1 /* 2 * Copyright (c) 1991 Regents of the University of California. 3 * All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91 37 * $FreeBSD: src/sys/vm/vm_page.c,v 1.147.2.18 2002/03/10 05:03:19 alc Exp $ 38 * $DragonFly: src/sys/vm/vm_page.c,v 1.40 2008/08/25 17:01:42 dillon Exp $ 39 */ 40 41 /* 42 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 43 * All rights reserved. 44 * 45 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 46 * 47 * Permission to use, copy, modify and distribute this software and 48 * its documentation is hereby granted, provided that both the copyright 49 * notice and this permission notice appear in all copies of the 50 * software, derivative works or modified versions, and any portions 51 * thereof, and that both notices appear in supporting documentation. 52 * 53 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 54 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 55 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 56 * 57 * Carnegie Mellon requests users of this software to return to 58 * 59 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 60 * School of Computer Science 61 * Carnegie Mellon University 62 * Pittsburgh PA 15213-3890 63 * 64 * any improvements or extensions that they make and grant Carnegie the 65 * rights to redistribute these changes. 66 */ 67 /* 68 * Resident memory management module. The module manipulates 'VM pages'. 69 * A VM page is the core building block for memory management. 70 */ 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/malloc.h> 75 #include <sys/proc.h> 76 #include <sys/vmmeter.h> 77 #include <sys/vnode.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <sys/lock.h> 82 #include <vm/vm_kern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_pageout.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_extern.h> 90 #include <vm/swap_pager.h> 91 92 #include <machine/md_var.h> 93 94 #include <vm/vm_page2.h> 95 #include <sys/mplock2.h> 96 97 static void vm_page_queue_init(void); 98 static void vm_page_free_wakeup(void); 99 static vm_page_t vm_page_select_cache(vm_object_t, vm_pindex_t); 100 static vm_page_t _vm_page_list_find2(int basequeue, int index); 101 102 struct vpgqueues vm_page_queues[PQ_COUNT]; /* Array of tailq lists */ 103 104 #define ASSERT_IN_CRIT_SECTION() KKASSERT(crit_test(curthread)); 105 106 RB_GENERATE2(vm_page_rb_tree, vm_page, rb_entry, rb_vm_page_compare, 107 vm_pindex_t, pindex); 108 109 static void 110 vm_page_queue_init(void) 111 { 112 int i; 113 114 for (i = 0; i < PQ_L2_SIZE; i++) 115 vm_page_queues[PQ_FREE+i].cnt = &vmstats.v_free_count; 116 for (i = 0; i < PQ_L2_SIZE; i++) 117 vm_page_queues[PQ_CACHE+i].cnt = &vmstats.v_cache_count; 118 119 vm_page_queues[PQ_INACTIVE].cnt = &vmstats.v_inactive_count; 120 vm_page_queues[PQ_ACTIVE].cnt = &vmstats.v_active_count; 121 vm_page_queues[PQ_HOLD].cnt = &vmstats.v_active_count; 122 /* PQ_NONE has no queue */ 123 124 for (i = 0; i < PQ_COUNT; i++) 125 TAILQ_INIT(&vm_page_queues[i].pl); 126 } 127 128 /* 129 * note: place in initialized data section? Is this necessary? 130 */ 131 long first_page = 0; 132 int vm_page_array_size = 0; 133 int vm_page_zero_count = 0; 134 vm_page_t vm_page_array = 0; 135 136 /* 137 * (low level boot) 138 * 139 * Sets the page size, perhaps based upon the memory size. 140 * Must be called before any use of page-size dependent functions. 141 */ 142 void 143 vm_set_page_size(void) 144 { 145 if (vmstats.v_page_size == 0) 146 vmstats.v_page_size = PAGE_SIZE; 147 if (((vmstats.v_page_size - 1) & vmstats.v_page_size) != 0) 148 panic("vm_set_page_size: page size not a power of two"); 149 } 150 151 /* 152 * (low level boot) 153 * 154 * Add a new page to the freelist for use by the system. New pages 155 * are added to both the head and tail of the associated free page 156 * queue in a bottom-up fashion, so both zero'd and non-zero'd page 157 * requests pull 'recent' adds (higher physical addresses) first. 158 * 159 * Must be called in a critical section. 160 */ 161 vm_page_t 162 vm_add_new_page(vm_paddr_t pa) 163 { 164 struct vpgqueues *vpq; 165 vm_page_t m; 166 167 ++vmstats.v_page_count; 168 ++vmstats.v_free_count; 169 m = PHYS_TO_VM_PAGE(pa); 170 m->phys_addr = pa; 171 m->flags = 0; 172 m->pc = (pa >> PAGE_SHIFT) & PQ_L2_MASK; 173 m->queue = m->pc + PQ_FREE; 174 KKASSERT(m->dirty == 0); 175 176 vpq = &vm_page_queues[m->queue]; 177 if (vpq->flipflop) 178 TAILQ_INSERT_TAIL(&vpq->pl, m, pageq); 179 else 180 TAILQ_INSERT_HEAD(&vpq->pl, m, pageq); 181 vpq->flipflop = 1 - vpq->flipflop; 182 183 vm_page_queues[m->queue].lcnt++; 184 return (m); 185 } 186 187 /* 188 * (low level boot) 189 * 190 * Initializes the resident memory module. 191 * 192 * Allocates memory for the page cells, and for the object/offset-to-page 193 * hash table headers. Each page cell is initialized and placed on the 194 * free list. 195 * 196 * starta/enda represents the range of physical memory addresses available 197 * for use (skipping memory already used by the kernel), subject to 198 * phys_avail[]. Note that phys_avail[] has already mapped out memory 199 * already in use by the kernel. 200 */ 201 vm_offset_t 202 vm_page_startup(vm_offset_t vaddr) 203 { 204 vm_offset_t mapped; 205 vm_size_t npages; 206 vm_paddr_t page_range; 207 vm_paddr_t new_end; 208 int i; 209 vm_paddr_t pa; 210 int nblocks; 211 vm_paddr_t last_pa; 212 vm_paddr_t end; 213 vm_paddr_t biggestone, biggestsize; 214 vm_paddr_t total; 215 216 total = 0; 217 biggestsize = 0; 218 biggestone = 0; 219 nblocks = 0; 220 vaddr = round_page(vaddr); 221 222 for (i = 0; phys_avail[i + 1]; i += 2) { 223 phys_avail[i] = round_page64(phys_avail[i]); 224 phys_avail[i + 1] = trunc_page64(phys_avail[i + 1]); 225 } 226 227 for (i = 0; phys_avail[i + 1]; i += 2) { 228 vm_paddr_t size = phys_avail[i + 1] - phys_avail[i]; 229 230 if (size > biggestsize) { 231 biggestone = i; 232 biggestsize = size; 233 } 234 ++nblocks; 235 total += size; 236 } 237 238 end = phys_avail[biggestone+1]; 239 end = trunc_page(end); 240 241 /* 242 * Initialize the queue headers for the free queue, the active queue 243 * and the inactive queue. 244 */ 245 246 vm_page_queue_init(); 247 248 /* VKERNELs don't support minidumps and as such don't need vm_page_dump */ 249 #if !defined(_KERNEL_VIRTUAL) 250 /* 251 * Allocate a bitmap to indicate that a random physical page 252 * needs to be included in a minidump. 