xref: /dflybsd-src/sys/vm/vm_page.c (revision 899b08f0481cee99aeea3b0d44cd623a9d6bc2db)
1 /*
2  * Copyright (c) 1991 Regents of the University of California.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
37  * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $
38  * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $
39  */
40 
41 /*
42  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
43  * All rights reserved.
44  *
45  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
46  *
47  * Permission to use, copy, modify and distribute this software and
48  * its documentation is hereby granted, provided that both the copyright
49  * notice and this permission notice appear in all copies of the
50  * software, derivative works or modified versions, and any portions
51  * thereof, and that both notices appear in supporting documentation.
52  *
53  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
54  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
55  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
56  *
57  * Carnegie Mellon requests users of this software to return to
58  *
59  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
60  *  School of Computer Science
61  *  Carnegie Mellon University
62  *  Pittsburgh PA 15213-3890
63  *
64  * any improvements or extensions that they make and grant Carnegie the
65  * rights to redistribute these changes.
66  */
67 /*
68  * Resident memory management module.  The module manipulates 'VM pages'.
69  * A VM page is the core building block for memory management.
70  */
71 
72 #include <sys/param.h>
73 #include <sys/systm.h>
74 #include <sys/malloc.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/vnode.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_pageout.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_extern.h>
90 #include <vm/swap_pager.h>
91 
92 #include <machine/md_var.h>
93 
94 #include <vm/vm_page2.h>
95 #include <sys/mplock2.h>
96 
97 static void vm_page_queue_init(void);
98 static void vm_page_free_wakeup(void);
99 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t);
100 static vm_page_t _vm_page_list_find2(int basequeue, int index);
101 
102 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */
103 
104 #define ASSERT_IN_CRIT_SECTION()	KKASSERT(crit_test(curthread));
105 
106 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare,
107 	     vm_pindex_t, pindex);
108 
109 static void
110 vm_page_queue_init(void)
111 {
112 	int i;
113 
114 	for (i = 0; i < PQ_L2_SIZE; i++)
115 		vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count;
116 	for (i = 0; i < PQ_L2_SIZE; i++)
117 		vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count;
118 
119 	vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count;
120 	vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count;
121 	vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count;
122 	/* PQ_NONE has no queue */
123 
124 	for (i = 0; i < PQ_COUNT; i++)
125 		TAILQ_INIT(&vm_page_queues[i].pl);
126 }
127 
128 /*
129  * note: place in initialized data section?  Is this necessary?
130  */
131 long first_page = 0;
132 int vm_page_array_size = 0;
133 int vm_page_zero_count = 0;
134 vm_page_t vm_page_array = 0;
135 
136 /*
137  * (low level boot)
138  *
139  * Sets the page size, perhaps based upon the memory size.
140  * Must be called before any use of page-size dependent functions.
141  */
142 void
143 vm_set_page_size(void)
144 {
145 	if (vmstats.v_page_size == 0)
146 		vmstats.v_page_size = PAGE_SIZE;
147 	if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0)
148 		panic("vm_set_page_size: page size not a power of two");
149 }
150 
151 /*
152  * (low level boot)
153  *
154  * Add a new page to the freelist for use by the system.  New pages
155  * are added to both the head and tail of the associated free page
156  * queue in a bottom-up fashion, so both zero'd and non-zero'd page
157  * requests pull 'recent' adds (higher physical addresses) first.
158  *
159  * Must be called in a critical section.
160  */
161 vm_page_t
162 vm_add_new_page(vm_paddr_t pa)
163 {
164 	struct vpgqueues *vpq;
165 	vm_page_t m;
166 
167 	++vmstats.v_page_count;
168 	++vmstats.v_free_count;
169 	m = PHYS_TO_VM_PAGE(pa);
170 	m->phys_addr = pa;
171 	m->flags = 0;
172 	m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK;
173 	m->queue = m->pc + PQ_FREE;
174 	KKASSERT(m->dirty == 0);
175 
176 	vpq = &vm_page_queues[m->queue];
177 	if (vpq->flipflop)
178 		TAILQ_INSERT_TAIL(&vpq->pl, m, pageq);
179 	else
180 		TAILQ_INSERT_HEAD(&vpq->pl, m, pageq);
181 	vpq->flipflop = 1 - vpq->flipflop;
182 
183 	vm_page_queues[m->queue].lcnt++;
184 	return (m);
185 }
186 
187 /*
188  * (low level boot)
189  *
190  * Initializes the resident memory module.
191  *
192  * Allocates memory for the page cells, and for the object/offset-to-page
193  * hash table headers.  Each page cell is initialized and placed on the
194  * free list.
195  *
196  * starta/enda represents the range of physical memory addresses available
197  * for use (skipping memory already used by the kernel), subject to
198  * phys_avail[].  Note that phys_avail[] has already mapped out memory
199  * already in use by the kernel.
200  */
201 vm_offset_t
202 vm_page_startup(vm_offset_t vaddr)
203 {
204 	vm_offset_t mapped;
205 	vm_size_t npages;
206 	vm_paddr_t page_range;
207 	vm_paddr_t new_end;
208 	int i;
209 	vm_paddr_t pa;
210 	int nblocks;
211 	vm_paddr_t last_pa;
212 	vm_paddr_t end;
213 	vm_paddr_t biggestone, biggestsize;
214 	vm_paddr_t total;
215 
216 	total = 0;
217 	biggestsize = 0;
218 	biggestone = 0;
219 	nblocks = 0;
220 	vaddr = round_page(vaddr);
221 
222 	for (i = 0; phys_avail[i + 1]; i += 2) {
223 		phys_avail[i] = round_page64(phys_avail[i]);
224 		phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]);
225 	}
226 
227 	for (i = 0; phys_avail[i + 1]; i += 2) {
228 		vm_paddr_t size = phys_avail[i + 1] - phys_avail[i];
229 
230 		if (size > biggestsize) {
231 			biggestone = i;
232 			biggestsize = size;
233 		}
234 		++nblocks;
235 		total += size;
236 	}
237 
238 	end = phys_avail[biggestone+1];
239 	end = trunc_page(end);
240 
241 	/*
242 	 * Initialize the queue headers for the free queue, the active queue
243 	 * and the inactive queue.
244 	 */
245 
246 	vm_page_queue_init();
247 
248 	/* VKERNELs don't support minidumps and as such don't need vm_page_dump */
249 #if !defined(_KERNEL_VIRTUAL)
250 	/*
251 	 * Allocate a bitmap to indicate that a random physical page
252 	 * needs to be included in a minidump.
253 	 *
254 	 * The amd64 port needs this to indicate which direct map pages
255 	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
256 	 *
257 	 * However, i386 still needs this workspace internally within the
258 	 * minidump code.  In theory, they are not needed on i386, but are
259 	 * included should the sf_buf code decide to use them.
260 	 */
261 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE;
262 	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
263 	end -= vm_page_dump_size;
264 	vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size,
265 	    VM_PROT_READ | VM_PROT_WRITE);
266 	bzero((void *)vm_page_dump, vm_page_dump_size);
267 #endif
268 
269 	/*
270 	 * Compute the number of pages of memory that will be available for
271 	 * use (taking into account the overhead of a page structure per
272 	 * page).
