned long low,
1903 	unsigned long high,
1904 	unsigned long alignment,
1905 	unsigned long boundary)
1906 {
1907 	return contigmalloc1(size, type, flags, low, high, alignment, boundary,
1908 			     kernel_map);
1909 }
1910 
1911 void
1912 contigfree(void *addr, unsigned long size, struct malloc_type *type)
1913 {
1914 	kmem_free(kernel_map, (vm_offset_t)addr, size);
1915 }
1916 
1917 vm_offset_t
1918 vm_page_alloc_contig(
1919 	vm_offset_t size,
1920 	vm_offset_t low,
1921 	vm_offset_t high,
1922 	vm_offset_t alignment)
1923 {
1924 	return ((vm_offset_t)contigmalloc1(size, M_DEVBUF, M_NOWAIT, low, high,
1925 					  alignment, 0ul, kernel_map));
1926 }
1927 
1928 #include "opt_ddb.h"
1929 #ifdef DDB
1930 #include <sys/kernel.h>
1931 
1932 #include <ddb/ddb.h>
1933 
1934 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1935 {
1936 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1937 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1938 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1939 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1940 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1941 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1942 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1943 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1944 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1945 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1946 }
1947 
1948 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1949 {
1950 	int i;
1951 	db_printf("PQ_FREE:");
1952 	for(i=0;i<PQ_L2_SIZE;i++) {
1953 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1954 	}
1955 	db_printf("\n");
1956 
1957 	db_printf("PQ_CACHE:");
1958 	for(i=0;i<PQ_L2_SIZE;i++) {
1959 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1960 	}
1961 	db_printf("\n");
1962 
1963 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1964 		vm_page_queues[PQ_ACTIVE].lcnt,
1965 		vm_page_queues[PQ_INACTIVE].lcnt);
1966 }
1967 #endif /* DDB */
1968