253 * 254 * The amd64 port needs this to indicate which direct map pages 255 * need to be dumped, via calls to dump_add_page()/dump_drop_page(). 256 * 257 * However, i386 still needs this workspace internally within the 258 * minidump code. In theory, they are not needed on i386, but are 259 * included should the sf_buf code decide to use them. 260 */ 261 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE; 262 vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY); 263 end -= vm_page_dump_size; 264 vm_page_dump = (void *)pmap_map(&vaddr, end, end + vm_page_dump_size, 265 VM_PROT_READ | VM_PROT_WRITE); 266 bzero((void *)vm_page_dump, vm_page_dump_size); 267 #endif 268 269 /* 270 * Compute the number of pages of memory that will be available for 271 * use (taking into account the overhead of a page structure per 272 * page). 273 */ 274 first_page = phys_avail[0] / PAGE_SIZE; 275 page_range = phys_avail[(nblocks - 1) * 2 + 1] / PAGE_SIZE - first_page; 276 npages = (total - (page_range * sizeof(struct vm_page))) / PAGE_SIZE; 277 278 /* 279 * Initialize the mem entry structures now, and put them in the free 280 * queue. 281 */ 282 new_end = trunc_page(end - page_range * sizeof(struct vm_page)); 283 mapped = pmap_map(&vaddr, new_end, end, 284 VM_PROT_READ | VM_PROT_WRITE); 285 vm_page_array = (vm_page_t)mapped; 286 287 #if defined(__x86_64__) && !defined(_KERNEL_VIRTUAL) 288 /* 289 * since pmap_map on amd64 returns stuff out of a direct-map region, 290 * we have to manually add these pages to the minidump tracking so 291 * that they can be dumped, including the vm_page_array. 292 */ 293 for (pa = new_end; pa < phys_avail[biggestone + 1]; pa += PAGE_SIZE) 294 dump_add_page(pa); 295 #endif 296 297 /* 298 * Clear all of the page structures 299 */ 300 bzero((caddr_t) vm_page_array, page_range * sizeof(struct vm_page)); 301 vm_page_array_size = page_range; 302 303 /* 304 * Construct the free queue(s) in ascending order (by physical 305 * address) so that the first 16MB of physical memory is allocated 306 * last rather than first. On large-memory machines, this avoids 307 * the exhaustion of low physical memory before isa_dmainit has run. 308 */ 309 vmstats.v_page_count = 0; 310 vmstats.v_free_count = 0; 311 for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) { 312 pa = phys_avail[i]; 313 if (i == biggestone) 314 last_pa = new_end; 315 else 316 last_pa = phys_avail[i + 1]; 317 while (pa < last_pa && npages-- > 0) { 318 vm_add_new_page(pa); 319 pa += PAGE_SIZE; 320 } 321 } 322 return (vaddr); 323 } 324 325 /* 326 * Scan comparison function for Red-Black tree scans. An inclusive 327 * (start,end) is expected. Other fields are not used. 328 */ 329 int 330 rb_vm_page_scancmp(struct vm_page *p, void *data) 331 { 332 struct rb_vm_page_scan_info *info = data; 333 334 if (p->pindex < info->start_pindex) 335 return(-1); 336 if (p->pindex > info->end_pindex) 337 return(1); 338 return(0); 339 } 340 341 int 342 rb_vm_page_compare(struct vm_page *p1, struct vm_page *p2) 343 { 344 if (p1->pindex < p2->pindex) 345 return(-1); 346 if (p1->pindex > p2->pindex) 347 return(1); 348 return(0); 349 } 350 351 /* 352 * The opposite of vm_page_hold(). A page can be freed while being held, 353 * which places it on the PQ_HOLD queue. We must call vm_page_free_toq() 354 * in this case to actually free it once the hold count drops to 0. 355 * 356 * This routine must be called at splvm(). 357 */ 358 void 359 vm_page_unhold(vm_page_t mem) 360 { 361 --mem->hold_count; 362 KASSERT(mem->hold_count >= 0, ("vm_page_unhold: hold count < 0!!!")); 363 if (mem->hold_count == 0 && mem->queue == PQ_HOLD) { 364 vm_page_busy(mem); 365 vm_page_free_toq(mem); 366 } 367 } 368 369 /* 370 * Inserts the given mem entry into the object and object list. 371 * 372 * The pagetables are not updated but will presumably fault the page 373 * in if necessary, or if a kernel page the caller will at some point 374 * enter the page into the kernel's pmap. We are not allowed to block 375 * here so we *can't* do this anyway. 376 * 377 * This routine may not block. 378 * This routine must be called with a critical section held. 379 */ 380 void 381 vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex) 382 { 383 ASSERT_IN_CRIT_SECTION(); 384 if (m->object != NULL) 385 panic("vm_page_insert: already inserted"); 386 387 /* 388 * Record the object/offset pair in this page 389 */ 390 m->object = object; 391 m->pindex = pindex; 392 393 /* 394 * Insert it into the object. 395 */ 396 ASSERT_MP_LOCK_HELD(curthread); 397 vm_page_rb_tree_RB_INSERT(&object->rb_memq, m); 398 object->generation++; 399 400 /* 401 * show that the object has one more resident page. 402 */ 403 object->resident_page_count++; 404 405 /* 406 * Since we are inserting a new and possibly dirty page, 407 * update the object's OBJ_WRITEABLE and OBJ_MIGHTBEDIRTY flags. 408 */ 409 if ((m->valid & m->dirty) || (m->flags & PG_WRITEABLE)) 410 vm_object_set_writeable_dirty(object); 411 412 /* 413 * Checks for a swap assignment and sets PG_SWAPPED if appropriate. 414 */ 415 swap_pager_page_inserted(m); 416 } 417 418 /* 419 * Removes the given vm_page_t from the global (object,index) hash table 420 * and from the object's memq. 421 * 422 * The underlying pmap entry (if any) is NOT removed here. 423 * This routine may not block. 424 * 425 * The page must be BUSY and will remain BUSY on return. No spl needs to be 426 * held on call to this routine. 427 * 428 * note: FreeBSD side effect was to unbusy the page on return. We leave 429 * it busy. 430 */ 431 void 432 vm_page_remove(vm_page_t m) 433 { 434 vm_object_t object; 435 436 crit_enter(); 437 if (m->object == NULL) { 438 crit_exit(); 439 return; 440 } 441 442 if ((m->flags & PG_BUSY) == 0) 443 panic("vm_page_remove: page not busy"); 444 445 object = m->object; 446 447 /* 448 * Remove the page from the object and update the object. 449 */ 450 ASSERT_MP_LOCK_HELD(curthread); 451 vm_page_rb_tree_RB_REMOVE(&object->rb_memq, m); 452 object->resident_page_count--; 453 object->generation++; 454 m->object = NULL; 455 456 crit_exit(); 457 } 458 459 /* 460 * Locate and return the page at (object, pindex), or NULL if the 461 * page could not be found. 