273 	 */
274 	first_page = phys_avail[0] / PAGE_SIZE;
275 	page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page;
276 	npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE;
277 
278 	/*
279 	 * Initialize the mem entry structures now, and put them in the free
280 	 * queue.
281 	 */
282 	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
283 	mapped = pmap_map(&vaddr, new_end, end,
284 	    VM_PROT_READ | VM_PROT_WRITE);
285 	vm_page_array = (vm_page_t)mapped;
286 
287 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL)
288 	/*
289 	 * since pmap_map on amd64 returns stuff out of a direct-map region,
290 	 * we have to manually add these pages to the minidump tracking so
291 	 * that they can be dumped, including the vm_page_array.
292 	 */
293 	for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE)
294 		dump_add_page(pa);
295 #endif
296 
297 	/*
298 	 * Clear all of the page structures
299 	 */
300 	bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page));
301 	vm_page_array_size = page_range;
302 
303 	/*
304 	 * Construct the free queue(s) in ascending order (by physical
305 	 * address) so that the first 16MB of physical memory is allocated
306 	 * last rather than first.  On large-memory machines, this avoids
307 	 * the exhaustion of low physical memory before isa_dmainit has run.
308 	 */
309 	vmstats.v_page_count = 0;
310 	vmstats.v_free_count = 0;
311 	for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
312 		pa = phys_avail[i];
313 		if (i == biggestone)
314 			last_pa = new_end;
315 		else
316 			last_pa = phys_avail[i + 1];
317 		while (pa < last_pa && npages-- > 0) {
318 			vm_add_new_page(pa);
319 			pa += PAGE_SIZE;
320 		}
321 	}
322 	return (vaddr);
323 }
324 
325 /*
326  * Scan comparison function for Red-Black tree scans.  An inclusive
327  * (start,end) is expected.  Other fields are not used.
328  */
329 int
330 rb_vm_page_scancmp(struct vm_page *p, void *data)
331 {
332 	struct rb_vm_page_scan_info *info = data;
333 
334 	if (p->pindex < info->start_pindex)
335 		return(-1);
336 	if (p->pindex > info->end_pindex)
337 		return(1);
338 	return(0);
339 }
340 
341 int
342 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2)
343 {
344 	if (p1->pindex < p2->pindex)
345 		return(-1);
346 	if (p1->pindex > p2->pindex)
347 		return(1);
348 	return(0);
349 }
350 
351 /*
352  * The opposite of vm_page_hold().  A page can be freed while being held,
353  * which places it on the PQ_HOLD queue.  We must call vm_page_free_toq()
354  * in this case to actually free it once the hold count drops to 0.
355  *
356  * This routine must be called at splvm().
357  */
358 void
359 vm_page_unhold(vm_page_t mem)
360 {
361 	--mem->hold_count;
362 	KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!"));
363 	if (mem->hold_count == 0 && mem->queue == PQ_HOLD) {
364 		vm_page_busy(mem);
365 		vm_page_free_toq(mem);
366 	}
367 }
368 
369 /*
370  * Inserts the given mem entry into the object and object list.
371  *
372  * The pagetables are not updated but will presumably fault the page
373  * in if necessary, or if a kernel page the caller will at some point
374  * enter the page into the kernel's pmap.  We are not allowed to block
375  * here so we *can't* do this anyway.
376  *
377  * This routine may not block.
378  * This routine must be called with a critical section held.
379  */
380 void
381 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
382 {
383 	ASSERT_IN_CRIT_SECTION();
384 	if (m->object != NULL)
385 		panic("vm_page_insert: already inserted");
386 
387 	/*
388 	 * Record the object/offset pair in this page
389 	 */
390 	m->object = object;
391 	m->pindex = pindex;
392 
393 	/*
394 	 * Insert it into the object.
395 	 */
396 	ASSERT_MP_LOCK_HELD(curthread);
397 	vm_page_rb_tree_RB_INSERT(&object->rb_memq, m);
398 	object->generation++;
399 
400 	/*
401 	 * show that the object has one more resident page.
402 	 */
403 	object->resident_page_count++;
404 
405 	/*
406 	 * Since we are inserting a new and possibly dirty page,
407 	 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags.
408 	 */
409 	if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE))
410 		vm_object_set_writeable_dirty(object);
411 
412 	/*
413 	 * Checks for a swap assignment and sets PG_SWAPPED if appropriate.
414 	 */
415 	swap_pager_page_inserted(m);
416 }
417 
418 /*
419  * Removes the given vm_page_t from the global (object,index) hash table
420  * and from the object's memq.
421  *
422  * The underlying pmap entry (if any) is NOT removed here.
423  * This routine may not block.
424  *
425  * The page must be BUSY and will remain BUSY on return.  No spl needs to be
426  * held on call to this routine.
427  *
428  * note: FreeBSD side effect was to unbusy the page on return.  We leave
429  * it busy.
430  */
431 void
432 vm_page_remove(vm_page_t m)
433 {
434 	vm_object_t object;
435 
436 	crit_enter();
437 	if (m->object == NULL) {
438 		crit_exit();
439 		return;
440 	}
441 
442 	if ((m->flags & PG_BUSY) == 0)
443 		panic("vm_page_remove: page not busy");
444 
445 	object = m->object;
446 
447 	/*
448 	 * Remove the page from the object and update the object.
449 	 */
450 	ASSERT_MP_LOCK_HELD(curthread);
451 	vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m);
452 	object->resident_page_count--;
453 	object->generation++;
454 	m->object = NULL;
455 
456 	crit_exit();
457 }
458 
459 /*
460  * Locate and return the page at (object, pindex), or NULL if the
461  * page could not be found.
462  *
463  * This routine will operate properly without spl protection, but
464  * the returned page could be in flux if it is busy.  Because an
465  * interrupt can race a caller's busy check (unbusying and freeing the
466  * page we return before the caller is able to check the busy bit),
467  * the caller should generally call this routine with a critical
468  * section held.
469  *
470  * Callers may call this routine without spl protection if they know
471  * 'for sure' that the page will not be ripped out from under them
472  * by an interrupt.
473  */
474 vm_page_t
475 vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
476 {
477 	vm_page_t m;
478 
479 	/*
480 	 * Search the hash table for this object/offset pair
481 	 */
482 	ASSERT_MP_LOCK_HELD(curthread);
483 	crit_enter();
484 	m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex);
485 	crit_exit();
486 	KKASSERT(m == NULL || (m->object == object && m->pindex == pindex));
487 	return(m);
488 }
489 
490 /*
491  * vm_page_rename()
492  *
493  * Move the given memory entry from its current object to the specified
494  * target object/offset.
495  *
496  * The object must be locked.
497  * This routine may not block.
498  *
499  * Note: This routine will raise itself to splvm(), the caller need not.
500  *
501  * Note: Swap associated with the page must be invalidated by the move.  We
502  *       have to do this for several reasons:  (1) we aren't freeing the
503  *       page, (2) we are dirtying the page, (3) the VM system is probably
504  *       moving the page from object A to B, and will then later move
505  *       the backing store from A to B and we can't have a conflict.
506  *
507  * Note: We *always* dirty the page.  It is necessary both for the
508  *       fact that we moved it, and because we may be invalidating
509  *	 swap.  If the page is on the cache, we have to deactivate it
510  *	 or vm_page_dirty() will panic.  Dirty pages are not allowed
511  *	 on the cache.