462 * 463 * This routine will operate properly without spl protection, but 464 * the returned page could be in flux if it is busy. Because an 465 * interrupt can race a caller's busy check (unbusying and freeing the 466 * page we return before the caller is able to check the busy bit), 467 * the caller should generally call this routine with a critical 468 * section held. 469 * 470 * Callers may call this routine without spl protection if they know 471 * 'for sure' that the page will not be ripped out from under them 472 * by an interrupt. 473 */ 474 vm_page_t 475 vm_page_lookup(vm_object_t object, vm_pindex_t pindex) 476 { 477 vm_page_t m; 478 479 /* 480 * Search the hash table for this object/offset pair 481 */ 482 ASSERT_MP_LOCK_HELD(curthread); 483 crit_enter(); 484 m = vm_page_rb_tree_RB_LOOKUP(&object->rb_memq, pindex); 485 crit_exit(); 486 KKASSERT(m == NULL || (m->object == object && m->pindex == pindex)); 487 return(m); 488 } 489 490 /* 491 * vm_page_rename() 492 * 493 * Move the given memory entry from its current object to the specified 494 * target object/offset. 495 * 496 * The object must be locked. 497 * This routine may not block. 498 * 499 * Note: This routine will raise itself to splvm(), the caller need not. 500 * 501 * Note: Swap associated with the page must be invalidated by the move. We 502 * have to do this for several reasons: (1) we aren't freeing the 503 * page, (2) we are dirtying the page, (3) the VM system is probably 504 * moving the page from object A to B, and will then later move 505 * the backing store from A to B and we can't have a conflict. 506 * 507 * Note: We *always* dirty the page. It is necessary both for the 508 * fact that we moved it, and because we may be invalidating 509 * swap. If the page is on the cache, we have to deactivate it 510 * or vm_page_dirty() will panic. Dirty pages are not allowed 511 * on the cache. 512 */ 513 void 514 vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex) 515 { 516 crit_enter(); 517 vm_page_remove(m); 518 vm_page_insert(m, new_object, new_pindex); 519 if (m->queue - m->pc == PQ_CACHE) 520 vm_page_deactivate(m); 521 vm_page_dirty(m); 522 vm_page_wakeup(m); 523 crit_exit(); 524 } 525 526 /* 527 * vm_page_unqueue() without any wakeup. This routine is used when a page 528 * is being moved between queues or otherwise is to remain BUSYied by the 529 * caller. 530 * 531 * This routine must be called at splhigh(). 532 * This routine may not block. 533 */ 534 void 535 vm_page_unqueue_nowakeup(vm_page_t m) 536 { 537 int queue = m->queue; 538 struct vpgqueues *pq; 539 540 if (queue != PQ_NONE) { 541 pq = &vm_page_queues[queue]; 542 m->queue = PQ_NONE; 543 TAILQ_REMOVE(&pq->pl, m, pageq); 544 (*pq->cnt)--; 545 pq->lcnt--; 546 } 547 } 548 549 /* 550 * vm_page_unqueue() - Remove a page from its queue, wakeup the pagedemon 551 * if necessary. 552 * 553 * This routine must be called at splhigh(). 554 * This routine may not block. 555 */ 556 void 557 vm_page_unqueue(vm_page_t m) 558 { 559 int queue = m->queue; 560 struct vpgqueues *pq; 561 562 if (queue != PQ_NONE) { 563 m->queue = PQ_NONE; 564 pq = &vm_page_queues[queue]; 565 TAILQ_REMOVE(&pq->pl, m, pageq); 566 (*pq->cnt)--; 567 pq->lcnt--; 568 if ((queue - m->pc) == PQ_CACHE || (queue - m->pc) == PQ_FREE) 569 pagedaemon_wakeup(); 570 } 571 } 572 573 /* 574 * vm_page_list_find() 575 * 576 * Find a page on the specified queue with color optimization. 577 * 578 * The page coloring optimization attempts to locate a page that does 579 * not overload other nearby pages in the object in the cpu's L1 or L2 580 * caches. We need this optimization because cpu caches tend to be 581 * physical caches, while object spaces tend to be virtual. 582 * 583 * This routine must be called at splvm(). 584 * This routine may not block. 585 * 586 * Note that this routine is carefully inlined. A non-inlined version 587 * is available for outside callers but the only critical path is 588 * from within this source file. 589 */ 590 static __inline 591 vm_page_t 592 _vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 593 { 594 vm_page_t m; 595 596 if (prefer_zero) 597 m = TAILQ_LAST(&vm_page_queues[basequeue+index].pl, pglist); 598 else 599 m = TAILQ_FIRST(&vm_page_queues[basequeue+index].pl); 600 if (m == NULL) 601 m = _vm_page_list_find2(basequeue, index); 602 return(m); 603 } 604 605 static vm_page_t 606 _vm_page_list_find2(int basequeue, int index) 607 { 608 int i; 609 vm_page_t m = NULL; 610 struct vpgqueues *pq; 611 612 pq = &vm_page_queues[basequeue]; 613 614 /* 615 * Note that for the first loop, index+i and index-i wind up at the 616 * same place. Even though this is not totally optimal, we've already 617 * blown it by missing the cache case so we do not care. 618 */ 619 620 for(i = PQ_L2_SIZE / 2; i > 0; --i) { 621 if ((m = TAILQ_FIRST(&pq[(index + i) & PQ_L2_MASK].pl)) != NULL) 622 break; 623 624 if ((m = TAILQ_FIRST(&pq[(index - i) & PQ_L2_MASK].pl)) != NULL) 625 break; 626 } 627 return(m); 628 } 629 630 vm_page_t 631 vm_page_list_find(int basequeue, int index, boolean_t prefer_zero) 632 { 633 return(_vm_page_list_find(basequeue, index, prefer_zero)); 634 } 635 636 /* 637 * Find a page on the cache queue with color optimization. As pages 638 * might be found, but not applicable, they are deactivated. This 639 * keeps us from using potentially busy cached pages. 640 * 641 * This routine must be called with a critical section held. 642 * This routine may not block. 643 */ 644 vm_page_t 645 vm_page_select_cache(vm_object_t object, vm_pindex_t pindex) 646 { 647 vm_page_t m; 648 649 while (TRUE) { 650 m = _vm_page_list_find( 651 PQ_CACHE, 652 (pindex + object->pg_color) & PQ_L2_MASK, 653 FALSE 654 ); 655 if (m && ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 656 m->hold_count || m->wire_count)) { 657 vm_page_deactivate(m); 658 continue; 659 } 660 return m; 661 } 662 /* not reached */ 663 } 664 665 /* 666 * Find a free or zero page, with specified preference. We attempt to 667 * inline the nominal case and fall back to _vm_page_select_free() 668 * otherwise. 669 * 670 * This routine must be called with a critical section held. 671 * This routine may not block. 672 */ 673 static __inline vm_page_t 674 vm_page_select_free(vm_object_t object, vm_pindex_t pindex, boolean_t prefer_zero) 675 { 676 vm_page_t m; 677 678 m = _vm_page_list_find( 679 PQ_FREE, 680 (pindex + object->pg_color) & PQ_L2_MASK, 681 prefer_zero 682 ); 683 return(m); 684 } 685 686 /* 687 * vm_page_alloc() 688 * 689 * Allocate and return a memory cell associated with this VM object/offset 690 * pair. 691 * 692 * page_req classes: 693 * 694 * VM_ALLOC_NORMAL allow use of cache pages, nominal free drain 695 * VM_ALLOC_QUICK like normal but cannot use cache 696 * VM_ALLOC_SYSTEM greater free drain 697 * VM_ALLOC_INTERRUPT allow free list to be completely drained 698 * VM_ALLOC_ZERO advisory request for pre-zero'd page 699 * 700 * The object must be locked. 701 * This routine may not block. 702 * The returned page will be marked PG_BUSY 703 * 704 * Additional special handling is required when called from an interrupt 705 * (VM_ALLOC_INTERRUPT). We are not allowed to mess with the page cache 706 * in this case. 707 */ 708 vm_page_t 709 vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int page_req) 710 { 711 vm_page_t m = NULL; 712 713 KKASSERT(object != NULL); 714 KASSERT(!vm_page_lookup(object, pindex), 715 ("vm_page_alloc: page already allocated")); 716 KKASSERT(page_req & 717 (VM_ALLOC_NORMAL|VM_ALLOC_QUICK| 718 VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 719 720 /* 721 * Certain system threads (pageout daemon, buf_daemon's) are 722 * allowed to eat deeper into the free page list. 723 */ 724 if (curthread->td_flags & TDF_SYSTHREAD) 725 page_req |= VM_ALLOC_SYSTEM; 726 727 crit_enter(); 728 loop: 729 if (vmstats.v_free_count > vmstats.v_free_reserved || 730 ((page_req & VM_ALLOC_INTERRUPT) && vmstats.v_free_count > 0) || 731 ((page_req & VM_ALLOC_SYSTEM) && vmstats.v_cache_count == 0 && 732 vmstats.v_free_count > vmstats.v_interrupt_free_min) 733 ) { 734 /* 735 * The free queue has sufficient free pages to take one out. 736 */ 737 if (page_req & VM_ALLOC_ZERO) 738 m = vm_page_select_free(object, pindex, TRUE); 739 else 740 m = vm_page_select_free(object, pindex, FALSE); 741 } else if (page_req & VM_ALLOC_NORMAL) { 742 /* 743 * Allocatable from the cache (non-interrupt only). On 744 * success, we must free the page and try again, thus 745 * ensuring that vmstats.v_*_free_min counters are replenished. 746 */ 747 #ifdef INVARIANTS 748 if (curthread->td_preempted) { 749 kprintf("vm_page_alloc(): warning, attempt to allocate" 750 " cache page from preempting interrupt\n"); 751 m = NULL; 752 } else { 753 m = vm_page_select_cache(object, pindex); 754 } 755 #else 756 m = vm_page_select_cache(object, pindex); 757 #endif 758 /* 759 * On success move the page into the free queue and loop. 760 */ 761 if (m != NULL) { 762 KASSERT(m->dirty == 0, 763 ("Found dirty cache page %p", m)); 764 vm_page_busy(m); 765 vm_page_protect(m, VM_PROT_NONE); 766 vm_page_free(m); 767 goto loop; 768 } 769 770 /* 771 * On failure return NULL 772 */ 773 crit_exit(); 774 #if defined(DIAGNOSTIC) 775 if (vmstats.v_cache_count > 0) 776 kprintf("vm_page_alloc(NORMAL): missing pages on cache queue: %d\n", vmstats.v_cache_count); 777 #endif 778 vm_pageout_deficit++; 779 pagedaemon_wakeup(); 780 return (NULL); 781 } else { 782 /* 783 * No pages available, wakeup the pageout daemon and give up. 784 */ 785 crit_exit(); 786 vm_pageout_deficit++; 787 pagedaemon_wakeup(); 788 return (NULL); 789 } 790 791 /* 792 * Good page found. The page has not yet been busied. We are in 793 * a critical section. 794 */ 795 KASSERT(m != NULL, ("vm_page_alloc(): missing page on free queue\n")); 796 KASSERT(m->dirty == 0, 797 ("vm_page_alloc: free/cache page %p was dirty", m)); 798 799 /* 800 * Remove from free queue 801 */ 802 vm_page_unqueue_nowakeup(m); 803 804 /* 805 * Initialize structure. Only the PG_ZERO flag is inherited. Set 806 * the page PG_BUSY 807 */ 808 if (m->flags & PG_ZERO) { 809 vm_page_zero_count--; 810 m->flags = PG_ZERO | PG_BUSY; 811 } else { 812 m->flags = PG_BUSY; 813 } 814 m->wire_count = 0; 815 m->hold_count = 0; 816 m->act_count = 0; 817 m->busy = 0; 818 m->valid = 0; 819 820 /* 821 * vm_page_insert() is safe prior to the crit_exit(). Note also that 822 * inserting a page here does not insert it into the pmap (which 823 * could cause us to block allocating memory). We cannot block 824 * anywhere. 825 */ 826 vm_page_insert(m, object, pindex); 827 828 /* 829 * Don't wakeup too often - wakeup the pageout daemon when 830 * we would be nearly out of memory. 831 */ 832 pagedaemon_wakeup(); 833 834 crit_exit(); 835 836 /* 837 * A PG_BUSY page is returned. 838 */ 839 return (m); 840 } 841 842 /* 843 * Wait for sufficient free memory for nominal heavy memory use kernel 844 * operations. 845 */ 846 void 847 vm_wait_nominal(void) 848 { 849 while (vm_page_count_min(0)) 850 vm_wait(0); 851 } 852 853 /* 854 * Test if vm_wait_nominal() would block. 855 */ 856 int 857 vm_test_nominal(void) 858 { 859 if (vm_page_count_min(0)) 860 return(1); 861 return(0); 862 } 863 864 /* 865 * Block until free pages are available for allocation, called in various 866 * places before memory allocations. 867 */ 868 void 869 vm_wait(int timo) 870 { 871 crit_enter(); 872 if (curthread == pagethread) { 873 vm_pageout_pages_needed = 1; 874 tsleep(&vm_pageout_pages_needed, 0, "VMWait", timo); 875 } else { 876 if (vm_pages_needed == 0) { 877 vm_pages_needed = 1; 878 wakeup(&vm_pages_needed); 879 } 880 tsleep(&vmstats.v_free_count, 0, "vmwait", timo); 881 } 882 crit_exit(); 883 } 884 885 /* 886 * Block until free pages are available for allocation 887 * 888 * Called only in vm_fault so that processes page faulting can be 889 * easily tracked. 890 */ 891 void 892 vm_waitpfault(void) 893 { 894 crit_enter(); 895 if (vm_pages_needed == 0) { 896 vm_pages_needed = 1; 897 wakeup(&vm_pages_needed); 898 } 899 tsleep(&vmstats.v_free_count, 0, "pfault", 0); 900 crit_exit(); 901 } 902 903 /* 904 * Put the specified page on the active list (if appropriate). Ensure 905 * that act_count is at least ACT_INIT but do not otherwise mess with it. 906 * 907 * The page queues must be locked. 908 * This routine may not block. 