512  */
513 void
514 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
515 {
516 	crit_enter();
517 	vm_page_remove(m);
518 	vm_page_insert(m, new_object, new_pindex);
519 	if (m->queue - m->pc == PQ_CACHE)
520 		vm_page_deactivate(m);
521 	vm_page_dirty(m);
522 	vm_page_wakeup(m);
523 	crit_exit();
524 }
525 
526 /*
527  * vm_page_unqueue() without any wakeup.  This routine is used when a page
528  * is being moved between queues or otherwise is to remain BUSYied by the
529  * caller.
530  *
531  * This routine must be called at splhigh().
532  * This routine may not block.
533  */
534 void
535 vm_page_unqueue_nowakeup(vm_page_t m)
536 {
537 	int queue = m->queue;
538 	struct vpgqueues *pq;
539 
540 	if (queue != PQ_NONE) {
541 		pq = &vm_page_queues[queue];
542 		m->queue = PQ_NONE;
543 		TAILQ_REMOVE(&pq->pl, m, pageq);
544 		(*pq->cnt)--;
545 		pq->lcnt--;
546 	}
547 }
548 
549 /*
550  * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon
551  * if necessary.
552  *
553  * This routine must be called at splhigh().
554  * This routine may not block.
555  */
556 void
557 vm_page_unqueue(vm_page_t m)
558 {
559 	int queue = m->queue;
560 	struct vpgqueues *pq;
561 
562 	if (queue != PQ_NONE) {
563 		m->queue = PQ_NONE;
564 		pq = &vm_page_queues[queue];
565 		TAILQ_REMOVE(&pq->pl, m, pageq);
566 		(*pq->cnt)--;
567 		pq->lcnt--;
568 		if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE)
569 			pagedaemon_wakeup();
570 	}
571 }
572 
573 /*
574  * vm_page_list_find()
575  *
576  * Find a page on the specified queue with color optimization.
577  *
578  * The page coloring optimization attempts to locate a page that does
579  * not overload other nearby pages in the object in the cpu's L1 or L2
580  * caches.  We need this optimization because cpu caches tend to be
581  * physical caches, while object spaces tend to be virtual.
582  *
583  * This routine must be called at splvm().
584  * This routine may not block.
585  *
586  * Note that this routine is carefully inlined.  A non-inlined version
587  * is available for outside callers but the only critical path is
588  * from within this source file.
589  */
590 static __inline
591 vm_page_t
592 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
593 {
594 	vm_page_t m;
595 
596 	if (prefer_zero)
597 		m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist);
598 	else
599 		m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl);
600 	if (m == NULL)
601 		m = _vm_page_list_find2(basequeue, index);
602 	return(m);
603 }
604 
605 static vm_page_t
606 _vm_page_list_find2(int basequeue, int index)
607 {
608 	int i;
609 	vm_page_t m = NULL;
610 	struct vpgqueues *pq;
611 
612 	pq = &vm_page_queues[basequeue];
613 
614 	/*
615 	 * Note that for the first loop, index+i and index-i wind up at the
616 	 * same place.  Even though this is not totally optimal, we've already
617 	 * blown it by missing the cache case so we do not care.
618 	 */
619 
620 	for(i = PQ_L2_SIZE / 2; i > 0; --i) {
621 		if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL)
622 			break;
623 
624 		if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL)
625 			break;
626 	}
627 	return(m);
628 }
629 
630 vm_page_t
631 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero)
632 {
633 	return(_vm_page_list_find(basequeue, index, prefer_zero));
634 }
635 
636 /*
637  * Find a page on the cache queue with color optimization.  As pages
638  * might be found, but not applicable, they are deactivated.  This
639  * keeps us from using potentially busy cached pages.
640  *
641  * This routine must be called with a critical section held.
642  * This routine may not block.
643  */
644 vm_page_t
645 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex)
646 {
647 	vm_page_t m;
648 
649 	while (TRUE) {
650 		m = _vm_page_list_find(
651 		    PQ_CACHE,
652 		    (pindex + object->pg_color) & PQ_L2_MASK,
653 		    FALSE
654 		);
655 		if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
656 			       m->hold_count || m->wire_count)) {
657 			vm_page_deactivate(m);
658 			continue;
659 		}
660 		return m;
661 	}
662 	/* not reached */
663 }
664 
665 /*
666  * Find a free or zero page, with specified preference.  We attempt to
667  * inline the nominal case and fall back to _vm_page_select_free()
668  * otherwise.
669  *
670  * This routine must be called with a critical section held.
671  * This routine may not block.
672  */
673 static __inline vm_page_t
674 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero)
675 {
676 	vm_page_t m;
677 
678 	m = _vm_page_list_find(
679 		PQ_FREE,
680 		(pindex + object->pg_color) & PQ_L2_MASK,
681 		prefer_zero
682 	);
683 	return(m);
684 }
685 
686 /*
687  * vm_page_alloc()
688  *
689  * Allocate and return a memory cell associated with this VM object/offset
690  * pair.
691  *
692  *	page_req classes:
693  *
694  *	VM_ALLOC_NORMAL		allow use of cache pages, nominal free drain
695  *	VM_ALLOC_QUICK		like normal but cannot use cache
696  *	VM_ALLOC_SYSTEM		greater free drain
697  *	VM_ALLOC_INTERRUPT	allow free list to be completely drained
698  *	VM_ALLOC_ZERO		advisory request for pre-zero'd page
699  *
700  * The object must be locked.
701  * This routine may not block.
702  * The returned page will be marked PG_BUSY
703  *
704  * Additional special handling is required when called from an interrupt
705  * (VM_ALLOC_INTERRUPT).  We are not allowed to mess with the page cache
706  * in this case.
707  */
708 vm_page_t
709 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req)
710 {
711 	vm_page_t m = NULL;
712 
713 	KKASSERT(object != NULL);
714 	KASSERT(!vm_page_lookup(object, pindex),
715 		("vm_page_alloc: page already allocated"));
716 	KKASSERT(page_req &
717 		(VM_ALLOC_NORMAL|VM_ALLOC_QUICK|
718 		 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
719 
720 	/*
721 	 * Certain system threads (pageout daemon, buf_daemon's) are
722 	 * allowed to eat deeper into the free page list.
723 	 */
724 	if (curthread->td_flags & TDF_SYSTHREAD)
725 		page_req |= VM_ALLOC_SYSTEM;
726 
727 	crit_enter();
728 loop:
729 	if (vmstats.v_free_count > vmstats.v_free_reserved ||
730 	    ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) ||
731 	    ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 &&
732 		vmstats.v_free_count > vmstats.v_interrupt_free_min)
733 	) {
734 		/*
735 		 * The free queue has sufficient free pages to take one out.
736 		 */
737 		if (page_req & VM_ALLOC_ZERO)
738 			m = vm_page_select_free(object, pindex, TRUE);
739 		else
740 			m = vm_page_select_free(object, pindex, FALSE);
741 	} else if (page_req & VM_ALLOC_NORMAL) {
742 		/*
743 		 * Allocatable from the cache (non-interrupt only).  On
744 		 * success, we must free the page and try again, thus
745 		 * ensuring that vmstats.v_*_free_min counters are replenished.