909 */ 910 void 911 vm_page_activate(vm_page_t m) 912 { 913 crit_enter(); 914 if (m->queue != PQ_ACTIVE) { 915 if ((m->queue - m->pc) == PQ_CACHE) 916 mycpu->gd_cnt.v_reactivated++; 917 918 vm_page_unqueue(m); 919 920 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 921 m->queue = PQ_ACTIVE; 922 vm_page_queues[PQ_ACTIVE].lcnt++; 923 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_ACTIVE].pl, 924 m, pageq); 925 if (m->act_count < ACT_INIT) 926 m->act_count = ACT_INIT; 927 vmstats.v_active_count++; 928 } 929 } else { 930 if (m->act_count < ACT_INIT) 931 m->act_count = ACT_INIT; 932 } 933 crit_exit(); 934 } 935 936 /* 937 * Helper routine for vm_page_free_toq() and vm_page_cache(). This 938 * routine is called when a page has been added to the cache or free 939 * queues. 940 * 941 * This routine may not block. 942 * This routine must be called at splvm() 943 */ 944 static __inline void 945 vm_page_free_wakeup(void) 946 { 947 /* 948 * if pageout daemon needs pages, then tell it that there are 949 * some free. 950 */ 951 if (vm_pageout_pages_needed && 952 vmstats.v_cache_count + vmstats.v_free_count >= 953 vmstats.v_pageout_free_min 954 ) { 955 wakeup(&vm_pageout_pages_needed); 956 vm_pageout_pages_needed = 0; 957 } 958 959 /* 960 * wakeup processes that are waiting on memory if we hit a 961 * high water mark. And wakeup scheduler process if we have 962 * lots of memory. this process will swapin processes. 963 */ 964 if (vm_pages_needed && !vm_page_count_min(0)) { 965 vm_pages_needed = 0; 966 wakeup(&vmstats.v_free_count); 967 } 968 } 969 970 /* 971 * vm_page_free_toq: 972 * 973 * Returns the given page to the PQ_FREE list, disassociating it with 974 * any VM object. 975 * 976 * The vm_page must be PG_BUSY on entry. PG_BUSY will be released on 977 * return (the page will have been freed). No particular spl is required 978 * on entry. 979 * 980 * This routine may not block. 981 */ 982 void 983 vm_page_free_toq(vm_page_t m) 984 { 985 struct vpgqueues *pq; 986 987 crit_enter(); 988 mycpu->gd_cnt.v_tfree++; 989 990 KKASSERT((m->flags & PG_MAPPED) == 0); 991 992 if (m->busy || ((m->queue - m->pc) == PQ_FREE)) { 993 kprintf( 994 "vm_page_free: pindex(%lu), busy(%d), PG_BUSY(%d), hold(%d)\n", 995 (u_long)m->pindex, m->busy, (m->flags & PG_BUSY) ? 1 : 0, 996 m->hold_count); 997 if ((m->queue - m->pc) == PQ_FREE) 998 panic("vm_page_free: freeing free page"); 999 else 1000 panic("vm_page_free: freeing busy page"); 1001 } 1002 1003 /* 1004 * unqueue, then remove page. Note that we cannot destroy 1005 * the page here because we do not want to call the pager's 1006 * callback routine until after we've put the page on the 1007 * appropriate free queue. 1008 */ 1009 vm_page_unqueue_nowakeup(m); 1010 vm_page_remove(m); 1011 1012 /* 1013 * No further management of fictitious pages occurs beyond object 1014 * and queue removal. 1015 */ 1016 if ((m->flags & PG_FICTITIOUS) != 0) { 1017 vm_page_wakeup(m); 1018 crit_exit(); 1019 return; 1020 } 1021 1022 m->valid = 0; 1023 vm_page_undirty(m); 1024 1025 if (m->wire_count != 0) { 1026 if (m->wire_count > 1) { 1027 panic( 1028 "vm_page_free: invalid wire count (%d), pindex: 0x%lx", 1029 m->wire_count, (long)m->pindex); 1030 } 1031 panic("vm_page_free: freeing wired page"); 1032 } 1033 1034 /* 1035 * Clear the UNMANAGED flag when freeing an unmanaged page. 1036 */ 1037 if (m->flags & PG_UNMANAGED) { 1038 m->flags &= ~PG_UNMANAGED; 1039 } 1040 1041 if (m->hold_count != 0) { 1042 m->flags &= ~PG_ZERO; 1043 m->queue = PQ_HOLD; 1044 } else { 1045 m->queue = PQ_FREE + m->pc; 1046 } 1047 pq = &vm_page_queues[m->queue]; 1048 pq->lcnt++; 1049 ++(*pq->cnt); 1050 1051 /* 1052 * Put zero'd pages on the end ( where we look for zero'd pages 1053 * first ) and non-zerod pages at the head. 1054 */ 1055 if (m->flags & PG_ZERO) { 1056 TAILQ_INSERT_TAIL(&pq->pl, m, pageq); 1057 ++vm_page_zero_count; 1058 } else { 1059 TAILQ_INSERT_HEAD(&pq->pl, m, pageq); 1060 } 1061 vm_page_wakeup(m); 1062 vm_page_free_wakeup(); 1063 crit_exit(); 1064 } 1065 1066 /* 1067 * vm_page_free_fromq_fast() 1068 * 1069 * Remove a non-zero page from one of the free queues; the page is removed for 1070 * zeroing, so do not issue a wakeup. 1071 * 1072 * MPUNSAFE 1073 */ 1074 vm_page_t 1075 vm_page_free_fromq_fast(void) 1076 { 1077 static int qi; 1078 vm_page_t m; 1079 int i; 1080 1081 crit_enter(); 1082 for (i = 0; i < PQ_L2_SIZE; ++i) { 1083 m = vm_page_list_find(PQ_FREE, qi, FALSE); 1084 qi = (qi + PQ_PRIME2) & PQ_L2_MASK; 1085 if (m && (m->flags & PG_ZERO) == 0) { 1086 vm_page_unqueue_nowakeup(m); 1087 vm_page_busy(m); 1088 break; 1089 } 1090 m = NULL; 1091 } 1092 crit_exit(); 1093 return (m); 1094 } 1095 1096 /* 1097 * vm_page_unmanage() 1098 * 1099 * Prevent PV management from being done on the page. The page is 1100 * removed from the paging queues as if it were wired, and as a 1101 * consequence of no longer being managed the pageout daemon will not 1102 * touch it (since there is no way to locate the pte mappings for the 1103 * page). madvise() calls that mess with the pmap will also no longer 1104 * operate on the page. 1105 * 1106 * Beyond that the page is still reasonably 'normal'. Freeing the page 1107 * will clear the flag. 1108 * 1109 * This routine is used by OBJT_PHYS objects - objects using unswappable 1110 * physical memory as backing store rather then swap-backed memory and 1111 * will eventually be extended to support 4MB unmanaged physical 1112 * mappings. 1113 * 1114 * Must be called with a critical section held. 1115 */ 1116 void 1117 vm_page_unmanage(vm_page_t m) 1118 { 1119 ASSERT_IN_CRIT_SECTION(); 1120 if ((m->flags & PG_UNMANAGED) == 0) { 1121 if (m->wire_count == 0) 1122 vm_page_unqueue(m); 1123 } 1124 vm_page_flag_set(m, PG_UNMANAGED); 1125 } 1126 1127 /* 1128 * Mark this page as wired down by yet another map, removing it from 1129 * paging queues as necessary. 1130 * 1131 * The page queues must be locked. 1132 * This routine may not block. 1133 */ 1134 void 1135 vm_page_wire(vm_page_t m) 1136 { 1137 /* 1138 * Only bump the wire statistics if the page is not already wired, 1139 * and only unqueue the page if it is on some queue (if it is unmanaged 1140 * it is already off the queues). Don't do anything with fictitious 1141 * pages because they are always wired. 1142 */ 1143 crit_enter(); 1144 if ((m->flags & PG_FICTITIOUS) == 0) { 1145 if (m->wire_count == 0) { 1146 if ((m->flags & PG_UNMANAGED) == 0) 1147 vm_page_unqueue(m); 1148 vmstats.v_wire_count++; 1149 } 1150 m->wire_count++; 1151 KASSERT(m->wire_count != 0, 1152 ("vm_page_wire: wire_count overflow m=%p", m)); 1153 } 1154 crit_exit(); 1155 } 1156 1157 /* 1158 * Release one wiring of this page, potentially enabling it to be paged again. 