746 		 */
747 #ifdef INVARIANTS
748 		if (curthread->td_preempted) {
749 			kprintf("vm_page_alloc(): warning, attempt to allocate"
750 				" cache page from preempting interrupt\n");
751 			m = NULL;
752 		} else {
753 			m = vm_page_select_cache(object, pindex);
754 		}
755 #else
756 		m = vm_page_select_cache(object, pindex);
757 #endif
758 		/*
759 		 * On success move the page into the free queue and loop.
760 		 */
761 		if (m != NULL) {
762 			KASSERT(m->dirty == 0,
763 			    ("Found dirty cache page %p", m));
764 			vm_page_busy(m);
765 			vm_page_protect(m, VM_PROT_NONE);
766 			vm_page_free(m);
767 			goto loop;
768 		}
769 
770 		/*
771 		 * On failure return NULL
772 		 */
773 		crit_exit();
774 #if defined(DIAGNOSTIC)
775 		if (vmstats.v_cache_count > 0)
776 			kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count);
777 #endif
778 		vm_pageout_deficit++;
779 		pagedaemon_wakeup();
780 		return (NULL);
781 	} else {
782 		/*
783 		 * No pages available, wakeup the pageout daemon and give up.
784 		 */
785 		crit_exit();
786 		vm_pageout_deficit++;
787 		pagedaemon_wakeup();
788 		return (NULL);
789 	}
790 
791 	/*
792 	 * Good page found.  The page has not yet been busied.  We are in
793 	 * a critical section.
794 	 */
795 	KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n"));
796 	KASSERT(m->dirty == 0,
797 		("vm_page_alloc: free/cache page %p was dirty", m));
798 
799 	/*
800 	 * Remove from free queue
801 	 */
802 	vm_page_unqueue_nowakeup(m);
803 
804 	/*
805 	 * Initialize structure.  Only the PG_ZERO flag is inherited.  Set
806 	 * the page PG_BUSY
807 	 */
808 	if (m->flags & PG_ZERO) {
809 		vm_page_zero_count--;
810 		m->flags = PG_ZERO | PG_BUSY;
811 	} else {
812 		m->flags = PG_BUSY;
813 	}
814 	m->wire_count = 0;
815 	m->hold_count = 0;
816 	m->act_count = 0;
817 	m->busy = 0;
818 	m->valid = 0;
819 
820 	/*
821 	 * vm_page_insert() is safe prior to the crit_exit().  Note also that
822 	 * inserting a page here does not insert it into the pmap (which
823 	 * could cause us to block allocating memory).  We cannot block
824 	 * anywhere.
825 	 */
826 	vm_page_insert(m, object, pindex);
827 
828 	/*
829 	 * Don't wakeup too often - wakeup the pageout daemon when
830 	 * we would be nearly out of memory.
831 	 */
832 	pagedaemon_wakeup();
833 
834 	crit_exit();
835 
836 	/*
837 	 * A PG_BUSY page is returned.
838 	 */
839 	return (m);
840 }
841 
842 /*
843  * Wait for sufficient free memory for nominal heavy memory use kernel
844  * operations.
845  */
846 void
847 vm_wait_nominal(void)
848 {
849 	while (vm_page_count_min(0))
850 		vm_wait(0);
851 }
852 
853 /*
854  * Test if vm_wait_nominal() would block.
855  */
856 int
857 vm_test_nominal(void)
858 {
859 	if (vm_page_count_min(0))
860 		return(1);
861 	return(0);
862 }
863 
864 /*
865  * Block until free pages are available for allocation, called in various
866  * places before memory allocations.
867  */
868 void
869 vm_wait(int timo)
870 {
871 	crit_enter();
872 	if (curthread == pagethread) {
873 		vm_pageout_pages_needed = 1;
874 		tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo);
875 	} else {
876 		if (vm_pages_needed == 0) {
877 			vm_pages_needed = 1;
878 			wakeup(&vm_pages_needed);
879 		}
880 		tsleep(&vmstats.v_free_count, 0, "vmwait", timo);
881 	}
882 	crit_exit();
883 }
884 
885 /*
886  * Block until free pages are available for allocation
887  *
888  * Called only in vm_fault so that processes page faulting can be
889  * easily tracked.
890  */
891 void
892 vm_waitpfault(void)
893 {
894 	crit_enter();
895 	if (vm_pages_needed == 0) {
896 		vm_pages_needed = 1;
897 		wakeup(&vm_pages_needed);
898 	}
899 	tsleep(&vmstats.v_free_count, 0, "pfault", 0);
900 	crit_exit();
901 }
902 
903 /*
904  * Put the specified page on the active list (if appropriate).  Ensure
905  * that act_count is at least ACT_INIT but do not otherwise mess with it.
906  *
907  * The page queues must be locked.
908  * This routine may not block.
909  */
910 void
911 vm_page_activate(vm_page_t m)
912 {
913 	crit_enter();
914 	if (m->queue != PQ_ACTIVE) {
915 		if ((m->queue - m->pc) == PQ_CACHE)
916 			mycpu->gd_cnt.v_reactivated++;
917 
918 		vm_page_unqueue(m);
919 
920 		if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
921 			m->queue = PQ_ACTIVE;
922 			vm_page_queues[PQ_ACTIVE].lcnt++;
923 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl,
924 					    m, pageq);
925 			if (m->act_count < ACT_INIT)
926 				m->act_count = ACT_INIT;
927 			vmstats.v_active_count++;
928 		}
929 	} else {
930 		if (m->act_count < ACT_INIT)
931 			m->act_count = ACT_INIT;
932 	}
933 	crit_exit();
934 }
935 
936 /*
937  * Helper routine for vm_page_free_toq() and vm_page_cache().  This
938  * routine is called when a page has been added to the cache or free
939  * queues.
940  *
941  * This routine may not block.
942  * This routine must be called at splvm()
943  */
944 static __inline void
945 vm_page_free_wakeup(void)
946 {
947 	/*
948 	 * if pageout daemon needs pages, then tell it that there are
949 	 * some free.
950 	 */
951 	if (vm_pageout_pages_needed &&
952 	    vmstats.v_cache_count + vmstats.v_free_count >=
953 	    vmstats.v_pageout_free_min
954 	) {
955 		wakeup(&vm_pageout_pages_needed);
956 		vm_pageout_pages_needed = 0;
957 	}
958 
959 	/*
960 	 * wakeup processes that are waiting on memory if we hit a
961 	 * high water mark. And wakeup scheduler process if we have
962 	 * lots of memory. this process will swapin processes.
963 	 */
964 	if (vm_pages_needed && !vm_page_count_min(0)) {
965 		vm_pages_needed = 0;
966 		wakeup(&vmstats.v_free_count);
967 	}
968 }
969 
970 /*
971  *	vm_page_free_toq:
972  *
973  *	Returns the given page to the PQ_FREE list, disassociating it with
974  *	any VM object.
975  *
976  *	The vm_page must be PG_BUSY on entry.  PG_BUSY will be released on
977  *	return (the page will have been freed).  No particular spl is required
978  *	on entry.
979  *
980  *	This routine may not block.