1159 * 1160 * Many pages placed on the inactive queue should actually go 1161 * into the cache, but it is difficult to figure out which. What 1162 * we do instead, if the inactive target is well met, is to put 1163 * clean pages at the head of the inactive queue instead of the tail. 1164 * This will cause them to be moved to the cache more quickly and 1165 * if not actively re-referenced, freed more quickly. If we just 1166 * stick these pages at the end of the inactive queue, heavy filesystem 1167 * meta-data accesses can cause an unnecessary paging load on memory bound 1168 * processes. This optimization causes one-time-use metadata to be 1169 * reused more quickly. 1170 * 1171 * BUT, if we are in a low-memory situation we have no choice but to 1172 * put clean pages on the cache queue. 1173 * 1174 * A number of routines use vm_page_unwire() to guarantee that the page 1175 * will go into either the inactive or active queues, and will NEVER 1176 * be placed in the cache - for example, just after dirtying a page. 1177 * dirty pages in the cache are not allowed. 1178 * 1179 * The page queues must be locked. 1180 * This routine may not block. 1181 */ 1182 void 1183 vm_page_unwire(vm_page_t m, int activate) 1184 { 1185 crit_enter(); 1186 if (m->flags & PG_FICTITIOUS) { 1187 /* do nothing */ 1188 } else if (m->wire_count <= 0) { 1189 panic("vm_page_unwire: invalid wire count: %d", m->wire_count); 1190 } else { 1191 if (--m->wire_count == 0) { 1192 --vmstats.v_wire_count; 1193 if (m->flags & PG_UNMANAGED) { 1194 ; 1195 } else if (activate) { 1196 TAILQ_INSERT_TAIL( 1197 &vm_page_queues[PQ_ACTIVE].pl, m, pageq); 1198 m->queue = PQ_ACTIVE; 1199 vm_page_queues[PQ_ACTIVE].lcnt++; 1200 vmstats.v_active_count++; 1201 } else { 1202 vm_page_flag_clear(m, PG_WINATCFLS); 1203 TAILQ_INSERT_TAIL( 1204 &vm_page_queues[PQ_INACTIVE].pl, m, pageq); 1205 m->queue = PQ_INACTIVE; 1206 vm_page_queues[PQ_INACTIVE].lcnt++; 1207 vmstats.v_inactive_count++; 1208 ++vm_swapcache_inactive_heuristic; 1209 } 1210 } 1211 } 1212 crit_exit(); 1213 } 1214 1215 1216 /* 1217 * Move the specified page to the inactive queue. If the page has 1218 * any associated swap, the swap is deallocated. 1219 * 1220 * Normally athead is 0 resulting in LRU operation. athead is set 1221 * to 1 if we want this page to be 'as if it were placed in the cache', 1222 * except without unmapping it from the process address space. 1223 * 1224 * This routine may not block. 1225 */ 1226 static __inline void 1227 _vm_page_deactivate(vm_page_t m, int athead) 1228 { 1229 /* 1230 * Ignore if already inactive. 1231 */ 1232 if (m->queue == PQ_INACTIVE) 1233 return; 1234 1235 if (m->wire_count == 0 && (m->flags & PG_UNMANAGED) == 0) { 1236 if ((m->queue - m->pc) == PQ_CACHE) 1237 mycpu->gd_cnt.v_reactivated++; 1238 vm_page_flag_clear(m, PG_WINATCFLS); 1239 vm_page_unqueue(m); 1240 if (athead) { 1241 TAILQ_INSERT_HEAD(&vm_page_queues[PQ_INACTIVE].pl, 1242 m, pageq); 1243 } else { 1244 TAILQ_INSERT_TAIL(&vm_page_queues[PQ_INACTIVE].pl, 1245 m, pageq); 1246 ++vm_swapcache_inactive_heuristic; 1247 } 1248 m->queue = PQ_INACTIVE; 1249 vm_page_queues[PQ_INACTIVE].lcnt++; 1250 vmstats.v_inactive_count++; 1251 } 1252 } 1253 1254 void 1255 vm_page_deactivate(vm_page_t m) 1256 { 1257 crit_enter(); 1258 _vm_page_deactivate(m, 0); 1259 crit_exit(); 1260 } 1261 1262 /* 1263 * vm_page_try_to_cache: 1264 * 1265 * Returns 0 on failure, 1 on success 1266 */ 1267 int 1268 vm_page_try_to_cache(vm_page_t m) 1269 { 1270 crit_enter(); 1271 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1272 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1273 crit_exit(); 1274 return(0); 1275 } 1276 vm_page_test_dirty(m); 1277 if (m->dirty) { 1278 crit_exit(); 1279 return(0); 1280 } 1281 vm_page_cache(m); 1282 crit_exit(); 1283 return(1); 1284 } 1285 1286 /* 1287 * Attempt to free the page. If we cannot free it, we do nothing. 1288 * 1 is returned on success, 0 on failure. 1289 */ 1290 int 1291 vm_page_try_to_free(vm_page_t m) 1292 { 1293 crit_enter(); 1294 if (m->dirty || m->hold_count || m->busy || m->wire_count || 1295 (m->flags & (PG_BUSY|PG_UNMANAGED))) { 1296 crit_exit(); 1297 return(0); 1298 } 1299 vm_page_test_dirty(m); 1300 if (m->dirty) { 1301 crit_exit(); 1302 return(0); 1303 } 1304 vm_page_busy(m); 1305 vm_page_protect(m, VM_PROT_NONE); 1306 vm_page_free(m); 1307 crit_exit(); 1308 return(1); 1309 } 1310 1311 /* 1312 * vm_page_cache 1313 * 1314 * Put the specified page onto the page cache queue (if appropriate). 1315 * 1316 * This routine may not block. 1317 */ 1318 void 1319 vm_page_cache(vm_page_t m) 1320 { 1321 ASSERT_IN_CRIT_SECTION(); 1322 1323 if ((m->flags & (PG_BUSY|PG_UNMANAGED)) || m->busy || 1324 m->wire_count || m->hold_count) { 1325 kprintf("vm_page_cache: attempting to cache busy/held page\n"); 1326 return; 1327 } 1328 1329 /* 1330 * Already in the cache (and thus not mapped) 1331 */ 1332 if ((m->queue - m->pc) == PQ_CACHE) { 1333 KKASSERT((m->flags & PG_MAPPED) == 0); 1334 return; 1335 } 1336 1337 /* 1338 * Caller is required to test m->dirty, but note that the act of 1339 * removing the page from its maps can cause it to become dirty 1340 * on an SMP system due to another cpu running in usermode. 1341 */ 1342 if (m->dirty) { 1343 panic("vm_page_cache: caching a dirty page, pindex: %ld", 1344 (long)m->pindex); 1345 } 1346 1347 /* 1348 * Remove all pmaps and indicate that the page is not 1349 * writeable or mapped. Our vm_page_protect() call may 1350 * have blocked (especially w/ VM_PROT_NONE), so recheck 1351 * everything. 1352 */ 1353 vm_page_busy(m); 1354 vm_page_protect(m, VM_PROT_NONE); 1355 vm_page_wakeup(m); 1356 if ((m->flags & (PG_BUSY|PG_UNMANAGED|PG_MAPPED)) || m->busy || 1357 m->wire_count || m->hold_count) { 1358 /* do nothing */ 1359 } else if (m->dirty) { 1360 vm_page_deactivate(m); 1361 } else { 1362 vm_page_unqueue_nowakeup(m); 1363 m->queue = PQ_CACHE + m->pc; 1364 vm_page_queues[m->queue].lcnt++; 1365 TAILQ_INSERT_TAIL(&vm_page_queues[m->queue].pl, m, pageq); 1366 vmstats.v_cache_count++; 1367 vm_page_free_wakeup(); 1368 } 1369 } 1370 1371 /* 1372 * vm_page_dontneed() 1373 * 1374 * Cache, deactivate, or do nothing as appropriate. This routine 1375 * is typically used by madvise() MADV_DONTNEED. 1376 * 1377 * Generally speaking we want to move the page into the cache so 1378 * it gets reused quickly. However, this can result in a silly syndrome 1379 * due to the page recycling too quickly. Small objects will not be 1380 * fully cached. On the otherhand, if we move the page to the inactive 1381 * queue we wind up with a problem whereby very large objects 1382 * unnecessarily blow away our inactive and cache queues. 1383 * 1384 * The solution is to move the pages based on a fixed weighting. We 1385 * either leave them alone, deactivate them, or move them to the cache, 1386 * where moving them to the cache has the highest weighting. 1387 * By forcing some pages into other queues we eventually force the 1388 * system to balance the queues, potentially recovering other unrelated 1389 * space from active. The idea is to not force this to happen too 1390 * often. 1391 */ 1392 void 1393 vm_page_dontneed(vm_page_t m) 1394 { 1395 static int dnweight; 1396 int dnw; 1397 int head; 1398 1399 dnw = ++dnweight; 1400 1401 /* 1402 * occassionally leave the page alone 1403 */ 1404 crit_enter(); 1405 if ((dnw & 0x01F0) == 0 || 1406 m->queue == PQ_INACTIVE || 1407 m->queue - m->pc == PQ_CACHE 1408 ) { 1409 if (m->act_count >= ACT_INIT) 1410 --m->act_count; 1411 crit_exit(); 1412 return; 1413 } 1414 1415 if (m->dirty == 0) 1416 vm_page_test_dirty(m); 1417 1418 if (m->dirty || (dnw & 0x0070) == 0) { 1419 /* 1420 * Deactivate the page 3 times out of 32. 1421 */ 1422 head = 0; 1423 } else { 1424 /* 1425 * Cache the page 28 times out of every 32. Note that 1426 * the page is deactivated instead of cached, but placed 1427 * at the head of the queue instead of the tail. 1428 */ 1429 head = 1; 1430 } 1431 _vm_page_deactivate(m, head); 1432 crit_exit(); 1433 } 1434 1435 /* 1436 * Grab a page, blocking if it is busy and allocating a page if necessary. 1437 * A busy page is returned or NULL. 1438 * 1439 * If VM_ALLOC_RETRY is specified VM_ALLOC_NORMAL must also be specified. 1440 * If VM_ALLOC_RETRY is not specified 1441 * 1442 * This routine may block, but if VM_ALLOC_RETRY is not set then NULL is 1443 * always returned if we had blocked. 1444 * This routine will never return NULL if VM_ALLOC_RETRY is set. 1445 * This routine may not be called from an interrupt. 1446 * The returned page may not be entirely valid. 1447 * 1448 * This routine may be called from mainline code without spl protection and 1449 * be guarenteed a busied page associated with the object at the specified 1450 * index. 1451 */ 1452 vm_page_t 1453 vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags) 1454 { 1455 vm_page_t m; 1456 int generation; 1457 1458 KKASSERT(allocflags & 1459 (VM_ALLOC_NORMAL|VM_ALLOC_INTERRUPT|VM_ALLOC_SYSTEM)); 1460 crit_enter(); 1461 retrylookup: 1462 if ((m = vm_page_lookup(object, pindex)) != NULL) { 1463 if (m->busy || (m->flags & PG_BUSY)) { 1464 generation = object->generation; 1465 1466 while ((object->generation == generation) && 1467 (m->busy || (m->flags & PG_BUSY))) { 1468 vm_page_flag_set(m, PG_WANTED | PG_REFERENCED); 1469 tsleep(m, 0, "pgrbwt", 0); 1470 if ((allocflags & VM_ALLOC_RETRY) == 0) { 1471 m = NULL; 1472 goto done; 1473 } 1474 } 1475 goto retrylookup; 1476 } else { 1477 vm_page_busy(m); 1478 goto done; 1479 } 1480 } 1481 m = vm_page_alloc(object, pindex, allocflags & ~VM_ALLOC_RETRY); 1482 if (m == NULL) { 1483 vm_wait(0); 1484 if ((allocflags & VM_ALLOC_RETRY) == 0) 1485 goto done; 1486 goto retrylookup; 1487 } 1488 done: 1489 crit_exit(); 1490 return(m); 1491 } 1492 1493 /* 1494 * Mapping function for valid bits or for dirty bits in 1495 * a page. May not block. 1496 * 1497 * Inputs are required to range within a page. 1498 */ 1499 __inline int 1500 vm_page_bits(int base, int size) 1501 { 1502 int first_bit; 1503 int last_bit; 1504 1505 KASSERT( 1506 base + size <= PAGE_SIZE, 1507 ("vm_page_bits: illegal base/size %d/%d", base, size) 1508 ); 1509 1510 if (size == 0) /* handle degenerate case */ 1511 return(0); 1512 1513 first_bit = base >> DEV_BSHIFT; 1514 last_bit = (base + size - 1) >> DEV_BSHIFT; 1515 1516 return ((2 << last_bit) - (1 << first_bit)); 1517 } 1518 1519 /* 1520 * Sets portions of a page valid and clean. The arguments are expected 1521 * to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive 1522 * of any partial chunks touched by the range. The invalid portion of 1523 * such chunks will be zero'd. 1524 * 1525 * NOTE: When truncating a buffer vnode_pager_setsize() will automatically 1526 * align base to DEV_BSIZE so as not to mark clean a partially 1527 * truncated device block. Otherwise the dirty page status might be 1528 * lost. 1529 * 1530 * This routine may not block. 1531 * 1532 * (base + size) must be less then or equal to PAGE_SIZE. 1533 */ 1534 static void 1535 _vm_page_zero_valid(vm_page_t m, int base, int size) 1536 { 1537 int frag; 1538 int endoff; 1539 1540 if (size == 0) /* handle degenerate case */ 1541 return; 1542 1543 /* 1544 * If the base is not DEV_BSIZE aligned and the valid 1545 * bit is clear, we have to zero out a portion of the 1546 * first block. 1547 */ 1548 1549 if ((frag = base & ~(DEV_BSIZE - 1)) != base && 1550 (m->valid & (1 << (base >> DEV_BSHIFT))) == 0 1551 ) { 1552 pmap_zero_page_area( 1553 VM_PAGE_TO_PHYS(m), 1554 frag, 1555 base - frag 1556 ); 1557 } 1558 1559 /* 1560 * If the ending offset is not DEV_BSIZE aligned and the 1561 * valid bit is clear, we have to zero out a portion of 1562 * the last block. 1563 */ 1564 1565 endoff = base + size; 1566 1567 if ((frag = endoff & ~(DEV_BSIZE - 1)) != endoff && 1568 (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0 1569 ) { 1570 pmap_zero_page_area( 1571 VM_PAGE_TO_PHYS(m), 1572 endoff, 1573 DEV_BSIZE - (endoff & (DEV_BSIZE - 1)) 1574 ); 1575 } 1576 } 1577 1578 /* 1579 * Set valid, clear dirty bits. If validating the entire 1580 * page we can safely clear the pmap modify bit. We also 1581 * use this opportunity to clear the PG_NOSYNC flag. If a process 1582 * takes a write fault on a MAP_NOSYNC memory area the flag will 1583 * be set again. 1584 * 1585 * We set valid bits inclusive of any overlap, but we can only 1586 * clear dirty bits for DEV_BSIZE chunks that are fully within 1587 * the range. 