981  */
982 void
983 vm_page_free_toq(vm_page_t m)
984 {
985 	struct vpgqueues *pq;
986 
987 	crit_enter();
988 	mycpu->gd_cnt.v_tfree++;
989 
990 	KKASSERT((m->flags & PG_MAPPED) == 0);
991 
992 	if (m->busy || ((m->queue - m->pc) == PQ_FREE)) {
993 		kprintf(
994 		"vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n",
995 		    (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0,
996 		    m->hold_count);
997 		if ((m->queue - m->pc) == PQ_FREE)
998 			panic("vm_page_free: freeing free page");
999 		else
1000 			panic("vm_page_free: freeing busy page");
1001 	}
1002 
1003 	/*
1004 	 * unqueue, then remove page.  Note that we cannot destroy
1005 	 * the page here because we do not want to call the pager's
1006 	 * callback routine until after we've put the page on the
1007 	 * appropriate free queue.
1008 	 */
1009 	vm_page_unqueue_nowakeup(m);
1010 	vm_page_remove(m);
1011 
1012 	/*
1013 	 * No further management of fictitious pages occurs beyond object
1014 	 * and queue removal.
1015 	 */
1016 	if ((m->flags & PG_FICTITIOUS) != 0) {
1017 		vm_page_wakeup(m);
1018 		crit_exit();
1019 		return;
1020 	}
1021 
1022 	m->valid = 0;
1023 	vm_page_undirty(m);
1024 
1025 	if (m->wire_count != 0) {
1026 		if (m->wire_count > 1) {
1027 		    panic(
1028 			"vm_page_free: invalid wire count (%d), pindex: 0x%lx",
1029 			m->wire_count, (long)m->pindex);
1030 		}
1031 		panic("vm_page_free: freeing wired page");
1032 	}
1033 
1034 	/*
1035 	 * Clear the UNMANAGED flag when freeing an unmanaged page.
1036 	 */
1037 	if (m->flags & PG_UNMANAGED) {
1038 	    m->flags &= ~PG_UNMANAGED;
1039 	}
1040 
1041 	if (m->hold_count != 0) {
1042 		m->flags &= ~PG_ZERO;
1043 		m->queue = PQ_HOLD;
1044 	} else {
1045 		m->queue = PQ_FREE + m->pc;
1046 	}
1047 	pq = &vm_page_queues[m->queue];
1048 	pq->lcnt++;
1049 	++(*pq->cnt);
1050 
1051 	/*
1052 	 * Put zero'd pages on the end ( where we look for zero'd pages
1053 	 * first ) and non-zerod pages at the head.
1054 	 */
1055 	if (m->flags & PG_ZERO) {
1056 		TAILQ_INSERT_TAIL(&pq->pl, m, pageq);
1057 		++vm_page_zero_count;
1058 	} else {
1059 		TAILQ_INSERT_HEAD(&pq->pl, m, pageq);
1060 	}
1061 	vm_page_wakeup(m);
1062 	vm_page_free_wakeup();
1063 	crit_exit();
1064 }
1065 
1066 /*
1067  * vm_page_free_fromq_fast()
1068  *
1069  * Remove a non-zero page from one of the free queues; the page is removed for
1070  * zeroing, so do not issue a wakeup.
1071  *
1072  * MPUNSAFE
1073  */
1074 vm_page_t
1075 vm_page_free_fromq_fast(void)
1076 {
1077 	static int qi;
1078 	vm_page_t m;
1079 	int i;
1080 
1081 	crit_enter();
1082 	for (i = 0; i < PQ_L2_SIZE; ++i) {
1083 		m = vm_page_list_find(PQ_FREE, qi, FALSE);
1084 		qi = (qi + PQ_PRIME2) & PQ_L2_MASK;
1085 		if (m && (m->flags & PG_ZERO) == 0) {
1086 			vm_page_unqueue_nowakeup(m);
1087 			vm_page_busy(m);
1088 			break;
1089 		}
1090 		m = NULL;
1091 	}
1092 	crit_exit();
1093 	return (m);
1094 }
1095 
1096 /*
1097  * vm_page_unmanage()
1098  *
1099  * Prevent PV management from being done on the page.  The page is
1100  * removed from the paging queues as if it were wired, and as a
1101  * consequence of no longer being managed the pageout daemon will not
1102  * touch it (since there is no way to locate the pte mappings for the
1103  * page).  madvise() calls that mess with the pmap will also no longer
1104  * operate on the page.
1105  *
1106  * Beyond that the page is still reasonably 'normal'.  Freeing the page
1107  * will clear the flag.
1108  *
1109  * This routine is used by OBJT_PHYS objects - objects using unswappable
1110  * physical memory as backing store rather then swap-backed memory and
1111  * will eventually be extended to support 4MB unmanaged physical
1112  * mappings.
1113  *
1114  * Must be called with a critical section held.
1115  */
1116 void
1117 vm_page_unmanage(vm_page_t m)
1118 {
1119 	ASSERT_IN_CRIT_SECTION();
1120 	if ((m->flags & PG_UNMANAGED) == 0) {
1121 		if (m->wire_count == 0)
1122 			vm_page_unqueue(m);
1123 	}
1124 	vm_page_flag_set(m, PG_UNMANAGED);
1125 }
1126 
1127 /*
1128  * Mark this page as wired down by yet another map, removing it from
1129  * paging queues as necessary.
1130  *
1131  * The page queues must be locked.
1132  * This routine may not block.
1133  */
1134 void
1135 vm_page_wire(vm_page_t m)
1136 {
1137 	/*
1138 	 * Only bump the wire statistics if the page is not already wired,
1139 	 * and only unqueue the page if it is on some queue (if it is unmanaged
1140 	 * it is already off the queues).  Don't do anything with fictitious
1141 	 * pages because they are always wired.
1142 	 */
1143 	crit_enter();
1144 	if ((m->flags & PG_FICTITIOUS) == 0) {
1145 		if (m->wire_count == 0) {
1146 			if ((m->flags & PG_UNMANAGED) == 0)
1147 				vm_page_unqueue(m);
1148 			vmstats.v_wire_count++;
1149 		}
1150 		m->wire_count++;
1151 		KASSERT(m->wire_count != 0,
1152 			("vm_page_wire: wire_count overflow m=%p", m));
1153 	}
1154 	crit_exit();
1155 }
1156 
1157 /*
1158  * Release one wiring of this page, potentially enabling it to be paged again.
1159  *
1160  * Many pages placed on the inactive queue should actually go
1161  * into the cache, but it is difficult to figure out which.  What
1162  * we do instead, if the inactive target is well met, is to put
1163  * clean pages at the head of the inactive queue instead of the tail.
1164  * This will cause them to be moved to the cache more quickly and
1165  * if not actively re-referenced, freed more quickly.  If we just
1166  * stick these pages at the end of the inactive queue, heavy filesystem
1167  * meta-data accesses can cause an unnecessary paging load on memory bound
1168  * processes.  This optimization causes one-time-use metadata to be
1169  * reused more quickly.
1170  *
1171  * BUT, if we are in a low-memory situation we have no choice but to
1172  * put clean pages on the cache queue.
1173  *
1174  * A number of routines use vm_page_unwire() to guarantee that the page
1175  * will go into either the inactive or active queues, and will NEVER
1176  * be placed in the cache - for example, just after dirtying a page.