1588 */ 1589 void 1590 vm_page_set_valid(vm_page_t m, int base, int size) 1591 { 1592 _vm_page_zero_valid(m, base, size); 1593 m->valid |= vm_page_bits(base, size); 1594 } 1595 1596 1597 /* 1598 * Set valid bits and clear dirty bits. 1599 * 1600 * NOTE: This function does not clear the pmap modified bit. 1601 * Also note that e.g. NFS may use a byte-granular base 1602 * and size. 1603 */ 1604 void 1605 vm_page_set_validclean(vm_page_t m, int base, int size) 1606 { 1607 int pagebits; 1608 1609 _vm_page_zero_valid(m, base, size); 1610 pagebits = vm_page_bits(base, size); 1611 m->valid |= pagebits; 1612 m->dirty &= ~pagebits; 1613 if (base == 0 && size == PAGE_SIZE) { 1614 /*pmap_clear_modify(m);*/ 1615 vm_page_flag_clear(m, PG_NOSYNC); 1616 } 1617 } 1618 1619 /* 1620 * Set valid & dirty. Used by buwrite() 1621 */ 1622 void 1623 vm_page_set_validdirty(vm_page_t m, int base, int size) 1624 { 1625 int pagebits; 1626 1627 pagebits = vm_page_bits(base, size); 1628 m->valid |= pagebits; 1629 m->dirty |= pagebits; 1630 if (m->object) 1631 vm_object_set_writeable_dirty(m->object); 1632 } 1633 1634 /* 1635 * Clear dirty bits. 1636 * 1637 * NOTE: This function does not clear the pmap modified bit. 1638 * Also note that e.g. NFS may use a byte-granular base 1639 * and size. 1640 */ 1641 void 1642 vm_page_clear_dirty(vm_page_t m, int base, int size) 1643 { 1644 m->dirty &= ~vm_page_bits(base, size); 1645 if (base == 0 && size == PAGE_SIZE) { 1646 /*pmap_clear_modify(m);*/ 1647 vm_page_flag_clear(m, PG_NOSYNC); 1648 } 1649 } 1650 1651 /* 1652 * Make the page all-dirty. 1653 * 1654 * Also make sure the related object and vnode reflect the fact that the 1655 * object may now contain a dirty page. 1656 */ 1657 void 1658 vm_page_dirty(vm_page_t m) 1659 { 1660 #ifdef INVARIANTS 1661 int pqtype = m->queue - m->pc; 1662 #endif 1663 KASSERT(pqtype != PQ_CACHE && pqtype != PQ_FREE, 1664 ("vm_page_dirty: page in free/cache queue!")); 1665 if (m->dirty != VM_PAGE_BITS_ALL) { 1666 m->dirty = VM_PAGE_BITS_ALL; 1667 if (m->object) 1668 vm_object_set_writeable_dirty(m->object); 1669 } 1670 } 1671 1672 /* 1673 * Invalidates DEV_BSIZE'd chunks within a page. Both the 1674 * valid and dirty bits for the effected areas are cleared. 1675 * 1676 * May not block. 1677 */ 1678 void 1679 vm_page_set_invalid(vm_page_t m, int base, int size) 1680 { 1681 int bits; 1682 1683 bits = vm_page_bits(base, size); 1684 m->valid &= ~bits; 1685 m->dirty &= ~bits; 1686 m->object->generation++; 1687 } 1688 1689 /* 1690 * The kernel assumes that the invalid portions of a page contain 1691 * garbage, but such pages can be mapped into memory by user code. 1692 * When this occurs, we must zero out the non-valid portions of the 1693 * page so user code sees what it expects. 1694 * 1695 * Pages are most often semi-valid when the end of a file is mapped 1696 * into memory and the file's size is not page aligned. 1697 */ 1698 void 1699 vm_page_zero_invalid(vm_page_t m, boolean_t setvalid) 1700 { 1701 int b; 1702 int i; 1703 1704 /* 1705 * Scan the valid bits looking for invalid sections that 1706 * must be zerod. Invalid sub-DEV_BSIZE'd areas ( where the 1707 * valid bit may be set ) have already been zerod by 1708 * vm_page_set_validclean(). 1709 */ 1710 for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) { 1711 if (i == (PAGE_SIZE / DEV_BSIZE) || 1712 (m->valid & (1 << i)) 1713 ) { 1714 if (i > b) { 1715 pmap_zero_page_area( 1716 VM_PAGE_TO_PHYS(m), 1717 b << DEV_BSHIFT, 1718 (i - b) << DEV_BSHIFT 1719 ); 1720 } 1721 b = i + 1; 1722 } 1723 } 1724 1725 /* 1726 * setvalid is TRUE when we can safely set the zero'd areas 1727 * as being valid. We can do this if there are no cache consistency 1728 * issues. e.g. it is ok to do with UFS, but not ok to do with NFS. 1729 */ 1730 if (setvalid) 1731 m->valid = VM_PAGE_BITS_ALL; 1732 } 1733 1734 /* 1735 * Is a (partial) page valid? Note that the case where size == 0 1736 * will return FALSE in the degenerate case where the page is entirely 1737 * invalid, and TRUE otherwise. 1738 * 1739 * May not block. 1740 */ 1741 int 1742 vm_page_is_valid(vm_page_t m, int base, int size) 1743 { 1744 int bits = vm_page_bits(base, size); 1745 1746 if (m->valid && ((m->valid & bits) == bits)) 1747 return 1; 1748 else 1749 return 0; 1750 } 1751 1752 /* 1753 * update dirty bits from pmap/mmu. May not block. 1754 */ 1755 void 1756 vm_page_test_dirty(vm_page_t m) 1757 { 1758 if ((m->dirty != VM_PAGE_BITS_ALL) && pmap_is_modified(m)) { 1759 vm_page_dirty(m); 1760 } 1761 } 1762 1763 /* 1764 * Issue an event on a VM page. Corresponding action structures are 1765 * removed from the page's list and called. 1766 */ 1767 void 1768 vm_page_event_internal(vm_page_t m, vm_page_event_t event) 1769 { 1770 struct vm_page_action *scan, *next; 1771 1772 LIST_FOREACH_MUTABLE(scan, &m->action_list, entry, next) { 1773 if (scan->event == event) { 1774 scan->event = VMEVENT_NONE; 1775 LIST_REMOVE(scan, entry); 1776 scan->func(m, scan); 1777 } 1778 } 1779 } 1780 1781 1782 #include "opt_ddb.h" 1783 #ifdef DDB 1784 #include <sys/kernel.h> 1785 1786 #include <ddb/ddb.h> 1787 1788 DB_SHOW_COMMAND(page, vm_page_print_page_info) 1789 { 1790 db_printf("vmstats.v_free_count: %d\n", vmstats.v_free_count); 1791 db_printf("vmstats.v_cache_count: %d\n", vmstats.v_cache_count); 1792 db_printf("vmstats.v_inactive_count: %d\n", vmstats.v_inactive_count); 1793 db_printf("vmstats.v_active_count: %d\n", vmstats.v_active_count); 1794 db_printf("vmstats.v_wire_count: %d\n", vmstats.v_wire_count); 1795 db_printf("vmstats.v_free_reserved: %d\n", vmstats.v_free_reserved); 1796 db_printf("vmstats.v_free_min: %d\n", vmstats.v_free_min); 1797 db_printf("vmstats.v_free_target: %d\n", vmstats.v_free_target); 1798 db_printf("vmstats.v_cache_min: %d\n", vmstats.v_cache_min); 1799 db_printf("vmstats.v_inactive_target: %d\n", vmstats.v_inactive_target); 1800 } 1801 1802 DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info) 1803 { 1804 int i; 1805 db_printf("PQ_FREE:"); 1806 for(i=0;i<PQ_L2_SIZE;i++) { 1807 db_printf(" %d", vm_page_queues[PQ_FREE + i].lcnt); 1808 } 1809 db_printf("\n"); 1810 1811 db_printf("PQ_CACHE:"); 1812 for(i=0;i<PQ_L2_SIZE;i++) { 1813 db_printf(" %d", vm_page_queues[PQ_CACHE + i].lcnt); 1814 } 1815 db_printf("\n"); 1816 1817 db_printf("PQ_ACTIVE: %d, PQ_INACTIVE: %d\n", 1818 vm_page_queues[PQ_ACTIVE].lcnt, 1819 vm_page_queues[PQ_INACTIVE].lcnt); 1820 } 1821 #endif /* DDB */ 1822