1177  * dirty pages in the cache are not allowed.
1178  *
1179  * The page queues must be locked.
1180  * This routine may not block.
1181  */
1182 void
1183 vm_page_unwire(vm_page_t m, int activate)
1184 {
1185 	crit_enter();
1186 	if (m->flags & PG_FICTITIOUS) {
1187 		/* do nothing */
1188 	} else if (m->wire_count <= 0) {
1189 		panic("vm_page_unwire: invalid wire count: %d", m->wire_count);
1190 	} else {
1191 		if (--m->wire_count == 0) {
1192 			--vmstats.v_wire_count;
1193 			if (m->flags & PG_UNMANAGED) {
1194 				;
1195 			} else if (activate) {
1196 				TAILQ_INSERT_TAIL(
1197 				    &vm_page_queues[PQ_ACTIVE].pl, m, pageq);
1198 				m->queue = PQ_ACTIVE;
1199 				vm_page_queues[PQ_ACTIVE].lcnt++;
1200 				vmstats.v_active_count++;
1201 			} else {
1202 				vm_page_flag_clear(m, PG_WINATCFLS);
1203 				TAILQ_INSERT_TAIL(
1204 				    &vm_page_queues[PQ_INACTIVE].pl, m, pageq);
1205 				m->queue = PQ_INACTIVE;
1206 				vm_page_queues[PQ_INACTIVE].lcnt++;
1207 				vmstats.v_inactive_count++;
1208 				++vm_swapcache_inactive_heuristic;
1209 			}
1210 		}
1211 	}
1212 	crit_exit();
1213 }
1214 
1215 
1216 /*
1217  * Move the specified page to the inactive queue.  If the page has
1218  * any associated swap, the swap is deallocated.
1219  *
1220  * Normally athead is 0 resulting in LRU operation.  athead is set
1221  * to 1 if we want this page to be 'as if it were placed in the cache',
1222  * except without unmapping it from the process address space.
1223  *
1224  * This routine may not block.
1225  */
1226 static __inline void
1227 _vm_page_deactivate(vm_page_t m, int athead)
1228 {
1229 	/*
1230 	 * Ignore if already inactive.
1231 	 */
1232 	if (m->queue == PQ_INACTIVE)
1233 		return;
1234 
1235 	if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) {
1236 		if ((m->queue - m->pc) == PQ_CACHE)
1237 			mycpu->gd_cnt.v_reactivated++;
1238 		vm_page_flag_clear(m, PG_WINATCFLS);
1239 		vm_page_unqueue(m);
1240 		if (athead) {
1241 			TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl,
1242 					  m, pageq);
1243 		} else {
1244 			TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl,
1245 					  m, pageq);
1246 			++vm_swapcache_inactive_heuristic;
1247 		}
1248 		m->queue = PQ_INACTIVE;
1249 		vm_page_queues[PQ_INACTIVE].lcnt++;
1250 		vmstats.v_inactive_count++;
1251 	}
1252 }
1253 
1254 void
1255 vm_page_deactivate(vm_page_t m)
1256 {
1257     crit_enter();
1258     _vm_page_deactivate(m, 0);
1259     crit_exit();
1260 }
1261 
1262 /*
1263  * vm_page_try_to_cache:
1264  *
1265  * Returns 0 on failure, 1 on success
1266  */
1267 int
1268 vm_page_try_to_cache(vm_page_t m)
1269 {
1270 	crit_enter();
1271 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1272 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1273 		crit_exit();
1274 		return(0);
1275 	}
1276 	vm_page_test_dirty(m);
1277 	if (m->dirty) {
1278 		crit_exit();
1279 		return(0);
1280 	}
1281 	vm_page_cache(m);
1282 	crit_exit();
1283 	return(1);
1284 }
1285 
1286 /*
1287  * Attempt to free the page.  If we cannot free it, we do nothing.
1288  * 1 is returned on success, 0 on failure.
1289  */
1290 int
1291 vm_page_try_to_free(vm_page_t m)
1292 {
1293 	crit_enter();
1294 	if (m->dirty || m->hold_count || m->busy || m->wire_count ||
1295 	    (m->flags & (PG_BUSY|PG_UNMANAGED))) {
1296 		crit_exit();
1297 		return(0);
1298 	}
1299 	vm_page_test_dirty(m);
1300 	if (m->dirty) {
1301 		crit_exit();
1302 		return(0);
1303 	}
1304 	vm_page_busy(m);
1305 	vm_page_protect(m, VM_PROT_NONE);
1306 	vm_page_free(m);
1307 	crit_exit();
1308 	return(1);
1309 }
1310 
1311 /*
1312  * vm_page_cache
1313  *
1314  * Put the specified page onto the page cache queue (if appropriate).
1315  *
1316  * This routine may not block.
1317  */
1318 void
1319 vm_page_cache(vm_page_t m)
1320 {
1321 	ASSERT_IN_CRIT_SECTION();
1322 
1323 	if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy ||
1324 			m->wire_count || m->hold_count) {
1325 		kprintf("vm_page_cache: attempting to cache busy/held page\n");
1326 		return;
1327 	}
1328 
1329 	/*
1330 	 * Already in the cache (and thus not mapped)
1331 	 */
1332 	if ((m->queue - m->pc) == PQ_CACHE) {
1333 		KKASSERT((m->flags & PG_MAPPED) == 0);
1334 		return;
1335 	}
1336 
1337 	/*
1338 	 * Caller is required to test m->dirty, but note that the act of
1339 	 * removing the page from its maps can cause it to become dirty
1340 	 * on an SMP system due to another cpu running in usermode.
1341 	 */
1342 	if (m->dirty) {
1343 		panic("vm_page_cache: caching a dirty page, pindex: %ld",
1344 			(long)m->pindex);
1345 	}
1346 
1347 	/*
1348 	 * Remove all pmaps and indicate that the page is not
1349 	 * writeable or mapped.  Our vm_page_protect() call may
1350 	 * have blocked (especially w/ VM_PROT_NONE), so recheck
1351 	 * everything.
1352 	 */
1353 	vm_page_busy(m);
1354 	vm_page_protect(m, VM_PROT_NONE);
1355 	vm_page_wakeup(m);
1356 	if ((m->flags & (PG_BUSY|PG_UNMANAGED|PG_MAPPED)) || m->busy ||
1357 			m->wire_count || m->hold_count) {
1358 		/* do nothing */
1359 	} else if (m->dirty) {
1360 		vm_page_deactivate(m);
1361 	} else {
1362 		vm_page_unqueue_nowakeup(m);
1363 		m->queue = PQ_CACHE + m->pc;
1364 		vm_page_queues[m->queue].lcnt++;
1365 		TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq);
1366 		vmstats.v_cache_count++;
1367 		vm_page_free_wakeup();
1368 	}
1369 }
1370 
1371 /*
1372  * vm_page_dontneed()
1373  *
1374  * Cache, deactivate, or do nothing as appropriate.  This routine
1375  * is typically used by madvise() MADV_DONTNEED.
1376  *
1377  * Generally speaking we want to move the page into the cache so
1378  * it gets reused quickly.  However, this can result in a silly syndrome
1379  * due to the page recycling too quickly.  Small objects will not be
1380  * fully cached.  On the otherhand, if we move the page to the inactive
1381  * queue we wind up with a problem whereby very large objects
1382  * unnecessarily blow away our inactive and cache queues.
1383  *
1384  * The solution is to move the pages based on a fixed weighting.  We
1385  * either leave them alone, deactivate them, or move them to the cache,
1386  * where moving them to the cache has the highest weighting.
1387  * By forcing some pages into other queues we eventually force the
1388  * system to balance the queues, potentially recovering other unrelated
1389  * space from active.  The idea is to not force this to happen too
1390  * often.
1391  */
1392 void
1393 vm_page_dontneed(vm_page_t m)
1394 {
1395 	static int dnweight;
1396 	int dnw;
1397 	int head;
1398 
1399 	dnw = ++dnweight;
1400 
1401 	/*
1402 	 * occassionally leave the page alone
1403 	 */
1404 	crit_enter();
1405 	if ((dnw & 0x01F0) == 0 ||
1406 	    m->queue == PQ_INACTIVE ||
1407 	    m->queue - m->pc == PQ_CACHE
1408 	) {
1409 		if (m->act_count >= ACT_INIT)
1410 			--m->act_count;
1411 		crit_exit();
1412 		return;
1413 	}
1414 
1415 	if (m->dirty == 0)
1416 		vm_page_test_dirty(m);
1417 
1418 	if (m->dirty || (dnw & 0x0070) == 0) {
1419 		/*
1420 		 * Deactivate the page 3 times out of 32.
1421 		 */
1422 		head = 0;
1423 	} else {
1424 		/*
1425 		 * Cache the page 28 times out of every 32.  Note that
1426 		 * the page is deactivated instead of cached, but placed
1427 		 * at the head of the queue instead of the tail.
1428 		 */
1429 		head = 1;
1430 	}
1431 	_vm_page_deactivate(m, head);
1432 	crit_exit();
1433 }
1434 
1435 /*
1436  * Grab a page, blocking if it is busy and allocating a page if necessary.
1437  * A busy page is returned or NULL.
1438  *
1439  * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified.
1440  * If VM_ALLOC_RETRY is not specified
1441  *
1442  * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is
1443  * always returned if we had blocked.
1444  * This routine will never return NULL if VM_ALLOC_RETRY is set.
1445  * This routine may not be called from an interrupt.
1446  * The returned page may not be entirely valid.
1447  *
1448  * This routine may be called from mainline code without spl protection and
1449  * be guarenteed a busied page associated with the object at the specified
1450  * index.
1451  */
1452 vm_page_t
1453 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
1454 {
1455 	vm_page_t m;
1456 	int generation;
1457 
1458 	KKASSERT(allocflags &
1459 		(VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM));
1460 	crit_enter();
1461 retrylookup:
1462 	if ((m = vm_page_lookup(object, pindex)) != NULL) {
1463 		if (m->busy || (m->flags & PG_BUSY)) {
1464 			generation = object->generation;
1465 
1466 			while ((object->generation == generation) &&
1467 					(m->busy || (m->flags & PG_BUSY))) {
1468 				vm_page_flag_set(m, PG_WANTED | PG_REFERENCED);
1469 				tsleep(m, 0, "pgrbwt", 0);
1470 				if ((allocflags & VM_ALLOC_RETRY) == 0) {
1471 					m = NULL;
1472 					goto done;
1473 				}
1474 			}
1475 			goto retrylookup;
1476 		} else {
1477 			vm_page_busy(m);
1478 			goto done;
1479 		}
1480 	}
1481 	m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY);
1482 	if (m == NULL) {
1483 		vm_wait(0);
1484 		if ((allocflags & VM_ALLOC_RETRY) == 0)
1485 			goto done;
1486 		goto retrylookup;
1487 	}
1488 done:
1489 	crit_exit();
1490 	return(m);
1491 }
1492 
1493 /*
1494  * Mapping function for valid bits or for dirty bits in
1495  * a page.  May not block.
1496  *
1497  * Inputs are required to range within a page.
1498  */
1499 __inline int
1500 vm_page_bits(int base, int size)
1501 {
1502 	int first_bit;
1503 	int last_bit;
1504 
1505 	KASSERT(
1506 	    base + size <= PAGE_SIZE,
1507 	    ("vm_page_bits: illegal base/size %d/%d", base, size)
1508 	);
1509 
1510 	if (size == 0)		/* handle degenerate case */
1511 		return(0);
1512 
1513 	first_bit = base >> DEV_BSHIFT;
1514 	last_bit = (base + size - 1) >> DEV_BSHIFT;
1515 
1516 	return ((2 << last_bit) - (1 << first_bit));
1517 }
1518 
1519 /*
1520  * Sets portions of a page valid and clean.  The arguments are expected
1521  * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
1522  * of any partial chunks touched by the range.  The invalid portion of
1523  * such chunks will be zero'd.
1524  *
1525  * NOTE: When truncating a buffer vnode_pager_setsize() will automatically
1526  *	 align base to DEV_BSIZE so as not to mark clean a partially
1527  *	 truncated device block.  Otherwise the dirty page status might be
1528  *	 lost.
1529  *
1530  * This routine may not block.
1531  *
1532  * (base + size) must be less then or equal to PAGE_SIZE.
1533  */
1534 static void
1535 _vm_page_zero_valid(vm_page_t m, int base, int size)
1536 {
1537 	int frag;
1538 	int endoff;
1539 
1540 	if (size == 0)	/* handle degenerate case */
1541 		return;
1542 
1543 	/*
1544 	 * If the base is not DEV_BSIZE aligned and the valid
1545 	 * bit is clear, we have to zero out a portion of the
1546 	 * first block.
1547 	 */
1548 
1549 	if ((frag = base & ~(DEV_BSIZE - 1)) != base &&
1550 	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0
1551 	) {
1552 		pmap_zero_page_area(
1553 		    VM_PAGE_TO_PHYS(m),
1554 		    frag,
1555 		    base - frag
1556 		);
1557 	}
1558 
1559 	/*
1560 	 * If the ending offset is not DEV_BSIZE aligned and the
1561 	 * valid bit is clear, we have to zero out a portion of
1562 	 * the last block.
1563 	 */
1564 
1565 	endoff = base + size;
1566 
1567 	if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff &&
1568 	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0
1569 	) {
1570 		pmap_zero_page_area(
1571 		    VM_PAGE_TO_PHYS(m),
1572 		    endoff,
1573 		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1))
1574 		);
1575 	}
1576 }
1577 
1578 /*
1579  * Set valid, clear dirty bits.  If validating the entire
1580  * page we can safely clear the pmap modify bit.  We also
1581  * use this opportunity to clear the PG_NOSYNC flag.  If a process
1582  * takes a write fault on a MAP_NOSYNC memory area the flag will
1583  * be set again.
1584  *
1585  * We set valid bits inclusive of any overlap, but we can only
1586  * clear dirty bits for DEV_BSIZE chunks that are fully within
1587  * the range.
1588  */
1589 void
1590 vm_page_set_valid(vm_page_t m, int base, int size)
1591 {
1592 	_vm_page_zero_valid(m, base, size);
1593 	m->valid |= vm_page_bits(base, size);
1594 }
1595 
1596 
1597 /*
1598  * Set valid bits and clear dirty bits.
1599  *
1600  * NOTE: This function does not clear the pmap modified bit.
1601  *	 Also note that e.g. NFS may use a byte-granular base
1602  *	 and size.
1603  */
1604 void
1605 vm_page_set_validclean(vm_page_t m, int base, int size)
1606 {
1607 	int pagebits;
1608 
1609 	_vm_page_zero_valid(m, base, size);
1610 	pagebits = vm_page_bits(base, size);
1611 	m->valid |= pagebits;
1612 	m->dirty &= ~pagebits;
1613 	if (base == 0 && size == PAGE_SIZE) {
1614 		/*pmap_clear_modify(m);*/
1615 		vm_page_flag_clear(m, PG_NOSYNC);
1616 	}
1617 }
1618 
1619 /*
1620  * Set valid & dirty.  Used by buwrite()
1621  */
1622 void
1623 vm_page_set_validdirty(vm_page_t m, int base, int size)
1624 {
1625 	int pagebits;
1626 
1627 	pagebits = vm_page_bits(base, size);
1628 	m->valid |= pagebits;
1629 	m->dirty |= pagebits;
1630 	if (m->object)
1631 		vm_object_set_writeable_dirty(m->object);
1632 }
1633 
1634 /*
1635  * Clear dirty bits.
1636  *
1637  * NOTE: This function does not clear the pmap modified bit.
1638  *	 Also note that e.g. NFS may use a byte-granular base
1639  *	 and size.
1640  */
1641 void
1642 vm_page_clear_dirty(vm_page_t m, int base, int size)
1643 {
1644 	m->dirty &= ~vm_page_bits(base, size);
1645 	if (base == 0 && size == PAGE_SIZE) {
1646 		/*pmap_clear_modify(m);*/
1647 		vm_page_flag_clear(m, PG_NOSYNC);
1648 	}
1649 }
1650 
1651 /*
1652  * Make the page all-dirty.
1653  *
1654  * Also make sure the related object and vnode reflect the fact that the
1655  * object may now contain a dirty page.
1656  */
1657 void
1658 vm_page_dirty(vm_page_t m)
1659 {
1660 #ifdef INVARIANTS
1661         int pqtype = m->queue - m->pc;
1662 #endif
1663         KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE,
1664                 ("vm_page_dirty: page in free/cache queue!"));
1665 	if (m->dirty != VM_PAGE_BITS_ALL) {
1666 		m->dirty = VM_PAGE_BITS_ALL;
1667 		if (m->object)
1668 			vm_object_set_writeable_dirty(m->object);
1669 	}
1670 }
1671 
1672 /*
1673  * Invalidates DEV_BSIZE'd chunks within a page.  Both the
1674  * valid and dirty bits for the effected areas are cleared.
1675  *
1676  * May not block.
1677  */
1678 void
1679 vm_page_set_invalid(vm_page_t m, int base, int size)
1680 {
1681 	int bits;
1682 
1683 	bits = vm_page_bits(base, size);
1684 	m->valid &= ~bits;
1685 	m->dirty &= ~bits;
1686 	m->object->generation++;
1687 }
1688 
1689 /*
1690  * The kernel assumes that the invalid portions of a page contain
1691  * garbage, but such pages can be mapped into memory by user code.
1692  * When this occurs, we must zero out the non-valid portions of the
1693  * page so user code sees what it expects.
1694  *
1695  * Pages are most often semi-valid when the end of a file is mapped
1696  * into memory and the file's size is not page aligned.
1697  */
1698 void
1699 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
1700 {
1701 	int b;
1702 	int i;
1703 
1704 	/*
1705 	 * Scan the valid bits looking for invalid sections that
1706 	 * must be zerod.  Invalid sub-DEV_BSIZE'd areas ( where the
1707 	 * valid bit may be set ) have already been zerod by
1708 	 * vm_page_set_validclean().
1709 	 */
1710 	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
1711 		if (i == (PAGE_SIZE / DEV_BSIZE) ||
1712 		    (m->valid & (1 << i))
1713 		) {
1714 			if (i > b) {
1715 				pmap_zero_page_area(
1716 				    VM_PAGE_TO_PHYS(m),
1717 				    b << DEV_BSHIFT,
1718 				    (i - b) << DEV_BSHIFT
1719 				);
1720 			}
1721 			b = i + 1;
1722 		}
1723 	}
1724 
1725 	/*
1726 	 * setvalid is TRUE when we can safely set the zero'd areas
1727 	 * as being valid.  We can do this if there are no cache consistency
1728 	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
1729 	 */
1730 	if (setvalid)
1731 		m->valid = VM_PAGE_BITS_ALL;
1732 }
1733 
1734 /*
1735  * Is a (partial) page valid?  Note that the case where size == 0
1736  * will return FALSE in the degenerate case where the page is entirely
1737  * invalid, and TRUE otherwise.
1738  *
1739  * May not block.
1740  */
1741 int
1742 vm_page_is_valid(vm_page_t m, int base, int size)
1743 {
1744 	int bits = vm_page_bits(base, size);
1745 
1746 	if (m->valid && ((m->valid & bits) == bits))
1747 		return 1;
1748 	else
1749 		return 0;
1750 }
1751 
1752 /*
1753  * update dirty bits from pmap/mmu.  May not block.
1754  */
1755 void
1756 vm_page_test_dirty(vm_page_t m)
1757 {
1758 	if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) {
1759 		vm_page_dirty(m);
1760 	}
1761 }
1762 
1763 /*
1764  * Issue an event on a VM page.  Corresponding action structures are
1765  * removed from the page's list and called.
1766  */
1767 void
1768 vm_page_event_internal(vm_page_t m, vm_page_event_t event)
1769 {
1770 	struct vm_page_action *scan, *next;
1771 
1772 	LIST_FOREACH_MUTABLE(scan, &m->action_list, entry, next) {
1773 		if (scan->event == event) {
1774 			scan->event = VMEVENT_NONE;
1775 			LIST_REMOVE(scan, entry);
1776 			scan->func(m, scan);
1777 		}
1778 	}
1779 }
1780 
1781 
1782 #include "opt_ddb.h"
1783 #ifdef DDB
1784 #include <sys/kernel.h>
1785 
1786 #include <ddb/ddb.h>
1787 
1788 DB_SHOW_COMMAND(page, vm_page_print_page_info)
1789 {
1790 	db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count);
1791 	db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count);
1792 	db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count);
1793 	db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count);
1794 	db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count);
1795 	db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved);
1796 	db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min);
1797 	db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target);
1798 	db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min);
1799 	db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target);
1800 }
1801 
1802 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
1803 {
1804 	int i;
1805 	db_printf("PQ_FREE:");
1806 	for(i=0;i<PQ_L2_SIZE;i++) {
1807 		db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt);
1808 	}
1809 	db_printf("\n");
1810 
1811 	db_printf("PQ_CACHE:");
1812 	for(i=0;i<PQ_L2_SIZE;i++) {
1813 		db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt);
1814 	}
1815 	db_printf("\n");
1816 
1817 	db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n",
1818 		vm_page_queues[PQ_ACTIVE].lcnt,
1819 		vm_page_queues[PQ_INACTIVE].lcnt);
1820 }
1821 #endif /* DDB */
1822